xref: /linux/drivers/thermal/gov_power_allocator.c (revision 0a670e151a71434765de69590944e18c08ee08cf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * A power allocator to manage temperature
4  *
5  * Copyright (C) 2014 ARM Ltd.
6  *
7  */
8 
9 #define pr_fmt(fmt) "Power allocator: " fmt
10 
11 #include <linux/slab.h>
12 #include <linux/thermal.h>
13 
14 #define CREATE_TRACE_POINTS
15 #include "thermal_trace_ipa.h"
16 
17 #include "thermal_core.h"
18 
19 #define FRAC_BITS 10
20 #define int_to_frac(x) ((x) << FRAC_BITS)
21 #define frac_to_int(x) ((x) >> FRAC_BITS)
22 
23 /**
24  * mul_frac() - multiply two fixed-point numbers
25  * @x:	first multiplicand
26  * @y:	second multiplicand
27  *
28  * Return: the result of multiplying two fixed-point numbers.  The
29  * result is also a fixed-point number.
30  */
31 static inline s64 mul_frac(s64 x, s64 y)
32 {
33 	return (x * y) >> FRAC_BITS;
34 }
35 
36 /**
37  * div_frac() - divide two fixed-point numbers
38  * @x:	the dividend
39  * @y:	the divisor
40  *
41  * Return: the result of dividing two fixed-point numbers.  The
42  * result is also a fixed-point number.
43  */
44 static inline s64 div_frac(s64 x, s64 y)
45 {
46 	return div_s64(x << FRAC_BITS, y);
47 }
48 
49 /**
50  * struct power_actor - internal power information for power actor
51  * @req_power:		requested power value (not weighted)
52  * @max_power:		max allocatable power for this actor
53  * @granted_power:	granted power for this actor
54  * @extra_actor_power:	extra power that this actor can receive
55  * @weighted_req_power:	weighted requested power as input to IPA
56  */
57 struct power_actor {
58 	u32 req_power;
59 	u32 max_power;
60 	u32 granted_power;
61 	u32 extra_actor_power;
62 	u32 weighted_req_power;
63 };
64 
65 /**
66  * struct power_allocator_params - parameters for the power allocator governor
67  * @allocated_tzp:	whether we have allocated tzp for this thermal zone and
68  *			it needs to be freed on unbind
69  * @update_cdevs:	whether or not update cdevs on the next run
70  * @err_integral:	accumulated error in the PID controller.
71  * @prev_err:	error in the previous iteration of the PID controller.
72  *		Used to calculate the derivative term.
73  * @sustainable_power:	Sustainable power (heat) that this thermal zone can
74  *			dissipate
75  * @trip_switch_on:	first passive trip point of the thermal zone.  The
76  *			governor switches on when this trip point is crossed.
77  *			If the thermal zone only has one passive trip point,
78  *			@trip_switch_on should be NULL.
79  * @trip_max:		last passive trip point of the thermal zone. The
80  *			temperature we are controlling for.
81  * @total_weight:	Sum of all thermal instances weights
82  * @num_actors:		number of cooling devices supporting IPA callbacks
83  * @buffer_size:	internal buffer size, to avoid runtime re-calculation
84  * @power:		buffer for all power actors internal power information
85  */
86 struct power_allocator_params {
87 	bool allocated_tzp;
88 	bool update_cdevs;
89 	s64 err_integral;
90 	s32 prev_err;
91 	u32 sustainable_power;
92 	const struct thermal_trip *trip_switch_on;
93 	const struct thermal_trip *trip_max;
94 	int total_weight;
95 	unsigned int num_actors;
96 	unsigned int buffer_size;
97 	struct power_actor *power;
98 };
99 
100 static bool power_actor_is_valid(struct thermal_instance *instance)
101 {
102 	return cdev_is_power_actor(instance->cdev);
103 }
104 
105 /**
106  * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
107  * @tz: thermal zone we are operating in
108  *
109  * For thermal zones that don't provide a sustainable_power in their
110  * thermal_zone_params, estimate one.  Calculate it using the minimum
111  * power of all the cooling devices as that gives a valid value that
112  * can give some degree of functionality.  For optimal performance of
113  * this governor, provide a sustainable_power in the thermal zone's
114  * thermal_zone_params.
115  */
116 static u32 estimate_sustainable_power(struct thermal_zone_device *tz)
117 {
118 	struct power_allocator_params *params = tz->governor_data;
119 	const struct thermal_trip_desc *td = trip_to_trip_desc(params->trip_max);
120 	struct thermal_cooling_device *cdev;
121 	struct thermal_instance *instance;
122 	u32 sustainable_power = 0;
123 	u32 min_power;
124 
125 	list_for_each_entry(instance, &td->thermal_instances, trip_node) {
126 		if (!power_actor_is_valid(instance))
127 			continue;
128 
129 		cdev = instance->cdev;
130 		if (cdev->ops->state2power(cdev, instance->upper, &min_power))
131 			continue;
132 
133 		sustainable_power += min_power;
134 	}
135 
136 	return sustainable_power;
137 }
138 
139 /**
140  * estimate_pid_constants() - Estimate the constants for the PID controller
141  * @tz:		thermal zone for which to estimate the constants
142  * @sustainable_power:	sustainable power for the thermal zone
143  * @trip_switch_on:	trip point for the switch on temperature
144  * @control_temp:	target temperature for the power allocator governor
145  *
146  * This function is used to update the estimation of the PID
147  * controller constants in struct thermal_zone_parameters.
148  */
149 static void estimate_pid_constants(struct thermal_zone_device *tz,
150 				   u32 sustainable_power,
151 				   const struct thermal_trip *trip_switch_on,
152 				   int control_temp)
153 {
154 	u32 temperature_threshold = control_temp;
155 	s32 k_i;
156 
157 	if (trip_switch_on)
158 		temperature_threshold -= trip_switch_on->temperature;
159 
160 	/*
161 	 * estimate_pid_constants() tries to find appropriate default
162 	 * values for thermal zones that don't provide them. If a
163 	 * system integrator has configured a thermal zone with two
164 	 * passive trip points at the same temperature, that person
165 	 * hasn't put any effort to set up the thermal zone properly
166 	 * so just give up.
167 	 */
168 	if (!temperature_threshold)
169 		return;
170 
171 	tz->tzp->k_po = int_to_frac(sustainable_power) /
172 		temperature_threshold;
173 
174 	tz->tzp->k_pu = int_to_frac(2 * sustainable_power) /
175 		temperature_threshold;
176 
177 	k_i = tz->tzp->k_pu / 10;
178 	tz->tzp->k_i = k_i > 0 ? k_i : 1;
179 
180 	/*
181 	 * The default for k_d and integral_cutoff is 0, so we can
182 	 * leave them as they are.
183 	 */
184 }
185 
186 /**
187  * get_sustainable_power() - Get the right sustainable power
188  * @tz:		thermal zone for which to estimate the constants
189  * @params:	parameters for the power allocator governor
190  * @control_temp:	target temperature for the power allocator governor
191  *
192  * This function is used for getting the proper sustainable power value based
193  * on variables which might be updated by the user sysfs interface. If that
194  * happen the new value is going to be estimated and updated. It is also used
195  * after thermal zone binding, where the initial values where set to 0.
196  */
197 static u32 get_sustainable_power(struct thermal_zone_device *tz,
198 				 struct power_allocator_params *params,
199 				 int control_temp)
200 {
201 	u32 sustainable_power;
202 
203 	if (!tz->tzp->sustainable_power)
204 		sustainable_power = estimate_sustainable_power(tz);
205 	else
206 		sustainable_power = tz->tzp->sustainable_power;
207 
208 	/* Check if it's init value 0 or there was update via sysfs */
209 	if (sustainable_power != params->sustainable_power) {
210 		estimate_pid_constants(tz, sustainable_power,
211 				       params->trip_switch_on, control_temp);
212 
213 		/* Do the estimation only once and make available in sysfs */
214 		tz->tzp->sustainable_power = sustainable_power;
215 		params->sustainable_power = sustainable_power;
216 	}
217 
218 	return sustainable_power;
219 }
220 
221 /**
222  * pid_controller() - PID controller
223  * @tz:	thermal zone we are operating in
224  * @control_temp:	the target temperature in millicelsius
225  * @max_allocatable_power:	maximum allocatable power for this thermal zone
226  *
227  * This PID controller increases the available power budget so that the
228  * temperature of the thermal zone gets as close as possible to
229  * @control_temp and limits the power if it exceeds it.  k_po is the
230  * proportional term when we are overshooting, k_pu is the
231  * proportional term when we are undershooting.  integral_cutoff is a
232  * threshold below which we stop accumulating the error.  The
233  * accumulated error is only valid if the requested power will make
234  * the system warmer.  If the system is mostly idle, there's no point
235  * in accumulating positive error.
236  *
237  * Return: The power budget for the next period.
238  */
239 static u32 pid_controller(struct thermal_zone_device *tz,
240 			  int control_temp,
241 			  u32 max_allocatable_power)
242 {
243 	struct power_allocator_params *params = tz->governor_data;
244 	s64 p, i, d, power_range;
245 	s32 err, max_power_frac;
246 	u32 sustainable_power;
247 
248 	max_power_frac = int_to_frac(max_allocatable_power);
249 
250 	sustainable_power = get_sustainable_power(tz, params, control_temp);
251 
252 	err = control_temp - tz->temperature;
253 	err = int_to_frac(err);
254 
255 	/* Calculate the proportional term */
256 	p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);
257 
258 	/*
259 	 * Calculate the integral term
260 	 *
261 	 * if the error is less than cut off allow integration (but
262 	 * the integral is limited to max power)
263 	 */
264 	i = mul_frac(tz->tzp->k_i, params->err_integral);
265 
266 	if (err < int_to_frac(tz->tzp->integral_cutoff)) {
267 		s64 i_next = i + mul_frac(tz->tzp->k_i, err);
268 
269 		if (abs(i_next) < max_power_frac) {
270 			i = i_next;
271 			params->err_integral += err;
272 		}
273 	}
274 
275 	/*
276 	 * Calculate the derivative term
277 	 *
278 	 * We do err - prev_err, so with a positive k_d, a decreasing
279 	 * error (i.e. driving closer to the line) results in less
280 	 * power being applied, slowing down the controller)
281 	 */
282 	d = mul_frac(tz->tzp->k_d, err - params->prev_err);
283 	d = div_frac(d, jiffies_to_msecs(tz->passive_delay_jiffies));
284 	params->prev_err = err;
285 
286 	power_range = p + i + d;
287 
288 	/* feed-forward the known sustainable dissipatable power */
289 	power_range = sustainable_power + frac_to_int(power_range);
290 
291 	power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);
292 
293 	trace_thermal_power_allocator_pid(tz, frac_to_int(err),
294 					  frac_to_int(params->err_integral),
295 					  frac_to_int(p), frac_to_int(i),
296 					  frac_to_int(d), power_range);
297 
298 	return power_range;
299 }
300 
301 /**
302  * power_actor_set_power() - limit the maximum power a cooling device consumes
303  * @cdev:	pointer to &thermal_cooling_device
304  * @instance:	thermal instance to update
305  * @power:	the power in milliwatts
306  *
307  * Set the cooling device to consume at most @power milliwatts. The limit is
308  * expected to be a cap at the maximum power consumption.
309  *
310  * Return: 0 on success, -EINVAL if the cooling device does not
311  * implement the power actor API or -E* for other failures.
312  */
313 static int
314 power_actor_set_power(struct thermal_cooling_device *cdev,
315 		      struct thermal_instance *instance, u32 power)
316 {
317 	unsigned long state;
318 	int ret;
319 
320 	ret = cdev->ops->power2state(cdev, power, &state);
321 	if (ret)
322 		return ret;
323 
324 	instance->target = clamp_val(state, instance->lower, instance->upper);
325 
326 	thermal_cdev_update_nocheck(cdev);
327 
328 	return 0;
329 }
330 
331 /**
332  * divvy_up_power() - divvy the allocated power between the actors
333  * @power:		buffer for all power actors internal power information
334  * @num_actors:		number of power actors in this thermal zone
335  * @total_req_power:	sum of all weighted requested power for all actors
336  * @power_range:	total allocated power
337  *
338  * This function divides the total allocated power (@power_range)
339  * fairly between the actors.  It first tries to give each actor a
340  * share of the @power_range according to how much power it requested
341  * compared to the rest of the actors.  For example, if only one actor
342  * requests power, then it receives all the @power_range.  If
343  * three actors each requests 1mW, each receives a third of the
344  * @power_range.
345  *
346  * If any actor received more than their maximum power, then that
347  * surplus is re-divvied among the actors based on how far they are
348  * from their respective maximums.
349  */
350 static void divvy_up_power(struct power_actor *power, int num_actors,
351 			   u32 total_req_power, u32 power_range)
352 {
353 	u32 capped_extra_power = 0;
354 	u32 extra_power = 0;
355 	int i;
356 
357 	if (!total_req_power) {
358 		/*
359 		 * Nobody requested anything, just give everybody
360 		 * the maximum power
361 		 */
362 		for (i = 0; i < num_actors; i++) {
363 			struct power_actor *pa = &power[i];
364 
365 			pa->granted_power = pa->max_power;
366 		}
367 
368 		return;
369 	}
370 
371 	for (i = 0; i < num_actors; i++) {
372 		struct power_actor *pa = &power[i];
373 		u64 req_range = (u64)pa->req_power * power_range;
374 
375 		pa->granted_power = DIV_ROUND_CLOSEST_ULL(req_range,
376 							  total_req_power);
377 
378 		if (pa->granted_power > pa->max_power) {
379 			extra_power += pa->granted_power - pa->max_power;
380 			pa->granted_power = pa->max_power;
381 		}
382 
383 		pa->extra_actor_power = pa->max_power - pa->granted_power;
384 		capped_extra_power += pa->extra_actor_power;
385 	}
386 
387 	if (!extra_power || !capped_extra_power)
388 		return;
389 
390 	/*
391 	 * Re-divvy the reclaimed extra among actors based on
392 	 * how far they are from the max
393 	 */
394 	extra_power = min(extra_power, capped_extra_power);
395 
396 	for (i = 0; i < num_actors; i++) {
397 		struct power_actor *pa = &power[i];
398 		u64 extra_range = pa->extra_actor_power;
399 
400 		extra_range *= extra_power;
401 		pa->granted_power += DIV_ROUND_CLOSEST_ULL(extra_range,
402 						capped_extra_power);
403 	}
404 }
405 
406 static void allocate_power(struct thermal_zone_device *tz, int control_temp)
407 {
408 	struct power_allocator_params *params = tz->governor_data;
409 	const struct thermal_trip_desc *td = trip_to_trip_desc(params->trip_max);
410 	unsigned int num_actors = params->num_actors;
411 	struct power_actor *power = params->power;
412 	struct thermal_cooling_device *cdev;
413 	struct thermal_instance *instance;
414 	u32 total_weighted_req_power = 0;
415 	u32 max_allocatable_power = 0;
416 	u32 total_granted_power = 0;
417 	u32 total_req_power = 0;
418 	u32 power_range, weight;
419 	int i = 0, ret;
420 
421 	if (!num_actors)
422 		return;
423 
424 	/* Clean all buffers for new power estimations */
425 	memset(power, 0, params->buffer_size);
426 
427 	list_for_each_entry(instance, &td->thermal_instances, trip_node) {
428 		struct power_actor *pa = &power[i];
429 
430 		if (!power_actor_is_valid(instance))
431 			continue;
432 
433 		cdev = instance->cdev;
434 
435 		ret = cdev->ops->get_requested_power(cdev, &pa->req_power);
436 		if (ret)
437 			continue;
438 
439 		if (!params->total_weight)
440 			weight = 1 << FRAC_BITS;
441 		else
442 			weight = instance->weight;
443 
444 		pa->weighted_req_power = frac_to_int(weight * pa->req_power);
445 
446 		ret = cdev->ops->state2power(cdev, instance->lower,
447 					     &pa->max_power);
448 		if (ret)
449 			continue;
450 
451 		total_req_power += pa->req_power;
452 		max_allocatable_power += pa->max_power;
453 		total_weighted_req_power += pa->weighted_req_power;
454 
455 		i++;
456 	}
457 
458 	power_range = pid_controller(tz, control_temp, max_allocatable_power);
459 
460 	divvy_up_power(power, num_actors, total_weighted_req_power,
461 		       power_range);
462 
463 	i = 0;
464 	list_for_each_entry(instance, &td->thermal_instances, trip_node) {
465 		struct power_actor *pa = &power[i];
466 
467 		if (!power_actor_is_valid(instance))
468 			continue;
469 
470 		power_actor_set_power(instance->cdev, instance,
471 				      pa->granted_power);
472 		total_granted_power += pa->granted_power;
473 
474 		trace_thermal_power_actor(tz, i, pa->req_power,
475 					  pa->granted_power);
476 		i++;
477 	}
478 
479 	trace_thermal_power_allocator(tz, total_req_power, total_granted_power,
480 				      num_actors, power_range,
481 				      max_allocatable_power, tz->temperature,
482 				      control_temp - tz->temperature);
483 }
484 
485 /**
486  * get_governor_trips() - get the two trip points that are key for this governor
487  * @tz:	thermal zone to operate on
488  * @params:	pointer to private data for this governor
489  *
490  * The power allocator governor works optimally with two trips points:
491  * a "switch on" trip point and a "maximum desired temperature".  These
492  * are defined as the first and last passive trip points.
493  *
494  * If there is only one trip point, then that's considered to be the
495  * "maximum desired temperature" trip point and the governor is always
496  * on.  If there are no passive or active trip points, then the
497  * governor won't do anything.  In fact, its throttle function
498  * won't be called at all.
499  */
500 static void get_governor_trips(struct thermal_zone_device *tz,
501 			       struct power_allocator_params *params)
502 {
503 	const struct thermal_trip *first_passive = NULL;
504 	const struct thermal_trip *last_passive = NULL;
505 	const struct thermal_trip *last_active = NULL;
506 	const struct thermal_trip_desc *td;
507 
508 	for_each_trip_desc(tz, td) {
509 		const struct thermal_trip *trip = &td->trip;
510 
511 		switch (trip->type) {
512 		case THERMAL_TRIP_PASSIVE:
513 			if (!first_passive) {
514 				first_passive = trip;
515 				break;
516 			}
517 			last_passive = trip;
518 			break;
519 		case THERMAL_TRIP_ACTIVE:
520 			last_active = trip;
521 			break;
522 		default:
523 			break;
524 		}
525 	}
526 
527 	if (last_passive) {
528 		params->trip_switch_on = first_passive;
529 		params->trip_max = last_passive;
530 	} else if (first_passive) {
531 		params->trip_switch_on = NULL;
532 		params->trip_max = first_passive;
533 	} else {
534 		params->trip_switch_on = NULL;
535 		params->trip_max = last_active;
536 	}
537 }
538 
539 static void reset_pid_controller(struct power_allocator_params *params)
540 {
541 	params->err_integral = 0;
542 	params->prev_err = 0;
543 }
544 
545 static void allow_maximum_power(struct thermal_zone_device *tz)
546 {
547 	struct power_allocator_params *params = tz->governor_data;
548 	const struct thermal_trip_desc *td = trip_to_trip_desc(params->trip_max);
549 	struct thermal_cooling_device *cdev;
550 	struct thermal_instance *instance;
551 	u32 req_power;
552 
553 	list_for_each_entry(instance, &td->thermal_instances, trip_node) {
554 		if (!power_actor_is_valid(instance))
555 			continue;
556 
557 		cdev = instance->cdev;
558 
559 		instance->target = 0;
560 		scoped_guard(cooling_dev, cdev) {
561 			/*
562 			 * Call for updating the cooling devices local stats and
563 			 * avoid periods of dozen of seconds when those have not
564 			 * been maintained.
565 			 */
566 			cdev->ops->get_requested_power(cdev, &req_power);
567 
568 			if (params->update_cdevs)
569 				__thermal_cdev_update(cdev);
570 		}
571 	}
572 }
573 
574 /**
575  * check_power_actors() - Check all cooling devices and warn when they are
576  *			not power actors
577  * @tz:		thermal zone to operate on
578  * @params:	power allocator private data
579  *
580  * Check all cooling devices in the @tz and warn every time they are missing
581  * power actor API. The warning should help to investigate the issue, which
582  * could be e.g. lack of Energy Model for a given device.
583  *
584  * If all of the cooling devices currently attached to @tz implement the power
585  * actor API, return the number of them (which may be 0, because some cooling
586  * devices may be attached later). Otherwise, return -EINVAL.
587  */
588 static int check_power_actors(struct thermal_zone_device *tz,
589 			      struct power_allocator_params *params)
590 {
591 	const struct thermal_trip_desc *td;
592 	struct thermal_instance *instance;
593 	int ret = 0;
594 
595 	if (!params->trip_max)
596 		return 0;
597 
598 	td = trip_to_trip_desc(params->trip_max);
599 
600 	list_for_each_entry(instance, &td->thermal_instances, trip_node) {
601 		if (!cdev_is_power_actor(instance->cdev)) {
602 			dev_warn(&tz->device, "power_allocator: %s is not a power actor\n",
603 				 instance->cdev->type);
604 			return -EINVAL;
605 		}
606 		ret++;
607 	}
608 
609 	return ret;
610 }
611 
612 static int allocate_actors_buffer(struct power_allocator_params *params,
613 				  int num_actors)
614 {
615 	int ret;
616 
617 	kfree(params->power);
618 
619 	/* There might be no cooling devices yet. */
620 	if (!num_actors) {
621 		ret = 0;
622 		goto clean_state;
623 	}
624 
625 	params->power = kcalloc(num_actors, sizeof(struct power_actor),
626 				GFP_KERNEL);
627 	if (!params->power) {
628 		ret = -ENOMEM;
629 		goto clean_state;
630 	}
631 
632 	params->num_actors = num_actors;
633 	params->buffer_size = num_actors * sizeof(struct power_actor);
634 
635 	return 0;
636 
637 clean_state:
638 	params->num_actors = 0;
639 	params->buffer_size = 0;
640 	params->power = NULL;
641 	return ret;
642 }
643 
644 static void power_allocator_update_tz(struct thermal_zone_device *tz,
645 				      enum thermal_notify_event reason)
646 {
647 	struct power_allocator_params *params = tz->governor_data;
648 	const struct thermal_trip_desc *td = trip_to_trip_desc(params->trip_max);
649 	struct thermal_instance *instance;
650 	int num_actors = 0;
651 
652 	switch (reason) {
653 	case THERMAL_TZ_BIND_CDEV:
654 	case THERMAL_TZ_UNBIND_CDEV:
655 		list_for_each_entry(instance, &td->thermal_instances, trip_node)
656 			if (power_actor_is_valid(instance))
657 				num_actors++;
658 
659 		if (num_actors == params->num_actors)
660 			return;
661 
662 		allocate_actors_buffer(params, num_actors);
663 		break;
664 	case THERMAL_INSTANCE_WEIGHT_CHANGED:
665 		params->total_weight = 0;
666 		list_for_each_entry(instance, &td->thermal_instances, trip_node)
667 			if (power_actor_is_valid(instance))
668 				params->total_weight += instance->weight;
669 		break;
670 	default:
671 		break;
672 	}
673 }
674 
675 /**
676  * power_allocator_bind() - bind the power_allocator governor to a thermal zone
677  * @tz:	thermal zone to bind it to
678  *
679  * Initialize the PID controller parameters and bind it to the thermal
680  * zone.
681  *
682  * Return: 0 on success, or -ENOMEM if we ran out of memory, or -EINVAL
683  * when there are unsupported cooling devices in the @tz.
684  */
685 static int power_allocator_bind(struct thermal_zone_device *tz)
686 {
687 	struct power_allocator_params *params;
688 	int ret;
689 
690 	params = kzalloc(sizeof(*params), GFP_KERNEL);
691 	if (!params)
692 		return -ENOMEM;
693 
694 	get_governor_trips(tz, params);
695 
696 	ret = check_power_actors(tz, params);
697 	if (ret < 0) {
698 		dev_warn(&tz->device, "power_allocator: binding failed\n");
699 		kfree(params);
700 		return ret;
701 	}
702 
703 	ret = allocate_actors_buffer(params, ret);
704 	if (ret) {
705 		dev_warn(&tz->device, "power_allocator: allocation failed\n");
706 		kfree(params);
707 		return ret;
708 	}
709 
710 	if (!tz->tzp) {
711 		tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL);
712 		if (!tz->tzp) {
713 			ret = -ENOMEM;
714 			goto free_params;
715 		}
716 
717 		params->allocated_tzp = true;
718 	}
719 
720 	if (!tz->tzp->sustainable_power)
721 		dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n");
722 	else
723 		params->sustainable_power = tz->tzp->sustainable_power;
724 
725 	if (params->trip_max)
726 		estimate_pid_constants(tz, tz->tzp->sustainable_power,
727 				       params->trip_switch_on,
728 				       params->trip_max->temperature);
729 
730 	reset_pid_controller(params);
731 
732 	tz->governor_data = params;
733 
734 	return 0;
735 
736 free_params:
737 	kfree(params->power);
738 	kfree(params);
739 
740 	return ret;
741 }
742 
743 static void power_allocator_unbind(struct thermal_zone_device *tz)
744 {
745 	struct power_allocator_params *params = tz->governor_data;
746 
747 	dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
748 
749 	if (params->allocated_tzp) {
750 		kfree(tz->tzp);
751 		tz->tzp = NULL;
752 	}
753 
754 	kfree(params->power);
755 	kfree(tz->governor_data);
756 	tz->governor_data = NULL;
757 }
758 
759 static void power_allocator_manage(struct thermal_zone_device *tz)
760 {
761 	struct power_allocator_params *params = tz->governor_data;
762 	const struct thermal_trip *trip = params->trip_switch_on;
763 
764 	lockdep_assert_held(&tz->lock);
765 
766 	if (trip && tz->temperature < trip->temperature) {
767 		reset_pid_controller(params);
768 		allow_maximum_power(tz);
769 		params->update_cdevs = false;
770 		return;
771 	}
772 
773 	if (!params->trip_max)
774 		return;
775 
776 	allocate_power(tz, params->trip_max->temperature);
777 	params->update_cdevs = true;
778 }
779 
780 static struct thermal_governor thermal_gov_power_allocator = {
781 	.name		= "power_allocator",
782 	.bind_to_tz	= power_allocator_bind,
783 	.unbind_from_tz	= power_allocator_unbind,
784 	.manage		= power_allocator_manage,
785 	.update_tz	= power_allocator_update_tz,
786 };
787 THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator);
788