xref: /linux/drivers/thermal/devfreq_cooling.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * devfreq_cooling: Thermal cooling device implementation for devices using
4  *                  devfreq
5  *
6  * Copyright (C) 2014-2015 ARM Limited
7  *
8  * TODO:
9  *    - If OPPs are added or removed after devfreq cooling has
10  *      registered, the devfreq cooling won't react to it.
11  */
12 
13 #include <linux/devfreq.h>
14 #include <linux/devfreq_cooling.h>
15 #include <linux/energy_model.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/pm_opp.h>
19 #include <linux/pm_qos.h>
20 #include <linux/thermal.h>
21 #include <linux/units.h>
22 
23 #include "thermal_trace.h"
24 
25 #define SCALE_ERROR_MITIGATION	100
26 
27 /**
28  * struct devfreq_cooling_device - Devfreq cooling device
29  *		devfreq_cooling_device registered.
30  * @cdev:	Pointer to associated thermal cooling device.
31  * @cooling_ops: devfreq callbacks to thermal cooling device ops
32  * @devfreq:	Pointer to associated devfreq device.
33  * @cooling_state:	Current cooling state.
34  * @freq_table:	Pointer to a table with the frequencies sorted in descending
35  *		order.  You can index the table by cooling device state
36  * @max_state:	It is the last index, that is, one less than the number of the
37  *		OPPs
38  * @power_ops:	Pointer to devfreq_cooling_power, a more precised model.
39  * @res_util:	Resource utilization scaling factor for the power.
40  *		It is multiplied by 100 to minimize the error. It is used
41  *		for estimation of the power budget instead of using
42  *		'utilization' (which is	'busy_time' / 'total_time').
43  *		The 'res_util' range is from 100 to power * 100	for the
44  *		corresponding 'state'.
45  * @capped_state:	index to cooling state with in dynamic power budget
46  * @req_max_freq:	PM QoS request for limiting the maximum frequency
47  *			of the devfreq device.
48  * @em_pd:		Energy Model for the associated Devfreq device
49  */
50 struct devfreq_cooling_device {
51 	struct thermal_cooling_device *cdev;
52 	struct thermal_cooling_device_ops cooling_ops;
53 	struct devfreq *devfreq;
54 	unsigned long cooling_state;
55 	u32 *freq_table;
56 	size_t max_state;
57 	struct devfreq_cooling_power *power_ops;
58 	u32 res_util;
59 	int capped_state;
60 	struct dev_pm_qos_request req_max_freq;
61 	struct em_perf_domain *em_pd;
62 };
63 
64 static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
65 					 unsigned long *state)
66 {
67 	struct devfreq_cooling_device *dfc = cdev->devdata;
68 
69 	*state = dfc->max_state;
70 
71 	return 0;
72 }
73 
74 static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
75 					 unsigned long *state)
76 {
77 	struct devfreq_cooling_device *dfc = cdev->devdata;
78 
79 	*state = dfc->cooling_state;
80 
81 	return 0;
82 }
83 
84 static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
85 					 unsigned long state)
86 {
87 	struct devfreq_cooling_device *dfc = cdev->devdata;
88 	struct devfreq *df = dfc->devfreq;
89 	struct device *dev = df->dev.parent;
90 	struct em_perf_state *table;
91 	unsigned long freq;
92 	int perf_idx;
93 
94 	if (state == dfc->cooling_state)
95 		return 0;
96 
97 	dev_dbg(dev, "Setting cooling state %lu\n", state);
98 
99 	if (state > dfc->max_state)
100 		return -EINVAL;
101 
102 	if (dfc->em_pd) {
103 		perf_idx = dfc->max_state - state;
104 
105 		rcu_read_lock();
106 		table = em_perf_state_from_pd(dfc->em_pd);
107 		freq = table[perf_idx].frequency * 1000;
108 		rcu_read_unlock();
109 	} else {
110 		freq = dfc->freq_table[state];
111 	}
112 
113 	dev_pm_qos_update_request(&dfc->req_max_freq,
114 				  DIV_ROUND_UP(freq, HZ_PER_KHZ));
115 
116 	dfc->cooling_state = state;
117 
118 	return 0;
119 }
120 
121 /**
122  * get_perf_idx() - get the performance index corresponding to a frequency
123  * @em_pd:	Pointer to device's Energy Model
124  * @freq:	frequency in kHz
125  *
126  * Return: the performance index associated with the @freq, or
127  * -EINVAL if it wasn't found.
128  */
129 static int get_perf_idx(struct em_perf_domain *em_pd, unsigned long freq)
130 {
131 	struct em_perf_state *table;
132 	int i, idx = -EINVAL;
133 
134 	rcu_read_lock();
135 	table = em_perf_state_from_pd(em_pd);
136 	for (i = 0; i < em_pd->nr_perf_states; i++) {
137 		if (table[i].frequency != freq)
138 			continue;
139 
140 		idx = i;
141 		break;
142 	}
143 	rcu_read_unlock();
144 
145 	return idx;
146 }
147 
148 static unsigned long get_voltage(struct devfreq *df, unsigned long freq)
149 {
150 	struct device *dev = df->dev.parent;
151 	unsigned long voltage;
152 	struct dev_pm_opp *opp;
153 
154 	opp = dev_pm_opp_find_freq_exact(dev, freq, true);
155 	if (PTR_ERR(opp) == -ERANGE)
156 		opp = dev_pm_opp_find_freq_exact(dev, freq, false);
157 
158 	if (IS_ERR(opp)) {
159 		dev_err_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n",
160 				    freq, PTR_ERR(opp));
161 		return 0;
162 	}
163 
164 	voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
165 	dev_pm_opp_put(opp);
166 
167 	if (voltage == 0) {
168 		dev_err_ratelimited(dev,
169 				    "Failed to get voltage for frequency %lu\n",
170 				    freq);
171 	}
172 
173 	return voltage;
174 }
175 
176 static void _normalize_load(struct devfreq_dev_status *status)
177 {
178 	if (status->total_time > 0xfffff) {
179 		status->total_time >>= 10;
180 		status->busy_time >>= 10;
181 	}
182 
183 	status->busy_time <<= 10;
184 	status->busy_time /= status->total_time ? : 1;
185 
186 	status->busy_time = status->busy_time ? : 1;
187 	status->total_time = 1024;
188 }
189 
190 static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
191 					       u32 *power)
192 {
193 	struct devfreq_cooling_device *dfc = cdev->devdata;
194 	struct devfreq *df = dfc->devfreq;
195 	struct devfreq_dev_status status;
196 	struct em_perf_state *table;
197 	unsigned long state;
198 	unsigned long freq;
199 	unsigned long voltage;
200 	int res, perf_idx;
201 
202 	mutex_lock(&df->lock);
203 	status = df->last_status;
204 	mutex_unlock(&df->lock);
205 
206 	freq = status.current_frequency;
207 
208 	if (dfc->power_ops && dfc->power_ops->get_real_power) {
209 		voltage = get_voltage(df, freq);
210 		if (voltage == 0) {
211 			res = -EINVAL;
212 			goto fail;
213 		}
214 
215 		res = dfc->power_ops->get_real_power(df, power, freq, voltage);
216 		if (!res) {
217 			state = dfc->max_state - dfc->capped_state;
218 
219 			/* Convert EM power into milli-Watts first */
220 			rcu_read_lock();
221 			table = em_perf_state_from_pd(dfc->em_pd);
222 			dfc->res_util = table[state].power;
223 			rcu_read_unlock();
224 
225 			dfc->res_util /= MICROWATT_PER_MILLIWATT;
226 
227 			dfc->res_util *= SCALE_ERROR_MITIGATION;
228 
229 			if (*power > 1)
230 				dfc->res_util /= *power;
231 		} else {
232 			goto fail;
233 		}
234 	} else {
235 		/* Energy Model frequencies are in kHz */
236 		perf_idx = get_perf_idx(dfc->em_pd, freq / 1000);
237 		if (perf_idx < 0) {
238 			res = -EAGAIN;
239 			goto fail;
240 		}
241 
242 		_normalize_load(&status);
243 
244 		/* Convert EM power into milli-Watts first */
245 		rcu_read_lock();
246 		table = em_perf_state_from_pd(dfc->em_pd);
247 		*power = table[perf_idx].power;
248 		rcu_read_unlock();
249 
250 		*power /= MICROWATT_PER_MILLIWATT;
251 		/* Scale power for utilization */
252 		*power *= status.busy_time;
253 		*power >>= 10;
254 	}
255 
256 	trace_thermal_power_devfreq_get_power(cdev, &status, freq, *power);
257 
258 	return 0;
259 fail:
260 	/* It is safe to set max in this case */
261 	dfc->res_util = SCALE_ERROR_MITIGATION;
262 	return res;
263 }
264 
265 static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
266 				       unsigned long state, u32 *power)
267 {
268 	struct devfreq_cooling_device *dfc = cdev->devdata;
269 	struct em_perf_state *table;
270 	int perf_idx;
271 
272 	if (state > dfc->max_state)
273 		return -EINVAL;
274 
275 	perf_idx = dfc->max_state - state;
276 
277 	rcu_read_lock();
278 	table = em_perf_state_from_pd(dfc->em_pd);
279 	*power = table[perf_idx].power;
280 	rcu_read_unlock();
281 
282 	*power /= MICROWATT_PER_MILLIWATT;
283 
284 	return 0;
285 }
286 
287 static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
288 				       u32 power, unsigned long *state)
289 {
290 	struct devfreq_cooling_device *dfc = cdev->devdata;
291 	struct devfreq *df = dfc->devfreq;
292 	struct devfreq_dev_status status;
293 	unsigned long freq, em_power_mw;
294 	struct em_perf_state *table;
295 	s32 est_power;
296 	int i;
297 
298 	mutex_lock(&df->lock);
299 	status = df->last_status;
300 	mutex_unlock(&df->lock);
301 
302 	freq = status.current_frequency;
303 
304 	if (dfc->power_ops && dfc->power_ops->get_real_power) {
305 		/* Scale for resource utilization */
306 		est_power = power * dfc->res_util;
307 		est_power /= SCALE_ERROR_MITIGATION;
308 	} else {
309 		/* Scale dynamic power for utilization */
310 		_normalize_load(&status);
311 		est_power = power << 10;
312 		est_power /= status.busy_time;
313 	}
314 
315 	/*
316 	 * Find the first cooling state that is within the power
317 	 * budget. The EM power table is sorted ascending.
318 	 */
319 	rcu_read_lock();
320 	table = em_perf_state_from_pd(dfc->em_pd);
321 	for (i = dfc->max_state; i > 0; i--) {
322 		/* Convert EM power to milli-Watts to make safe comparison */
323 		em_power_mw = table[i].power;
324 		em_power_mw /= MICROWATT_PER_MILLIWATT;
325 		if (est_power >= em_power_mw)
326 			break;
327 	}
328 	rcu_read_unlock();
329 
330 	*state = dfc->max_state - i;
331 	dfc->capped_state = *state;
332 
333 	trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
334 	return 0;
335 }
336 
337 /**
338  * devfreq_cooling_gen_tables() - Generate frequency table.
339  * @dfc:	Pointer to devfreq cooling device.
340  * @num_opps:	Number of OPPs
341  *
342  * Generate frequency table which holds the frequencies in descending
343  * order. That way its indexed by cooling device state. This is for
344  * compatibility with drivers which do not register Energy Model.
345  *
346  * Return: 0 on success, negative error code on failure.
347  */
348 static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc,
349 				      int num_opps)
350 {
351 	struct devfreq *df = dfc->devfreq;
352 	struct device *dev = df->dev.parent;
353 	unsigned long freq;
354 	int i;
355 
356 	dfc->freq_table = kcalloc(num_opps, sizeof(*dfc->freq_table),
357 			     GFP_KERNEL);
358 	if (!dfc->freq_table)
359 		return -ENOMEM;
360 
361 	for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
362 		struct dev_pm_opp *opp;
363 
364 		opp = dev_pm_opp_find_freq_floor(dev, &freq);
365 		if (IS_ERR(opp)) {
366 			kfree(dfc->freq_table);
367 			return PTR_ERR(opp);
368 		}
369 
370 		dev_pm_opp_put(opp);
371 		dfc->freq_table[i] = freq;
372 	}
373 
374 	return 0;
375 }
376 
377 /**
378  * of_devfreq_cooling_register_power() - Register devfreq cooling device,
379  *                                      with OF and power information.
380  * @np:	Pointer to OF device_node.
381  * @df:	Pointer to devfreq device.
382  * @dfc_power:	Pointer to devfreq_cooling_power.
383  *
384  * Register a devfreq cooling device.  The available OPPs must be
385  * registered on the device.
386  *
387  * If @dfc_power is provided, the cooling device is registered with the
388  * power extensions.  For the power extensions to work correctly,
389  * devfreq should use the simple_ondemand governor, other governors
390  * are not currently supported.
391  */
392 struct thermal_cooling_device *
393 of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
394 				  struct devfreq_cooling_power *dfc_power)
395 {
396 	struct thermal_cooling_device *cdev;
397 	struct device *dev = df->dev.parent;
398 	struct devfreq_cooling_device *dfc;
399 	struct em_perf_domain *em;
400 	struct thermal_cooling_device_ops *ops;
401 	char *name;
402 	int err, num_opps;
403 
404 
405 	dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
406 	if (!dfc)
407 		return ERR_PTR(-ENOMEM);
408 
409 	dfc->devfreq = df;
410 
411 	ops = &dfc->cooling_ops;
412 	ops->get_max_state = devfreq_cooling_get_max_state;
413 	ops->get_cur_state = devfreq_cooling_get_cur_state;
414 	ops->set_cur_state = devfreq_cooling_set_cur_state;
415 
416 	em = em_pd_get(dev);
417 	if (em && !em_is_artificial(em)) {
418 		dfc->em_pd = em;
419 		ops->get_requested_power =
420 			devfreq_cooling_get_requested_power;
421 		ops->state2power = devfreq_cooling_state2power;
422 		ops->power2state = devfreq_cooling_power2state;
423 
424 		dfc->power_ops = dfc_power;
425 
426 		num_opps = em_pd_nr_perf_states(dfc->em_pd);
427 	} else {
428 		/* Backward compatibility for drivers which do not use IPA */
429 		dev_dbg(dev, "missing proper EM for cooling device\n");
430 
431 		num_opps = dev_pm_opp_get_opp_count(dev);
432 
433 		err = devfreq_cooling_gen_tables(dfc, num_opps);
434 		if (err)
435 			goto free_dfc;
436 	}
437 
438 	if (num_opps <= 0) {
439 		err = -EINVAL;
440 		goto free_dfc;
441 	}
442 
443 	/* max_state is an index, not a counter */
444 	dfc->max_state = num_opps - 1;
445 
446 	err = dev_pm_qos_add_request(dev, &dfc->req_max_freq,
447 				     DEV_PM_QOS_MAX_FREQUENCY,
448 				     PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE);
449 	if (err < 0)
450 		goto free_table;
451 
452 	err = -ENOMEM;
453 	name = kasprintf(GFP_KERNEL, "devfreq-%s", dev_name(dev));
454 	if (!name)
455 		goto remove_qos_req;
456 
457 	cdev = thermal_of_cooling_device_register(np, name, dfc, ops);
458 	kfree(name);
459 
460 	if (IS_ERR(cdev)) {
461 		err = PTR_ERR(cdev);
462 		dev_err(dev,
463 			"Failed to register devfreq cooling device (%d)\n",
464 			err);
465 		goto remove_qos_req;
466 	}
467 
468 	dfc->cdev = cdev;
469 
470 	return cdev;
471 
472 remove_qos_req:
473 	dev_pm_qos_remove_request(&dfc->req_max_freq);
474 free_table:
475 	kfree(dfc->freq_table);
476 free_dfc:
477 	kfree(dfc);
478 
479 	return ERR_PTR(err);
480 }
481 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
482 
483 /**
484  * of_devfreq_cooling_register() - Register devfreq cooling device,
485  *                                with OF information.
486  * @np: Pointer to OF device_node.
487  * @df: Pointer to devfreq device.
488  */
489 struct thermal_cooling_device *
490 of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
491 {
492 	return of_devfreq_cooling_register_power(np, df, NULL);
493 }
494 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
495 
496 /**
497  * devfreq_cooling_register() - Register devfreq cooling device.
498  * @df: Pointer to devfreq device.
499  */
500 struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
501 {
502 	return of_devfreq_cooling_register(NULL, df);
503 }
504 EXPORT_SYMBOL_GPL(devfreq_cooling_register);
505 
506 /**
507  * devfreq_cooling_em_register() - Register devfreq cooling device with
508  *		power information and automatically register Energy Model (EM)
509  * @df:		Pointer to devfreq device.
510  * @dfc_power:	Pointer to devfreq_cooling_power.
511  *
512  * Register a devfreq cooling device and automatically register EM. The
513  * available OPPs must be registered for the device.
514  *
515  * If @dfc_power is provided, the cooling device is registered with the
516  * power extensions. It is using the simple Energy Model which requires
517  * "dynamic-power-coefficient" a devicetree property. To not break drivers
518  * which miss that DT property, the function won't bail out when the EM
519  * registration failed. The cooling device will be registered if everything
520  * else is OK.
521  */
522 struct thermal_cooling_device *
523 devfreq_cooling_em_register(struct devfreq *df,
524 			    struct devfreq_cooling_power *dfc_power)
525 {
526 	struct thermal_cooling_device *cdev;
527 	struct device *dev;
528 	int ret;
529 
530 	if (IS_ERR_OR_NULL(df))
531 		return ERR_PTR(-EINVAL);
532 
533 	dev = df->dev.parent;
534 
535 	ret = dev_pm_opp_of_register_em(dev, NULL);
536 	if (ret)
537 		dev_dbg(dev, "Unable to register EM for devfreq cooling device (%d)\n",
538 			ret);
539 
540 	cdev = of_devfreq_cooling_register_power(dev->of_node, df, dfc_power);
541 
542 	if (IS_ERR_OR_NULL(cdev))
543 		em_dev_unregister_perf_domain(dev);
544 
545 	return cdev;
546 }
547 EXPORT_SYMBOL_GPL(devfreq_cooling_em_register);
548 
549 /**
550  * devfreq_cooling_unregister() - Unregister devfreq cooling device.
551  * @cdev: Pointer to devfreq cooling device to unregister.
552  *
553  * Unregisters devfreq cooling device and related Energy Model if it was
554  * present.
555  */
556 void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
557 {
558 	struct devfreq_cooling_device *dfc;
559 	struct device *dev;
560 
561 	if (IS_ERR_OR_NULL(cdev))
562 		return;
563 
564 	dfc = cdev->devdata;
565 	dev = dfc->devfreq->dev.parent;
566 
567 	thermal_cooling_device_unregister(dfc->cdev);
568 	dev_pm_qos_remove_request(&dfc->req_max_freq);
569 
570 	em_dev_unregister_perf_domain(dev);
571 
572 	kfree(dfc->freq_table);
573 	kfree(dfc);
574 }
575 EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);
576