xref: /linux/drivers/thermal/devfreq_cooling.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * devfreq_cooling: Thermal cooling device implementation for devices using
3  *                  devfreq
4  *
5  * Copyright (C) 2014-2015 ARM Limited
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12  * kind, whether express or implied; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * TODO:
17  *    - If OPPs are added or removed after devfreq cooling has
18  *      registered, the devfreq cooling won't react to it.
19  */
20 
21 #include <linux/devfreq.h>
22 #include <linux/devfreq_cooling.h>
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/pm_opp.h>
26 #include <linux/thermal.h>
27 
28 #include <trace/events/thermal.h>
29 
30 static DEFINE_MUTEX(devfreq_lock);
31 static DEFINE_IDR(devfreq_idr);
32 
33 /**
34  * struct devfreq_cooling_device - Devfreq cooling device
35  * @id:		unique integer value corresponding to each
36  *		devfreq_cooling_device registered.
37  * @cdev:	Pointer to associated thermal cooling device.
38  * @devfreq:	Pointer to associated devfreq device.
39  * @cooling_state:	Current cooling state.
40  * @power_table:	Pointer to table with maximum power draw for each
41  *			cooling state. State is the index into the table, and
42  *			the power is in mW.
43  * @freq_table:	Pointer to a table with the frequencies sorted in descending
44  *		order.  You can index the table by cooling device state
45  * @freq_table_size:	Size of the @freq_table and @power_table
46  * @power_ops:	Pointer to devfreq_cooling_power, used to generate the
47  *		@power_table.
48  */
49 struct devfreq_cooling_device {
50 	int id;
51 	struct thermal_cooling_device *cdev;
52 	struct devfreq *devfreq;
53 	unsigned long cooling_state;
54 	u32 *power_table;
55 	u32 *freq_table;
56 	size_t freq_table_size;
57 	struct devfreq_cooling_power *power_ops;
58 };
59 
60 /**
61  * get_idr - function to get a unique id.
62  * @idr: struct idr * handle used to create a id.
63  * @id: int * value generated by this function.
64  *
65  * This function will populate @id with an unique
66  * id, using the idr API.
67  *
68  * Return: 0 on success, an error code on failure.
69  */
70 static int get_idr(struct idr *idr, int *id)
71 {
72 	int ret;
73 
74 	mutex_lock(&devfreq_lock);
75 	ret = idr_alloc(idr, NULL, 0, 0, GFP_KERNEL);
76 	mutex_unlock(&devfreq_lock);
77 	if (unlikely(ret < 0))
78 		return ret;
79 	*id = ret;
80 
81 	return 0;
82 }
83 
84 /**
85  * release_idr - function to free the unique id.
86  * @idr: struct idr * handle used for creating the id.
87  * @id: int value representing the unique id.
88  */
89 static void release_idr(struct idr *idr, int id)
90 {
91 	mutex_lock(&devfreq_lock);
92 	idr_remove(idr, id);
93 	mutex_unlock(&devfreq_lock);
94 }
95 
96 /**
97  * partition_enable_opps() - disable all opps above a given state
98  * @dfc:	Pointer to devfreq we are operating on
99  * @cdev_state:	cooling device state we're setting
100  *
101  * Go through the OPPs of the device, enabling all OPPs until
102  * @cdev_state and disabling those frequencies above it.
103  */
104 static int partition_enable_opps(struct devfreq_cooling_device *dfc,
105 				 unsigned long cdev_state)
106 {
107 	int i;
108 	struct device *dev = dfc->devfreq->dev.parent;
109 
110 	for (i = 0; i < dfc->freq_table_size; i++) {
111 		struct dev_pm_opp *opp;
112 		int ret = 0;
113 		unsigned int freq = dfc->freq_table[i];
114 		bool want_enable = i >= cdev_state ? true : false;
115 
116 		rcu_read_lock();
117 		opp = dev_pm_opp_find_freq_exact(dev, freq, !want_enable);
118 		rcu_read_unlock();
119 
120 		if (PTR_ERR(opp) == -ERANGE)
121 			continue;
122 		else if (IS_ERR(opp))
123 			return PTR_ERR(opp);
124 
125 		if (want_enable)
126 			ret = dev_pm_opp_enable(dev, freq);
127 		else
128 			ret = dev_pm_opp_disable(dev, freq);
129 
130 		if (ret)
131 			return ret;
132 	}
133 
134 	return 0;
135 }
136 
137 static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
138 					 unsigned long *state)
139 {
140 	struct devfreq_cooling_device *dfc = cdev->devdata;
141 
142 	*state = dfc->freq_table_size - 1;
143 
144 	return 0;
145 }
146 
147 static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
148 					 unsigned long *state)
149 {
150 	struct devfreq_cooling_device *dfc = cdev->devdata;
151 
152 	*state = dfc->cooling_state;
153 
154 	return 0;
155 }
156 
157 static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
158 					 unsigned long state)
159 {
160 	struct devfreq_cooling_device *dfc = cdev->devdata;
161 	struct devfreq *df = dfc->devfreq;
162 	struct device *dev = df->dev.parent;
163 	int ret;
164 
165 	if (state == dfc->cooling_state)
166 		return 0;
167 
168 	dev_dbg(dev, "Setting cooling state %lu\n", state);
169 
170 	if (state >= dfc->freq_table_size)
171 		return -EINVAL;
172 
173 	ret = partition_enable_opps(dfc, state);
174 	if (ret)
175 		return ret;
176 
177 	dfc->cooling_state = state;
178 
179 	return 0;
180 }
181 
182 /**
183  * freq_get_state() - get the cooling state corresponding to a frequency
184  * @dfc:	Pointer to devfreq cooling device
185  * @freq:	frequency in Hz
186  *
187  * Return: the cooling state associated with the @freq, or
188  * THERMAL_CSTATE_INVALID if it wasn't found.
189  */
190 static unsigned long
191 freq_get_state(struct devfreq_cooling_device *dfc, unsigned long freq)
192 {
193 	int i;
194 
195 	for (i = 0; i < dfc->freq_table_size; i++) {
196 		if (dfc->freq_table[i] == freq)
197 			return i;
198 	}
199 
200 	return THERMAL_CSTATE_INVALID;
201 }
202 
203 /**
204  * get_static_power() - calculate the static power
205  * @dfc:	Pointer to devfreq cooling device
206  * @freq:	Frequency in Hz
207  *
208  * Calculate the static power in milliwatts using the supplied
209  * get_static_power().  The current voltage is calculated using the
210  * OPP library.  If no get_static_power() was supplied, assume the
211  * static power is negligible.
212  */
213 static unsigned long
214 get_static_power(struct devfreq_cooling_device *dfc, unsigned long freq)
215 {
216 	struct devfreq *df = dfc->devfreq;
217 	struct device *dev = df->dev.parent;
218 	unsigned long voltage;
219 	struct dev_pm_opp *opp;
220 
221 	if (!dfc->power_ops->get_static_power)
222 		return 0;
223 
224 	rcu_read_lock();
225 
226 	opp = dev_pm_opp_find_freq_exact(dev, freq, true);
227 	if (IS_ERR(opp) && (PTR_ERR(opp) == -ERANGE))
228 		opp = dev_pm_opp_find_freq_exact(dev, freq, false);
229 
230 	voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
231 
232 	rcu_read_unlock();
233 
234 	if (voltage == 0) {
235 		dev_warn_ratelimited(dev,
236 				     "Failed to get voltage for frequency %lu: %ld\n",
237 				     freq, IS_ERR(opp) ? PTR_ERR(opp) : 0);
238 		return 0;
239 	}
240 
241 	return dfc->power_ops->get_static_power(voltage);
242 }
243 
244 /**
245  * get_dynamic_power - calculate the dynamic power
246  * @dfc:	Pointer to devfreq cooling device
247  * @freq:	Frequency in Hz
248  * @voltage:	Voltage in millivolts
249  *
250  * Calculate the dynamic power in milliwatts consumed by the device at
251  * frequency @freq and voltage @voltage.  If the get_dynamic_power()
252  * was supplied as part of the devfreq_cooling_power struct, then that
253  * function is used.  Otherwise, a simple power model (Pdyn = Coeff *
254  * Voltage^2 * Frequency) is used.
255  */
256 static unsigned long
257 get_dynamic_power(struct devfreq_cooling_device *dfc, unsigned long freq,
258 		  unsigned long voltage)
259 {
260 	u64 power;
261 	u32 freq_mhz;
262 	struct devfreq_cooling_power *dfc_power = dfc->power_ops;
263 
264 	if (dfc_power->get_dynamic_power)
265 		return dfc_power->get_dynamic_power(freq, voltage);
266 
267 	freq_mhz = freq / 1000000;
268 	power = (u64)dfc_power->dyn_power_coeff * freq_mhz * voltage * voltage;
269 	do_div(power, 1000000000);
270 
271 	return power;
272 }
273 
274 static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
275 					       struct thermal_zone_device *tz,
276 					       u32 *power)
277 {
278 	struct devfreq_cooling_device *dfc = cdev->devdata;
279 	struct devfreq *df = dfc->devfreq;
280 	struct devfreq_dev_status *status = &df->last_status;
281 	unsigned long state;
282 	unsigned long freq = status->current_frequency;
283 	u32 dyn_power, static_power;
284 
285 	/* Get dynamic power for state */
286 	state = freq_get_state(dfc, freq);
287 	if (state == THERMAL_CSTATE_INVALID)
288 		return -EAGAIN;
289 
290 	dyn_power = dfc->power_table[state];
291 
292 	/* Scale dynamic power for utilization */
293 	dyn_power = (dyn_power * status->busy_time) / status->total_time;
294 
295 	/* Get static power */
296 	static_power = get_static_power(dfc, freq);
297 
298 	trace_thermal_power_devfreq_get_power(cdev, status, freq, dyn_power,
299 					      static_power);
300 
301 	*power = dyn_power + static_power;
302 
303 	return 0;
304 }
305 
306 static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
307 				       struct thermal_zone_device *tz,
308 				       unsigned long state,
309 				       u32 *power)
310 {
311 	struct devfreq_cooling_device *dfc = cdev->devdata;
312 	unsigned long freq;
313 	u32 static_power;
314 
315 	if (state < 0 || state >= dfc->freq_table_size)
316 		return -EINVAL;
317 
318 	freq = dfc->freq_table[state];
319 	static_power = get_static_power(dfc, freq);
320 
321 	*power = dfc->power_table[state] + static_power;
322 	return 0;
323 }
324 
325 static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
326 				       struct thermal_zone_device *tz,
327 				       u32 power, unsigned long *state)
328 {
329 	struct devfreq_cooling_device *dfc = cdev->devdata;
330 	struct devfreq *df = dfc->devfreq;
331 	struct devfreq_dev_status *status = &df->last_status;
332 	unsigned long freq = status->current_frequency;
333 	unsigned long busy_time;
334 	s32 dyn_power;
335 	u32 static_power;
336 	int i;
337 
338 	static_power = get_static_power(dfc, freq);
339 
340 	dyn_power = power - static_power;
341 	dyn_power = dyn_power > 0 ? dyn_power : 0;
342 
343 	/* Scale dynamic power for utilization */
344 	busy_time = status->busy_time ?: 1;
345 	dyn_power = (dyn_power * status->total_time) / busy_time;
346 
347 	/*
348 	 * Find the first cooling state that is within the power
349 	 * budget for dynamic power.
350 	 */
351 	for (i = 0; i < dfc->freq_table_size - 1; i++)
352 		if (dyn_power >= dfc->power_table[i])
353 			break;
354 
355 	*state = i;
356 	trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
357 	return 0;
358 }
359 
360 static struct thermal_cooling_device_ops devfreq_cooling_ops = {
361 	.get_max_state = devfreq_cooling_get_max_state,
362 	.get_cur_state = devfreq_cooling_get_cur_state,
363 	.set_cur_state = devfreq_cooling_set_cur_state,
364 };
365 
366 /**
367  * devfreq_cooling_gen_tables() - Generate power and freq tables.
368  * @dfc: Pointer to devfreq cooling device.
369  *
370  * Generate power and frequency tables: the power table hold the
371  * device's maximum power usage at each cooling state (OPP).  The
372  * static and dynamic power using the appropriate voltage and
373  * frequency for the state, is acquired from the struct
374  * devfreq_cooling_power, and summed to make the maximum power draw.
375  *
376  * The frequency table holds the frequencies in descending order.
377  * That way its indexed by cooling device state.
378  *
379  * The tables are malloced, and pointers put in dfc.  They must be
380  * freed when unregistering the devfreq cooling device.
381  *
382  * Return: 0 on success, negative error code on failure.
383  */
384 static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc)
385 {
386 	struct devfreq *df = dfc->devfreq;
387 	struct device *dev = df->dev.parent;
388 	int ret, num_opps;
389 	unsigned long freq;
390 	u32 *power_table = NULL;
391 	u32 *freq_table;
392 	int i;
393 
394 	num_opps = dev_pm_opp_get_opp_count(dev);
395 
396 	if (dfc->power_ops) {
397 		power_table = kcalloc(num_opps, sizeof(*power_table),
398 				      GFP_KERNEL);
399 		if (!power_table)
400 			return -ENOMEM;
401 	}
402 
403 	freq_table = kcalloc(num_opps, sizeof(*freq_table),
404 			     GFP_KERNEL);
405 	if (!freq_table) {
406 		ret = -ENOMEM;
407 		goto free_power_table;
408 	}
409 
410 	for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
411 		unsigned long power_dyn, voltage;
412 		struct dev_pm_opp *opp;
413 
414 		rcu_read_lock();
415 
416 		opp = dev_pm_opp_find_freq_floor(dev, &freq);
417 		if (IS_ERR(opp)) {
418 			rcu_read_unlock();
419 			ret = PTR_ERR(opp);
420 			goto free_tables;
421 		}
422 
423 		voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
424 
425 		rcu_read_unlock();
426 
427 		if (dfc->power_ops) {
428 			power_dyn = get_dynamic_power(dfc, freq, voltage);
429 
430 			dev_dbg(dev, "Dynamic power table: %lu MHz @ %lu mV: %lu = %lu mW\n",
431 				freq / 1000000, voltage, power_dyn, power_dyn);
432 
433 			power_table[i] = power_dyn;
434 		}
435 
436 		freq_table[i] = freq;
437 	}
438 
439 	if (dfc->power_ops)
440 		dfc->power_table = power_table;
441 
442 	dfc->freq_table = freq_table;
443 	dfc->freq_table_size = num_opps;
444 
445 	return 0;
446 
447 free_tables:
448 	kfree(freq_table);
449 free_power_table:
450 	kfree(power_table);
451 
452 	return ret;
453 }
454 
455 /**
456  * of_devfreq_cooling_register_power() - Register devfreq cooling device,
457  *                                      with OF and power information.
458  * @np:	Pointer to OF device_node.
459  * @df:	Pointer to devfreq device.
460  * @dfc_power:	Pointer to devfreq_cooling_power.
461  *
462  * Register a devfreq cooling device.  The available OPPs must be
463  * registered on the device.
464  *
465  * If @dfc_power is provided, the cooling device is registered with the
466  * power extensions.  For the power extensions to work correctly,
467  * devfreq should use the simple_ondemand governor, other governors
468  * are not currently supported.
469  */
470 struct thermal_cooling_device *
471 of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
472 				  struct devfreq_cooling_power *dfc_power)
473 {
474 	struct thermal_cooling_device *cdev;
475 	struct devfreq_cooling_device *dfc;
476 	char dev_name[THERMAL_NAME_LENGTH];
477 	int err;
478 
479 	dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
480 	if (!dfc)
481 		return ERR_PTR(-ENOMEM);
482 
483 	dfc->devfreq = df;
484 
485 	if (dfc_power) {
486 		dfc->power_ops = dfc_power;
487 
488 		devfreq_cooling_ops.get_requested_power =
489 			devfreq_cooling_get_requested_power;
490 		devfreq_cooling_ops.state2power = devfreq_cooling_state2power;
491 		devfreq_cooling_ops.power2state = devfreq_cooling_power2state;
492 	}
493 
494 	err = devfreq_cooling_gen_tables(dfc);
495 	if (err)
496 		goto free_dfc;
497 
498 	err = get_idr(&devfreq_idr, &dfc->id);
499 	if (err)
500 		goto free_tables;
501 
502 	snprintf(dev_name, sizeof(dev_name), "thermal-devfreq-%d", dfc->id);
503 
504 	cdev = thermal_of_cooling_device_register(np, dev_name, dfc,
505 						  &devfreq_cooling_ops);
506 	if (IS_ERR(cdev)) {
507 		err = PTR_ERR(cdev);
508 		dev_err(df->dev.parent,
509 			"Failed to register devfreq cooling device (%d)\n",
510 			err);
511 		goto release_idr;
512 	}
513 
514 	dfc->cdev = cdev;
515 
516 	return cdev;
517 
518 release_idr:
519 	release_idr(&devfreq_idr, dfc->id);
520 free_tables:
521 	kfree(dfc->power_table);
522 	kfree(dfc->freq_table);
523 free_dfc:
524 	kfree(dfc);
525 
526 	return ERR_PTR(err);
527 }
528 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
529 
530 /**
531  * of_devfreq_cooling_register() - Register devfreq cooling device,
532  *                                with OF information.
533  * @np: Pointer to OF device_node.
534  * @df: Pointer to devfreq device.
535  */
536 struct thermal_cooling_device *
537 of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
538 {
539 	return of_devfreq_cooling_register_power(np, df, NULL);
540 }
541 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
542 
543 /**
544  * devfreq_cooling_register() - Register devfreq cooling device.
545  * @df: Pointer to devfreq device.
546  */
547 struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
548 {
549 	return of_devfreq_cooling_register(NULL, df);
550 }
551 EXPORT_SYMBOL_GPL(devfreq_cooling_register);
552 
553 /**
554  * devfreq_cooling_unregister() - Unregister devfreq cooling device.
555  * @dfc: Pointer to devfreq cooling device to unregister.
556  */
557 void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
558 {
559 	struct devfreq_cooling_device *dfc;
560 
561 	if (!cdev)
562 		return;
563 
564 	dfc = cdev->devdata;
565 
566 	thermal_cooling_device_unregister(dfc->cdev);
567 	release_idr(&devfreq_idr, dfc->id);
568 	kfree(dfc->power_table);
569 	kfree(dfc->freq_table);
570 
571 	kfree(dfc);
572 }
573 EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);
574