1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/drivers/thermal/cpufreq_cooling.c 4 * 5 * Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com) 6 * 7 * Copyright (C) 2012-2018 Linaro Limited. 8 * 9 * Authors: Amit Daniel <amit.kachhap@linaro.org> 10 * Viresh Kumar <viresh.kumar@linaro.org> 11 * 12 */ 13 #include <linux/cpu.h> 14 #include <linux/cpufreq.h> 15 #include <linux/cpu_cooling.h> 16 #include <linux/energy_model.h> 17 #include <linux/err.h> 18 #include <linux/export.h> 19 #include <linux/idr.h> 20 #include <linux/pm_opp.h> 21 #include <linux/pm_qos.h> 22 #include <linux/slab.h> 23 #include <linux/thermal.h> 24 25 #include <trace/events/thermal.h> 26 27 /* 28 * Cooling state <-> CPUFreq frequency 29 * 30 * Cooling states are translated to frequencies throughout this driver and this 31 * is the relation between them. 32 * 33 * Highest cooling state corresponds to lowest possible frequency. 34 * 35 * i.e. 36 * level 0 --> 1st Max Freq 37 * level 1 --> 2nd Max Freq 38 * ... 39 */ 40 41 /** 42 * struct time_in_idle - Idle time stats 43 * @time: previous reading of the absolute time that this cpu was idle 44 * @timestamp: wall time of the last invocation of get_cpu_idle_time_us() 45 */ 46 struct time_in_idle { 47 u64 time; 48 u64 timestamp; 49 }; 50 51 /** 52 * struct cpufreq_cooling_device - data for cooling device with cpufreq 53 * @id: unique integer value corresponding to each cpufreq_cooling_device 54 * registered. 55 * @last_load: load measured by the latest call to cpufreq_get_requested_power() 56 * @cpufreq_state: integer value representing the current state of cpufreq 57 * cooling devices. 58 * @max_level: maximum cooling level. One less than total number of valid 59 * cpufreq frequencies. 60 * @em: Reference on the Energy Model of the device 61 * @cdev: thermal_cooling_device pointer to keep track of the 62 * registered cooling device. 63 * @policy: cpufreq policy. 64 * @node: list_head to link all cpufreq_cooling_device together. 65 * @idle_time: idle time stats 66 * @qos_req: PM QoS contraint to apply 67 * 68 * This structure is required for keeping information of each registered 69 * cpufreq_cooling_device. 70 */ 71 struct cpufreq_cooling_device { 72 int id; 73 u32 last_load; 74 unsigned int cpufreq_state; 75 unsigned int max_level; 76 struct em_perf_domain *em; 77 struct cpufreq_policy *policy; 78 struct list_head node; 79 struct time_in_idle *idle_time; 80 struct freq_qos_request qos_req; 81 }; 82 83 static DEFINE_IDA(cpufreq_ida); 84 static DEFINE_MUTEX(cooling_list_lock); 85 static LIST_HEAD(cpufreq_cdev_list); 86 87 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR 88 /** 89 * get_level: Find the level for a particular frequency 90 * @cpufreq_cdev: cpufreq_cdev for which the property is required 91 * @freq: Frequency 92 * 93 * Return: level corresponding to the frequency. 94 */ 95 static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev, 96 unsigned int freq) 97 { 98 int i; 99 100 for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) { 101 if (freq > cpufreq_cdev->em->table[i].frequency) 102 break; 103 } 104 105 return cpufreq_cdev->max_level - i - 1; 106 } 107 108 static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev, 109 u32 freq) 110 { 111 int i; 112 113 for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) { 114 if (freq > cpufreq_cdev->em->table[i].frequency) 115 break; 116 } 117 118 return cpufreq_cdev->em->table[i + 1].power; 119 } 120 121 static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev, 122 u32 power) 123 { 124 int i; 125 126 for (i = cpufreq_cdev->max_level; i >= 0; i--) { 127 if (power >= cpufreq_cdev->em->table[i].power) 128 break; 129 } 130 131 return cpufreq_cdev->em->table[i].frequency; 132 } 133 134 /** 135 * get_load() - get load for a cpu since last updated 136 * @cpufreq_cdev: &struct cpufreq_cooling_device for this cpu 137 * @cpu: cpu number 138 * @cpu_idx: index of the cpu in time_in_idle* 139 * 140 * Return: The average load of cpu @cpu in percentage since this 141 * function was last called. 142 */ 143 static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu, 144 int cpu_idx) 145 { 146 u32 load; 147 u64 now, now_idle, delta_time, delta_idle; 148 struct time_in_idle *idle_time = &cpufreq_cdev->idle_time[cpu_idx]; 149 150 now_idle = get_cpu_idle_time(cpu, &now, 0); 151 delta_idle = now_idle - idle_time->time; 152 delta_time = now - idle_time->timestamp; 153 154 if (delta_time <= delta_idle) 155 load = 0; 156 else 157 load = div64_u64(100 * (delta_time - delta_idle), delta_time); 158 159 idle_time->time = now_idle; 160 idle_time->timestamp = now; 161 162 return load; 163 } 164 165 /** 166 * get_dynamic_power() - calculate the dynamic power 167 * @cpufreq_cdev: &cpufreq_cooling_device for this cdev 168 * @freq: current frequency 169 * 170 * Return: the dynamic power consumed by the cpus described by 171 * @cpufreq_cdev. 172 */ 173 static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_cdev, 174 unsigned long freq) 175 { 176 u32 raw_cpu_power; 177 178 raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq); 179 return (raw_cpu_power * cpufreq_cdev->last_load) / 100; 180 } 181 182 /** 183 * cpufreq_get_requested_power() - get the current power 184 * @cdev: &thermal_cooling_device pointer 185 * @power: pointer in which to store the resulting power 186 * 187 * Calculate the current power consumption of the cpus in milliwatts 188 * and store it in @power. This function should actually calculate 189 * the requested power, but it's hard to get the frequency that 190 * cpufreq would have assigned if there were no thermal limits. 191 * Instead, we calculate the current power on the assumption that the 192 * immediate future will look like the immediate past. 193 * 194 * We use the current frequency and the average load since this 195 * function was last called. In reality, there could have been 196 * multiple opps since this function was last called and that affects 197 * the load calculation. While it's not perfectly accurate, this 198 * simplification is good enough and works. REVISIT this, as more 199 * complex code may be needed if experiments show that it's not 200 * accurate enough. 201 * 202 * Return: 0 on success, -E* if getting the static power failed. 203 */ 204 static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev, 205 u32 *power) 206 { 207 unsigned long freq; 208 int i = 0, cpu; 209 u32 total_load = 0; 210 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata; 211 struct cpufreq_policy *policy = cpufreq_cdev->policy; 212 u32 *load_cpu = NULL; 213 214 freq = cpufreq_quick_get(policy->cpu); 215 216 if (trace_thermal_power_cpu_get_power_enabled()) { 217 u32 ncpus = cpumask_weight(policy->related_cpus); 218 219 load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL); 220 } 221 222 for_each_cpu(cpu, policy->related_cpus) { 223 u32 load; 224 225 if (cpu_online(cpu)) 226 load = get_load(cpufreq_cdev, cpu, i); 227 else 228 load = 0; 229 230 total_load += load; 231 if (load_cpu) 232 load_cpu[i] = load; 233 234 i++; 235 } 236 237 cpufreq_cdev->last_load = total_load; 238 239 *power = get_dynamic_power(cpufreq_cdev, freq); 240 241 if (load_cpu) { 242 trace_thermal_power_cpu_get_power(policy->related_cpus, freq, 243 load_cpu, i, *power); 244 245 kfree(load_cpu); 246 } 247 248 return 0; 249 } 250 251 /** 252 * cpufreq_state2power() - convert a cpu cdev state to power consumed 253 * @cdev: &thermal_cooling_device pointer 254 * @state: cooling device state to be converted 255 * @power: pointer in which to store the resulting power 256 * 257 * Convert cooling device state @state into power consumption in 258 * milliwatts assuming 100% load. Store the calculated power in 259 * @power. 260 * 261 * Return: 0 on success, -EINVAL if the cooling device state could not 262 * be converted into a frequency or other -E* if there was an error 263 * when calculating the static power. 264 */ 265 static int cpufreq_state2power(struct thermal_cooling_device *cdev, 266 unsigned long state, u32 *power) 267 { 268 unsigned int freq, num_cpus, idx; 269 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata; 270 271 /* Request state should be less than max_level */ 272 if (state > cpufreq_cdev->max_level) 273 return -EINVAL; 274 275 num_cpus = cpumask_weight(cpufreq_cdev->policy->cpus); 276 277 idx = cpufreq_cdev->max_level - state; 278 freq = cpufreq_cdev->em->table[idx].frequency; 279 *power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus; 280 281 return 0; 282 } 283 284 /** 285 * cpufreq_power2state() - convert power to a cooling device state 286 * @cdev: &thermal_cooling_device pointer 287 * @power: power in milliwatts to be converted 288 * @state: pointer in which to store the resulting state 289 * 290 * Calculate a cooling device state for the cpus described by @cdev 291 * that would allow them to consume at most @power mW and store it in 292 * @state. Note that this calculation depends on external factors 293 * such as the cpu load or the current static power. Calling this 294 * function with the same power as input can yield different cooling 295 * device states depending on those external factors. 296 * 297 * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if 298 * the calculated frequency could not be converted to a valid state. 299 * The latter should not happen unless the frequencies available to 300 * cpufreq have changed since the initialization of the cpu cooling 301 * device. 302 */ 303 static int cpufreq_power2state(struct thermal_cooling_device *cdev, 304 u32 power, unsigned long *state) 305 { 306 unsigned int target_freq; 307 u32 last_load, normalised_power; 308 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata; 309 struct cpufreq_policy *policy = cpufreq_cdev->policy; 310 311 last_load = cpufreq_cdev->last_load ?: 1; 312 normalised_power = (power * 100) / last_load; 313 target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power); 314 315 *state = get_level(cpufreq_cdev, target_freq); 316 trace_thermal_power_cpu_limit(policy->related_cpus, target_freq, *state, 317 power); 318 return 0; 319 } 320 321 static inline bool em_is_sane(struct cpufreq_cooling_device *cpufreq_cdev, 322 struct em_perf_domain *em) { 323 struct cpufreq_policy *policy; 324 unsigned int nr_levels; 325 326 if (!em) 327 return false; 328 329 policy = cpufreq_cdev->policy; 330 if (!cpumask_equal(policy->related_cpus, em_span_cpus(em))) { 331 pr_err("The span of pd %*pbl is misaligned with cpufreq policy %*pbl\n", 332 cpumask_pr_args(em_span_cpus(em)), 333 cpumask_pr_args(policy->related_cpus)); 334 return false; 335 } 336 337 nr_levels = cpufreq_cdev->max_level + 1; 338 if (em_pd_nr_perf_states(em) != nr_levels) { 339 pr_err("The number of performance states in pd %*pbl (%u) doesn't match the number of cooling levels (%u)\n", 340 cpumask_pr_args(em_span_cpus(em)), 341 em_pd_nr_perf_states(em), nr_levels); 342 return false; 343 } 344 345 return true; 346 } 347 #endif /* CONFIG_THERMAL_GOV_POWER_ALLOCATOR */ 348 349 static unsigned int get_state_freq(struct cpufreq_cooling_device *cpufreq_cdev, 350 unsigned long state) 351 { 352 struct cpufreq_policy *policy; 353 unsigned long idx; 354 355 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR 356 /* Use the Energy Model table if available */ 357 if (cpufreq_cdev->em) { 358 idx = cpufreq_cdev->max_level - state; 359 return cpufreq_cdev->em->table[idx].frequency; 360 } 361 #endif 362 363 /* Otherwise, fallback on the CPUFreq table */ 364 policy = cpufreq_cdev->policy; 365 if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING) 366 idx = cpufreq_cdev->max_level - state; 367 else 368 idx = state; 369 370 return policy->freq_table[idx].frequency; 371 } 372 373 /* cpufreq cooling device callback functions are defined below */ 374 375 /** 376 * cpufreq_get_max_state - callback function to get the max cooling state. 377 * @cdev: thermal cooling device pointer. 378 * @state: fill this variable with the max cooling state. 379 * 380 * Callback for the thermal cooling device to return the cpufreq 381 * max cooling state. 382 * 383 * Return: 0 on success, an error code otherwise. 384 */ 385 static int cpufreq_get_max_state(struct thermal_cooling_device *cdev, 386 unsigned long *state) 387 { 388 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata; 389 390 *state = cpufreq_cdev->max_level; 391 return 0; 392 } 393 394 /** 395 * cpufreq_get_cur_state - callback function to get the current cooling state. 396 * @cdev: thermal cooling device pointer. 397 * @state: fill this variable with the current cooling state. 398 * 399 * Callback for the thermal cooling device to return the cpufreq 400 * current cooling state. 401 * 402 * Return: 0 on success, an error code otherwise. 403 */ 404 static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev, 405 unsigned long *state) 406 { 407 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata; 408 409 *state = cpufreq_cdev->cpufreq_state; 410 411 return 0; 412 } 413 414 /** 415 * cpufreq_set_cur_state - callback function to set the current cooling state. 416 * @cdev: thermal cooling device pointer. 417 * @state: set this variable to the current cooling state. 418 * 419 * Callback for the thermal cooling device to change the cpufreq 420 * current cooling state. 421 * 422 * Return: 0 on success, an error code otherwise. 423 */ 424 static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev, 425 unsigned long state) 426 { 427 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata; 428 struct cpumask *cpus; 429 unsigned int frequency; 430 unsigned long max_capacity, capacity; 431 int ret; 432 433 /* Request state should be less than max_level */ 434 if (state > cpufreq_cdev->max_level) 435 return -EINVAL; 436 437 /* Check if the old cooling action is same as new cooling action */ 438 if (cpufreq_cdev->cpufreq_state == state) 439 return 0; 440 441 frequency = get_state_freq(cpufreq_cdev, state); 442 443 ret = freq_qos_update_request(&cpufreq_cdev->qos_req, frequency); 444 if (ret > 0) { 445 cpufreq_cdev->cpufreq_state = state; 446 cpus = cpufreq_cdev->policy->cpus; 447 max_capacity = arch_scale_cpu_capacity(cpumask_first(cpus)); 448 capacity = frequency * max_capacity; 449 capacity /= cpufreq_cdev->policy->cpuinfo.max_freq; 450 arch_set_thermal_pressure(cpus, max_capacity - capacity); 451 ret = 0; 452 } 453 454 return ret; 455 } 456 457 /* Bind cpufreq callbacks to thermal cooling device ops */ 458 459 static struct thermal_cooling_device_ops cpufreq_cooling_ops = { 460 .get_max_state = cpufreq_get_max_state, 461 .get_cur_state = cpufreq_get_cur_state, 462 .set_cur_state = cpufreq_set_cur_state, 463 }; 464 465 /** 466 * __cpufreq_cooling_register - helper function to create cpufreq cooling device 467 * @np: a valid struct device_node to the cooling device device tree node 468 * @policy: cpufreq policy 469 * Normally this should be same as cpufreq policy->related_cpus. 470 * @em: Energy Model of the cpufreq policy 471 * 472 * This interface function registers the cpufreq cooling device with the name 473 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq 474 * cooling devices. It also gives the opportunity to link the cooling device 475 * with a device tree node, in order to bind it via the thermal DT code. 476 * 477 * Return: a valid struct thermal_cooling_device pointer on success, 478 * on failure, it returns a corresponding ERR_PTR(). 479 */ 480 static struct thermal_cooling_device * 481 __cpufreq_cooling_register(struct device_node *np, 482 struct cpufreq_policy *policy, 483 struct em_perf_domain *em) 484 { 485 struct thermal_cooling_device *cdev; 486 struct cpufreq_cooling_device *cpufreq_cdev; 487 char dev_name[THERMAL_NAME_LENGTH]; 488 unsigned int i, num_cpus; 489 struct device *dev; 490 int ret; 491 struct thermal_cooling_device_ops *cooling_ops; 492 493 dev = get_cpu_device(policy->cpu); 494 if (unlikely(!dev)) { 495 pr_warn("No cpu device for cpu %d\n", policy->cpu); 496 return ERR_PTR(-ENODEV); 497 } 498 499 500 if (IS_ERR_OR_NULL(policy)) { 501 pr_err("%s: cpufreq policy isn't valid: %p\n", __func__, policy); 502 return ERR_PTR(-EINVAL); 503 } 504 505 i = cpufreq_table_count_valid_entries(policy); 506 if (!i) { 507 pr_debug("%s: CPUFreq table not found or has no valid entries\n", 508 __func__); 509 return ERR_PTR(-ENODEV); 510 } 511 512 cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL); 513 if (!cpufreq_cdev) 514 return ERR_PTR(-ENOMEM); 515 516 cpufreq_cdev->policy = policy; 517 num_cpus = cpumask_weight(policy->related_cpus); 518 cpufreq_cdev->idle_time = kcalloc(num_cpus, 519 sizeof(*cpufreq_cdev->idle_time), 520 GFP_KERNEL); 521 if (!cpufreq_cdev->idle_time) { 522 cdev = ERR_PTR(-ENOMEM); 523 goto free_cdev; 524 } 525 526 /* max_level is an index, not a counter */ 527 cpufreq_cdev->max_level = i - 1; 528 529 ret = ida_simple_get(&cpufreq_ida, 0, 0, GFP_KERNEL); 530 if (ret < 0) { 531 cdev = ERR_PTR(ret); 532 goto free_idle_time; 533 } 534 cpufreq_cdev->id = ret; 535 536 snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d", 537 cpufreq_cdev->id); 538 539 cooling_ops = &cpufreq_cooling_ops; 540 541 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR 542 if (em_is_sane(cpufreq_cdev, em)) { 543 cpufreq_cdev->em = em; 544 cooling_ops->get_requested_power = cpufreq_get_requested_power; 545 cooling_ops->state2power = cpufreq_state2power; 546 cooling_ops->power2state = cpufreq_power2state; 547 } else 548 #endif 549 if (policy->freq_table_sorted == CPUFREQ_TABLE_UNSORTED) { 550 pr_err("%s: unsorted frequency tables are not supported\n", 551 __func__); 552 cdev = ERR_PTR(-EINVAL); 553 goto remove_ida; 554 } 555 556 ret = freq_qos_add_request(&policy->constraints, 557 &cpufreq_cdev->qos_req, FREQ_QOS_MAX, 558 get_state_freq(cpufreq_cdev, 0)); 559 if (ret < 0) { 560 pr_err("%s: Failed to add freq constraint (%d)\n", __func__, 561 ret); 562 cdev = ERR_PTR(ret); 563 goto remove_ida; 564 } 565 566 cdev = thermal_of_cooling_device_register(np, dev_name, cpufreq_cdev, 567 cooling_ops); 568 if (IS_ERR(cdev)) 569 goto remove_qos_req; 570 571 mutex_lock(&cooling_list_lock); 572 list_add(&cpufreq_cdev->node, &cpufreq_cdev_list); 573 mutex_unlock(&cooling_list_lock); 574 575 return cdev; 576 577 remove_qos_req: 578 freq_qos_remove_request(&cpufreq_cdev->qos_req); 579 remove_ida: 580 ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id); 581 free_idle_time: 582 kfree(cpufreq_cdev->idle_time); 583 free_cdev: 584 kfree(cpufreq_cdev); 585 return cdev; 586 } 587 588 /** 589 * cpufreq_cooling_register - function to create cpufreq cooling device. 590 * @policy: cpufreq policy 591 * 592 * This interface function registers the cpufreq cooling device with the name 593 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq 594 * cooling devices. 595 * 596 * Return: a valid struct thermal_cooling_device pointer on success, 597 * on failure, it returns a corresponding ERR_PTR(). 598 */ 599 struct thermal_cooling_device * 600 cpufreq_cooling_register(struct cpufreq_policy *policy) 601 { 602 return __cpufreq_cooling_register(NULL, policy, NULL); 603 } 604 EXPORT_SYMBOL_GPL(cpufreq_cooling_register); 605 606 /** 607 * of_cpufreq_cooling_register - function to create cpufreq cooling device. 608 * @policy: cpufreq policy 609 * 610 * This interface function registers the cpufreq cooling device with the name 611 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq 612 * cooling devices. Using this API, the cpufreq cooling device will be 613 * linked to the device tree node provided. 614 * 615 * Using this function, the cooling device will implement the power 616 * extensions by using a simple cpu power model. The cpus must have 617 * registered their OPPs using the OPP library. 618 * 619 * It also takes into account, if property present in policy CPU node, the 620 * static power consumed by the cpu. 621 * 622 * Return: a valid struct thermal_cooling_device pointer on success, 623 * and NULL on failure. 624 */ 625 struct thermal_cooling_device * 626 of_cpufreq_cooling_register(struct cpufreq_policy *policy) 627 { 628 struct device_node *np = of_get_cpu_node(policy->cpu, NULL); 629 struct thermal_cooling_device *cdev = NULL; 630 631 if (!np) { 632 pr_err("cpufreq_cooling: OF node not available for cpu%d\n", 633 policy->cpu); 634 return NULL; 635 } 636 637 if (of_find_property(np, "#cooling-cells", NULL)) { 638 struct em_perf_domain *em = em_cpu_get(policy->cpu); 639 640 cdev = __cpufreq_cooling_register(np, policy, em); 641 if (IS_ERR(cdev)) { 642 pr_err("cpufreq_cooling: cpu%d failed to register as cooling device: %ld\n", 643 policy->cpu, PTR_ERR(cdev)); 644 cdev = NULL; 645 } 646 } 647 648 of_node_put(np); 649 return cdev; 650 } 651 EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register); 652 653 /** 654 * cpufreq_cooling_unregister - function to remove cpufreq cooling device. 655 * @cdev: thermal cooling device pointer. 656 * 657 * This interface function unregisters the "thermal-cpufreq-%x" cooling device. 658 */ 659 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev) 660 { 661 struct cpufreq_cooling_device *cpufreq_cdev; 662 663 if (!cdev) 664 return; 665 666 cpufreq_cdev = cdev->devdata; 667 668 mutex_lock(&cooling_list_lock); 669 list_del(&cpufreq_cdev->node); 670 mutex_unlock(&cooling_list_lock); 671 672 thermal_cooling_device_unregister(cdev); 673 freq_qos_remove_request(&cpufreq_cdev->qos_req); 674 ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id); 675 kfree(cpufreq_cdev->idle_time); 676 kfree(cpufreq_cdev); 677 } 678 EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister); 679