1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/drivers/thermal/cpufreq_cooling.c 4 * 5 * Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com) 6 * 7 * Copyright (C) 2012-2018 Linaro Limited. 8 * 9 * Authors: Amit Daniel <amit.kachhap@linaro.org> 10 * Viresh Kumar <viresh.kumar@linaro.org> 11 * 12 */ 13 #include <linux/cpu.h> 14 #include <linux/cpufreq.h> 15 #include <linux/cpu_cooling.h> 16 #include <linux/device.h> 17 #include <linux/energy_model.h> 18 #include <linux/err.h> 19 #include <linux/export.h> 20 #include <linux/pm_opp.h> 21 #include <linux/pm_qos.h> 22 #include <linux/slab.h> 23 #include <linux/thermal.h> 24 #include <linux/units.h> 25 26 #include "thermal_trace.h" 27 28 /* 29 * Cooling state <-> CPUFreq frequency 30 * 31 * Cooling states are translated to frequencies throughout this driver and this 32 * is the relation between them. 33 * 34 * Highest cooling state corresponds to lowest possible frequency. 35 * 36 * i.e. 37 * level 0 --> 1st Max Freq 38 * level 1 --> 2nd Max Freq 39 * ... 40 */ 41 42 /** 43 * struct time_in_idle - Idle time stats 44 * @time: previous reading of the absolute time that this cpu was idle 45 * @timestamp: wall time of the last invocation of get_cpu_idle_time_us() 46 */ 47 struct time_in_idle { 48 u64 time; 49 u64 timestamp; 50 }; 51 52 /** 53 * struct cpufreq_cooling_device - data for cooling device with cpufreq 54 * @last_load: load measured by the latest call to cpufreq_get_requested_power() 55 * @cpufreq_state: integer value representing the current state of cpufreq 56 * cooling devices. 57 * @max_level: maximum cooling level. One less than total number of valid 58 * cpufreq frequencies. 59 * @em: Reference on the Energy Model of the device 60 * @cdev: thermal_cooling_device pointer to keep track of the 61 * registered cooling device. 62 * @policy: cpufreq policy. 63 * @cooling_ops: cpufreq callbacks to thermal cooling device ops 64 * @idle_time: idle time stats 65 * @qos_req: PM QoS contraint to apply 66 * 67 * This structure is required for keeping information of each registered 68 * cpufreq_cooling_device. 69 */ 70 struct cpufreq_cooling_device { 71 u32 last_load; 72 unsigned int cpufreq_state; 73 unsigned int max_level; 74 struct em_perf_domain *em; 75 struct cpufreq_policy *policy; 76 struct thermal_cooling_device_ops cooling_ops; 77 #ifndef CONFIG_SMP 78 struct time_in_idle *idle_time; 79 #endif 80 struct freq_qos_request qos_req; 81 }; 82 83 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR 84 /** 85 * get_level: Find the level for a particular frequency 86 * @cpufreq_cdev: cpufreq_cdev for which the property is required 87 * @freq: Frequency 88 * 89 * Return: level corresponding to the frequency. 90 */ 91 static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev, 92 unsigned int freq) 93 { 94 struct em_perf_state *table; 95 int i; 96 97 rcu_read_lock(); 98 table = em_perf_state_from_pd(cpufreq_cdev->em); 99 for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) { 100 if (freq > table[i].frequency) 101 break; 102 } 103 rcu_read_unlock(); 104 105 return cpufreq_cdev->max_level - i - 1; 106 } 107 108 static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev, 109 u32 freq) 110 { 111 struct em_perf_state *table; 112 unsigned long power_mw; 113 int i; 114 115 rcu_read_lock(); 116 table = em_perf_state_from_pd(cpufreq_cdev->em); 117 for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) { 118 if (freq > table[i].frequency) 119 break; 120 } 121 122 power_mw = table[i + 1].power; 123 power_mw /= MICROWATT_PER_MILLIWATT; 124 rcu_read_unlock(); 125 126 return power_mw; 127 } 128 129 static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev, 130 u32 power) 131 { 132 struct em_perf_state *table; 133 unsigned long em_power_mw; 134 u32 freq; 135 int i; 136 137 rcu_read_lock(); 138 table = em_perf_state_from_pd(cpufreq_cdev->em); 139 for (i = cpufreq_cdev->max_level; i > 0; i--) { 140 /* Convert EM power to milli-Watts to make safe comparison */ 141 em_power_mw = table[i].power; 142 em_power_mw /= MICROWATT_PER_MILLIWATT; 143 if (power >= em_power_mw) 144 break; 145 } 146 freq = table[i].frequency; 147 rcu_read_unlock(); 148 149 return freq; 150 } 151 152 /** 153 * get_load() - get load for a cpu 154 * @cpufreq_cdev: struct cpufreq_cooling_device for the cpu 155 * @cpu: cpu number 156 * @cpu_idx: index of the cpu in time_in_idle array 157 * 158 * Return: The average load of cpu @cpu in percentage since this 159 * function was last called. 160 */ 161 #ifdef CONFIG_SMP 162 static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu, 163 int cpu_idx) 164 { 165 unsigned long util = sched_cpu_util(cpu); 166 167 return (util * 100) / arch_scale_cpu_capacity(cpu); 168 } 169 #else /* !CONFIG_SMP */ 170 static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu, 171 int cpu_idx) 172 { 173 u32 load; 174 u64 now, now_idle, delta_time, delta_idle; 175 struct time_in_idle *idle_time = &cpufreq_cdev->idle_time[cpu_idx]; 176 177 now_idle = get_cpu_idle_time(cpu, &now, 0); 178 delta_idle = now_idle - idle_time->time; 179 delta_time = now - idle_time->timestamp; 180 181 if (delta_time <= delta_idle) 182 load = 0; 183 else 184 load = div64_u64(100 * (delta_time - delta_idle), delta_time); 185 186 idle_time->time = now_idle; 187 idle_time->timestamp = now; 188 189 return load; 190 } 191 #endif /* CONFIG_SMP */ 192 193 /** 194 * get_dynamic_power() - calculate the dynamic power 195 * @cpufreq_cdev: &cpufreq_cooling_device for this cdev 196 * @freq: current frequency 197 * 198 * Return: the dynamic power consumed by the cpus described by 199 * @cpufreq_cdev. 200 */ 201 static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_cdev, 202 unsigned long freq) 203 { 204 u32 raw_cpu_power; 205 206 raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq); 207 return (raw_cpu_power * cpufreq_cdev->last_load) / 100; 208 } 209 210 /** 211 * cpufreq_get_requested_power() - get the current power 212 * @cdev: &thermal_cooling_device pointer 213 * @power: pointer in which to store the resulting power 214 * 215 * Calculate the current power consumption of the cpus in milliwatts 216 * and store it in @power. This function should actually calculate 217 * the requested power, but it's hard to get the frequency that 218 * cpufreq would have assigned if there were no thermal limits. 219 * Instead, we calculate the current power on the assumption that the 220 * immediate future will look like the immediate past. 221 * 222 * We use the current frequency and the average load since this 223 * function was last called. In reality, there could have been 224 * multiple opps since this function was last called and that affects 225 * the load calculation. While it's not perfectly accurate, this 226 * simplification is good enough and works. REVISIT this, as more 227 * complex code may be needed if experiments show that it's not 228 * accurate enough. 229 * 230 * Return: 0 on success, this function doesn't fail. 231 */ 232 static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev, 233 u32 *power) 234 { 235 unsigned long freq; 236 int i = 0, cpu; 237 u32 total_load = 0; 238 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata; 239 struct cpufreq_policy *policy = cpufreq_cdev->policy; 240 241 freq = cpufreq_quick_get(policy->cpu); 242 243 for_each_cpu(cpu, policy->related_cpus) { 244 u32 load; 245 246 if (cpu_online(cpu)) 247 load = get_load(cpufreq_cdev, cpu, i); 248 else 249 load = 0; 250 251 total_load += load; 252 } 253 254 cpufreq_cdev->last_load = total_load; 255 256 *power = get_dynamic_power(cpufreq_cdev, freq); 257 258 trace_thermal_power_cpu_get_power_simple(policy->cpu, *power); 259 260 return 0; 261 } 262 263 /** 264 * cpufreq_state2power() - convert a cpu cdev state to power consumed 265 * @cdev: &thermal_cooling_device pointer 266 * @state: cooling device state to be converted 267 * @power: pointer in which to store the resulting power 268 * 269 * Convert cooling device state @state into power consumption in 270 * milliwatts assuming 100% load. Store the calculated power in 271 * @power. 272 * 273 * Return: 0 on success, -EINVAL if the cooling device state is bigger 274 * than maximum allowed. 275 */ 276 static int cpufreq_state2power(struct thermal_cooling_device *cdev, 277 unsigned long state, u32 *power) 278 { 279 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata; 280 unsigned int freq, num_cpus, idx; 281 struct em_perf_state *table; 282 283 /* Request state should be less than max_level */ 284 if (state > cpufreq_cdev->max_level) 285 return -EINVAL; 286 287 num_cpus = cpumask_weight(cpufreq_cdev->policy->cpus); 288 289 idx = cpufreq_cdev->max_level - state; 290 291 rcu_read_lock(); 292 table = em_perf_state_from_pd(cpufreq_cdev->em); 293 freq = table[idx].frequency; 294 rcu_read_unlock(); 295 296 *power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus; 297 298 return 0; 299 } 300 301 /** 302 * cpufreq_power2state() - convert power to a cooling device state 303 * @cdev: &thermal_cooling_device pointer 304 * @power: power in milliwatts to be converted 305 * @state: pointer in which to store the resulting state 306 * 307 * Calculate a cooling device state for the cpus described by @cdev 308 * that would allow them to consume at most @power mW and store it in 309 * @state. Note that this calculation depends on external factors 310 * such as the CPUs load. Calling this function with the same power 311 * as input can yield different cooling device states depending on those 312 * external factors. 313 * 314 * Return: 0 on success, this function doesn't fail. 315 */ 316 static int cpufreq_power2state(struct thermal_cooling_device *cdev, 317 u32 power, unsigned long *state) 318 { 319 unsigned int target_freq; 320 u32 last_load, normalised_power; 321 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata; 322 struct cpufreq_policy *policy = cpufreq_cdev->policy; 323 324 last_load = cpufreq_cdev->last_load ?: 1; 325 normalised_power = (power * 100) / last_load; 326 target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power); 327 328 *state = get_level(cpufreq_cdev, target_freq); 329 trace_thermal_power_cpu_limit(policy->related_cpus, target_freq, *state, 330 power); 331 return 0; 332 } 333 334 static inline bool em_is_sane(struct cpufreq_cooling_device *cpufreq_cdev, 335 struct em_perf_domain *em) { 336 struct cpufreq_policy *policy; 337 unsigned int nr_levels; 338 339 if (!em || em_is_artificial(em)) 340 return false; 341 342 policy = cpufreq_cdev->policy; 343 if (!cpumask_equal(policy->related_cpus, em_span_cpus(em))) { 344 pr_err("The span of pd %*pbl is misaligned with cpufreq policy %*pbl\n", 345 cpumask_pr_args(em_span_cpus(em)), 346 cpumask_pr_args(policy->related_cpus)); 347 return false; 348 } 349 350 nr_levels = cpufreq_cdev->max_level + 1; 351 if (em_pd_nr_perf_states(em) != nr_levels) { 352 pr_err("The number of performance states in pd %*pbl (%u) doesn't match the number of cooling levels (%u)\n", 353 cpumask_pr_args(em_span_cpus(em)), 354 em_pd_nr_perf_states(em), nr_levels); 355 return false; 356 } 357 358 return true; 359 } 360 #endif /* CONFIG_THERMAL_GOV_POWER_ALLOCATOR */ 361 362 #ifdef CONFIG_SMP 363 static inline int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev) 364 { 365 return 0; 366 } 367 368 static inline void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev) 369 { 370 } 371 #else 372 static int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev) 373 { 374 unsigned int num_cpus = cpumask_weight(cpufreq_cdev->policy->related_cpus); 375 376 cpufreq_cdev->idle_time = kcalloc(num_cpus, 377 sizeof(*cpufreq_cdev->idle_time), 378 GFP_KERNEL); 379 if (!cpufreq_cdev->idle_time) 380 return -ENOMEM; 381 382 return 0; 383 } 384 385 static void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev) 386 { 387 kfree(cpufreq_cdev->idle_time); 388 cpufreq_cdev->idle_time = NULL; 389 } 390 #endif /* CONFIG_SMP */ 391 392 static unsigned int get_state_freq(struct cpufreq_cooling_device *cpufreq_cdev, 393 unsigned long state) 394 { 395 struct cpufreq_policy *policy; 396 unsigned long idx; 397 398 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR 399 /* Use the Energy Model table if available */ 400 if (cpufreq_cdev->em) { 401 struct em_perf_state *table; 402 unsigned int freq; 403 404 idx = cpufreq_cdev->max_level - state; 405 406 rcu_read_lock(); 407 table = em_perf_state_from_pd(cpufreq_cdev->em); 408 freq = table[idx].frequency; 409 rcu_read_unlock(); 410 411 return freq; 412 } 413 #endif 414 415 /* Otherwise, fallback on the CPUFreq table */ 416 policy = cpufreq_cdev->policy; 417 if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING) 418 idx = cpufreq_cdev->max_level - state; 419 else 420 idx = state; 421 422 return policy->freq_table[idx].frequency; 423 } 424 425 /* cpufreq cooling device callback functions are defined below */ 426 427 /** 428 * cpufreq_get_max_state - callback function to get the max cooling state. 429 * @cdev: thermal cooling device pointer. 430 * @state: fill this variable with the max cooling state. 431 * 432 * Callback for the thermal cooling device to return the cpufreq 433 * max cooling state. 434 * 435 * Return: 0 on success, this function doesn't fail. 436 */ 437 static int cpufreq_get_max_state(struct thermal_cooling_device *cdev, 438 unsigned long *state) 439 { 440 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata; 441 442 *state = cpufreq_cdev->max_level; 443 return 0; 444 } 445 446 /** 447 * cpufreq_get_cur_state - callback function to get the current cooling state. 448 * @cdev: thermal cooling device pointer. 449 * @state: fill this variable with the current cooling state. 450 * 451 * Callback for the thermal cooling device to return the cpufreq 452 * current cooling state. 453 * 454 * Return: 0 on success, this function doesn't fail. 455 */ 456 static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev, 457 unsigned long *state) 458 { 459 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata; 460 461 *state = cpufreq_cdev->cpufreq_state; 462 463 return 0; 464 } 465 466 /** 467 * cpufreq_set_cur_state - callback function to set the current cooling state. 468 * @cdev: thermal cooling device pointer. 469 * @state: set this variable to the current cooling state. 470 * 471 * Callback for the thermal cooling device to change the cpufreq 472 * current cooling state. 473 * 474 * Return: 0 on success, an error code otherwise. 475 */ 476 static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev, 477 unsigned long state) 478 { 479 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata; 480 unsigned int frequency; 481 int ret; 482 483 /* Request state should be less than max_level */ 484 if (state > cpufreq_cdev->max_level) 485 return -EINVAL; 486 487 /* Check if the old cooling action is same as new cooling action */ 488 if (cpufreq_cdev->cpufreq_state == state) 489 return 0; 490 491 frequency = get_state_freq(cpufreq_cdev, state); 492 493 ret = freq_qos_update_request(&cpufreq_cdev->qos_req, frequency); 494 if (ret >= 0) { 495 cpufreq_cdev->cpufreq_state = state; 496 ret = 0; 497 } 498 499 return ret; 500 } 501 502 /** 503 * __cpufreq_cooling_register - helper function to create cpufreq cooling device 504 * @np: a valid struct device_node to the cooling device tree node 505 * @policy: cpufreq policy 506 * Normally this should be same as cpufreq policy->related_cpus. 507 * @em: Energy Model of the cpufreq policy 508 * 509 * This interface function registers the cpufreq cooling device with the name 510 * "cpufreq-%s". This API can support multiple instances of cpufreq 511 * cooling devices. It also gives the opportunity to link the cooling device 512 * with a device tree node, in order to bind it via the thermal DT code. 513 * 514 * Return: a valid struct thermal_cooling_device pointer on success, 515 * on failure, it returns a corresponding ERR_PTR(). 516 */ 517 static struct thermal_cooling_device * 518 __cpufreq_cooling_register(struct device_node *np, 519 struct cpufreq_policy *policy, 520 struct em_perf_domain *em) 521 { 522 struct thermal_cooling_device *cdev; 523 struct cpufreq_cooling_device *cpufreq_cdev; 524 unsigned int i; 525 struct device *dev; 526 int ret; 527 struct thermal_cooling_device_ops *cooling_ops; 528 char *name; 529 530 if (IS_ERR_OR_NULL(policy)) { 531 pr_err("%s: cpufreq policy isn't valid: %p\n", __func__, policy); 532 return ERR_PTR(-EINVAL); 533 } 534 535 dev = get_cpu_device(policy->cpu); 536 if (unlikely(!dev)) { 537 pr_warn("No cpu device for cpu %d\n", policy->cpu); 538 return ERR_PTR(-ENODEV); 539 } 540 541 i = cpufreq_table_count_valid_entries(policy); 542 if (!i) { 543 pr_debug("%s: CPUFreq table not found or has no valid entries\n", 544 __func__); 545 return ERR_PTR(-ENODEV); 546 } 547 548 cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL); 549 if (!cpufreq_cdev) 550 return ERR_PTR(-ENOMEM); 551 552 cpufreq_cdev->policy = policy; 553 554 ret = allocate_idle_time(cpufreq_cdev); 555 if (ret) { 556 cdev = ERR_PTR(ret); 557 goto free_cdev; 558 } 559 560 /* max_level is an index, not a counter */ 561 cpufreq_cdev->max_level = i - 1; 562 563 cooling_ops = &cpufreq_cdev->cooling_ops; 564 cooling_ops->get_max_state = cpufreq_get_max_state; 565 cooling_ops->get_cur_state = cpufreq_get_cur_state; 566 cooling_ops->set_cur_state = cpufreq_set_cur_state; 567 568 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR 569 if (em_is_sane(cpufreq_cdev, em)) { 570 cpufreq_cdev->em = em; 571 cooling_ops->get_requested_power = cpufreq_get_requested_power; 572 cooling_ops->state2power = cpufreq_state2power; 573 cooling_ops->power2state = cpufreq_power2state; 574 } else 575 #endif 576 if (policy->freq_table_sorted == CPUFREQ_TABLE_UNSORTED) { 577 pr_err("%s: unsorted frequency tables are not supported\n", 578 __func__); 579 cdev = ERR_PTR(-EINVAL); 580 goto free_idle_time; 581 } 582 583 ret = freq_qos_add_request(&policy->constraints, 584 &cpufreq_cdev->qos_req, FREQ_QOS_MAX, 585 get_state_freq(cpufreq_cdev, 0)); 586 if (ret < 0) { 587 pr_err("%s: Failed to add freq constraint (%d)\n", __func__, 588 ret); 589 cdev = ERR_PTR(ret); 590 goto free_idle_time; 591 } 592 593 cdev = ERR_PTR(-ENOMEM); 594 name = kasprintf(GFP_KERNEL, "cpufreq-%s", dev_name(dev)); 595 if (!name) 596 goto remove_qos_req; 597 598 cdev = thermal_of_cooling_device_register(np, name, cpufreq_cdev, 599 cooling_ops); 600 kfree(name); 601 602 if (IS_ERR(cdev)) 603 goto remove_qos_req; 604 605 return cdev; 606 607 remove_qos_req: 608 freq_qos_remove_request(&cpufreq_cdev->qos_req); 609 free_idle_time: 610 free_idle_time(cpufreq_cdev); 611 free_cdev: 612 kfree(cpufreq_cdev); 613 return cdev; 614 } 615 616 /** 617 * cpufreq_cooling_register - function to create cpufreq cooling device. 618 * @policy: cpufreq policy 619 * 620 * This interface function registers the cpufreq cooling device with the name 621 * "cpufreq-%s". This API can support multiple instances of cpufreq cooling 622 * devices. 623 * 624 * Return: a valid struct thermal_cooling_device pointer on success, 625 * on failure, it returns a corresponding ERR_PTR(). 626 */ 627 struct thermal_cooling_device * 628 cpufreq_cooling_register(struct cpufreq_policy *policy) 629 { 630 return __cpufreq_cooling_register(NULL, policy, NULL); 631 } 632 EXPORT_SYMBOL_GPL(cpufreq_cooling_register); 633 634 /** 635 * of_cpufreq_cooling_register - function to create cpufreq cooling device. 636 * @policy: cpufreq policy 637 * 638 * This interface function registers the cpufreq cooling device with the name 639 * "cpufreq-%s". This API can support multiple instances of cpufreq cooling 640 * devices. Using this API, the cpufreq cooling device will be linked to the 641 * device tree node provided. 642 * 643 * Using this function, the cooling device will implement the power 644 * extensions by using the Energy Model (if present). The cpus must have 645 * registered their OPPs using the OPP library. 646 * 647 * Return: a valid struct thermal_cooling_device pointer on success, 648 * and NULL on failure. 649 */ 650 struct thermal_cooling_device * 651 of_cpufreq_cooling_register(struct cpufreq_policy *policy) 652 { 653 struct device_node *np = of_get_cpu_node(policy->cpu, NULL); 654 struct thermal_cooling_device *cdev = NULL; 655 656 if (!np) { 657 pr_err("cpufreq_cooling: OF node not available for cpu%d\n", 658 policy->cpu); 659 return NULL; 660 } 661 662 if (of_property_present(np, "#cooling-cells")) { 663 struct em_perf_domain *em = em_cpu_get(policy->cpu); 664 665 cdev = __cpufreq_cooling_register(np, policy, em); 666 if (IS_ERR(cdev)) { 667 pr_err("cpufreq_cooling: cpu%d failed to register as cooling device: %ld\n", 668 policy->cpu, PTR_ERR(cdev)); 669 cdev = NULL; 670 } 671 } 672 673 of_node_put(np); 674 return cdev; 675 } 676 EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register); 677 678 /** 679 * cpufreq_cooling_unregister - function to remove cpufreq cooling device. 680 * @cdev: thermal cooling device pointer. 681 * 682 * This interface function unregisters the "cpufreq-%x" cooling device. 683 */ 684 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev) 685 { 686 struct cpufreq_cooling_device *cpufreq_cdev; 687 688 if (!cdev) 689 return; 690 691 cpufreq_cdev = cdev->devdata; 692 693 thermal_cooling_device_unregister(cdev); 694 freq_qos_remove_request(&cpufreq_cdev->qos_req); 695 free_idle_time(cpufreq_cdev); 696 kfree(cpufreq_cdev); 697 } 698 EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister); 699