1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015-2021, Linaro Limited 4 * Copyright (c) 2016, EPAM Systems 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/arm-smccc.h> 10 #include <linux/cpuhotplug.h> 11 #include <linux/errno.h> 12 #include <linux/firmware.h> 13 #include <linux/interrupt.h> 14 #include <linux/io.h> 15 #include <linux/irqdomain.h> 16 #include <linux/kernel.h> 17 #include <linux/mm.h> 18 #include <linux/module.h> 19 #include <linux/of.h> 20 #include <linux/of_irq.h> 21 #include <linux/of_platform.h> 22 #include <linux/platform_device.h> 23 #include <linux/sched.h> 24 #include <linux/slab.h> 25 #include <linux/string.h> 26 #include <linux/tee_drv.h> 27 #include <linux/types.h> 28 #include <linux/workqueue.h> 29 #include "optee_private.h" 30 #include "optee_smc.h" 31 #include "optee_rpc_cmd.h" 32 #include <linux/kmemleak.h> 33 #define CREATE_TRACE_POINTS 34 #include "optee_trace.h" 35 36 /* 37 * This file implement the SMC ABI used when communicating with secure world 38 * OP-TEE OS via raw SMCs. 39 * This file is divided into the following sections: 40 * 1. Convert between struct tee_param and struct optee_msg_param 41 * 2. Low level support functions to register shared memory in secure world 42 * 3. Dynamic shared memory pool based on alloc_pages() 43 * 4. Do a normal scheduled call into secure world 44 * 5. Asynchronous notification 45 * 6. Driver initialization. 46 */ 47 48 /* 49 * A typical OP-TEE private shm allocation is 224 bytes (argument struct 50 * with 6 parameters, needed for open session). So with an alignment of 512 51 * we'll waste a bit more than 50%. However, it's only expected that we'll 52 * have a handful of these structs allocated at a time. Most memory will 53 * be allocated aligned to the page size, So all in all this should scale 54 * up and down quite well. 55 */ 56 #define OPTEE_MIN_STATIC_POOL_ALIGN 9 /* 512 bytes aligned */ 57 58 /* SMC ABI considers at most a single TEE firmware */ 59 static unsigned int pcpu_irq_num; 60 61 static int optee_cpuhp_enable_pcpu_irq(unsigned int cpu) 62 { 63 enable_percpu_irq(pcpu_irq_num, IRQ_TYPE_NONE); 64 65 return 0; 66 } 67 68 static int optee_cpuhp_disable_pcpu_irq(unsigned int cpu) 69 { 70 disable_percpu_irq(pcpu_irq_num); 71 72 return 0; 73 } 74 75 /* 76 * 1. Convert between struct tee_param and struct optee_msg_param 77 * 78 * optee_from_msg_param() and optee_to_msg_param() are the main 79 * functions. 80 */ 81 82 static int from_msg_param_tmp_mem(struct tee_param *p, u32 attr, 83 const struct optee_msg_param *mp) 84 { 85 struct tee_shm *shm; 86 phys_addr_t pa; 87 int rc; 88 89 p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT + 90 attr - OPTEE_MSG_ATTR_TYPE_TMEM_INPUT; 91 p->u.memref.size = mp->u.tmem.size; 92 shm = (struct tee_shm *)(unsigned long)mp->u.tmem.shm_ref; 93 if (!shm) { 94 p->u.memref.shm_offs = 0; 95 p->u.memref.shm = NULL; 96 return 0; 97 } 98 99 rc = tee_shm_get_pa(shm, 0, &pa); 100 if (rc) 101 return rc; 102 103 p->u.memref.shm_offs = mp->u.tmem.buf_ptr - pa; 104 p->u.memref.shm = shm; 105 106 return 0; 107 } 108 109 static void from_msg_param_reg_mem(struct tee_param *p, u32 attr, 110 const struct optee_msg_param *mp) 111 { 112 struct tee_shm *shm; 113 114 p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT + 115 attr - OPTEE_MSG_ATTR_TYPE_RMEM_INPUT; 116 p->u.memref.size = mp->u.rmem.size; 117 shm = (struct tee_shm *)(unsigned long)mp->u.rmem.shm_ref; 118 119 if (shm) { 120 p->u.memref.shm_offs = mp->u.rmem.offs; 121 p->u.memref.shm = shm; 122 } else { 123 p->u.memref.shm_offs = 0; 124 p->u.memref.shm = NULL; 125 } 126 } 127 128 /** 129 * optee_from_msg_param() - convert from OPTEE_MSG parameters to 130 * struct tee_param 131 * @optee: main service struct 132 * @params: subsystem internal parameter representation 133 * @num_params: number of elements in the parameter arrays 134 * @msg_params: OPTEE_MSG parameters 135 * Returns 0 on success or <0 on failure 136 */ 137 static int optee_from_msg_param(struct optee *optee, struct tee_param *params, 138 size_t num_params, 139 const struct optee_msg_param *msg_params) 140 { 141 int rc; 142 size_t n; 143 144 for (n = 0; n < num_params; n++) { 145 struct tee_param *p = params + n; 146 const struct optee_msg_param *mp = msg_params + n; 147 u32 attr = mp->attr & OPTEE_MSG_ATTR_TYPE_MASK; 148 149 switch (attr) { 150 case OPTEE_MSG_ATTR_TYPE_NONE: 151 p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE; 152 memset(&p->u, 0, sizeof(p->u)); 153 break; 154 case OPTEE_MSG_ATTR_TYPE_VALUE_INPUT: 155 case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT: 156 case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT: 157 optee_from_msg_param_value(p, attr, mp); 158 break; 159 case OPTEE_MSG_ATTR_TYPE_TMEM_INPUT: 160 case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT: 161 case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT: 162 rc = from_msg_param_tmp_mem(p, attr, mp); 163 if (rc) 164 return rc; 165 break; 166 case OPTEE_MSG_ATTR_TYPE_RMEM_INPUT: 167 case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT: 168 case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT: 169 from_msg_param_reg_mem(p, attr, mp); 170 break; 171 172 default: 173 return -EINVAL; 174 } 175 } 176 return 0; 177 } 178 179 static int to_msg_param_tmp_mem(struct optee_msg_param *mp, 180 const struct tee_param *p) 181 { 182 int rc; 183 phys_addr_t pa; 184 185 mp->attr = OPTEE_MSG_ATTR_TYPE_TMEM_INPUT + p->attr - 186 TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT; 187 188 mp->u.tmem.shm_ref = (unsigned long)p->u.memref.shm; 189 mp->u.tmem.size = p->u.memref.size; 190 191 if (!p->u.memref.shm) { 192 mp->u.tmem.buf_ptr = 0; 193 return 0; 194 } 195 196 rc = tee_shm_get_pa(p->u.memref.shm, p->u.memref.shm_offs, &pa); 197 if (rc) 198 return rc; 199 200 mp->u.tmem.buf_ptr = pa; 201 mp->attr |= OPTEE_MSG_ATTR_CACHE_PREDEFINED << 202 OPTEE_MSG_ATTR_CACHE_SHIFT; 203 204 return 0; 205 } 206 207 static int to_msg_param_reg_mem(struct optee_msg_param *mp, 208 const struct tee_param *p) 209 { 210 mp->attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT + p->attr - 211 TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT; 212 213 mp->u.rmem.shm_ref = (unsigned long)p->u.memref.shm; 214 mp->u.rmem.size = p->u.memref.size; 215 mp->u.rmem.offs = p->u.memref.shm_offs; 216 return 0; 217 } 218 219 /** 220 * optee_to_msg_param() - convert from struct tee_params to OPTEE_MSG parameters 221 * @optee: main service struct 222 * @msg_params: OPTEE_MSG parameters 223 * @num_params: number of elements in the parameter arrays 224 * @params: subsystem itnernal parameter representation 225 * Returns 0 on success or <0 on failure 226 */ 227 static int optee_to_msg_param(struct optee *optee, 228 struct optee_msg_param *msg_params, 229 size_t num_params, const struct tee_param *params) 230 { 231 int rc; 232 size_t n; 233 234 for (n = 0; n < num_params; n++) { 235 const struct tee_param *p = params + n; 236 struct optee_msg_param *mp = msg_params + n; 237 238 switch (p->attr) { 239 case TEE_IOCTL_PARAM_ATTR_TYPE_NONE: 240 mp->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE; 241 memset(&mp->u, 0, sizeof(mp->u)); 242 break; 243 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INPUT: 244 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_OUTPUT: 245 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INOUT: 246 optee_to_msg_param_value(mp, p); 247 break; 248 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT: 249 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_OUTPUT: 250 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INOUT: 251 if (tee_shm_is_dynamic(p->u.memref.shm)) 252 rc = to_msg_param_reg_mem(mp, p); 253 else 254 rc = to_msg_param_tmp_mem(mp, p); 255 if (rc) 256 return rc; 257 break; 258 default: 259 return -EINVAL; 260 } 261 } 262 return 0; 263 } 264 265 /* 266 * 2. Low level support functions to register shared memory in secure world 267 * 268 * Functions to enable/disable shared memory caching in secure world, that 269 * is, lazy freeing of previously allocated shared memory. Freeing is 270 * performed when a request has been compled. 271 * 272 * Functions to register and unregister shared memory both for normal 273 * clients and for tee-supplicant. 274 */ 275 276 /** 277 * optee_enable_shm_cache() - Enables caching of some shared memory allocation 278 * in OP-TEE 279 * @optee: main service struct 280 */ 281 static void optee_enable_shm_cache(struct optee *optee) 282 { 283 struct optee_call_waiter w; 284 285 /* We need to retry until secure world isn't busy. */ 286 optee_cq_wait_init(&optee->call_queue, &w); 287 while (true) { 288 struct arm_smccc_res res; 289 290 optee->smc.invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 291 0, 0, 0, 0, 0, 0, 0, &res); 292 if (res.a0 == OPTEE_SMC_RETURN_OK) 293 break; 294 optee_cq_wait_for_completion(&optee->call_queue, &w); 295 } 296 optee_cq_wait_final(&optee->call_queue, &w); 297 } 298 299 /** 300 * __optee_disable_shm_cache() - Disables caching of some shared memory 301 * allocation in OP-TEE 302 * @optee: main service struct 303 * @is_mapped: true if the cached shared memory addresses were mapped by this 304 * kernel, are safe to dereference, and should be freed 305 */ 306 static void __optee_disable_shm_cache(struct optee *optee, bool is_mapped) 307 { 308 struct optee_call_waiter w; 309 310 /* We need to retry until secure world isn't busy. */ 311 optee_cq_wait_init(&optee->call_queue, &w); 312 while (true) { 313 union { 314 struct arm_smccc_res smccc; 315 struct optee_smc_disable_shm_cache_result result; 316 } res; 317 318 optee->smc.invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 319 0, 0, 0, 0, 0, 0, 0, &res.smccc); 320 if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL) 321 break; /* All shm's freed */ 322 if (res.result.status == OPTEE_SMC_RETURN_OK) { 323 struct tee_shm *shm; 324 325 /* 326 * Shared memory references that were not mapped by 327 * this kernel must be ignored to prevent a crash. 328 */ 329 if (!is_mapped) 330 continue; 331 332 shm = reg_pair_to_ptr(res.result.shm_upper32, 333 res.result.shm_lower32); 334 tee_shm_free(shm); 335 } else { 336 optee_cq_wait_for_completion(&optee->call_queue, &w); 337 } 338 } 339 optee_cq_wait_final(&optee->call_queue, &w); 340 } 341 342 /** 343 * optee_disable_shm_cache() - Disables caching of mapped shared memory 344 * allocations in OP-TEE 345 * @optee: main service struct 346 */ 347 static void optee_disable_shm_cache(struct optee *optee) 348 { 349 return __optee_disable_shm_cache(optee, true); 350 } 351 352 /** 353 * optee_disable_unmapped_shm_cache() - Disables caching of shared memory 354 * allocations in OP-TEE which are not 355 * currently mapped 356 * @optee: main service struct 357 */ 358 static void optee_disable_unmapped_shm_cache(struct optee *optee) 359 { 360 return __optee_disable_shm_cache(optee, false); 361 } 362 363 #define PAGELIST_ENTRIES_PER_PAGE \ 364 ((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1) 365 366 /* 367 * The final entry in each pagelist page is a pointer to the next 368 * pagelist page. 369 */ 370 static size_t get_pages_list_size(size_t num_entries) 371 { 372 int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE); 373 374 return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE; 375 } 376 377 static u64 *optee_allocate_pages_list(size_t num_entries) 378 { 379 return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL); 380 } 381 382 static void optee_free_pages_list(void *list, size_t num_entries) 383 { 384 free_pages_exact(list, get_pages_list_size(num_entries)); 385 } 386 387 /** 388 * optee_fill_pages_list() - write list of user pages to given shared 389 * buffer. 390 * 391 * @dst: page-aligned buffer where list of pages will be stored 392 * @pages: array of pages that represents shared buffer 393 * @num_pages: number of entries in @pages 394 * @page_offset: offset of user buffer from page start 395 * 396 * @dst should be big enough to hold list of user page addresses and 397 * links to the next pages of buffer 398 */ 399 static void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages, 400 size_t page_offset) 401 { 402 int n = 0; 403 phys_addr_t optee_page; 404 /* 405 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h 406 * for details. 407 */ 408 struct { 409 u64 pages_list[PAGELIST_ENTRIES_PER_PAGE]; 410 u64 next_page_data; 411 } *pages_data; 412 413 /* 414 * Currently OP-TEE uses 4k page size and it does not looks 415 * like this will change in the future. On other hand, there are 416 * no know ARM architectures with page size < 4k. 417 * Thus the next built assert looks redundant. But the following 418 * code heavily relies on this assumption, so it is better be 419 * safe than sorry. 420 */ 421 BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE); 422 423 pages_data = (void *)dst; 424 /* 425 * If linux page is bigger than 4k, and user buffer offset is 426 * larger than 4k/8k/12k/etc this will skip first 4k pages, 427 * because they bear no value data for OP-TEE. 428 */ 429 optee_page = page_to_phys(*pages) + 430 round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE); 431 432 while (true) { 433 pages_data->pages_list[n++] = optee_page; 434 435 if (n == PAGELIST_ENTRIES_PER_PAGE) { 436 pages_data->next_page_data = 437 virt_to_phys(pages_data + 1); 438 pages_data++; 439 n = 0; 440 } 441 442 optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE; 443 if (!(optee_page & ~PAGE_MASK)) { 444 if (!--num_pages) 445 break; 446 pages++; 447 optee_page = page_to_phys(*pages); 448 } 449 } 450 } 451 452 static int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm, 453 struct page **pages, size_t num_pages, 454 unsigned long start) 455 { 456 struct optee *optee = tee_get_drvdata(ctx->teedev); 457 struct optee_msg_arg *msg_arg; 458 struct tee_shm *shm_arg; 459 u64 *pages_list; 460 size_t sz; 461 int rc; 462 463 if (!num_pages) 464 return -EINVAL; 465 466 rc = optee_check_mem_type(start, num_pages); 467 if (rc) 468 return rc; 469 470 pages_list = optee_allocate_pages_list(num_pages); 471 if (!pages_list) 472 return -ENOMEM; 473 474 /* 475 * We're about to register shared memory we can't register shared 476 * memory for this request or there's a catch-22. 477 * 478 * So in this we'll have to do the good old temporary private 479 * allocation instead of using optee_get_msg_arg(). 480 */ 481 sz = optee_msg_arg_size(optee->rpc_param_count); 482 shm_arg = tee_shm_alloc_priv_buf(ctx, sz); 483 if (IS_ERR(shm_arg)) { 484 rc = PTR_ERR(shm_arg); 485 goto out; 486 } 487 msg_arg = tee_shm_get_va(shm_arg, 0); 488 if (IS_ERR(msg_arg)) { 489 rc = PTR_ERR(msg_arg); 490 goto out; 491 } 492 493 optee_fill_pages_list(pages_list, pages, num_pages, 494 tee_shm_get_page_offset(shm)); 495 496 memset(msg_arg, 0, OPTEE_MSG_GET_ARG_SIZE(1)); 497 msg_arg->num_params = 1; 498 msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM; 499 msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT | 500 OPTEE_MSG_ATTR_NONCONTIG; 501 msg_arg->params->u.tmem.shm_ref = (unsigned long)shm; 502 msg_arg->params->u.tmem.size = tee_shm_get_size(shm); 503 /* 504 * In the least bits of msg_arg->params->u.tmem.buf_ptr we 505 * store buffer offset from 4k page, as described in OP-TEE ABI. 506 */ 507 msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) | 508 (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1)); 509 510 if (optee->ops->do_call_with_arg(ctx, shm_arg, 0) || 511 msg_arg->ret != TEEC_SUCCESS) 512 rc = -EINVAL; 513 514 tee_shm_free(shm_arg); 515 out: 516 optee_free_pages_list(pages_list, num_pages); 517 return rc; 518 } 519 520 static int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm) 521 { 522 struct optee *optee = tee_get_drvdata(ctx->teedev); 523 struct optee_msg_arg *msg_arg; 524 struct tee_shm *shm_arg; 525 int rc = 0; 526 size_t sz; 527 528 /* 529 * We're about to unregister shared memory and we may not be able 530 * register shared memory for this request in case we're called 531 * from optee_shm_arg_cache_uninit(). 532 * 533 * So in order to keep things simple in this function just as in 534 * optee_shm_register() we'll use temporary private allocation 535 * instead of using optee_get_msg_arg(). 536 */ 537 sz = optee_msg_arg_size(optee->rpc_param_count); 538 shm_arg = tee_shm_alloc_priv_buf(ctx, sz); 539 if (IS_ERR(shm_arg)) 540 return PTR_ERR(shm_arg); 541 msg_arg = tee_shm_get_va(shm_arg, 0); 542 if (IS_ERR(msg_arg)) { 543 rc = PTR_ERR(msg_arg); 544 goto out; 545 } 546 547 memset(msg_arg, 0, sz); 548 msg_arg->num_params = 1; 549 msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM; 550 msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT; 551 msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm; 552 553 if (optee->ops->do_call_with_arg(ctx, shm_arg, 0) || 554 msg_arg->ret != TEEC_SUCCESS) 555 rc = -EINVAL; 556 out: 557 tee_shm_free(shm_arg); 558 return rc; 559 } 560 561 static int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm, 562 struct page **pages, size_t num_pages, 563 unsigned long start) 564 { 565 /* 566 * We don't want to register supplicant memory in OP-TEE. 567 * Instead information about it will be passed in RPC code. 568 */ 569 return optee_check_mem_type(start, num_pages); 570 } 571 572 static int optee_shm_unregister_supp(struct tee_context *ctx, 573 struct tee_shm *shm) 574 { 575 return 0; 576 } 577 578 /* 579 * 3. Dynamic shared memory pool based on alloc_pages() 580 * 581 * Implements an OP-TEE specific shared memory pool which is used 582 * when dynamic shared memory is supported by secure world. 583 * 584 * The main function is optee_shm_pool_alloc_pages(). 585 */ 586 587 static int pool_op_alloc(struct tee_shm_pool *pool, 588 struct tee_shm *shm, size_t size, size_t align) 589 { 590 /* 591 * Shared memory private to the OP-TEE driver doesn't need 592 * to be registered with OP-TEE. 593 */ 594 if (shm->flags & TEE_SHM_PRIV) 595 return optee_pool_op_alloc_helper(pool, shm, size, align, NULL); 596 597 return optee_pool_op_alloc_helper(pool, shm, size, align, 598 optee_shm_register); 599 } 600 601 static void pool_op_free(struct tee_shm_pool *pool, 602 struct tee_shm *shm) 603 { 604 if (!(shm->flags & TEE_SHM_PRIV)) 605 optee_pool_op_free_helper(pool, shm, optee_shm_unregister); 606 else 607 optee_pool_op_free_helper(pool, shm, NULL); 608 } 609 610 static void pool_op_destroy_pool(struct tee_shm_pool *pool) 611 { 612 kfree(pool); 613 } 614 615 static const struct tee_shm_pool_ops pool_ops = { 616 .alloc = pool_op_alloc, 617 .free = pool_op_free, 618 .destroy_pool = pool_op_destroy_pool, 619 }; 620 621 /** 622 * optee_shm_pool_alloc_pages() - create page-based allocator pool 623 * 624 * This pool is used when OP-TEE supports dymanic SHM. In this case 625 * command buffers and such are allocated from kernel's own memory. 626 */ 627 static struct tee_shm_pool *optee_shm_pool_alloc_pages(void) 628 { 629 struct tee_shm_pool *pool = kzalloc(sizeof(*pool), GFP_KERNEL); 630 631 if (!pool) 632 return ERR_PTR(-ENOMEM); 633 634 pool->ops = &pool_ops; 635 636 return pool; 637 } 638 639 /* 640 * 4. Do a normal scheduled call into secure world 641 * 642 * The function optee_smc_do_call_with_arg() performs a normal scheduled 643 * call into secure world. During this call may normal world request help 644 * from normal world using RPCs, Remote Procedure Calls. This includes 645 * delivery of non-secure interrupts to for instance allow rescheduling of 646 * the current task. 647 */ 648 649 static void handle_rpc_func_cmd_shm_free(struct tee_context *ctx, 650 struct optee_msg_arg *arg) 651 { 652 struct tee_shm *shm; 653 654 arg->ret_origin = TEEC_ORIGIN_COMMS; 655 656 if (arg->num_params != 1 || 657 arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) { 658 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 659 return; 660 } 661 662 shm = (struct tee_shm *)(unsigned long)arg->params[0].u.value.b; 663 switch (arg->params[0].u.value.a) { 664 case OPTEE_RPC_SHM_TYPE_APPL: 665 optee_rpc_cmd_free_suppl(ctx, shm); 666 break; 667 case OPTEE_RPC_SHM_TYPE_KERNEL: 668 tee_shm_free(shm); 669 break; 670 default: 671 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 672 } 673 arg->ret = TEEC_SUCCESS; 674 } 675 676 static void handle_rpc_func_cmd_shm_alloc(struct tee_context *ctx, 677 struct optee *optee, 678 struct optee_msg_arg *arg, 679 struct optee_call_ctx *call_ctx) 680 { 681 phys_addr_t pa; 682 struct tee_shm *shm; 683 size_t sz; 684 size_t n; 685 686 arg->ret_origin = TEEC_ORIGIN_COMMS; 687 688 if (!arg->num_params || 689 arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) { 690 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 691 return; 692 } 693 694 for (n = 1; n < arg->num_params; n++) { 695 if (arg->params[n].attr != OPTEE_MSG_ATTR_TYPE_NONE) { 696 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 697 return; 698 } 699 } 700 701 sz = arg->params[0].u.value.b; 702 switch (arg->params[0].u.value.a) { 703 case OPTEE_RPC_SHM_TYPE_APPL: 704 shm = optee_rpc_cmd_alloc_suppl(ctx, sz); 705 break; 706 case OPTEE_RPC_SHM_TYPE_KERNEL: 707 shm = tee_shm_alloc_priv_buf(optee->ctx, sz); 708 break; 709 default: 710 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 711 return; 712 } 713 714 if (IS_ERR(shm)) { 715 arg->ret = TEEC_ERROR_OUT_OF_MEMORY; 716 return; 717 } 718 719 if (tee_shm_get_pa(shm, 0, &pa)) { 720 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 721 goto bad; 722 } 723 724 sz = tee_shm_get_size(shm); 725 726 if (tee_shm_is_dynamic(shm)) { 727 struct page **pages; 728 u64 *pages_list; 729 size_t page_num; 730 731 pages = tee_shm_get_pages(shm, &page_num); 732 if (!pages || !page_num) { 733 arg->ret = TEEC_ERROR_OUT_OF_MEMORY; 734 goto bad; 735 } 736 737 pages_list = optee_allocate_pages_list(page_num); 738 if (!pages_list) { 739 arg->ret = TEEC_ERROR_OUT_OF_MEMORY; 740 goto bad; 741 } 742 743 call_ctx->pages_list = pages_list; 744 call_ctx->num_entries = page_num; 745 746 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT | 747 OPTEE_MSG_ATTR_NONCONTIG; 748 /* 749 * In the least bits of u.tmem.buf_ptr we store buffer offset 750 * from 4k page, as described in OP-TEE ABI. 751 */ 752 arg->params[0].u.tmem.buf_ptr = virt_to_phys(pages_list) | 753 (tee_shm_get_page_offset(shm) & 754 (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1)); 755 arg->params[0].u.tmem.size = tee_shm_get_size(shm); 756 arg->params[0].u.tmem.shm_ref = (unsigned long)shm; 757 758 optee_fill_pages_list(pages_list, pages, page_num, 759 tee_shm_get_page_offset(shm)); 760 } else { 761 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT; 762 arg->params[0].u.tmem.buf_ptr = pa; 763 arg->params[0].u.tmem.size = sz; 764 arg->params[0].u.tmem.shm_ref = (unsigned long)shm; 765 } 766 767 arg->ret = TEEC_SUCCESS; 768 return; 769 bad: 770 tee_shm_free(shm); 771 } 772 773 static void free_pages_list(struct optee_call_ctx *call_ctx) 774 { 775 if (call_ctx->pages_list) { 776 optee_free_pages_list(call_ctx->pages_list, 777 call_ctx->num_entries); 778 call_ctx->pages_list = NULL; 779 call_ctx->num_entries = 0; 780 } 781 } 782 783 static void optee_rpc_finalize_call(struct optee_call_ctx *call_ctx) 784 { 785 free_pages_list(call_ctx); 786 } 787 788 static void handle_rpc_func_cmd(struct tee_context *ctx, struct optee *optee, 789 struct optee_msg_arg *arg, 790 struct optee_call_ctx *call_ctx) 791 { 792 793 switch (arg->cmd) { 794 case OPTEE_RPC_CMD_SHM_ALLOC: 795 free_pages_list(call_ctx); 796 handle_rpc_func_cmd_shm_alloc(ctx, optee, arg, call_ctx); 797 break; 798 case OPTEE_RPC_CMD_SHM_FREE: 799 handle_rpc_func_cmd_shm_free(ctx, arg); 800 break; 801 default: 802 optee_rpc_cmd(ctx, optee, arg); 803 } 804 } 805 806 /** 807 * optee_handle_rpc() - handle RPC from secure world 808 * @ctx: context doing the RPC 809 * @param: value of registers for the RPC 810 * @call_ctx: call context. Preserved during one OP-TEE invocation 811 * 812 * Result of RPC is written back into @param. 813 */ 814 static void optee_handle_rpc(struct tee_context *ctx, 815 struct optee_msg_arg *rpc_arg, 816 struct optee_rpc_param *param, 817 struct optee_call_ctx *call_ctx) 818 { 819 struct tee_device *teedev = ctx->teedev; 820 struct optee *optee = tee_get_drvdata(teedev); 821 struct optee_msg_arg *arg; 822 struct tee_shm *shm; 823 phys_addr_t pa; 824 825 switch (OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0)) { 826 case OPTEE_SMC_RPC_FUNC_ALLOC: 827 shm = tee_shm_alloc_priv_buf(optee->ctx, param->a1); 828 if (!IS_ERR(shm) && !tee_shm_get_pa(shm, 0, &pa)) { 829 reg_pair_from_64(¶m->a1, ¶m->a2, pa); 830 reg_pair_from_64(¶m->a4, ¶m->a5, 831 (unsigned long)shm); 832 } else { 833 param->a1 = 0; 834 param->a2 = 0; 835 param->a4 = 0; 836 param->a5 = 0; 837 } 838 kmemleak_not_leak(shm); 839 break; 840 case OPTEE_SMC_RPC_FUNC_FREE: 841 shm = reg_pair_to_ptr(param->a1, param->a2); 842 tee_shm_free(shm); 843 break; 844 case OPTEE_SMC_RPC_FUNC_FOREIGN_INTR: 845 /* 846 * A foreign interrupt was raised while secure world was 847 * executing, since they are handled in Linux a dummy RPC is 848 * performed to let Linux take the interrupt through the normal 849 * vector. 850 */ 851 break; 852 case OPTEE_SMC_RPC_FUNC_CMD: 853 if (rpc_arg) { 854 arg = rpc_arg; 855 } else { 856 shm = reg_pair_to_ptr(param->a1, param->a2); 857 arg = tee_shm_get_va(shm, 0); 858 if (IS_ERR(arg)) { 859 pr_err("%s: tee_shm_get_va %p failed\n", 860 __func__, shm); 861 break; 862 } 863 } 864 865 handle_rpc_func_cmd(ctx, optee, arg, call_ctx); 866 break; 867 default: 868 pr_warn("Unknown RPC func 0x%x\n", 869 (u32)OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0)); 870 break; 871 } 872 873 param->a0 = OPTEE_SMC_CALL_RETURN_FROM_RPC; 874 } 875 876 /** 877 * optee_smc_do_call_with_arg() - Do an SMC to OP-TEE in secure world 878 * @ctx: calling context 879 * @shm: shared memory holding the message to pass to secure world 880 * @offs: offset of the message in @shm 881 * 882 * Does and SMC to OP-TEE in secure world and handles eventual resulting 883 * Remote Procedure Calls (RPC) from OP-TEE. 884 * 885 * Returns return code from secure world, 0 is OK 886 */ 887 static int optee_smc_do_call_with_arg(struct tee_context *ctx, 888 struct tee_shm *shm, u_int offs) 889 { 890 struct optee *optee = tee_get_drvdata(ctx->teedev); 891 struct optee_call_waiter w; 892 struct optee_rpc_param param = { }; 893 struct optee_call_ctx call_ctx = { }; 894 struct optee_msg_arg *rpc_arg = NULL; 895 int rc; 896 897 if (optee->rpc_param_count) { 898 struct optee_msg_arg *arg; 899 unsigned int rpc_arg_offs; 900 901 arg = tee_shm_get_va(shm, offs); 902 if (IS_ERR(arg)) 903 return PTR_ERR(arg); 904 905 rpc_arg_offs = OPTEE_MSG_GET_ARG_SIZE(arg->num_params); 906 rpc_arg = tee_shm_get_va(shm, offs + rpc_arg_offs); 907 if (IS_ERR(rpc_arg)) 908 return PTR_ERR(rpc_arg); 909 } 910 911 if (rpc_arg && tee_shm_is_dynamic(shm)) { 912 param.a0 = OPTEE_SMC_CALL_WITH_REGD_ARG; 913 reg_pair_from_64(¶m.a1, ¶m.a2, (u_long)shm); 914 param.a3 = offs; 915 } else { 916 phys_addr_t parg; 917 918 rc = tee_shm_get_pa(shm, offs, &parg); 919 if (rc) 920 return rc; 921 922 if (rpc_arg) 923 param.a0 = OPTEE_SMC_CALL_WITH_RPC_ARG; 924 else 925 param.a0 = OPTEE_SMC_CALL_WITH_ARG; 926 reg_pair_from_64(¶m.a1, ¶m.a2, parg); 927 } 928 /* Initialize waiter */ 929 optee_cq_wait_init(&optee->call_queue, &w); 930 while (true) { 931 struct arm_smccc_res res; 932 933 trace_optee_invoke_fn_begin(¶m); 934 optee->smc.invoke_fn(param.a0, param.a1, param.a2, param.a3, 935 param.a4, param.a5, param.a6, param.a7, 936 &res); 937 trace_optee_invoke_fn_end(¶m, &res); 938 939 if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) { 940 /* 941 * Out of threads in secure world, wait for a thread 942 * become available. 943 */ 944 optee_cq_wait_for_completion(&optee->call_queue, &w); 945 } else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) { 946 cond_resched(); 947 param.a0 = res.a0; 948 param.a1 = res.a1; 949 param.a2 = res.a2; 950 param.a3 = res.a3; 951 optee_handle_rpc(ctx, rpc_arg, ¶m, &call_ctx); 952 } else { 953 rc = res.a0; 954 break; 955 } 956 } 957 958 optee_rpc_finalize_call(&call_ctx); 959 /* 960 * We're done with our thread in secure world, if there's any 961 * thread waiters wake up one. 962 */ 963 optee_cq_wait_final(&optee->call_queue, &w); 964 965 return rc; 966 } 967 968 static int simple_call_with_arg(struct tee_context *ctx, u32 cmd) 969 { 970 struct optee_shm_arg_entry *entry; 971 struct optee_msg_arg *msg_arg; 972 struct tee_shm *shm; 973 u_int offs; 974 975 msg_arg = optee_get_msg_arg(ctx, 0, &entry, &shm, &offs); 976 if (IS_ERR(msg_arg)) 977 return PTR_ERR(msg_arg); 978 979 msg_arg->cmd = cmd; 980 optee_smc_do_call_with_arg(ctx, shm, offs); 981 982 optee_free_msg_arg(ctx, entry, offs); 983 return 0; 984 } 985 986 static int optee_smc_do_bottom_half(struct tee_context *ctx) 987 { 988 return simple_call_with_arg(ctx, OPTEE_MSG_CMD_DO_BOTTOM_HALF); 989 } 990 991 static int optee_smc_stop_async_notif(struct tee_context *ctx) 992 { 993 return simple_call_with_arg(ctx, OPTEE_MSG_CMD_STOP_ASYNC_NOTIF); 994 } 995 996 /* 997 * 5. Asynchronous notification 998 */ 999 1000 static u32 get_async_notif_value(optee_invoke_fn *invoke_fn, bool *value_valid, 1001 bool *value_pending) 1002 { 1003 struct arm_smccc_res res; 1004 1005 invoke_fn(OPTEE_SMC_GET_ASYNC_NOTIF_VALUE, 0, 0, 0, 0, 0, 0, 0, &res); 1006 1007 if (res.a0) { 1008 *value_valid = false; 1009 return 0; 1010 } 1011 *value_valid = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_VALID); 1012 *value_pending = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_PENDING); 1013 return res.a1; 1014 } 1015 1016 static irqreturn_t irq_handler(struct optee *optee) 1017 { 1018 bool do_bottom_half = false; 1019 bool value_valid; 1020 bool value_pending; 1021 u32 value; 1022 1023 do { 1024 value = get_async_notif_value(optee->smc.invoke_fn, 1025 &value_valid, &value_pending); 1026 if (!value_valid) 1027 break; 1028 1029 if (value == OPTEE_SMC_ASYNC_NOTIF_VALUE_DO_BOTTOM_HALF) 1030 do_bottom_half = true; 1031 else 1032 optee_notif_send(optee, value); 1033 } while (value_pending); 1034 1035 if (do_bottom_half) 1036 return IRQ_WAKE_THREAD; 1037 return IRQ_HANDLED; 1038 } 1039 1040 static irqreturn_t notif_irq_handler(int irq, void *dev_id) 1041 { 1042 struct optee *optee = dev_id; 1043 1044 return irq_handler(optee); 1045 } 1046 1047 static irqreturn_t notif_irq_thread_fn(int irq, void *dev_id) 1048 { 1049 struct optee *optee = dev_id; 1050 1051 optee_smc_do_bottom_half(optee->ctx); 1052 1053 return IRQ_HANDLED; 1054 } 1055 1056 static int init_irq(struct optee *optee, u_int irq) 1057 { 1058 int rc; 1059 1060 rc = request_threaded_irq(irq, notif_irq_handler, 1061 notif_irq_thread_fn, 1062 0, "optee_notification", optee); 1063 if (rc) 1064 return rc; 1065 1066 optee->smc.notif_irq = irq; 1067 1068 return 0; 1069 } 1070 1071 static irqreturn_t notif_pcpu_irq_handler(int irq, void *dev_id) 1072 { 1073 struct optee_pcpu *pcpu = dev_id; 1074 struct optee *optee = pcpu->optee; 1075 1076 if (irq_handler(optee) == IRQ_WAKE_THREAD) 1077 queue_work(optee->smc.notif_pcpu_wq, 1078 &optee->smc.notif_pcpu_work); 1079 1080 return IRQ_HANDLED; 1081 } 1082 1083 static void notif_pcpu_irq_work_fn(struct work_struct *work) 1084 { 1085 struct optee_smc *optee_smc = container_of(work, struct optee_smc, 1086 notif_pcpu_work); 1087 struct optee *optee = container_of(optee_smc, struct optee, smc); 1088 1089 optee_smc_do_bottom_half(optee->ctx); 1090 } 1091 1092 static int init_pcpu_irq(struct optee *optee, u_int irq) 1093 { 1094 struct optee_pcpu __percpu *optee_pcpu; 1095 int cpu, rc; 1096 1097 optee_pcpu = alloc_percpu(struct optee_pcpu); 1098 if (!optee_pcpu) 1099 return -ENOMEM; 1100 1101 for_each_present_cpu(cpu) 1102 per_cpu_ptr(optee_pcpu, cpu)->optee = optee; 1103 1104 rc = request_percpu_irq(irq, notif_pcpu_irq_handler, 1105 "optee_pcpu_notification", optee_pcpu); 1106 if (rc) 1107 goto err_free_pcpu; 1108 1109 INIT_WORK(&optee->smc.notif_pcpu_work, notif_pcpu_irq_work_fn); 1110 optee->smc.notif_pcpu_wq = create_workqueue("optee_pcpu_notification"); 1111 if (!optee->smc.notif_pcpu_wq) { 1112 rc = -EINVAL; 1113 goto err_free_pcpu_irq; 1114 } 1115 1116 optee->smc.optee_pcpu = optee_pcpu; 1117 optee->smc.notif_irq = irq; 1118 1119 pcpu_irq_num = irq; 1120 rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "optee/pcpu-notif:starting", 1121 optee_cpuhp_enable_pcpu_irq, 1122 optee_cpuhp_disable_pcpu_irq); 1123 if (!rc) 1124 rc = -EINVAL; 1125 if (rc < 0) 1126 goto err_free_pcpu_irq; 1127 1128 optee->smc.notif_cpuhp_state = rc; 1129 1130 return 0; 1131 1132 err_free_pcpu_irq: 1133 free_percpu_irq(irq, optee_pcpu); 1134 err_free_pcpu: 1135 free_percpu(optee_pcpu); 1136 1137 return rc; 1138 } 1139 1140 static int optee_smc_notif_init_irq(struct optee *optee, u_int irq) 1141 { 1142 if (irq_is_percpu_devid(irq)) 1143 return init_pcpu_irq(optee, irq); 1144 else 1145 return init_irq(optee, irq); 1146 } 1147 1148 static void uninit_pcpu_irq(struct optee *optee) 1149 { 1150 cpuhp_remove_state(optee->smc.notif_cpuhp_state); 1151 1152 destroy_workqueue(optee->smc.notif_pcpu_wq); 1153 1154 free_percpu_irq(optee->smc.notif_irq, optee->smc.optee_pcpu); 1155 free_percpu(optee->smc.optee_pcpu); 1156 } 1157 1158 static void optee_smc_notif_uninit_irq(struct optee *optee) 1159 { 1160 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) { 1161 optee_smc_stop_async_notif(optee->ctx); 1162 if (optee->smc.notif_irq) { 1163 if (irq_is_percpu_devid(optee->smc.notif_irq)) 1164 uninit_pcpu_irq(optee); 1165 else 1166 free_irq(optee->smc.notif_irq, optee); 1167 1168 irq_dispose_mapping(optee->smc.notif_irq); 1169 } 1170 } 1171 } 1172 1173 /* 1174 * 6. Driver initialization 1175 * 1176 * During driver initialization is secure world probed to find out which 1177 * features it supports so the driver can be initialized with a matching 1178 * configuration. This involves for instance support for dynamic shared 1179 * memory instead of a static memory carvout. 1180 */ 1181 1182 static void optee_get_version(struct tee_device *teedev, 1183 struct tee_ioctl_version_data *vers) 1184 { 1185 struct tee_ioctl_version_data v = { 1186 .impl_id = TEE_IMPL_ID_OPTEE, 1187 .impl_caps = TEE_OPTEE_CAP_TZ, 1188 .gen_caps = TEE_GEN_CAP_GP, 1189 }; 1190 struct optee *optee = tee_get_drvdata(teedev); 1191 1192 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM) 1193 v.gen_caps |= TEE_GEN_CAP_REG_MEM; 1194 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL) 1195 v.gen_caps |= TEE_GEN_CAP_MEMREF_NULL; 1196 *vers = v; 1197 } 1198 1199 static int optee_smc_open(struct tee_context *ctx) 1200 { 1201 struct optee *optee = tee_get_drvdata(ctx->teedev); 1202 u32 sec_caps = optee->smc.sec_caps; 1203 1204 return optee_open(ctx, sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL); 1205 } 1206 1207 static const struct tee_driver_ops optee_clnt_ops = { 1208 .get_version = optee_get_version, 1209 .open = optee_smc_open, 1210 .release = optee_release, 1211 .open_session = optee_open_session, 1212 .close_session = optee_close_session, 1213 .invoke_func = optee_invoke_func, 1214 .cancel_req = optee_cancel_req, 1215 .shm_register = optee_shm_register, 1216 .shm_unregister = optee_shm_unregister, 1217 }; 1218 1219 static const struct tee_desc optee_clnt_desc = { 1220 .name = DRIVER_NAME "-clnt", 1221 .ops = &optee_clnt_ops, 1222 .owner = THIS_MODULE, 1223 }; 1224 1225 static const struct tee_driver_ops optee_supp_ops = { 1226 .get_version = optee_get_version, 1227 .open = optee_smc_open, 1228 .release = optee_release_supp, 1229 .supp_recv = optee_supp_recv, 1230 .supp_send = optee_supp_send, 1231 .shm_register = optee_shm_register_supp, 1232 .shm_unregister = optee_shm_unregister_supp, 1233 }; 1234 1235 static const struct tee_desc optee_supp_desc = { 1236 .name = DRIVER_NAME "-supp", 1237 .ops = &optee_supp_ops, 1238 .owner = THIS_MODULE, 1239 .flags = TEE_DESC_PRIVILEGED, 1240 }; 1241 1242 static const struct optee_ops optee_ops = { 1243 .do_call_with_arg = optee_smc_do_call_with_arg, 1244 .to_msg_param = optee_to_msg_param, 1245 .from_msg_param = optee_from_msg_param, 1246 }; 1247 1248 static int enable_async_notif(optee_invoke_fn *invoke_fn) 1249 { 1250 struct arm_smccc_res res; 1251 1252 invoke_fn(OPTEE_SMC_ENABLE_ASYNC_NOTIF, 0, 0, 0, 0, 0, 0, 0, &res); 1253 1254 if (res.a0) 1255 return -EINVAL; 1256 return 0; 1257 } 1258 1259 static bool optee_msg_api_uid_is_optee_api(optee_invoke_fn *invoke_fn) 1260 { 1261 struct arm_smccc_res res; 1262 1263 invoke_fn(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res); 1264 1265 if (res.a0 == OPTEE_MSG_UID_0 && res.a1 == OPTEE_MSG_UID_1 && 1266 res.a2 == OPTEE_MSG_UID_2 && res.a3 == OPTEE_MSG_UID_3) 1267 return true; 1268 return false; 1269 } 1270 1271 #ifdef CONFIG_OPTEE_INSECURE_LOAD_IMAGE 1272 static bool optee_msg_api_uid_is_optee_image_load(optee_invoke_fn *invoke_fn) 1273 { 1274 struct arm_smccc_res res; 1275 1276 invoke_fn(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res); 1277 1278 if (res.a0 == OPTEE_MSG_IMAGE_LOAD_UID_0 && 1279 res.a1 == OPTEE_MSG_IMAGE_LOAD_UID_1 && 1280 res.a2 == OPTEE_MSG_IMAGE_LOAD_UID_2 && 1281 res.a3 == OPTEE_MSG_IMAGE_LOAD_UID_3) 1282 return true; 1283 return false; 1284 } 1285 #endif 1286 1287 static void optee_msg_get_os_revision(optee_invoke_fn *invoke_fn) 1288 { 1289 union { 1290 struct arm_smccc_res smccc; 1291 struct optee_smc_call_get_os_revision_result result; 1292 } res = { 1293 .result = { 1294 .build_id = 0 1295 } 1296 }; 1297 1298 invoke_fn(OPTEE_SMC_CALL_GET_OS_REVISION, 0, 0, 0, 0, 0, 0, 0, 1299 &res.smccc); 1300 1301 if (res.result.build_id) 1302 pr_info("revision %lu.%lu (%08lx)", res.result.major, 1303 res.result.minor, res.result.build_id); 1304 else 1305 pr_info("revision %lu.%lu", res.result.major, res.result.minor); 1306 } 1307 1308 static bool optee_msg_api_revision_is_compatible(optee_invoke_fn *invoke_fn) 1309 { 1310 union { 1311 struct arm_smccc_res smccc; 1312 struct optee_smc_calls_revision_result result; 1313 } res; 1314 1315 invoke_fn(OPTEE_SMC_CALLS_REVISION, 0, 0, 0, 0, 0, 0, 0, &res.smccc); 1316 1317 if (res.result.major == OPTEE_MSG_REVISION_MAJOR && 1318 (int)res.result.minor >= OPTEE_MSG_REVISION_MINOR) 1319 return true; 1320 return false; 1321 } 1322 1323 static bool optee_msg_exchange_capabilities(optee_invoke_fn *invoke_fn, 1324 u32 *sec_caps, u32 *max_notif_value, 1325 unsigned int *rpc_param_count) 1326 { 1327 union { 1328 struct arm_smccc_res smccc; 1329 struct optee_smc_exchange_capabilities_result result; 1330 } res; 1331 u32 a1 = 0; 1332 1333 /* 1334 * TODO This isn't enough to tell if it's UP system (from kernel 1335 * point of view) or not, is_smp() returns the information 1336 * needed, but can't be called directly from here. 1337 */ 1338 if (!IS_ENABLED(CONFIG_SMP) || nr_cpu_ids == 1) 1339 a1 |= OPTEE_SMC_NSEC_CAP_UNIPROCESSOR; 1340 1341 invoke_fn(OPTEE_SMC_EXCHANGE_CAPABILITIES, a1, 0, 0, 0, 0, 0, 0, 1342 &res.smccc); 1343 1344 if (res.result.status != OPTEE_SMC_RETURN_OK) 1345 return false; 1346 1347 *sec_caps = res.result.capabilities; 1348 if (*sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) 1349 *max_notif_value = res.result.max_notif_value; 1350 else 1351 *max_notif_value = OPTEE_DEFAULT_MAX_NOTIF_VALUE; 1352 if (*sec_caps & OPTEE_SMC_SEC_CAP_RPC_ARG) 1353 *rpc_param_count = (u8)res.result.data; 1354 else 1355 *rpc_param_count = 0; 1356 1357 return true; 1358 } 1359 1360 static struct tee_shm_pool * 1361 optee_config_shm_memremap(optee_invoke_fn *invoke_fn, void **memremaped_shm) 1362 { 1363 union { 1364 struct arm_smccc_res smccc; 1365 struct optee_smc_get_shm_config_result result; 1366 } res; 1367 unsigned long vaddr; 1368 phys_addr_t paddr; 1369 size_t size; 1370 phys_addr_t begin; 1371 phys_addr_t end; 1372 void *va; 1373 void *rc; 1374 1375 invoke_fn(OPTEE_SMC_GET_SHM_CONFIG, 0, 0, 0, 0, 0, 0, 0, &res.smccc); 1376 if (res.result.status != OPTEE_SMC_RETURN_OK) { 1377 pr_err("static shm service not available\n"); 1378 return ERR_PTR(-ENOENT); 1379 } 1380 1381 if (res.result.settings != OPTEE_SMC_SHM_CACHED) { 1382 pr_err("only normal cached shared memory supported\n"); 1383 return ERR_PTR(-EINVAL); 1384 } 1385 1386 begin = roundup(res.result.start, PAGE_SIZE); 1387 end = rounddown(res.result.start + res.result.size, PAGE_SIZE); 1388 paddr = begin; 1389 size = end - begin; 1390 1391 va = memremap(paddr, size, MEMREMAP_WB); 1392 if (!va) { 1393 pr_err("shared memory ioremap failed\n"); 1394 return ERR_PTR(-EINVAL); 1395 } 1396 vaddr = (unsigned long)va; 1397 1398 rc = tee_shm_pool_alloc_res_mem(vaddr, paddr, size, 1399 OPTEE_MIN_STATIC_POOL_ALIGN); 1400 if (IS_ERR(rc)) 1401 memunmap(va); 1402 else 1403 *memremaped_shm = va; 1404 1405 return rc; 1406 } 1407 1408 /* Simple wrapper functions to be able to use a function pointer */ 1409 static void optee_smccc_smc(unsigned long a0, unsigned long a1, 1410 unsigned long a2, unsigned long a3, 1411 unsigned long a4, unsigned long a5, 1412 unsigned long a6, unsigned long a7, 1413 struct arm_smccc_res *res) 1414 { 1415 arm_smccc_smc(a0, a1, a2, a3, a4, a5, a6, a7, res); 1416 } 1417 1418 static void optee_smccc_hvc(unsigned long a0, unsigned long a1, 1419 unsigned long a2, unsigned long a3, 1420 unsigned long a4, unsigned long a5, 1421 unsigned long a6, unsigned long a7, 1422 struct arm_smccc_res *res) 1423 { 1424 arm_smccc_hvc(a0, a1, a2, a3, a4, a5, a6, a7, res); 1425 } 1426 1427 static optee_invoke_fn *get_invoke_func(struct device *dev) 1428 { 1429 const char *method; 1430 1431 pr_info("probing for conduit method.\n"); 1432 1433 if (device_property_read_string(dev, "method", &method)) { 1434 pr_warn("missing \"method\" property\n"); 1435 return ERR_PTR(-ENXIO); 1436 } 1437 1438 if (!strcmp("hvc", method)) 1439 return optee_smccc_hvc; 1440 else if (!strcmp("smc", method)) 1441 return optee_smccc_smc; 1442 1443 pr_warn("invalid \"method\" property: %s\n", method); 1444 return ERR_PTR(-EINVAL); 1445 } 1446 1447 /* optee_remove - Device Removal Routine 1448 * @pdev: platform device information struct 1449 * 1450 * optee_remove is called by platform subsystem to alert the driver 1451 * that it should release the device 1452 */ 1453 static int optee_smc_remove(struct platform_device *pdev) 1454 { 1455 struct optee *optee = platform_get_drvdata(pdev); 1456 1457 /* 1458 * Ask OP-TEE to free all cached shared memory objects to decrease 1459 * reference counters and also avoid wild pointers in secure world 1460 * into the old shared memory range. 1461 */ 1462 if (!optee->rpc_param_count) 1463 optee_disable_shm_cache(optee); 1464 1465 optee_smc_notif_uninit_irq(optee); 1466 1467 optee_remove_common(optee); 1468 1469 if (optee->smc.memremaped_shm) 1470 memunmap(optee->smc.memremaped_shm); 1471 1472 kfree(optee); 1473 1474 return 0; 1475 } 1476 1477 /* optee_shutdown - Device Removal Routine 1478 * @pdev: platform device information struct 1479 * 1480 * platform_shutdown is called by the platform subsystem to alert 1481 * the driver that a shutdown, reboot, or kexec is happening and 1482 * device must be disabled. 1483 */ 1484 static void optee_shutdown(struct platform_device *pdev) 1485 { 1486 struct optee *optee = platform_get_drvdata(pdev); 1487 1488 if (!optee->rpc_param_count) 1489 optee_disable_shm_cache(optee); 1490 } 1491 1492 #ifdef CONFIG_OPTEE_INSECURE_LOAD_IMAGE 1493 1494 #define OPTEE_FW_IMAGE "optee/tee.bin" 1495 1496 static optee_invoke_fn *cpuhp_invoke_fn; 1497 1498 static int optee_cpuhp_probe(unsigned int cpu) 1499 { 1500 /* 1501 * Invoking a call on a CPU will cause OP-TEE to perform the required 1502 * setup for that CPU. Just invoke the call to get the UID since that 1503 * has no side effects. 1504 */ 1505 if (optee_msg_api_uid_is_optee_api(cpuhp_invoke_fn)) 1506 return 0; 1507 else 1508 return -EINVAL; 1509 } 1510 1511 static int optee_load_fw(struct platform_device *pdev, 1512 optee_invoke_fn *invoke_fn) 1513 { 1514 const struct firmware *fw = NULL; 1515 struct arm_smccc_res res; 1516 phys_addr_t data_pa; 1517 u8 *data_buf = NULL; 1518 u64 data_size; 1519 u32 data_pa_high, data_pa_low; 1520 u32 data_size_high, data_size_low; 1521 int rc; 1522 int hp_state; 1523 1524 if (!optee_msg_api_uid_is_optee_image_load(invoke_fn)) 1525 return 0; 1526 1527 rc = request_firmware(&fw, OPTEE_FW_IMAGE, &pdev->dev); 1528 if (rc) { 1529 /* 1530 * The firmware in the rootfs will not be accessible until we 1531 * are in the SYSTEM_RUNNING state, so return EPROBE_DEFER until 1532 * that point. 1533 */ 1534 if (system_state < SYSTEM_RUNNING) 1535 return -EPROBE_DEFER; 1536 goto fw_err; 1537 } 1538 1539 data_size = fw->size; 1540 /* 1541 * This uses the GFP_DMA flag to ensure we are allocated memory in the 1542 * 32-bit space since TF-A cannot map memory beyond the 32-bit boundary. 1543 */ 1544 data_buf = kmemdup(fw->data, fw->size, GFP_KERNEL | GFP_DMA); 1545 if (!data_buf) { 1546 rc = -ENOMEM; 1547 goto fw_err; 1548 } 1549 data_pa = virt_to_phys(data_buf); 1550 reg_pair_from_64(&data_pa_high, &data_pa_low, data_pa); 1551 reg_pair_from_64(&data_size_high, &data_size_low, data_size); 1552 goto fw_load; 1553 1554 fw_err: 1555 pr_warn("image loading failed\n"); 1556 data_pa_high = 0; 1557 data_pa_low = 0; 1558 data_size_high = 0; 1559 data_size_low = 0; 1560 1561 fw_load: 1562 /* 1563 * Always invoke the SMC, even if loading the image fails, to indicate 1564 * to EL3 that we have passed the point where it should allow invoking 1565 * this SMC. 1566 */ 1567 pr_warn("OP-TEE image loaded from kernel, this can be insecure"); 1568 invoke_fn(OPTEE_SMC_CALL_LOAD_IMAGE, data_size_high, data_size_low, 1569 data_pa_high, data_pa_low, 0, 0, 0, &res); 1570 if (!rc) 1571 rc = res.a0; 1572 if (fw) 1573 release_firmware(fw); 1574 kfree(data_buf); 1575 1576 if (!rc) { 1577 /* 1578 * We need to initialize OP-TEE on all other running cores as 1579 * well. Any cores that aren't running yet will get initialized 1580 * when they are brought up by the power management functions in 1581 * TF-A which are registered by the OP-TEE SPD. Due to that we 1582 * can un-register the callback right after registering it. 1583 */ 1584 cpuhp_invoke_fn = invoke_fn; 1585 hp_state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "optee:probe", 1586 optee_cpuhp_probe, NULL); 1587 if (hp_state < 0) { 1588 pr_warn("Failed with CPU hotplug setup for OP-TEE"); 1589 return -EINVAL; 1590 } 1591 cpuhp_remove_state(hp_state); 1592 cpuhp_invoke_fn = NULL; 1593 } 1594 1595 return rc; 1596 } 1597 #else 1598 static inline int optee_load_fw(struct platform_device *pdev, 1599 optee_invoke_fn *invoke_fn) 1600 { 1601 return 0; 1602 } 1603 #endif 1604 1605 static int optee_probe(struct platform_device *pdev) 1606 { 1607 optee_invoke_fn *invoke_fn; 1608 struct tee_shm_pool *pool = ERR_PTR(-EINVAL); 1609 struct optee *optee = NULL; 1610 void *memremaped_shm = NULL; 1611 unsigned int rpc_param_count; 1612 struct tee_device *teedev; 1613 struct tee_context *ctx; 1614 u32 max_notif_value; 1615 u32 arg_cache_flags; 1616 u32 sec_caps; 1617 int rc; 1618 1619 invoke_fn = get_invoke_func(&pdev->dev); 1620 if (IS_ERR(invoke_fn)) 1621 return PTR_ERR(invoke_fn); 1622 1623 rc = optee_load_fw(pdev, invoke_fn); 1624 if (rc) 1625 return rc; 1626 1627 if (!optee_msg_api_uid_is_optee_api(invoke_fn)) { 1628 pr_warn("api uid mismatch\n"); 1629 return -EINVAL; 1630 } 1631 1632 optee_msg_get_os_revision(invoke_fn); 1633 1634 if (!optee_msg_api_revision_is_compatible(invoke_fn)) { 1635 pr_warn("api revision mismatch\n"); 1636 return -EINVAL; 1637 } 1638 1639 if (!optee_msg_exchange_capabilities(invoke_fn, &sec_caps, 1640 &max_notif_value, 1641 &rpc_param_count)) { 1642 pr_warn("capabilities mismatch\n"); 1643 return -EINVAL; 1644 } 1645 1646 /* 1647 * Try to use dynamic shared memory if possible 1648 */ 1649 if (sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM) { 1650 /* 1651 * If we have OPTEE_SMC_SEC_CAP_RPC_ARG we can ask 1652 * optee_get_msg_arg() to pre-register (by having 1653 * OPTEE_SHM_ARG_ALLOC_PRIV cleared) the page used to pass 1654 * an argument struct. 1655 * 1656 * With the page is pre-registered we can use a non-zero 1657 * offset for argument struct, this is indicated with 1658 * OPTEE_SHM_ARG_SHARED. 1659 * 1660 * This means that optee_smc_do_call_with_arg() will use 1661 * OPTEE_SMC_CALL_WITH_REGD_ARG for pre-registered pages. 1662 */ 1663 if (sec_caps & OPTEE_SMC_SEC_CAP_RPC_ARG) 1664 arg_cache_flags = OPTEE_SHM_ARG_SHARED; 1665 else 1666 arg_cache_flags = OPTEE_SHM_ARG_ALLOC_PRIV; 1667 1668 pool = optee_shm_pool_alloc_pages(); 1669 } 1670 1671 /* 1672 * If dynamic shared memory is not available or failed - try static one 1673 */ 1674 if (IS_ERR(pool) && (sec_caps & OPTEE_SMC_SEC_CAP_HAVE_RESERVED_SHM)) { 1675 /* 1676 * The static memory pool can use non-zero page offsets so 1677 * let optee_get_msg_arg() know that with OPTEE_SHM_ARG_SHARED. 1678 * 1679 * optee_get_msg_arg() should not pre-register the 1680 * allocated page used to pass an argument struct, this is 1681 * indicated with OPTEE_SHM_ARG_ALLOC_PRIV. 1682 * 1683 * This means that optee_smc_do_call_with_arg() will use 1684 * OPTEE_SMC_CALL_WITH_ARG if rpc_param_count is 0, else 1685 * OPTEE_SMC_CALL_WITH_RPC_ARG. 1686 */ 1687 arg_cache_flags = OPTEE_SHM_ARG_SHARED | 1688 OPTEE_SHM_ARG_ALLOC_PRIV; 1689 pool = optee_config_shm_memremap(invoke_fn, &memremaped_shm); 1690 } 1691 1692 if (IS_ERR(pool)) 1693 return PTR_ERR(pool); 1694 1695 optee = kzalloc(sizeof(*optee), GFP_KERNEL); 1696 if (!optee) { 1697 rc = -ENOMEM; 1698 goto err_free_pool; 1699 } 1700 1701 optee->ops = &optee_ops; 1702 optee->smc.invoke_fn = invoke_fn; 1703 optee->smc.sec_caps = sec_caps; 1704 optee->rpc_param_count = rpc_param_count; 1705 1706 teedev = tee_device_alloc(&optee_clnt_desc, NULL, pool, optee); 1707 if (IS_ERR(teedev)) { 1708 rc = PTR_ERR(teedev); 1709 goto err_free_optee; 1710 } 1711 optee->teedev = teedev; 1712 1713 teedev = tee_device_alloc(&optee_supp_desc, NULL, pool, optee); 1714 if (IS_ERR(teedev)) { 1715 rc = PTR_ERR(teedev); 1716 goto err_unreg_teedev; 1717 } 1718 optee->supp_teedev = teedev; 1719 1720 rc = tee_device_register(optee->teedev); 1721 if (rc) 1722 goto err_unreg_supp_teedev; 1723 1724 rc = tee_device_register(optee->supp_teedev); 1725 if (rc) 1726 goto err_unreg_supp_teedev; 1727 1728 mutex_init(&optee->call_queue.mutex); 1729 INIT_LIST_HEAD(&optee->call_queue.waiters); 1730 optee_supp_init(&optee->supp); 1731 optee->smc.memremaped_shm = memremaped_shm; 1732 optee->pool = pool; 1733 optee_shm_arg_cache_init(optee, arg_cache_flags); 1734 1735 platform_set_drvdata(pdev, optee); 1736 ctx = teedev_open(optee->teedev); 1737 if (IS_ERR(ctx)) { 1738 rc = PTR_ERR(ctx); 1739 goto err_supp_uninit; 1740 } 1741 optee->ctx = ctx; 1742 rc = optee_notif_init(optee, max_notif_value); 1743 if (rc) 1744 goto err_close_ctx; 1745 1746 if (sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) { 1747 unsigned int irq; 1748 1749 rc = platform_get_irq(pdev, 0); 1750 if (rc < 0) { 1751 pr_err("platform_get_irq: ret %d\n", rc); 1752 goto err_notif_uninit; 1753 } 1754 irq = rc; 1755 1756 rc = optee_smc_notif_init_irq(optee, irq); 1757 if (rc) { 1758 irq_dispose_mapping(irq); 1759 goto err_notif_uninit; 1760 } 1761 enable_async_notif(optee->smc.invoke_fn); 1762 pr_info("Asynchronous notifications enabled\n"); 1763 } 1764 1765 /* 1766 * Ensure that there are no pre-existing shm objects before enabling 1767 * the shm cache so that there's no chance of receiving an invalid 1768 * address during shutdown. This could occur, for example, if we're 1769 * kexec booting from an older kernel that did not properly cleanup the 1770 * shm cache. 1771 */ 1772 optee_disable_unmapped_shm_cache(optee); 1773 1774 /* 1775 * Only enable the shm cache in case we're not able to pass the RPC 1776 * arg struct right after the normal arg struct. 1777 */ 1778 if (!optee->rpc_param_count) 1779 optee_enable_shm_cache(optee); 1780 1781 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM) 1782 pr_info("dynamic shared memory is enabled\n"); 1783 1784 rc = optee_enumerate_devices(PTA_CMD_GET_DEVICES); 1785 if (rc) 1786 goto err_disable_shm_cache; 1787 1788 pr_info("initialized driver\n"); 1789 return 0; 1790 1791 err_disable_shm_cache: 1792 if (!optee->rpc_param_count) 1793 optee_disable_shm_cache(optee); 1794 optee_smc_notif_uninit_irq(optee); 1795 optee_unregister_devices(); 1796 err_notif_uninit: 1797 optee_notif_uninit(optee); 1798 err_close_ctx: 1799 teedev_close_context(ctx); 1800 err_supp_uninit: 1801 optee_shm_arg_cache_uninit(optee); 1802 optee_supp_uninit(&optee->supp); 1803 mutex_destroy(&optee->call_queue.mutex); 1804 err_unreg_supp_teedev: 1805 tee_device_unregister(optee->supp_teedev); 1806 err_unreg_teedev: 1807 tee_device_unregister(optee->teedev); 1808 err_free_optee: 1809 kfree(optee); 1810 err_free_pool: 1811 tee_shm_pool_free(pool); 1812 if (memremaped_shm) 1813 memunmap(memremaped_shm); 1814 return rc; 1815 } 1816 1817 static const struct of_device_id optee_dt_match[] = { 1818 { .compatible = "linaro,optee-tz" }, 1819 {}, 1820 }; 1821 MODULE_DEVICE_TABLE(of, optee_dt_match); 1822 1823 static struct platform_driver optee_driver = { 1824 .probe = optee_probe, 1825 .remove = optee_smc_remove, 1826 .shutdown = optee_shutdown, 1827 .driver = { 1828 .name = "optee", 1829 .of_match_table = optee_dt_match, 1830 }, 1831 }; 1832 1833 int optee_smc_abi_register(void) 1834 { 1835 return platform_driver_register(&optee_driver); 1836 } 1837 1838 void optee_smc_abi_unregister(void) 1839 { 1840 platform_driver_unregister(&optee_driver); 1841 } 1842