1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015-2021, 2023 Linaro Limited 4 * Copyright (c) 2016, EPAM Systems 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/arm-smccc.h> 10 #include <linux/cpuhotplug.h> 11 #include <linux/errno.h> 12 #include <linux/firmware.h> 13 #include <linux/interrupt.h> 14 #include <linux/io.h> 15 #include <linux/irqdomain.h> 16 #include <linux/kernel.h> 17 #include <linux/mm.h> 18 #include <linux/module.h> 19 #include <linux/of.h> 20 #include <linux/of_irq.h> 21 #include <linux/of_platform.h> 22 #include <linux/platform_device.h> 23 #include <linux/rpmb.h> 24 #include <linux/sched.h> 25 #include <linux/slab.h> 26 #include <linux/string.h> 27 #include <linux/tee_core.h> 28 #include <linux/types.h> 29 #include <linux/workqueue.h> 30 #include "optee_private.h" 31 #include "optee_smc.h" 32 #include "optee_rpc_cmd.h" 33 #include <linux/kmemleak.h> 34 #define CREATE_TRACE_POINTS 35 #include "optee_trace.h" 36 37 /* 38 * This file implement the SMC ABI used when communicating with secure world 39 * OP-TEE OS via raw SMCs. 40 * This file is divided into the following sections: 41 * 1. Convert between struct tee_param and struct optee_msg_param 42 * 2. Low level support functions to register shared memory in secure world 43 * 3. Dynamic shared memory pool based on alloc_pages() 44 * 4. Do a normal scheduled call into secure world 45 * 5. Asynchronous notification 46 * 6. Driver initialization. 47 */ 48 49 /* 50 * A typical OP-TEE private shm allocation is 224 bytes (argument struct 51 * with 6 parameters, needed for open session). So with an alignment of 512 52 * we'll waste a bit more than 50%. However, it's only expected that we'll 53 * have a handful of these structs allocated at a time. Most memory will 54 * be allocated aligned to the page size, So all in all this should scale 55 * up and down quite well. 56 */ 57 #define OPTEE_MIN_STATIC_POOL_ALIGN 9 /* 512 bytes aligned */ 58 59 /* SMC ABI considers at most a single TEE firmware */ 60 static unsigned int pcpu_irq_num; 61 62 static int optee_cpuhp_enable_pcpu_irq(unsigned int cpu) 63 { 64 enable_percpu_irq(pcpu_irq_num, IRQ_TYPE_NONE); 65 66 return 0; 67 } 68 69 static int optee_cpuhp_disable_pcpu_irq(unsigned int cpu) 70 { 71 disable_percpu_irq(pcpu_irq_num); 72 73 return 0; 74 } 75 76 /* 77 * 1. Convert between struct tee_param and struct optee_msg_param 78 * 79 * optee_from_msg_param() and optee_to_msg_param() are the main 80 * functions. 81 */ 82 83 static int from_msg_param_tmp_mem(struct tee_param *p, u32 attr, 84 const struct optee_msg_param *mp) 85 { 86 struct tee_shm *shm; 87 phys_addr_t pa; 88 int rc; 89 90 p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT + 91 attr - OPTEE_MSG_ATTR_TYPE_TMEM_INPUT; 92 p->u.memref.size = mp->u.tmem.size; 93 shm = (struct tee_shm *)(unsigned long)mp->u.tmem.shm_ref; 94 if (!shm) { 95 p->u.memref.shm_offs = 0; 96 p->u.memref.shm = NULL; 97 return 0; 98 } 99 100 rc = tee_shm_get_pa(shm, 0, &pa); 101 if (rc) 102 return rc; 103 104 p->u.memref.shm_offs = mp->u.tmem.buf_ptr - pa; 105 p->u.memref.shm = shm; 106 107 return 0; 108 } 109 110 static void from_msg_param_reg_mem(struct tee_param *p, u32 attr, 111 const struct optee_msg_param *mp) 112 { 113 struct tee_shm *shm; 114 115 p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT + 116 attr - OPTEE_MSG_ATTR_TYPE_RMEM_INPUT; 117 p->u.memref.size = mp->u.rmem.size; 118 shm = (struct tee_shm *)(unsigned long)mp->u.rmem.shm_ref; 119 120 if (shm) { 121 p->u.memref.shm_offs = mp->u.rmem.offs; 122 p->u.memref.shm = shm; 123 } else { 124 p->u.memref.shm_offs = 0; 125 p->u.memref.shm = NULL; 126 } 127 } 128 129 /** 130 * optee_from_msg_param() - convert from OPTEE_MSG parameters to 131 * struct tee_param 132 * @optee: main service struct 133 * @params: subsystem internal parameter representation 134 * @num_params: number of elements in the parameter arrays 135 * @msg_params: OPTEE_MSG parameters 136 * Returns 0 on success or <0 on failure 137 */ 138 static int optee_from_msg_param(struct optee *optee, struct tee_param *params, 139 size_t num_params, 140 const struct optee_msg_param *msg_params) 141 { 142 int rc; 143 size_t n; 144 145 for (n = 0; n < num_params; n++) { 146 struct tee_param *p = params + n; 147 const struct optee_msg_param *mp = msg_params + n; 148 u32 attr = mp->attr & OPTEE_MSG_ATTR_TYPE_MASK; 149 150 switch (attr) { 151 case OPTEE_MSG_ATTR_TYPE_NONE: 152 p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE; 153 memset(&p->u, 0, sizeof(p->u)); 154 break; 155 case OPTEE_MSG_ATTR_TYPE_VALUE_INPUT: 156 case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT: 157 case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT: 158 optee_from_msg_param_value(p, attr, mp); 159 break; 160 case OPTEE_MSG_ATTR_TYPE_TMEM_INPUT: 161 case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT: 162 case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT: 163 rc = from_msg_param_tmp_mem(p, attr, mp); 164 if (rc) 165 return rc; 166 break; 167 case OPTEE_MSG_ATTR_TYPE_RMEM_INPUT: 168 case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT: 169 case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT: 170 from_msg_param_reg_mem(p, attr, mp); 171 break; 172 173 default: 174 return -EINVAL; 175 } 176 } 177 return 0; 178 } 179 180 static int to_msg_param_tmp_mem(struct optee_msg_param *mp, 181 const struct tee_param *p) 182 { 183 int rc; 184 phys_addr_t pa; 185 186 mp->attr = OPTEE_MSG_ATTR_TYPE_TMEM_INPUT + p->attr - 187 TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT; 188 189 mp->u.tmem.shm_ref = (unsigned long)p->u.memref.shm; 190 mp->u.tmem.size = p->u.memref.size; 191 192 if (!p->u.memref.shm) { 193 mp->u.tmem.buf_ptr = 0; 194 return 0; 195 } 196 197 rc = tee_shm_get_pa(p->u.memref.shm, p->u.memref.shm_offs, &pa); 198 if (rc) 199 return rc; 200 201 mp->u.tmem.buf_ptr = pa; 202 mp->attr |= OPTEE_MSG_ATTR_CACHE_PREDEFINED << 203 OPTEE_MSG_ATTR_CACHE_SHIFT; 204 205 return 0; 206 } 207 208 static int to_msg_param_reg_mem(struct optee_msg_param *mp, 209 const struct tee_param *p) 210 { 211 mp->attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT + p->attr - 212 TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT; 213 214 mp->u.rmem.shm_ref = (unsigned long)p->u.memref.shm; 215 mp->u.rmem.size = p->u.memref.size; 216 mp->u.rmem.offs = p->u.memref.shm_offs; 217 return 0; 218 } 219 220 /** 221 * optee_to_msg_param() - convert from struct tee_params to OPTEE_MSG parameters 222 * @optee: main service struct 223 * @msg_params: OPTEE_MSG parameters 224 * @num_params: number of elements in the parameter arrays 225 * @params: subsystem itnernal parameter representation 226 * Returns 0 on success or <0 on failure 227 */ 228 static int optee_to_msg_param(struct optee *optee, 229 struct optee_msg_param *msg_params, 230 size_t num_params, const struct tee_param *params) 231 { 232 int rc; 233 size_t n; 234 235 for (n = 0; n < num_params; n++) { 236 const struct tee_param *p = params + n; 237 struct optee_msg_param *mp = msg_params + n; 238 239 switch (p->attr) { 240 case TEE_IOCTL_PARAM_ATTR_TYPE_NONE: 241 mp->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE; 242 memset(&mp->u, 0, sizeof(mp->u)); 243 break; 244 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INPUT: 245 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_OUTPUT: 246 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INOUT: 247 optee_to_msg_param_value(mp, p); 248 break; 249 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT: 250 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_OUTPUT: 251 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INOUT: 252 if (tee_shm_is_dynamic(p->u.memref.shm)) 253 rc = to_msg_param_reg_mem(mp, p); 254 else 255 rc = to_msg_param_tmp_mem(mp, p); 256 if (rc) 257 return rc; 258 break; 259 default: 260 return -EINVAL; 261 } 262 } 263 return 0; 264 } 265 266 /* 267 * 2. Low level support functions to register shared memory in secure world 268 * 269 * Functions to enable/disable shared memory caching in secure world, that 270 * is, lazy freeing of previously allocated shared memory. Freeing is 271 * performed when a request has been compled. 272 * 273 * Functions to register and unregister shared memory both for normal 274 * clients and for tee-supplicant. 275 */ 276 277 /** 278 * optee_enable_shm_cache() - Enables caching of some shared memory allocation 279 * in OP-TEE 280 * @optee: main service struct 281 */ 282 static void optee_enable_shm_cache(struct optee *optee) 283 { 284 struct optee_call_waiter w; 285 286 /* We need to retry until secure world isn't busy. */ 287 optee_cq_wait_init(&optee->call_queue, &w, false); 288 while (true) { 289 struct arm_smccc_res res; 290 291 optee->smc.invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 292 0, 0, 0, 0, 0, 0, 0, &res); 293 if (res.a0 == OPTEE_SMC_RETURN_OK) 294 break; 295 optee_cq_wait_for_completion(&optee->call_queue, &w); 296 } 297 optee_cq_wait_final(&optee->call_queue, &w); 298 } 299 300 /** 301 * __optee_disable_shm_cache() - Disables caching of some shared memory 302 * allocation in OP-TEE 303 * @optee: main service struct 304 * @is_mapped: true if the cached shared memory addresses were mapped by this 305 * kernel, are safe to dereference, and should be freed 306 */ 307 static void __optee_disable_shm_cache(struct optee *optee, bool is_mapped) 308 { 309 struct optee_call_waiter w; 310 311 /* We need to retry until secure world isn't busy. */ 312 optee_cq_wait_init(&optee->call_queue, &w, false); 313 while (true) { 314 union { 315 struct arm_smccc_res smccc; 316 struct optee_smc_disable_shm_cache_result result; 317 } res; 318 319 optee->smc.invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 320 0, 0, 0, 0, 0, 0, 0, &res.smccc); 321 if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL) 322 break; /* All shm's freed */ 323 if (res.result.status == OPTEE_SMC_RETURN_OK) { 324 struct tee_shm *shm; 325 326 /* 327 * Shared memory references that were not mapped by 328 * this kernel must be ignored to prevent a crash. 329 */ 330 if (!is_mapped) 331 continue; 332 333 shm = reg_pair_to_ptr(res.result.shm_upper32, 334 res.result.shm_lower32); 335 tee_shm_free(shm); 336 } else { 337 optee_cq_wait_for_completion(&optee->call_queue, &w); 338 } 339 } 340 optee_cq_wait_final(&optee->call_queue, &w); 341 } 342 343 /** 344 * optee_disable_shm_cache() - Disables caching of mapped shared memory 345 * allocations in OP-TEE 346 * @optee: main service struct 347 */ 348 static void optee_disable_shm_cache(struct optee *optee) 349 { 350 return __optee_disable_shm_cache(optee, true); 351 } 352 353 /** 354 * optee_disable_unmapped_shm_cache() - Disables caching of shared memory 355 * allocations in OP-TEE which are not 356 * currently mapped 357 * @optee: main service struct 358 */ 359 static void optee_disable_unmapped_shm_cache(struct optee *optee) 360 { 361 return __optee_disable_shm_cache(optee, false); 362 } 363 364 #define PAGELIST_ENTRIES_PER_PAGE \ 365 ((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1) 366 367 /* 368 * The final entry in each pagelist page is a pointer to the next 369 * pagelist page. 370 */ 371 static size_t get_pages_list_size(size_t num_entries) 372 { 373 int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE); 374 375 return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE; 376 } 377 378 static u64 *optee_allocate_pages_list(size_t num_entries) 379 { 380 return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL); 381 } 382 383 static void optee_free_pages_list(void *list, size_t num_entries) 384 { 385 free_pages_exact(list, get_pages_list_size(num_entries)); 386 } 387 388 /** 389 * optee_fill_pages_list() - write list of user pages to given shared 390 * buffer. 391 * 392 * @dst: page-aligned buffer where list of pages will be stored 393 * @pages: array of pages that represents shared buffer 394 * @num_pages: number of entries in @pages 395 * @page_offset: offset of user buffer from page start 396 * 397 * @dst should be big enough to hold list of user page addresses and 398 * links to the next pages of buffer 399 */ 400 static void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages, 401 size_t page_offset) 402 { 403 int n = 0; 404 phys_addr_t optee_page; 405 /* 406 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h 407 * for details. 408 */ 409 struct { 410 u64 pages_list[PAGELIST_ENTRIES_PER_PAGE]; 411 u64 next_page_data; 412 } *pages_data; 413 414 /* 415 * Currently OP-TEE uses 4k page size and it does not looks 416 * like this will change in the future. On other hand, there are 417 * no know ARM architectures with page size < 4k. 418 * Thus the next built assert looks redundant. But the following 419 * code heavily relies on this assumption, so it is better be 420 * safe than sorry. 421 */ 422 BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE); 423 424 pages_data = (void *)dst; 425 /* 426 * If linux page is bigger than 4k, and user buffer offset is 427 * larger than 4k/8k/12k/etc this will skip first 4k pages, 428 * because they bear no value data for OP-TEE. 429 */ 430 optee_page = page_to_phys(*pages) + 431 round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE); 432 433 while (true) { 434 pages_data->pages_list[n++] = optee_page; 435 436 if (n == PAGELIST_ENTRIES_PER_PAGE) { 437 pages_data->next_page_data = 438 virt_to_phys(pages_data + 1); 439 pages_data++; 440 n = 0; 441 } 442 443 optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE; 444 if (!(optee_page & ~PAGE_MASK)) { 445 if (!--num_pages) 446 break; 447 pages++; 448 optee_page = page_to_phys(*pages); 449 } 450 } 451 } 452 453 static int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm, 454 struct page **pages, size_t num_pages, 455 unsigned long start) 456 { 457 struct optee *optee = tee_get_drvdata(ctx->teedev); 458 struct optee_msg_arg *msg_arg; 459 struct tee_shm *shm_arg; 460 u64 *pages_list; 461 size_t sz; 462 int rc; 463 464 if (!num_pages) 465 return -EINVAL; 466 467 rc = optee_check_mem_type(start, num_pages); 468 if (rc) 469 return rc; 470 471 pages_list = optee_allocate_pages_list(num_pages); 472 if (!pages_list) 473 return -ENOMEM; 474 475 /* 476 * We're about to register shared memory we can't register shared 477 * memory for this request or there's a catch-22. 478 * 479 * So in this we'll have to do the good old temporary private 480 * allocation instead of using optee_get_msg_arg(). 481 */ 482 sz = optee_msg_arg_size(optee->rpc_param_count); 483 shm_arg = tee_shm_alloc_priv_buf(ctx, sz); 484 if (IS_ERR(shm_arg)) { 485 rc = PTR_ERR(shm_arg); 486 goto out; 487 } 488 msg_arg = tee_shm_get_va(shm_arg, 0); 489 if (IS_ERR(msg_arg)) { 490 rc = PTR_ERR(msg_arg); 491 goto out; 492 } 493 494 optee_fill_pages_list(pages_list, pages, num_pages, 495 tee_shm_get_page_offset(shm)); 496 497 memset(msg_arg, 0, OPTEE_MSG_GET_ARG_SIZE(1)); 498 msg_arg->num_params = 1; 499 msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM; 500 msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT | 501 OPTEE_MSG_ATTR_NONCONTIG; 502 msg_arg->params->u.tmem.shm_ref = (unsigned long)shm; 503 msg_arg->params->u.tmem.size = tee_shm_get_size(shm); 504 /* 505 * In the least bits of msg_arg->params->u.tmem.buf_ptr we 506 * store buffer offset from 4k page, as described in OP-TEE ABI. 507 */ 508 msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) | 509 (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1)); 510 511 if (optee->ops->do_call_with_arg(ctx, shm_arg, 0, false) || 512 msg_arg->ret != TEEC_SUCCESS) 513 rc = -EINVAL; 514 515 tee_shm_free(shm_arg); 516 out: 517 optee_free_pages_list(pages_list, num_pages); 518 return rc; 519 } 520 521 static int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm) 522 { 523 struct optee *optee = tee_get_drvdata(ctx->teedev); 524 struct optee_msg_arg *msg_arg; 525 struct tee_shm *shm_arg; 526 int rc = 0; 527 size_t sz; 528 529 /* 530 * We're about to unregister shared memory and we may not be able 531 * register shared memory for this request in case we're called 532 * from optee_shm_arg_cache_uninit(). 533 * 534 * So in order to keep things simple in this function just as in 535 * optee_shm_register() we'll use temporary private allocation 536 * instead of using optee_get_msg_arg(). 537 */ 538 sz = optee_msg_arg_size(optee->rpc_param_count); 539 shm_arg = tee_shm_alloc_priv_buf(ctx, sz); 540 if (IS_ERR(shm_arg)) 541 return PTR_ERR(shm_arg); 542 msg_arg = tee_shm_get_va(shm_arg, 0); 543 if (IS_ERR(msg_arg)) { 544 rc = PTR_ERR(msg_arg); 545 goto out; 546 } 547 548 memset(msg_arg, 0, sz); 549 msg_arg->num_params = 1; 550 msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM; 551 msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT; 552 msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm; 553 554 if (optee->ops->do_call_with_arg(ctx, shm_arg, 0, false) || 555 msg_arg->ret != TEEC_SUCCESS) 556 rc = -EINVAL; 557 out: 558 tee_shm_free(shm_arg); 559 return rc; 560 } 561 562 static int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm, 563 struct page **pages, size_t num_pages, 564 unsigned long start) 565 { 566 /* 567 * We don't want to register supplicant memory in OP-TEE. 568 * Instead information about it will be passed in RPC code. 569 */ 570 return optee_check_mem_type(start, num_pages); 571 } 572 573 static int optee_shm_unregister_supp(struct tee_context *ctx, 574 struct tee_shm *shm) 575 { 576 return 0; 577 } 578 579 /* 580 * 3. Dynamic shared memory pool based on alloc_pages() 581 * 582 * Implements an OP-TEE specific shared memory pool which is used 583 * when dynamic shared memory is supported by secure world. 584 * 585 * The main function is optee_shm_pool_alloc_pages(). 586 */ 587 588 static int pool_op_alloc(struct tee_shm_pool *pool, 589 struct tee_shm *shm, size_t size, size_t align) 590 { 591 /* 592 * Shared memory private to the OP-TEE driver doesn't need 593 * to be registered with OP-TEE. 594 */ 595 if (shm->flags & TEE_SHM_PRIV) 596 return tee_dyn_shm_alloc_helper(shm, size, align, NULL); 597 598 return tee_dyn_shm_alloc_helper(shm, size, align, optee_shm_register); 599 } 600 601 static void pool_op_free(struct tee_shm_pool *pool, 602 struct tee_shm *shm) 603 { 604 if (!(shm->flags & TEE_SHM_PRIV)) 605 tee_dyn_shm_free_helper(shm, optee_shm_unregister); 606 else 607 tee_dyn_shm_free_helper(shm, NULL); 608 } 609 610 static void pool_op_destroy_pool(struct tee_shm_pool *pool) 611 { 612 kfree(pool); 613 } 614 615 static const struct tee_shm_pool_ops pool_ops = { 616 .alloc = pool_op_alloc, 617 .free = pool_op_free, 618 .destroy_pool = pool_op_destroy_pool, 619 }; 620 621 /** 622 * optee_shm_pool_alloc_pages() - create page-based allocator pool 623 * 624 * This pool is used when OP-TEE supports dymanic SHM. In this case 625 * command buffers and such are allocated from kernel's own memory. 626 */ 627 static struct tee_shm_pool *optee_shm_pool_alloc_pages(void) 628 { 629 struct tee_shm_pool *pool = kzalloc(sizeof(*pool), GFP_KERNEL); 630 631 if (!pool) 632 return ERR_PTR(-ENOMEM); 633 634 pool->ops = &pool_ops; 635 636 return pool; 637 } 638 639 /* 640 * 4. Do a normal scheduled call into secure world 641 * 642 * The function optee_smc_do_call_with_arg() performs a normal scheduled 643 * call into secure world. During this call may normal world request help 644 * from normal world using RPCs, Remote Procedure Calls. This includes 645 * delivery of non-secure interrupts to for instance allow rescheduling of 646 * the current task. 647 */ 648 649 static void handle_rpc_func_cmd_shm_free(struct tee_context *ctx, 650 struct optee_msg_arg *arg) 651 { 652 struct tee_shm *shm; 653 654 arg->ret_origin = TEEC_ORIGIN_COMMS; 655 656 if (arg->num_params != 1 || 657 arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) { 658 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 659 return; 660 } 661 662 shm = (struct tee_shm *)(unsigned long)arg->params[0].u.value.b; 663 switch (arg->params[0].u.value.a) { 664 case OPTEE_RPC_SHM_TYPE_APPL: 665 optee_rpc_cmd_free_suppl(ctx, shm); 666 break; 667 case OPTEE_RPC_SHM_TYPE_KERNEL: 668 tee_shm_free(shm); 669 break; 670 default: 671 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 672 } 673 arg->ret = TEEC_SUCCESS; 674 } 675 676 static void handle_rpc_func_cmd_shm_alloc(struct tee_context *ctx, 677 struct optee *optee, 678 struct optee_msg_arg *arg, 679 struct optee_call_ctx *call_ctx) 680 { 681 struct tee_shm *shm; 682 size_t sz; 683 size_t n; 684 struct page **pages; 685 size_t page_count; 686 687 arg->ret_origin = TEEC_ORIGIN_COMMS; 688 689 if (!arg->num_params || 690 arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) { 691 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 692 return; 693 } 694 695 for (n = 1; n < arg->num_params; n++) { 696 if (arg->params[n].attr != OPTEE_MSG_ATTR_TYPE_NONE) { 697 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 698 return; 699 } 700 } 701 702 sz = arg->params[0].u.value.b; 703 switch (arg->params[0].u.value.a) { 704 case OPTEE_RPC_SHM_TYPE_APPL: 705 shm = optee_rpc_cmd_alloc_suppl(ctx, sz); 706 break; 707 case OPTEE_RPC_SHM_TYPE_KERNEL: 708 shm = tee_shm_alloc_priv_buf(optee->ctx, sz); 709 break; 710 default: 711 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 712 return; 713 } 714 715 if (IS_ERR(shm)) { 716 arg->ret = TEEC_ERROR_OUT_OF_MEMORY; 717 return; 718 } 719 720 /* 721 * If there are pages it's dynamically allocated shared memory (not 722 * from the reserved shared memory pool) and needs to be 723 * registered. 724 */ 725 pages = tee_shm_get_pages(shm, &page_count); 726 if (pages) { 727 u64 *pages_list; 728 729 pages_list = optee_allocate_pages_list(page_count); 730 if (!pages_list) { 731 arg->ret = TEEC_ERROR_OUT_OF_MEMORY; 732 goto bad; 733 } 734 735 call_ctx->pages_list = pages_list; 736 call_ctx->num_entries = page_count; 737 738 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT | 739 OPTEE_MSG_ATTR_NONCONTIG; 740 /* 741 * In the least bits of u.tmem.buf_ptr we store buffer offset 742 * from 4k page, as described in OP-TEE ABI. 743 */ 744 arg->params[0].u.tmem.buf_ptr = virt_to_phys(pages_list) | 745 (tee_shm_get_page_offset(shm) & 746 (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1)); 747 748 optee_fill_pages_list(pages_list, pages, page_count, 749 tee_shm_get_page_offset(shm)); 750 } else { 751 phys_addr_t pa; 752 753 if (tee_shm_get_pa(shm, 0, &pa)) { 754 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 755 goto bad; 756 } 757 758 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT; 759 arg->params[0].u.tmem.buf_ptr = pa; 760 } 761 arg->params[0].u.tmem.size = tee_shm_get_size(shm); 762 arg->params[0].u.tmem.shm_ref = (unsigned long)shm; 763 764 arg->ret = TEEC_SUCCESS; 765 return; 766 bad: 767 tee_shm_free(shm); 768 } 769 770 static void free_pages_list(struct optee_call_ctx *call_ctx) 771 { 772 if (call_ctx->pages_list) { 773 optee_free_pages_list(call_ctx->pages_list, 774 call_ctx->num_entries); 775 call_ctx->pages_list = NULL; 776 call_ctx->num_entries = 0; 777 } 778 } 779 780 static void optee_rpc_finalize_call(struct optee_call_ctx *call_ctx) 781 { 782 free_pages_list(call_ctx); 783 } 784 785 static void handle_rpc_func_cmd(struct tee_context *ctx, struct optee *optee, 786 struct optee_msg_arg *arg, 787 struct optee_call_ctx *call_ctx) 788 { 789 790 switch (arg->cmd) { 791 case OPTEE_RPC_CMD_SHM_ALLOC: 792 free_pages_list(call_ctx); 793 handle_rpc_func_cmd_shm_alloc(ctx, optee, arg, call_ctx); 794 break; 795 case OPTEE_RPC_CMD_SHM_FREE: 796 handle_rpc_func_cmd_shm_free(ctx, arg); 797 break; 798 default: 799 optee_rpc_cmd(ctx, optee, arg); 800 } 801 } 802 803 /** 804 * optee_handle_rpc() - handle RPC from secure world 805 * @ctx: context doing the RPC 806 * @rpc_arg: pointer to RPC arguments if any, or NULL if none 807 * @param: value of registers for the RPC 808 * @call_ctx: call context. Preserved during one OP-TEE invocation 809 * 810 * Result of RPC is written back into @param. 811 */ 812 static void optee_handle_rpc(struct tee_context *ctx, 813 struct optee_msg_arg *rpc_arg, 814 struct optee_rpc_param *param, 815 struct optee_call_ctx *call_ctx) 816 { 817 struct tee_device *teedev = ctx->teedev; 818 struct optee *optee = tee_get_drvdata(teedev); 819 struct optee_msg_arg *arg; 820 struct tee_shm *shm; 821 phys_addr_t pa; 822 823 switch (OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0)) { 824 case OPTEE_SMC_RPC_FUNC_ALLOC: 825 shm = tee_shm_alloc_priv_buf(optee->ctx, param->a1); 826 if (!IS_ERR(shm) && !tee_shm_get_pa(shm, 0, &pa)) { 827 reg_pair_from_64(¶m->a1, ¶m->a2, pa); 828 reg_pair_from_64(¶m->a4, ¶m->a5, 829 (unsigned long)shm); 830 } else { 831 param->a1 = 0; 832 param->a2 = 0; 833 param->a4 = 0; 834 param->a5 = 0; 835 } 836 kmemleak_not_leak(shm); 837 break; 838 case OPTEE_SMC_RPC_FUNC_FREE: 839 shm = reg_pair_to_ptr(param->a1, param->a2); 840 tee_shm_free(shm); 841 break; 842 case OPTEE_SMC_RPC_FUNC_FOREIGN_INTR: 843 /* 844 * A foreign interrupt was raised while secure world was 845 * executing, since they are handled in Linux a dummy RPC is 846 * performed to let Linux take the interrupt through the normal 847 * vector. 848 */ 849 break; 850 case OPTEE_SMC_RPC_FUNC_CMD: 851 if (rpc_arg) { 852 arg = rpc_arg; 853 } else { 854 shm = reg_pair_to_ptr(param->a1, param->a2); 855 arg = tee_shm_get_va(shm, 0); 856 if (IS_ERR(arg)) { 857 pr_err("%s: tee_shm_get_va %p failed\n", 858 __func__, shm); 859 break; 860 } 861 } 862 863 handle_rpc_func_cmd(ctx, optee, arg, call_ctx); 864 break; 865 default: 866 pr_warn("Unknown RPC func 0x%x\n", 867 (u32)OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0)); 868 break; 869 } 870 871 param->a0 = OPTEE_SMC_CALL_RETURN_FROM_RPC; 872 } 873 874 /** 875 * optee_smc_do_call_with_arg() - Do an SMC to OP-TEE in secure world 876 * @ctx: calling context 877 * @shm: shared memory holding the message to pass to secure world 878 * @offs: offset of the message in @shm 879 * @system_thread: true if caller requests TEE system thread support 880 * 881 * Does and SMC to OP-TEE in secure world and handles eventual resulting 882 * Remote Procedure Calls (RPC) from OP-TEE. 883 * 884 * Returns return code from secure world, 0 is OK 885 */ 886 static int optee_smc_do_call_with_arg(struct tee_context *ctx, 887 struct tee_shm *shm, u_int offs, 888 bool system_thread) 889 { 890 struct optee *optee = tee_get_drvdata(ctx->teedev); 891 struct optee_call_waiter w; 892 struct optee_rpc_param param = { }; 893 struct optee_call_ctx call_ctx = { }; 894 struct optee_msg_arg *rpc_arg = NULL; 895 int rc; 896 897 if (optee->rpc_param_count) { 898 struct optee_msg_arg *arg; 899 unsigned int rpc_arg_offs; 900 901 arg = tee_shm_get_va(shm, offs); 902 if (IS_ERR(arg)) 903 return PTR_ERR(arg); 904 905 rpc_arg_offs = OPTEE_MSG_GET_ARG_SIZE(arg->num_params); 906 rpc_arg = tee_shm_get_va(shm, offs + rpc_arg_offs); 907 if (IS_ERR(rpc_arg)) 908 return PTR_ERR(rpc_arg); 909 } 910 911 if (rpc_arg && tee_shm_is_dynamic(shm)) { 912 param.a0 = OPTEE_SMC_CALL_WITH_REGD_ARG; 913 reg_pair_from_64(¶m.a1, ¶m.a2, (u_long)shm); 914 param.a3 = offs; 915 } else { 916 phys_addr_t parg; 917 918 rc = tee_shm_get_pa(shm, offs, &parg); 919 if (rc) 920 return rc; 921 922 if (rpc_arg) 923 param.a0 = OPTEE_SMC_CALL_WITH_RPC_ARG; 924 else 925 param.a0 = OPTEE_SMC_CALL_WITH_ARG; 926 reg_pair_from_64(¶m.a1, ¶m.a2, parg); 927 } 928 /* Initialize waiter */ 929 optee_cq_wait_init(&optee->call_queue, &w, system_thread); 930 while (true) { 931 struct arm_smccc_res res; 932 933 trace_optee_invoke_fn_begin(¶m); 934 optee->smc.invoke_fn(param.a0, param.a1, param.a2, param.a3, 935 param.a4, param.a5, param.a6, param.a7, 936 &res); 937 trace_optee_invoke_fn_end(¶m, &res); 938 939 if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) { 940 /* 941 * Out of threads in secure world, wait for a thread 942 * become available. 943 */ 944 optee_cq_wait_for_completion(&optee->call_queue, &w); 945 } else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) { 946 cond_resched(); 947 param.a0 = res.a0; 948 param.a1 = res.a1; 949 param.a2 = res.a2; 950 param.a3 = res.a3; 951 optee_handle_rpc(ctx, rpc_arg, ¶m, &call_ctx); 952 } else { 953 rc = res.a0; 954 break; 955 } 956 } 957 958 optee_rpc_finalize_call(&call_ctx); 959 /* 960 * We're done with our thread in secure world, if there's any 961 * thread waiters wake up one. 962 */ 963 optee_cq_wait_final(&optee->call_queue, &w); 964 965 return rc; 966 } 967 968 /* 969 * 5. Asynchronous notification 970 */ 971 972 static u32 get_async_notif_value(optee_invoke_fn *invoke_fn, bool *value_valid, 973 bool *value_pending) 974 { 975 struct arm_smccc_res res; 976 977 invoke_fn(OPTEE_SMC_GET_ASYNC_NOTIF_VALUE, 0, 0, 0, 0, 0, 0, 0, &res); 978 979 if (res.a0) { 980 *value_valid = false; 981 return 0; 982 } 983 *value_valid = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_VALID); 984 *value_pending = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_PENDING); 985 return res.a1; 986 } 987 988 static irqreturn_t irq_handler(struct optee *optee) 989 { 990 bool do_bottom_half = false; 991 bool value_valid; 992 bool value_pending; 993 u32 value; 994 995 do { 996 value = get_async_notif_value(optee->smc.invoke_fn, 997 &value_valid, &value_pending); 998 if (!value_valid) 999 break; 1000 1001 if (value == OPTEE_SMC_ASYNC_NOTIF_VALUE_DO_BOTTOM_HALF) 1002 do_bottom_half = true; 1003 else 1004 optee_notif_send(optee, value); 1005 } while (value_pending); 1006 1007 if (do_bottom_half) 1008 return IRQ_WAKE_THREAD; 1009 return IRQ_HANDLED; 1010 } 1011 1012 static irqreturn_t notif_irq_handler(int irq, void *dev_id) 1013 { 1014 struct optee *optee = dev_id; 1015 1016 return irq_handler(optee); 1017 } 1018 1019 static irqreturn_t notif_irq_thread_fn(int irq, void *dev_id) 1020 { 1021 struct optee *optee = dev_id; 1022 1023 optee_do_bottom_half(optee->ctx); 1024 1025 return IRQ_HANDLED; 1026 } 1027 1028 static int init_irq(struct optee *optee, u_int irq) 1029 { 1030 int rc; 1031 1032 rc = request_threaded_irq(irq, notif_irq_handler, 1033 notif_irq_thread_fn, 1034 0, "optee_notification", optee); 1035 if (rc) 1036 return rc; 1037 1038 optee->smc.notif_irq = irq; 1039 1040 return 0; 1041 } 1042 1043 static irqreturn_t notif_pcpu_irq_handler(int irq, void *dev_id) 1044 { 1045 struct optee_pcpu *pcpu = dev_id; 1046 struct optee *optee = pcpu->optee; 1047 1048 if (irq_handler(optee) == IRQ_WAKE_THREAD) 1049 queue_work(optee->smc.notif_pcpu_wq, 1050 &optee->smc.notif_pcpu_work); 1051 1052 return IRQ_HANDLED; 1053 } 1054 1055 static void notif_pcpu_irq_work_fn(struct work_struct *work) 1056 { 1057 struct optee_smc *optee_smc = container_of(work, struct optee_smc, 1058 notif_pcpu_work); 1059 struct optee *optee = container_of(optee_smc, struct optee, smc); 1060 1061 optee_do_bottom_half(optee->ctx); 1062 } 1063 1064 static int init_pcpu_irq(struct optee *optee, u_int irq) 1065 { 1066 struct optee_pcpu __percpu *optee_pcpu; 1067 int cpu, rc; 1068 1069 optee_pcpu = alloc_percpu(struct optee_pcpu); 1070 if (!optee_pcpu) 1071 return -ENOMEM; 1072 1073 for_each_present_cpu(cpu) 1074 per_cpu_ptr(optee_pcpu, cpu)->optee = optee; 1075 1076 rc = request_percpu_irq(irq, notif_pcpu_irq_handler, 1077 "optee_pcpu_notification", optee_pcpu); 1078 if (rc) 1079 goto err_free_pcpu; 1080 1081 INIT_WORK(&optee->smc.notif_pcpu_work, notif_pcpu_irq_work_fn); 1082 optee->smc.notif_pcpu_wq = create_workqueue("optee_pcpu_notification"); 1083 if (!optee->smc.notif_pcpu_wq) { 1084 rc = -EINVAL; 1085 goto err_free_pcpu_irq; 1086 } 1087 1088 optee->smc.optee_pcpu = optee_pcpu; 1089 optee->smc.notif_irq = irq; 1090 1091 pcpu_irq_num = irq; 1092 rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "optee/pcpu-notif:starting", 1093 optee_cpuhp_enable_pcpu_irq, 1094 optee_cpuhp_disable_pcpu_irq); 1095 if (!rc) 1096 rc = -EINVAL; 1097 if (rc < 0) 1098 goto err_free_pcpu_irq; 1099 1100 optee->smc.notif_cpuhp_state = rc; 1101 1102 return 0; 1103 1104 err_free_pcpu_irq: 1105 free_percpu_irq(irq, optee_pcpu); 1106 err_free_pcpu: 1107 free_percpu(optee_pcpu); 1108 1109 return rc; 1110 } 1111 1112 static int optee_smc_notif_init_irq(struct optee *optee, u_int irq) 1113 { 1114 if (irq_is_percpu_devid(irq)) 1115 return init_pcpu_irq(optee, irq); 1116 else 1117 return init_irq(optee, irq); 1118 } 1119 1120 static void uninit_pcpu_irq(struct optee *optee) 1121 { 1122 cpuhp_remove_state(optee->smc.notif_cpuhp_state); 1123 1124 destroy_workqueue(optee->smc.notif_pcpu_wq); 1125 1126 free_percpu_irq(optee->smc.notif_irq, optee->smc.optee_pcpu); 1127 free_percpu(optee->smc.optee_pcpu); 1128 } 1129 1130 static void optee_smc_notif_uninit_irq(struct optee *optee) 1131 { 1132 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) { 1133 optee_stop_async_notif(optee->ctx); 1134 if (optee->smc.notif_irq) { 1135 if (irq_is_percpu_devid(optee->smc.notif_irq)) 1136 uninit_pcpu_irq(optee); 1137 else 1138 free_irq(optee->smc.notif_irq, optee); 1139 1140 irq_dispose_mapping(optee->smc.notif_irq); 1141 } 1142 } 1143 } 1144 1145 /* 1146 * 6. Driver initialization 1147 * 1148 * During driver initialization is secure world probed to find out which 1149 * features it supports so the driver can be initialized with a matching 1150 * configuration. This involves for instance support for dynamic shared 1151 * memory instead of a static memory carvout. 1152 */ 1153 1154 static void optee_get_version(struct tee_device *teedev, 1155 struct tee_ioctl_version_data *vers) 1156 { 1157 struct tee_ioctl_version_data v = { 1158 .impl_id = TEE_IMPL_ID_OPTEE, 1159 .impl_caps = TEE_OPTEE_CAP_TZ, 1160 .gen_caps = TEE_GEN_CAP_GP, 1161 }; 1162 struct optee *optee = tee_get_drvdata(teedev); 1163 1164 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM) 1165 v.gen_caps |= TEE_GEN_CAP_REG_MEM; 1166 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL) 1167 v.gen_caps |= TEE_GEN_CAP_MEMREF_NULL; 1168 *vers = v; 1169 } 1170 1171 static int optee_smc_open(struct tee_context *ctx) 1172 { 1173 struct optee *optee = tee_get_drvdata(ctx->teedev); 1174 u32 sec_caps = optee->smc.sec_caps; 1175 1176 return optee_open(ctx, sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL); 1177 } 1178 1179 static const struct tee_driver_ops optee_clnt_ops = { 1180 .get_version = optee_get_version, 1181 .open = optee_smc_open, 1182 .release = optee_release, 1183 .open_session = optee_open_session, 1184 .close_session = optee_close_session, 1185 .system_session = optee_system_session, 1186 .invoke_func = optee_invoke_func, 1187 .cancel_req = optee_cancel_req, 1188 .shm_register = optee_shm_register, 1189 .shm_unregister = optee_shm_unregister, 1190 }; 1191 1192 static const struct tee_desc optee_clnt_desc = { 1193 .name = DRIVER_NAME "-clnt", 1194 .ops = &optee_clnt_ops, 1195 .owner = THIS_MODULE, 1196 }; 1197 1198 static const struct tee_driver_ops optee_supp_ops = { 1199 .get_version = optee_get_version, 1200 .open = optee_smc_open, 1201 .release = optee_release_supp, 1202 .supp_recv = optee_supp_recv, 1203 .supp_send = optee_supp_send, 1204 .shm_register = optee_shm_register_supp, 1205 .shm_unregister = optee_shm_unregister_supp, 1206 }; 1207 1208 static const struct tee_desc optee_supp_desc = { 1209 .name = DRIVER_NAME "-supp", 1210 .ops = &optee_supp_ops, 1211 .owner = THIS_MODULE, 1212 .flags = TEE_DESC_PRIVILEGED, 1213 }; 1214 1215 static const struct optee_ops optee_ops = { 1216 .do_call_with_arg = optee_smc_do_call_with_arg, 1217 .to_msg_param = optee_to_msg_param, 1218 .from_msg_param = optee_from_msg_param, 1219 }; 1220 1221 static int enable_async_notif(optee_invoke_fn *invoke_fn) 1222 { 1223 struct arm_smccc_res res; 1224 1225 invoke_fn(OPTEE_SMC_ENABLE_ASYNC_NOTIF, 0, 0, 0, 0, 0, 0, 0, &res); 1226 1227 if (res.a0) 1228 return -EINVAL; 1229 return 0; 1230 } 1231 1232 static bool optee_msg_api_uid_is_optee_api(optee_invoke_fn *invoke_fn) 1233 { 1234 struct arm_smccc_res res; 1235 1236 invoke_fn(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res); 1237 1238 if (res.a0 == OPTEE_MSG_UID_0 && res.a1 == OPTEE_MSG_UID_1 && 1239 res.a2 == OPTEE_MSG_UID_2 && res.a3 == OPTEE_MSG_UID_3) 1240 return true; 1241 return false; 1242 } 1243 1244 #ifdef CONFIG_OPTEE_INSECURE_LOAD_IMAGE 1245 static bool optee_msg_api_uid_is_optee_image_load(optee_invoke_fn *invoke_fn) 1246 { 1247 struct arm_smccc_res res; 1248 1249 invoke_fn(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res); 1250 1251 if (res.a0 == OPTEE_MSG_IMAGE_LOAD_UID_0 && 1252 res.a1 == OPTEE_MSG_IMAGE_LOAD_UID_1 && 1253 res.a2 == OPTEE_MSG_IMAGE_LOAD_UID_2 && 1254 res.a3 == OPTEE_MSG_IMAGE_LOAD_UID_3) 1255 return true; 1256 return false; 1257 } 1258 #endif 1259 1260 static void optee_msg_get_os_revision(optee_invoke_fn *invoke_fn) 1261 { 1262 union { 1263 struct arm_smccc_res smccc; 1264 struct optee_smc_call_get_os_revision_result result; 1265 } res = { 1266 .result = { 1267 .build_id = 0 1268 } 1269 }; 1270 1271 invoke_fn(OPTEE_SMC_CALL_GET_OS_REVISION, 0, 0, 0, 0, 0, 0, 0, 1272 &res.smccc); 1273 1274 if (res.result.build_id) 1275 pr_info("revision %lu.%lu (%0*lx)", res.result.major, 1276 res.result.minor, (int)sizeof(res.result.build_id) * 2, 1277 res.result.build_id); 1278 else 1279 pr_info("revision %lu.%lu", res.result.major, res.result.minor); 1280 } 1281 1282 static bool optee_msg_api_revision_is_compatible(optee_invoke_fn *invoke_fn) 1283 { 1284 union { 1285 struct arm_smccc_res smccc; 1286 struct optee_smc_calls_revision_result result; 1287 } res; 1288 1289 invoke_fn(OPTEE_SMC_CALLS_REVISION, 0, 0, 0, 0, 0, 0, 0, &res.smccc); 1290 1291 if (res.result.major == OPTEE_MSG_REVISION_MAJOR && 1292 (int)res.result.minor >= OPTEE_MSG_REVISION_MINOR) 1293 return true; 1294 return false; 1295 } 1296 1297 static bool optee_msg_exchange_capabilities(optee_invoke_fn *invoke_fn, 1298 u32 *sec_caps, u32 *max_notif_value, 1299 unsigned int *rpc_param_count) 1300 { 1301 union { 1302 struct arm_smccc_res smccc; 1303 struct optee_smc_exchange_capabilities_result result; 1304 } res; 1305 u32 a1 = 0; 1306 1307 /* 1308 * TODO This isn't enough to tell if it's UP system (from kernel 1309 * point of view) or not, is_smp() returns the information 1310 * needed, but can't be called directly from here. 1311 */ 1312 if (!IS_ENABLED(CONFIG_SMP) || nr_cpu_ids == 1) 1313 a1 |= OPTEE_SMC_NSEC_CAP_UNIPROCESSOR; 1314 1315 invoke_fn(OPTEE_SMC_EXCHANGE_CAPABILITIES, a1, 0, 0, 0, 0, 0, 0, 1316 &res.smccc); 1317 1318 if (res.result.status != OPTEE_SMC_RETURN_OK) 1319 return false; 1320 1321 *sec_caps = res.result.capabilities; 1322 if (*sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) 1323 *max_notif_value = res.result.max_notif_value; 1324 else 1325 *max_notif_value = OPTEE_DEFAULT_MAX_NOTIF_VALUE; 1326 if (*sec_caps & OPTEE_SMC_SEC_CAP_RPC_ARG) 1327 *rpc_param_count = (u8)res.result.data; 1328 else 1329 *rpc_param_count = 0; 1330 1331 return true; 1332 } 1333 1334 static unsigned int optee_msg_get_thread_count(optee_invoke_fn *invoke_fn) 1335 { 1336 struct arm_smccc_res res; 1337 1338 invoke_fn(OPTEE_SMC_GET_THREAD_COUNT, 0, 0, 0, 0, 0, 0, 0, &res); 1339 if (res.a0) 1340 return 0; 1341 return res.a1; 1342 } 1343 1344 static struct tee_shm_pool * 1345 optee_config_shm_memremap(optee_invoke_fn *invoke_fn, void **memremaped_shm) 1346 { 1347 union { 1348 struct arm_smccc_res smccc; 1349 struct optee_smc_get_shm_config_result result; 1350 } res; 1351 unsigned long vaddr; 1352 phys_addr_t paddr; 1353 size_t size; 1354 phys_addr_t begin; 1355 phys_addr_t end; 1356 void *va; 1357 void *rc; 1358 1359 invoke_fn(OPTEE_SMC_GET_SHM_CONFIG, 0, 0, 0, 0, 0, 0, 0, &res.smccc); 1360 if (res.result.status != OPTEE_SMC_RETURN_OK) { 1361 pr_err("static shm service not available\n"); 1362 return ERR_PTR(-ENOENT); 1363 } 1364 1365 if (res.result.settings != OPTEE_SMC_SHM_CACHED) { 1366 pr_err("only normal cached shared memory supported\n"); 1367 return ERR_PTR(-EINVAL); 1368 } 1369 1370 begin = roundup(res.result.start, PAGE_SIZE); 1371 end = rounddown(res.result.start + res.result.size, PAGE_SIZE); 1372 paddr = begin; 1373 size = end - begin; 1374 1375 va = memremap(paddr, size, MEMREMAP_WB); 1376 if (!va) { 1377 pr_err("shared memory ioremap failed\n"); 1378 return ERR_PTR(-EINVAL); 1379 } 1380 vaddr = (unsigned long)va; 1381 1382 rc = tee_shm_pool_alloc_res_mem(vaddr, paddr, size, 1383 OPTEE_MIN_STATIC_POOL_ALIGN); 1384 if (IS_ERR(rc)) 1385 memunmap(va); 1386 else 1387 *memremaped_shm = va; 1388 1389 return rc; 1390 } 1391 1392 /* Simple wrapper functions to be able to use a function pointer */ 1393 static void optee_smccc_smc(unsigned long a0, unsigned long a1, 1394 unsigned long a2, unsigned long a3, 1395 unsigned long a4, unsigned long a5, 1396 unsigned long a6, unsigned long a7, 1397 struct arm_smccc_res *res) 1398 { 1399 arm_smccc_smc(a0, a1, a2, a3, a4, a5, a6, a7, res); 1400 } 1401 1402 static void optee_smccc_hvc(unsigned long a0, unsigned long a1, 1403 unsigned long a2, unsigned long a3, 1404 unsigned long a4, unsigned long a5, 1405 unsigned long a6, unsigned long a7, 1406 struct arm_smccc_res *res) 1407 { 1408 arm_smccc_hvc(a0, a1, a2, a3, a4, a5, a6, a7, res); 1409 } 1410 1411 static optee_invoke_fn *get_invoke_func(struct device *dev) 1412 { 1413 const char *method; 1414 1415 pr_info("probing for conduit method.\n"); 1416 1417 if (device_property_read_string(dev, "method", &method)) { 1418 pr_warn("missing \"method\" property\n"); 1419 return ERR_PTR(-ENXIO); 1420 } 1421 1422 if (!strcmp("hvc", method)) 1423 return optee_smccc_hvc; 1424 else if (!strcmp("smc", method)) 1425 return optee_smccc_smc; 1426 1427 pr_warn("invalid \"method\" property: %s\n", method); 1428 return ERR_PTR(-EINVAL); 1429 } 1430 1431 /* optee_remove - Device Removal Routine 1432 * @pdev: platform device information struct 1433 * 1434 * optee_remove is called by platform subsystem to alert the driver 1435 * that it should release the device 1436 */ 1437 static void optee_smc_remove(struct platform_device *pdev) 1438 { 1439 struct optee *optee = platform_get_drvdata(pdev); 1440 1441 /* 1442 * Ask OP-TEE to free all cached shared memory objects to decrease 1443 * reference counters and also avoid wild pointers in secure world 1444 * into the old shared memory range. 1445 */ 1446 if (!optee->rpc_param_count) 1447 optee_disable_shm_cache(optee); 1448 1449 optee_smc_notif_uninit_irq(optee); 1450 1451 optee_remove_common(optee); 1452 1453 if (optee->smc.memremaped_shm) 1454 memunmap(optee->smc.memremaped_shm); 1455 1456 kfree(optee); 1457 } 1458 1459 /* optee_shutdown - Device Removal Routine 1460 * @pdev: platform device information struct 1461 * 1462 * platform_shutdown is called by the platform subsystem to alert 1463 * the driver that a shutdown, reboot, or kexec is happening and 1464 * device must be disabled. 1465 */ 1466 static void optee_shutdown(struct platform_device *pdev) 1467 { 1468 struct optee *optee = platform_get_drvdata(pdev); 1469 1470 if (!optee->rpc_param_count) 1471 optee_disable_shm_cache(optee); 1472 } 1473 1474 #ifdef CONFIG_OPTEE_INSECURE_LOAD_IMAGE 1475 1476 #define OPTEE_FW_IMAGE "optee/tee.bin" 1477 1478 static optee_invoke_fn *cpuhp_invoke_fn; 1479 1480 static int optee_cpuhp_probe(unsigned int cpu) 1481 { 1482 /* 1483 * Invoking a call on a CPU will cause OP-TEE to perform the required 1484 * setup for that CPU. Just invoke the call to get the UID since that 1485 * has no side effects. 1486 */ 1487 if (optee_msg_api_uid_is_optee_api(cpuhp_invoke_fn)) 1488 return 0; 1489 else 1490 return -EINVAL; 1491 } 1492 1493 static int optee_load_fw(struct platform_device *pdev, 1494 optee_invoke_fn *invoke_fn) 1495 { 1496 const struct firmware *fw = NULL; 1497 struct arm_smccc_res res; 1498 phys_addr_t data_pa; 1499 u8 *data_buf = NULL; 1500 u64 data_size; 1501 u32 data_pa_high, data_pa_low; 1502 u32 data_size_high, data_size_low; 1503 int rc; 1504 int hp_state; 1505 1506 if (!optee_msg_api_uid_is_optee_image_load(invoke_fn)) 1507 return 0; 1508 1509 rc = request_firmware(&fw, OPTEE_FW_IMAGE, &pdev->dev); 1510 if (rc) { 1511 /* 1512 * The firmware in the rootfs will not be accessible until we 1513 * are in the SYSTEM_RUNNING state, so return EPROBE_DEFER until 1514 * that point. 1515 */ 1516 if (system_state < SYSTEM_RUNNING) 1517 return -EPROBE_DEFER; 1518 goto fw_err; 1519 } 1520 1521 data_size = fw->size; 1522 /* 1523 * This uses the GFP_DMA flag to ensure we are allocated memory in the 1524 * 32-bit space since TF-A cannot map memory beyond the 32-bit boundary. 1525 */ 1526 data_buf = kmemdup(fw->data, fw->size, GFP_KERNEL | GFP_DMA); 1527 if (!data_buf) { 1528 rc = -ENOMEM; 1529 goto fw_err; 1530 } 1531 data_pa = virt_to_phys(data_buf); 1532 reg_pair_from_64(&data_pa_high, &data_pa_low, data_pa); 1533 reg_pair_from_64(&data_size_high, &data_size_low, data_size); 1534 goto fw_load; 1535 1536 fw_err: 1537 pr_warn("image loading failed\n"); 1538 data_pa_high = 0; 1539 data_pa_low = 0; 1540 data_size_high = 0; 1541 data_size_low = 0; 1542 1543 fw_load: 1544 /* 1545 * Always invoke the SMC, even if loading the image fails, to indicate 1546 * to EL3 that we have passed the point where it should allow invoking 1547 * this SMC. 1548 */ 1549 pr_warn("OP-TEE image loaded from kernel, this can be insecure"); 1550 invoke_fn(OPTEE_SMC_CALL_LOAD_IMAGE, data_size_high, data_size_low, 1551 data_pa_high, data_pa_low, 0, 0, 0, &res); 1552 if (!rc) 1553 rc = res.a0; 1554 if (fw) 1555 release_firmware(fw); 1556 kfree(data_buf); 1557 1558 if (!rc) { 1559 /* 1560 * We need to initialize OP-TEE on all other running cores as 1561 * well. Any cores that aren't running yet will get initialized 1562 * when they are brought up by the power management functions in 1563 * TF-A which are registered by the OP-TEE SPD. Due to that we 1564 * can un-register the callback right after registering it. 1565 */ 1566 cpuhp_invoke_fn = invoke_fn; 1567 hp_state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "optee:probe", 1568 optee_cpuhp_probe, NULL); 1569 if (hp_state < 0) { 1570 pr_warn("Failed with CPU hotplug setup for OP-TEE"); 1571 return -EINVAL; 1572 } 1573 cpuhp_remove_state(hp_state); 1574 cpuhp_invoke_fn = NULL; 1575 } 1576 1577 return rc; 1578 } 1579 #else 1580 static inline int optee_load_fw(struct platform_device *pdev, 1581 optee_invoke_fn *invoke_fn) 1582 { 1583 return 0; 1584 } 1585 #endif 1586 1587 static int optee_probe(struct platform_device *pdev) 1588 { 1589 optee_invoke_fn *invoke_fn; 1590 struct tee_shm_pool *pool = ERR_PTR(-EINVAL); 1591 struct optee *optee = NULL; 1592 void *memremaped_shm = NULL; 1593 unsigned int rpc_param_count; 1594 unsigned int thread_count; 1595 struct tee_device *teedev; 1596 struct tee_context *ctx; 1597 u32 max_notif_value; 1598 u32 arg_cache_flags; 1599 u32 sec_caps; 1600 int rc; 1601 1602 invoke_fn = get_invoke_func(&pdev->dev); 1603 if (IS_ERR(invoke_fn)) 1604 return PTR_ERR(invoke_fn); 1605 1606 rc = optee_load_fw(pdev, invoke_fn); 1607 if (rc) 1608 return rc; 1609 1610 if (!optee_msg_api_uid_is_optee_api(invoke_fn)) { 1611 pr_warn("api uid mismatch\n"); 1612 return -EINVAL; 1613 } 1614 1615 optee_msg_get_os_revision(invoke_fn); 1616 1617 if (!optee_msg_api_revision_is_compatible(invoke_fn)) { 1618 pr_warn("api revision mismatch\n"); 1619 return -EINVAL; 1620 } 1621 1622 thread_count = optee_msg_get_thread_count(invoke_fn); 1623 if (!optee_msg_exchange_capabilities(invoke_fn, &sec_caps, 1624 &max_notif_value, 1625 &rpc_param_count)) { 1626 pr_warn("capabilities mismatch\n"); 1627 return -EINVAL; 1628 } 1629 1630 /* 1631 * Try to use dynamic shared memory if possible 1632 */ 1633 if (sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM) { 1634 /* 1635 * If we have OPTEE_SMC_SEC_CAP_RPC_ARG we can ask 1636 * optee_get_msg_arg() to pre-register (by having 1637 * OPTEE_SHM_ARG_ALLOC_PRIV cleared) the page used to pass 1638 * an argument struct. 1639 * 1640 * With the page is pre-registered we can use a non-zero 1641 * offset for argument struct, this is indicated with 1642 * OPTEE_SHM_ARG_SHARED. 1643 * 1644 * This means that optee_smc_do_call_with_arg() will use 1645 * OPTEE_SMC_CALL_WITH_REGD_ARG for pre-registered pages. 1646 */ 1647 if (sec_caps & OPTEE_SMC_SEC_CAP_RPC_ARG) 1648 arg_cache_flags = OPTEE_SHM_ARG_SHARED; 1649 else 1650 arg_cache_flags = OPTEE_SHM_ARG_ALLOC_PRIV; 1651 1652 pool = optee_shm_pool_alloc_pages(); 1653 } 1654 1655 /* 1656 * If dynamic shared memory is not available or failed - try static one 1657 */ 1658 if (IS_ERR(pool) && (sec_caps & OPTEE_SMC_SEC_CAP_HAVE_RESERVED_SHM)) { 1659 /* 1660 * The static memory pool can use non-zero page offsets so 1661 * let optee_get_msg_arg() know that with OPTEE_SHM_ARG_SHARED. 1662 * 1663 * optee_get_msg_arg() should not pre-register the 1664 * allocated page used to pass an argument struct, this is 1665 * indicated with OPTEE_SHM_ARG_ALLOC_PRIV. 1666 * 1667 * This means that optee_smc_do_call_with_arg() will use 1668 * OPTEE_SMC_CALL_WITH_ARG if rpc_param_count is 0, else 1669 * OPTEE_SMC_CALL_WITH_RPC_ARG. 1670 */ 1671 arg_cache_flags = OPTEE_SHM_ARG_SHARED | 1672 OPTEE_SHM_ARG_ALLOC_PRIV; 1673 pool = optee_config_shm_memremap(invoke_fn, &memremaped_shm); 1674 } 1675 1676 if (IS_ERR(pool)) 1677 return PTR_ERR(pool); 1678 1679 optee = kzalloc(sizeof(*optee), GFP_KERNEL); 1680 if (!optee) { 1681 rc = -ENOMEM; 1682 goto err_free_pool; 1683 } 1684 1685 optee->ops = &optee_ops; 1686 optee->smc.invoke_fn = invoke_fn; 1687 optee->smc.sec_caps = sec_caps; 1688 optee->rpc_param_count = rpc_param_count; 1689 1690 if (IS_REACHABLE(CONFIG_RPMB) && 1691 (sec_caps & OPTEE_SMC_SEC_CAP_RPMB_PROBE)) 1692 optee->in_kernel_rpmb_routing = true; 1693 1694 teedev = tee_device_alloc(&optee_clnt_desc, NULL, pool, optee); 1695 if (IS_ERR(teedev)) { 1696 rc = PTR_ERR(teedev); 1697 goto err_free_optee; 1698 } 1699 optee->teedev = teedev; 1700 1701 teedev = tee_device_alloc(&optee_supp_desc, NULL, pool, optee); 1702 if (IS_ERR(teedev)) { 1703 rc = PTR_ERR(teedev); 1704 goto err_unreg_teedev; 1705 } 1706 optee->supp_teedev = teedev; 1707 1708 optee_set_dev_group(optee); 1709 1710 rc = tee_device_register(optee->teedev); 1711 if (rc) 1712 goto err_unreg_supp_teedev; 1713 1714 rc = tee_device_register(optee->supp_teedev); 1715 if (rc) 1716 goto err_unreg_supp_teedev; 1717 1718 optee_cq_init(&optee->call_queue, thread_count); 1719 optee_supp_init(&optee->supp); 1720 optee->smc.memremaped_shm = memremaped_shm; 1721 optee->pool = pool; 1722 optee_shm_arg_cache_init(optee, arg_cache_flags); 1723 mutex_init(&optee->rpmb_dev_mutex); 1724 1725 platform_set_drvdata(pdev, optee); 1726 ctx = teedev_open(optee->teedev); 1727 if (IS_ERR(ctx)) { 1728 rc = PTR_ERR(ctx); 1729 goto err_supp_uninit; 1730 } 1731 optee->ctx = ctx; 1732 rc = optee_notif_init(optee, max_notif_value); 1733 if (rc) 1734 goto err_close_ctx; 1735 1736 if (sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) { 1737 unsigned int irq; 1738 1739 rc = platform_get_irq(pdev, 0); 1740 if (rc < 0) { 1741 pr_err("platform_get_irq: ret %d\n", rc); 1742 goto err_notif_uninit; 1743 } 1744 irq = rc; 1745 1746 rc = optee_smc_notif_init_irq(optee, irq); 1747 if (rc) { 1748 irq_dispose_mapping(irq); 1749 goto err_notif_uninit; 1750 } 1751 enable_async_notif(optee->smc.invoke_fn); 1752 pr_info("Asynchronous notifications enabled\n"); 1753 } 1754 1755 /* 1756 * Ensure that there are no pre-existing shm objects before enabling 1757 * the shm cache so that there's no chance of receiving an invalid 1758 * address during shutdown. This could occur, for example, if we're 1759 * kexec booting from an older kernel that did not properly cleanup the 1760 * shm cache. 1761 */ 1762 optee_disable_unmapped_shm_cache(optee); 1763 1764 /* 1765 * Only enable the shm cache in case we're not able to pass the RPC 1766 * arg struct right after the normal arg struct. 1767 */ 1768 if (!optee->rpc_param_count) 1769 optee_enable_shm_cache(optee); 1770 1771 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM) 1772 pr_info("dynamic shared memory is enabled\n"); 1773 1774 rc = optee_enumerate_devices(PTA_CMD_GET_DEVICES); 1775 if (rc) 1776 goto err_disable_shm_cache; 1777 1778 INIT_WORK(&optee->rpmb_scan_bus_work, optee_bus_scan_rpmb); 1779 optee->rpmb_intf.notifier_call = optee_rpmb_intf_rdev; 1780 blocking_notifier_chain_register(&optee_rpmb_intf_added, 1781 &optee->rpmb_intf); 1782 pr_info("initialized driver\n"); 1783 return 0; 1784 1785 err_disable_shm_cache: 1786 if (!optee->rpc_param_count) 1787 optee_disable_shm_cache(optee); 1788 optee_smc_notif_uninit_irq(optee); 1789 optee_unregister_devices(); 1790 err_notif_uninit: 1791 optee_notif_uninit(optee); 1792 err_close_ctx: 1793 teedev_close_context(ctx); 1794 err_supp_uninit: 1795 rpmb_dev_put(optee->rpmb_dev); 1796 mutex_destroy(&optee->rpmb_dev_mutex); 1797 optee_shm_arg_cache_uninit(optee); 1798 optee_supp_uninit(&optee->supp); 1799 mutex_destroy(&optee->call_queue.mutex); 1800 err_unreg_supp_teedev: 1801 tee_device_unregister(optee->supp_teedev); 1802 err_unreg_teedev: 1803 tee_device_unregister(optee->teedev); 1804 err_free_optee: 1805 kfree(optee); 1806 err_free_pool: 1807 tee_shm_pool_free(pool); 1808 if (memremaped_shm) 1809 memunmap(memremaped_shm); 1810 return rc; 1811 } 1812 1813 static const struct of_device_id optee_dt_match[] = { 1814 { .compatible = "linaro,optee-tz" }, 1815 {}, 1816 }; 1817 MODULE_DEVICE_TABLE(of, optee_dt_match); 1818 1819 static struct platform_driver optee_driver = { 1820 .probe = optee_probe, 1821 .remove = optee_smc_remove, 1822 .shutdown = optee_shutdown, 1823 .driver = { 1824 .name = "optee", 1825 .of_match_table = optee_dt_match, 1826 }, 1827 }; 1828 1829 int optee_smc_abi_register(void) 1830 { 1831 return platform_driver_register(&optee_driver); 1832 } 1833 1834 void optee_smc_abi_unregister(void) 1835 { 1836 platform_driver_unregister(&optee_driver); 1837 } 1838