1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015-2021, 2023 Linaro Limited 4 * Copyright (c) 2016, EPAM Systems 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/arm-smccc.h> 10 #include <linux/cpuhotplug.h> 11 #include <linux/errno.h> 12 #include <linux/firmware.h> 13 #include <linux/interrupt.h> 14 #include <linux/io.h> 15 #include <linux/irqdomain.h> 16 #include <linux/kernel.h> 17 #include <linux/mm.h> 18 #include <linux/module.h> 19 #include <linux/of.h> 20 #include <linux/of_irq.h> 21 #include <linux/of_platform.h> 22 #include <linux/platform_device.h> 23 #include <linux/sched.h> 24 #include <linux/slab.h> 25 #include <linux/string.h> 26 #include <linux/tee_core.h> 27 #include <linux/types.h> 28 #include <linux/workqueue.h> 29 #include "optee_private.h" 30 #include "optee_smc.h" 31 #include "optee_rpc_cmd.h" 32 #include <linux/kmemleak.h> 33 #define CREATE_TRACE_POINTS 34 #include "optee_trace.h" 35 36 /* 37 * This file implement the SMC ABI used when communicating with secure world 38 * OP-TEE OS via raw SMCs. 39 * This file is divided into the following sections: 40 * 1. Convert between struct tee_param and struct optee_msg_param 41 * 2. Low level support functions to register shared memory in secure world 42 * 3. Dynamic shared memory pool based on alloc_pages() 43 * 4. Do a normal scheduled call into secure world 44 * 5. Asynchronous notification 45 * 6. Driver initialization. 46 */ 47 48 /* 49 * A typical OP-TEE private shm allocation is 224 bytes (argument struct 50 * with 6 parameters, needed for open session). So with an alignment of 512 51 * we'll waste a bit more than 50%. However, it's only expected that we'll 52 * have a handful of these structs allocated at a time. Most memory will 53 * be allocated aligned to the page size, So all in all this should scale 54 * up and down quite well. 55 */ 56 #define OPTEE_MIN_STATIC_POOL_ALIGN 9 /* 512 bytes aligned */ 57 58 /* SMC ABI considers at most a single TEE firmware */ 59 static unsigned int pcpu_irq_num; 60 61 static int optee_cpuhp_enable_pcpu_irq(unsigned int cpu) 62 { 63 enable_percpu_irq(pcpu_irq_num, IRQ_TYPE_NONE); 64 65 return 0; 66 } 67 68 static int optee_cpuhp_disable_pcpu_irq(unsigned int cpu) 69 { 70 disable_percpu_irq(pcpu_irq_num); 71 72 return 0; 73 } 74 75 /* 76 * 1. Convert between struct tee_param and struct optee_msg_param 77 * 78 * optee_from_msg_param() and optee_to_msg_param() are the main 79 * functions. 80 */ 81 82 static int from_msg_param_tmp_mem(struct tee_param *p, u32 attr, 83 const struct optee_msg_param *mp) 84 { 85 struct tee_shm *shm; 86 phys_addr_t pa; 87 int rc; 88 89 p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT + 90 attr - OPTEE_MSG_ATTR_TYPE_TMEM_INPUT; 91 p->u.memref.size = mp->u.tmem.size; 92 shm = (struct tee_shm *)(unsigned long)mp->u.tmem.shm_ref; 93 if (!shm) { 94 p->u.memref.shm_offs = 0; 95 p->u.memref.shm = NULL; 96 return 0; 97 } 98 99 rc = tee_shm_get_pa(shm, 0, &pa); 100 if (rc) 101 return rc; 102 103 p->u.memref.shm_offs = mp->u.tmem.buf_ptr - pa; 104 p->u.memref.shm = shm; 105 106 return 0; 107 } 108 109 static void from_msg_param_reg_mem(struct tee_param *p, u32 attr, 110 const struct optee_msg_param *mp) 111 { 112 struct tee_shm *shm; 113 114 p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT + 115 attr - OPTEE_MSG_ATTR_TYPE_RMEM_INPUT; 116 p->u.memref.size = mp->u.rmem.size; 117 shm = (struct tee_shm *)(unsigned long)mp->u.rmem.shm_ref; 118 119 if (shm) { 120 p->u.memref.shm_offs = mp->u.rmem.offs; 121 p->u.memref.shm = shm; 122 } else { 123 p->u.memref.shm_offs = 0; 124 p->u.memref.shm = NULL; 125 } 126 } 127 128 /** 129 * optee_from_msg_param() - convert from OPTEE_MSG parameters to 130 * struct tee_param 131 * @optee: main service struct 132 * @params: subsystem internal parameter representation 133 * @num_params: number of elements in the parameter arrays 134 * @msg_params: OPTEE_MSG parameters 135 * Returns 0 on success or <0 on failure 136 */ 137 static int optee_from_msg_param(struct optee *optee, struct tee_param *params, 138 size_t num_params, 139 const struct optee_msg_param *msg_params) 140 { 141 int rc; 142 size_t n; 143 144 for (n = 0; n < num_params; n++) { 145 struct tee_param *p = params + n; 146 const struct optee_msg_param *mp = msg_params + n; 147 u32 attr = mp->attr & OPTEE_MSG_ATTR_TYPE_MASK; 148 149 switch (attr) { 150 case OPTEE_MSG_ATTR_TYPE_NONE: 151 p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE; 152 memset(&p->u, 0, sizeof(p->u)); 153 break; 154 case OPTEE_MSG_ATTR_TYPE_VALUE_INPUT: 155 case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT: 156 case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT: 157 optee_from_msg_param_value(p, attr, mp); 158 break; 159 case OPTEE_MSG_ATTR_TYPE_TMEM_INPUT: 160 case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT: 161 case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT: 162 rc = from_msg_param_tmp_mem(p, attr, mp); 163 if (rc) 164 return rc; 165 break; 166 case OPTEE_MSG_ATTR_TYPE_RMEM_INPUT: 167 case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT: 168 case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT: 169 from_msg_param_reg_mem(p, attr, mp); 170 break; 171 172 default: 173 return -EINVAL; 174 } 175 } 176 return 0; 177 } 178 179 static int to_msg_param_tmp_mem(struct optee_msg_param *mp, 180 const struct tee_param *p) 181 { 182 int rc; 183 phys_addr_t pa; 184 185 mp->attr = OPTEE_MSG_ATTR_TYPE_TMEM_INPUT + p->attr - 186 TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT; 187 188 mp->u.tmem.shm_ref = (unsigned long)p->u.memref.shm; 189 mp->u.tmem.size = p->u.memref.size; 190 191 if (!p->u.memref.shm) { 192 mp->u.tmem.buf_ptr = 0; 193 return 0; 194 } 195 196 rc = tee_shm_get_pa(p->u.memref.shm, p->u.memref.shm_offs, &pa); 197 if (rc) 198 return rc; 199 200 mp->u.tmem.buf_ptr = pa; 201 mp->attr |= OPTEE_MSG_ATTR_CACHE_PREDEFINED << 202 OPTEE_MSG_ATTR_CACHE_SHIFT; 203 204 return 0; 205 } 206 207 static int to_msg_param_reg_mem(struct optee_msg_param *mp, 208 const struct tee_param *p) 209 { 210 mp->attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT + p->attr - 211 TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT; 212 213 mp->u.rmem.shm_ref = (unsigned long)p->u.memref.shm; 214 mp->u.rmem.size = p->u.memref.size; 215 mp->u.rmem.offs = p->u.memref.shm_offs; 216 return 0; 217 } 218 219 /** 220 * optee_to_msg_param() - convert from struct tee_params to OPTEE_MSG parameters 221 * @optee: main service struct 222 * @msg_params: OPTEE_MSG parameters 223 * @num_params: number of elements in the parameter arrays 224 * @params: subsystem itnernal parameter representation 225 * Returns 0 on success or <0 on failure 226 */ 227 static int optee_to_msg_param(struct optee *optee, 228 struct optee_msg_param *msg_params, 229 size_t num_params, const struct tee_param *params) 230 { 231 int rc; 232 size_t n; 233 234 for (n = 0; n < num_params; n++) { 235 const struct tee_param *p = params + n; 236 struct optee_msg_param *mp = msg_params + n; 237 238 switch (p->attr) { 239 case TEE_IOCTL_PARAM_ATTR_TYPE_NONE: 240 mp->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE; 241 memset(&mp->u, 0, sizeof(mp->u)); 242 break; 243 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INPUT: 244 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_OUTPUT: 245 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INOUT: 246 optee_to_msg_param_value(mp, p); 247 break; 248 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT: 249 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_OUTPUT: 250 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INOUT: 251 if (tee_shm_is_dynamic(p->u.memref.shm)) 252 rc = to_msg_param_reg_mem(mp, p); 253 else 254 rc = to_msg_param_tmp_mem(mp, p); 255 if (rc) 256 return rc; 257 break; 258 default: 259 return -EINVAL; 260 } 261 } 262 return 0; 263 } 264 265 /* 266 * 2. Low level support functions to register shared memory in secure world 267 * 268 * Functions to enable/disable shared memory caching in secure world, that 269 * is, lazy freeing of previously allocated shared memory. Freeing is 270 * performed when a request has been compled. 271 * 272 * Functions to register and unregister shared memory both for normal 273 * clients and for tee-supplicant. 274 */ 275 276 /** 277 * optee_enable_shm_cache() - Enables caching of some shared memory allocation 278 * in OP-TEE 279 * @optee: main service struct 280 */ 281 static void optee_enable_shm_cache(struct optee *optee) 282 { 283 struct optee_call_waiter w; 284 285 /* We need to retry until secure world isn't busy. */ 286 optee_cq_wait_init(&optee->call_queue, &w, false); 287 while (true) { 288 struct arm_smccc_res res; 289 290 optee->smc.invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 291 0, 0, 0, 0, 0, 0, 0, &res); 292 if (res.a0 == OPTEE_SMC_RETURN_OK) 293 break; 294 optee_cq_wait_for_completion(&optee->call_queue, &w); 295 } 296 optee_cq_wait_final(&optee->call_queue, &w); 297 } 298 299 /** 300 * __optee_disable_shm_cache() - Disables caching of some shared memory 301 * allocation in OP-TEE 302 * @optee: main service struct 303 * @is_mapped: true if the cached shared memory addresses were mapped by this 304 * kernel, are safe to dereference, and should be freed 305 */ 306 static void __optee_disable_shm_cache(struct optee *optee, bool is_mapped) 307 { 308 struct optee_call_waiter w; 309 310 /* We need to retry until secure world isn't busy. */ 311 optee_cq_wait_init(&optee->call_queue, &w, false); 312 while (true) { 313 union { 314 struct arm_smccc_res smccc; 315 struct optee_smc_disable_shm_cache_result result; 316 } res; 317 318 optee->smc.invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 319 0, 0, 0, 0, 0, 0, 0, &res.smccc); 320 if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL) 321 break; /* All shm's freed */ 322 if (res.result.status == OPTEE_SMC_RETURN_OK) { 323 struct tee_shm *shm; 324 325 /* 326 * Shared memory references that were not mapped by 327 * this kernel must be ignored to prevent a crash. 328 */ 329 if (!is_mapped) 330 continue; 331 332 shm = reg_pair_to_ptr(res.result.shm_upper32, 333 res.result.shm_lower32); 334 tee_shm_free(shm); 335 } else { 336 optee_cq_wait_for_completion(&optee->call_queue, &w); 337 } 338 } 339 optee_cq_wait_final(&optee->call_queue, &w); 340 } 341 342 /** 343 * optee_disable_shm_cache() - Disables caching of mapped shared memory 344 * allocations in OP-TEE 345 * @optee: main service struct 346 */ 347 static void optee_disable_shm_cache(struct optee *optee) 348 { 349 return __optee_disable_shm_cache(optee, true); 350 } 351 352 /** 353 * optee_disable_unmapped_shm_cache() - Disables caching of shared memory 354 * allocations in OP-TEE which are not 355 * currently mapped 356 * @optee: main service struct 357 */ 358 static void optee_disable_unmapped_shm_cache(struct optee *optee) 359 { 360 return __optee_disable_shm_cache(optee, false); 361 } 362 363 #define PAGELIST_ENTRIES_PER_PAGE \ 364 ((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1) 365 366 /* 367 * The final entry in each pagelist page is a pointer to the next 368 * pagelist page. 369 */ 370 static size_t get_pages_list_size(size_t num_entries) 371 { 372 int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE); 373 374 return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE; 375 } 376 377 static u64 *optee_allocate_pages_list(size_t num_entries) 378 { 379 return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL); 380 } 381 382 static void optee_free_pages_list(void *list, size_t num_entries) 383 { 384 free_pages_exact(list, get_pages_list_size(num_entries)); 385 } 386 387 /** 388 * optee_fill_pages_list() - write list of user pages to given shared 389 * buffer. 390 * 391 * @dst: page-aligned buffer where list of pages will be stored 392 * @pages: array of pages that represents shared buffer 393 * @num_pages: number of entries in @pages 394 * @page_offset: offset of user buffer from page start 395 * 396 * @dst should be big enough to hold list of user page addresses and 397 * links to the next pages of buffer 398 */ 399 static void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages, 400 size_t page_offset) 401 { 402 int n = 0; 403 phys_addr_t optee_page; 404 /* 405 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h 406 * for details. 407 */ 408 struct { 409 u64 pages_list[PAGELIST_ENTRIES_PER_PAGE]; 410 u64 next_page_data; 411 } *pages_data; 412 413 /* 414 * Currently OP-TEE uses 4k page size and it does not looks 415 * like this will change in the future. On other hand, there are 416 * no know ARM architectures with page size < 4k. 417 * Thus the next built assert looks redundant. But the following 418 * code heavily relies on this assumption, so it is better be 419 * safe than sorry. 420 */ 421 BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE); 422 423 pages_data = (void *)dst; 424 /* 425 * If linux page is bigger than 4k, and user buffer offset is 426 * larger than 4k/8k/12k/etc this will skip first 4k pages, 427 * because they bear no value data for OP-TEE. 428 */ 429 optee_page = page_to_phys(*pages) + 430 round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE); 431 432 while (true) { 433 pages_data->pages_list[n++] = optee_page; 434 435 if (n == PAGELIST_ENTRIES_PER_PAGE) { 436 pages_data->next_page_data = 437 virt_to_phys(pages_data + 1); 438 pages_data++; 439 n = 0; 440 } 441 442 optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE; 443 if (!(optee_page & ~PAGE_MASK)) { 444 if (!--num_pages) 445 break; 446 pages++; 447 optee_page = page_to_phys(*pages); 448 } 449 } 450 } 451 452 static int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm, 453 struct page **pages, size_t num_pages, 454 unsigned long start) 455 { 456 struct optee *optee = tee_get_drvdata(ctx->teedev); 457 struct optee_msg_arg *msg_arg; 458 struct tee_shm *shm_arg; 459 u64 *pages_list; 460 size_t sz; 461 int rc; 462 463 if (!num_pages) 464 return -EINVAL; 465 466 rc = optee_check_mem_type(start, num_pages); 467 if (rc) 468 return rc; 469 470 pages_list = optee_allocate_pages_list(num_pages); 471 if (!pages_list) 472 return -ENOMEM; 473 474 /* 475 * We're about to register shared memory we can't register shared 476 * memory for this request or there's a catch-22. 477 * 478 * So in this we'll have to do the good old temporary private 479 * allocation instead of using optee_get_msg_arg(). 480 */ 481 sz = optee_msg_arg_size(optee->rpc_param_count); 482 shm_arg = tee_shm_alloc_priv_buf(ctx, sz); 483 if (IS_ERR(shm_arg)) { 484 rc = PTR_ERR(shm_arg); 485 goto out; 486 } 487 msg_arg = tee_shm_get_va(shm_arg, 0); 488 if (IS_ERR(msg_arg)) { 489 rc = PTR_ERR(msg_arg); 490 goto out; 491 } 492 493 optee_fill_pages_list(pages_list, pages, num_pages, 494 tee_shm_get_page_offset(shm)); 495 496 memset(msg_arg, 0, OPTEE_MSG_GET_ARG_SIZE(1)); 497 msg_arg->num_params = 1; 498 msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM; 499 msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT | 500 OPTEE_MSG_ATTR_NONCONTIG; 501 msg_arg->params->u.tmem.shm_ref = (unsigned long)shm; 502 msg_arg->params->u.tmem.size = tee_shm_get_size(shm); 503 /* 504 * In the least bits of msg_arg->params->u.tmem.buf_ptr we 505 * store buffer offset from 4k page, as described in OP-TEE ABI. 506 */ 507 msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) | 508 (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1)); 509 510 if (optee->ops->do_call_with_arg(ctx, shm_arg, 0, false) || 511 msg_arg->ret != TEEC_SUCCESS) 512 rc = -EINVAL; 513 514 tee_shm_free(shm_arg); 515 out: 516 optee_free_pages_list(pages_list, num_pages); 517 return rc; 518 } 519 520 static int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm) 521 { 522 struct optee *optee = tee_get_drvdata(ctx->teedev); 523 struct optee_msg_arg *msg_arg; 524 struct tee_shm *shm_arg; 525 int rc = 0; 526 size_t sz; 527 528 /* 529 * We're about to unregister shared memory and we may not be able 530 * register shared memory for this request in case we're called 531 * from optee_shm_arg_cache_uninit(). 532 * 533 * So in order to keep things simple in this function just as in 534 * optee_shm_register() we'll use temporary private allocation 535 * instead of using optee_get_msg_arg(). 536 */ 537 sz = optee_msg_arg_size(optee->rpc_param_count); 538 shm_arg = tee_shm_alloc_priv_buf(ctx, sz); 539 if (IS_ERR(shm_arg)) 540 return PTR_ERR(shm_arg); 541 msg_arg = tee_shm_get_va(shm_arg, 0); 542 if (IS_ERR(msg_arg)) { 543 rc = PTR_ERR(msg_arg); 544 goto out; 545 } 546 547 memset(msg_arg, 0, sz); 548 msg_arg->num_params = 1; 549 msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM; 550 msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT; 551 msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm; 552 553 if (optee->ops->do_call_with_arg(ctx, shm_arg, 0, false) || 554 msg_arg->ret != TEEC_SUCCESS) 555 rc = -EINVAL; 556 out: 557 tee_shm_free(shm_arg); 558 return rc; 559 } 560 561 static int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm, 562 struct page **pages, size_t num_pages, 563 unsigned long start) 564 { 565 /* 566 * We don't want to register supplicant memory in OP-TEE. 567 * Instead information about it will be passed in RPC code. 568 */ 569 return optee_check_mem_type(start, num_pages); 570 } 571 572 static int optee_shm_unregister_supp(struct tee_context *ctx, 573 struct tee_shm *shm) 574 { 575 return 0; 576 } 577 578 /* 579 * 3. Dynamic shared memory pool based on alloc_pages() 580 * 581 * Implements an OP-TEE specific shared memory pool which is used 582 * when dynamic shared memory is supported by secure world. 583 * 584 * The main function is optee_shm_pool_alloc_pages(). 585 */ 586 587 static int pool_op_alloc(struct tee_shm_pool *pool, 588 struct tee_shm *shm, size_t size, size_t align) 589 { 590 /* 591 * Shared memory private to the OP-TEE driver doesn't need 592 * to be registered with OP-TEE. 593 */ 594 if (shm->flags & TEE_SHM_PRIV) 595 return tee_dyn_shm_alloc_helper(shm, size, align, NULL); 596 597 return tee_dyn_shm_alloc_helper(shm, size, align, optee_shm_register); 598 } 599 600 static void pool_op_free(struct tee_shm_pool *pool, 601 struct tee_shm *shm) 602 { 603 if (!(shm->flags & TEE_SHM_PRIV)) 604 tee_dyn_shm_free_helper(shm, optee_shm_unregister); 605 else 606 tee_dyn_shm_free_helper(shm, NULL); 607 } 608 609 static void pool_op_destroy_pool(struct tee_shm_pool *pool) 610 { 611 kfree(pool); 612 } 613 614 static const struct tee_shm_pool_ops pool_ops = { 615 .alloc = pool_op_alloc, 616 .free = pool_op_free, 617 .destroy_pool = pool_op_destroy_pool, 618 }; 619 620 /** 621 * optee_shm_pool_alloc_pages() - create page-based allocator pool 622 * 623 * This pool is used when OP-TEE supports dymanic SHM. In this case 624 * command buffers and such are allocated from kernel's own memory. 625 */ 626 static struct tee_shm_pool *optee_shm_pool_alloc_pages(void) 627 { 628 struct tee_shm_pool *pool = kzalloc(sizeof(*pool), GFP_KERNEL); 629 630 if (!pool) 631 return ERR_PTR(-ENOMEM); 632 633 pool->ops = &pool_ops; 634 635 return pool; 636 } 637 638 /* 639 * 4. Do a normal scheduled call into secure world 640 * 641 * The function optee_smc_do_call_with_arg() performs a normal scheduled 642 * call into secure world. During this call may normal world request help 643 * from normal world using RPCs, Remote Procedure Calls. This includes 644 * delivery of non-secure interrupts to for instance allow rescheduling of 645 * the current task. 646 */ 647 648 static void handle_rpc_func_cmd_shm_free(struct tee_context *ctx, 649 struct optee_msg_arg *arg) 650 { 651 struct tee_shm *shm; 652 653 arg->ret_origin = TEEC_ORIGIN_COMMS; 654 655 if (arg->num_params != 1 || 656 arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) { 657 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 658 return; 659 } 660 661 shm = (struct tee_shm *)(unsigned long)arg->params[0].u.value.b; 662 switch (arg->params[0].u.value.a) { 663 case OPTEE_RPC_SHM_TYPE_APPL: 664 optee_rpc_cmd_free_suppl(ctx, shm); 665 break; 666 case OPTEE_RPC_SHM_TYPE_KERNEL: 667 tee_shm_free(shm); 668 break; 669 default: 670 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 671 } 672 arg->ret = TEEC_SUCCESS; 673 } 674 675 static void handle_rpc_func_cmd_shm_alloc(struct tee_context *ctx, 676 struct optee *optee, 677 struct optee_msg_arg *arg, 678 struct optee_call_ctx *call_ctx) 679 { 680 struct tee_shm *shm; 681 size_t sz; 682 size_t n; 683 struct page **pages; 684 size_t page_count; 685 686 arg->ret_origin = TEEC_ORIGIN_COMMS; 687 688 if (!arg->num_params || 689 arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) { 690 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 691 return; 692 } 693 694 for (n = 1; n < arg->num_params; n++) { 695 if (arg->params[n].attr != OPTEE_MSG_ATTR_TYPE_NONE) { 696 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 697 return; 698 } 699 } 700 701 sz = arg->params[0].u.value.b; 702 switch (arg->params[0].u.value.a) { 703 case OPTEE_RPC_SHM_TYPE_APPL: 704 shm = optee_rpc_cmd_alloc_suppl(ctx, sz); 705 break; 706 case OPTEE_RPC_SHM_TYPE_KERNEL: 707 shm = tee_shm_alloc_priv_buf(optee->ctx, sz); 708 break; 709 default: 710 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 711 return; 712 } 713 714 if (IS_ERR(shm)) { 715 arg->ret = TEEC_ERROR_OUT_OF_MEMORY; 716 return; 717 } 718 719 /* 720 * If there are pages it's dynamically allocated shared memory (not 721 * from the reserved shared memory pool) and needs to be 722 * registered. 723 */ 724 pages = tee_shm_get_pages(shm, &page_count); 725 if (pages) { 726 u64 *pages_list; 727 728 pages_list = optee_allocate_pages_list(page_count); 729 if (!pages_list) { 730 arg->ret = TEEC_ERROR_OUT_OF_MEMORY; 731 goto bad; 732 } 733 734 call_ctx->pages_list = pages_list; 735 call_ctx->num_entries = page_count; 736 737 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT | 738 OPTEE_MSG_ATTR_NONCONTIG; 739 /* 740 * In the least bits of u.tmem.buf_ptr we store buffer offset 741 * from 4k page, as described in OP-TEE ABI. 742 */ 743 arg->params[0].u.tmem.buf_ptr = virt_to_phys(pages_list) | 744 (tee_shm_get_page_offset(shm) & 745 (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1)); 746 747 optee_fill_pages_list(pages_list, pages, page_count, 748 tee_shm_get_page_offset(shm)); 749 } else { 750 phys_addr_t pa; 751 752 if (tee_shm_get_pa(shm, 0, &pa)) { 753 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 754 goto bad; 755 } 756 757 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT; 758 arg->params[0].u.tmem.buf_ptr = pa; 759 } 760 arg->params[0].u.tmem.size = tee_shm_get_size(shm); 761 arg->params[0].u.tmem.shm_ref = (unsigned long)shm; 762 763 arg->ret = TEEC_SUCCESS; 764 return; 765 bad: 766 tee_shm_free(shm); 767 } 768 769 static void free_pages_list(struct optee_call_ctx *call_ctx) 770 { 771 if (call_ctx->pages_list) { 772 optee_free_pages_list(call_ctx->pages_list, 773 call_ctx->num_entries); 774 call_ctx->pages_list = NULL; 775 call_ctx->num_entries = 0; 776 } 777 } 778 779 static void optee_rpc_finalize_call(struct optee_call_ctx *call_ctx) 780 { 781 free_pages_list(call_ctx); 782 } 783 784 static void handle_rpc_func_cmd(struct tee_context *ctx, struct optee *optee, 785 struct optee_msg_arg *arg, 786 struct optee_call_ctx *call_ctx) 787 { 788 789 switch (arg->cmd) { 790 case OPTEE_RPC_CMD_SHM_ALLOC: 791 free_pages_list(call_ctx); 792 handle_rpc_func_cmd_shm_alloc(ctx, optee, arg, call_ctx); 793 break; 794 case OPTEE_RPC_CMD_SHM_FREE: 795 handle_rpc_func_cmd_shm_free(ctx, arg); 796 break; 797 default: 798 optee_rpc_cmd(ctx, optee, arg); 799 } 800 } 801 802 /** 803 * optee_handle_rpc() - handle RPC from secure world 804 * @ctx: context doing the RPC 805 * @rpc_arg: pointer to RPC arguments if any, or NULL if none 806 * @param: value of registers for the RPC 807 * @call_ctx: call context. Preserved during one OP-TEE invocation 808 * 809 * Result of RPC is written back into @param. 810 */ 811 static void optee_handle_rpc(struct tee_context *ctx, 812 struct optee_msg_arg *rpc_arg, 813 struct optee_rpc_param *param, 814 struct optee_call_ctx *call_ctx) 815 { 816 struct tee_device *teedev = ctx->teedev; 817 struct optee *optee = tee_get_drvdata(teedev); 818 struct optee_msg_arg *arg; 819 struct tee_shm *shm; 820 phys_addr_t pa; 821 822 switch (OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0)) { 823 case OPTEE_SMC_RPC_FUNC_ALLOC: 824 shm = tee_shm_alloc_priv_buf(optee->ctx, param->a1); 825 if (!IS_ERR(shm) && !tee_shm_get_pa(shm, 0, &pa)) { 826 reg_pair_from_64(¶m->a1, ¶m->a2, pa); 827 reg_pair_from_64(¶m->a4, ¶m->a5, 828 (unsigned long)shm); 829 } else { 830 param->a1 = 0; 831 param->a2 = 0; 832 param->a4 = 0; 833 param->a5 = 0; 834 } 835 kmemleak_not_leak(shm); 836 break; 837 case OPTEE_SMC_RPC_FUNC_FREE: 838 shm = reg_pair_to_ptr(param->a1, param->a2); 839 tee_shm_free(shm); 840 break; 841 case OPTEE_SMC_RPC_FUNC_FOREIGN_INTR: 842 /* 843 * A foreign interrupt was raised while secure world was 844 * executing, since they are handled in Linux a dummy RPC is 845 * performed to let Linux take the interrupt through the normal 846 * vector. 847 */ 848 break; 849 case OPTEE_SMC_RPC_FUNC_CMD: 850 if (rpc_arg) { 851 arg = rpc_arg; 852 } else { 853 shm = reg_pair_to_ptr(param->a1, param->a2); 854 arg = tee_shm_get_va(shm, 0); 855 if (IS_ERR(arg)) { 856 pr_err("%s: tee_shm_get_va %p failed\n", 857 __func__, shm); 858 break; 859 } 860 } 861 862 handle_rpc_func_cmd(ctx, optee, arg, call_ctx); 863 break; 864 default: 865 pr_warn("Unknown RPC func 0x%x\n", 866 (u32)OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0)); 867 break; 868 } 869 870 param->a0 = OPTEE_SMC_CALL_RETURN_FROM_RPC; 871 } 872 873 /** 874 * optee_smc_do_call_with_arg() - Do an SMC to OP-TEE in secure world 875 * @ctx: calling context 876 * @shm: shared memory holding the message to pass to secure world 877 * @offs: offset of the message in @shm 878 * @system_thread: true if caller requests TEE system thread support 879 * 880 * Does and SMC to OP-TEE in secure world and handles eventual resulting 881 * Remote Procedure Calls (RPC) from OP-TEE. 882 * 883 * Returns return code from secure world, 0 is OK 884 */ 885 static int optee_smc_do_call_with_arg(struct tee_context *ctx, 886 struct tee_shm *shm, u_int offs, 887 bool system_thread) 888 { 889 struct optee *optee = tee_get_drvdata(ctx->teedev); 890 struct optee_call_waiter w; 891 struct optee_rpc_param param = { }; 892 struct optee_call_ctx call_ctx = { }; 893 struct optee_msg_arg *rpc_arg = NULL; 894 int rc; 895 896 if (optee->rpc_param_count) { 897 struct optee_msg_arg *arg; 898 unsigned int rpc_arg_offs; 899 900 arg = tee_shm_get_va(shm, offs); 901 if (IS_ERR(arg)) 902 return PTR_ERR(arg); 903 904 rpc_arg_offs = OPTEE_MSG_GET_ARG_SIZE(arg->num_params); 905 rpc_arg = tee_shm_get_va(shm, offs + rpc_arg_offs); 906 if (IS_ERR(rpc_arg)) 907 return PTR_ERR(rpc_arg); 908 } 909 910 if (rpc_arg && tee_shm_is_dynamic(shm)) { 911 param.a0 = OPTEE_SMC_CALL_WITH_REGD_ARG; 912 reg_pair_from_64(¶m.a1, ¶m.a2, (u_long)shm); 913 param.a3 = offs; 914 } else { 915 phys_addr_t parg; 916 917 rc = tee_shm_get_pa(shm, offs, &parg); 918 if (rc) 919 return rc; 920 921 if (rpc_arg) 922 param.a0 = OPTEE_SMC_CALL_WITH_RPC_ARG; 923 else 924 param.a0 = OPTEE_SMC_CALL_WITH_ARG; 925 reg_pair_from_64(¶m.a1, ¶m.a2, parg); 926 } 927 /* Initialize waiter */ 928 optee_cq_wait_init(&optee->call_queue, &w, system_thread); 929 while (true) { 930 struct arm_smccc_res res; 931 932 trace_optee_invoke_fn_begin(¶m); 933 optee->smc.invoke_fn(param.a0, param.a1, param.a2, param.a3, 934 param.a4, param.a5, param.a6, param.a7, 935 &res); 936 trace_optee_invoke_fn_end(¶m, &res); 937 938 if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) { 939 /* 940 * Out of threads in secure world, wait for a thread 941 * become available. 942 */ 943 optee_cq_wait_for_completion(&optee->call_queue, &w); 944 } else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) { 945 cond_resched(); 946 param.a0 = res.a0; 947 param.a1 = res.a1; 948 param.a2 = res.a2; 949 param.a3 = res.a3; 950 optee_handle_rpc(ctx, rpc_arg, ¶m, &call_ctx); 951 } else { 952 rc = res.a0; 953 break; 954 } 955 } 956 957 optee_rpc_finalize_call(&call_ctx); 958 /* 959 * We're done with our thread in secure world, if there's any 960 * thread waiters wake up one. 961 */ 962 optee_cq_wait_final(&optee->call_queue, &w); 963 964 return rc; 965 } 966 967 /* 968 * 5. Asynchronous notification 969 */ 970 971 static u32 get_async_notif_value(optee_invoke_fn *invoke_fn, bool *value_valid, 972 bool *value_pending) 973 { 974 struct arm_smccc_res res; 975 976 invoke_fn(OPTEE_SMC_GET_ASYNC_NOTIF_VALUE, 0, 0, 0, 0, 0, 0, 0, &res); 977 978 if (res.a0) { 979 *value_valid = false; 980 return 0; 981 } 982 *value_valid = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_VALID); 983 *value_pending = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_PENDING); 984 return res.a1; 985 } 986 987 static irqreturn_t irq_handler(struct optee *optee) 988 { 989 bool do_bottom_half = false; 990 bool value_valid; 991 bool value_pending; 992 u32 value; 993 994 do { 995 value = get_async_notif_value(optee->smc.invoke_fn, 996 &value_valid, &value_pending); 997 if (!value_valid) 998 break; 999 1000 if (value == OPTEE_SMC_ASYNC_NOTIF_VALUE_DO_BOTTOM_HALF) 1001 do_bottom_half = true; 1002 else 1003 optee_notif_send(optee, value); 1004 } while (value_pending); 1005 1006 if (do_bottom_half) 1007 return IRQ_WAKE_THREAD; 1008 return IRQ_HANDLED; 1009 } 1010 1011 static irqreturn_t notif_irq_handler(int irq, void *dev_id) 1012 { 1013 struct optee *optee = dev_id; 1014 1015 return irq_handler(optee); 1016 } 1017 1018 static irqreturn_t notif_irq_thread_fn(int irq, void *dev_id) 1019 { 1020 struct optee *optee = dev_id; 1021 1022 optee_do_bottom_half(optee->ctx); 1023 1024 return IRQ_HANDLED; 1025 } 1026 1027 static int init_irq(struct optee *optee, u_int irq) 1028 { 1029 int rc; 1030 1031 rc = request_threaded_irq(irq, notif_irq_handler, 1032 notif_irq_thread_fn, 1033 0, "optee_notification", optee); 1034 if (rc) 1035 return rc; 1036 1037 optee->smc.notif_irq = irq; 1038 1039 return 0; 1040 } 1041 1042 static irqreturn_t notif_pcpu_irq_handler(int irq, void *dev_id) 1043 { 1044 struct optee_pcpu *pcpu = dev_id; 1045 struct optee *optee = pcpu->optee; 1046 1047 if (irq_handler(optee) == IRQ_WAKE_THREAD) 1048 queue_work(optee->smc.notif_pcpu_wq, 1049 &optee->smc.notif_pcpu_work); 1050 1051 return IRQ_HANDLED; 1052 } 1053 1054 static void notif_pcpu_irq_work_fn(struct work_struct *work) 1055 { 1056 struct optee_smc *optee_smc = container_of(work, struct optee_smc, 1057 notif_pcpu_work); 1058 struct optee *optee = container_of(optee_smc, struct optee, smc); 1059 1060 optee_do_bottom_half(optee->ctx); 1061 } 1062 1063 static int init_pcpu_irq(struct optee *optee, u_int irq) 1064 { 1065 struct optee_pcpu __percpu *optee_pcpu; 1066 int cpu, rc; 1067 1068 optee_pcpu = alloc_percpu(struct optee_pcpu); 1069 if (!optee_pcpu) 1070 return -ENOMEM; 1071 1072 for_each_present_cpu(cpu) 1073 per_cpu_ptr(optee_pcpu, cpu)->optee = optee; 1074 1075 rc = request_percpu_irq(irq, notif_pcpu_irq_handler, 1076 "optee_pcpu_notification", optee_pcpu); 1077 if (rc) 1078 goto err_free_pcpu; 1079 1080 INIT_WORK(&optee->smc.notif_pcpu_work, notif_pcpu_irq_work_fn); 1081 optee->smc.notif_pcpu_wq = create_workqueue("optee_pcpu_notification"); 1082 if (!optee->smc.notif_pcpu_wq) { 1083 rc = -EINVAL; 1084 goto err_free_pcpu_irq; 1085 } 1086 1087 optee->smc.optee_pcpu = optee_pcpu; 1088 optee->smc.notif_irq = irq; 1089 1090 pcpu_irq_num = irq; 1091 rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "optee/pcpu-notif:starting", 1092 optee_cpuhp_enable_pcpu_irq, 1093 optee_cpuhp_disable_pcpu_irq); 1094 if (!rc) 1095 rc = -EINVAL; 1096 if (rc < 0) 1097 goto err_free_pcpu_irq; 1098 1099 optee->smc.notif_cpuhp_state = rc; 1100 1101 return 0; 1102 1103 err_free_pcpu_irq: 1104 free_percpu_irq(irq, optee_pcpu); 1105 err_free_pcpu: 1106 free_percpu(optee_pcpu); 1107 1108 return rc; 1109 } 1110 1111 static int optee_smc_notif_init_irq(struct optee *optee, u_int irq) 1112 { 1113 if (irq_is_percpu_devid(irq)) 1114 return init_pcpu_irq(optee, irq); 1115 else 1116 return init_irq(optee, irq); 1117 } 1118 1119 static void uninit_pcpu_irq(struct optee *optee) 1120 { 1121 cpuhp_remove_state(optee->smc.notif_cpuhp_state); 1122 1123 destroy_workqueue(optee->smc.notif_pcpu_wq); 1124 1125 free_percpu_irq(optee->smc.notif_irq, optee->smc.optee_pcpu); 1126 free_percpu(optee->smc.optee_pcpu); 1127 } 1128 1129 static void optee_smc_notif_uninit_irq(struct optee *optee) 1130 { 1131 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) { 1132 optee_stop_async_notif(optee->ctx); 1133 if (optee->smc.notif_irq) { 1134 if (irq_is_percpu_devid(optee->smc.notif_irq)) 1135 uninit_pcpu_irq(optee); 1136 else 1137 free_irq(optee->smc.notif_irq, optee); 1138 1139 irq_dispose_mapping(optee->smc.notif_irq); 1140 } 1141 } 1142 } 1143 1144 /* 1145 * 6. Driver initialization 1146 * 1147 * During driver initialization is secure world probed to find out which 1148 * features it supports so the driver can be initialized with a matching 1149 * configuration. This involves for instance support for dynamic shared 1150 * memory instead of a static memory carvout. 1151 */ 1152 1153 static void optee_get_version(struct tee_device *teedev, 1154 struct tee_ioctl_version_data *vers) 1155 { 1156 struct tee_ioctl_version_data v = { 1157 .impl_id = TEE_IMPL_ID_OPTEE, 1158 .impl_caps = TEE_OPTEE_CAP_TZ, 1159 .gen_caps = TEE_GEN_CAP_GP, 1160 }; 1161 struct optee *optee = tee_get_drvdata(teedev); 1162 1163 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM) 1164 v.gen_caps |= TEE_GEN_CAP_REG_MEM; 1165 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL) 1166 v.gen_caps |= TEE_GEN_CAP_MEMREF_NULL; 1167 *vers = v; 1168 } 1169 1170 static int optee_smc_open(struct tee_context *ctx) 1171 { 1172 struct optee *optee = tee_get_drvdata(ctx->teedev); 1173 u32 sec_caps = optee->smc.sec_caps; 1174 1175 return optee_open(ctx, sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL); 1176 } 1177 1178 static const struct tee_driver_ops optee_clnt_ops = { 1179 .get_version = optee_get_version, 1180 .open = optee_smc_open, 1181 .release = optee_release, 1182 .open_session = optee_open_session, 1183 .close_session = optee_close_session, 1184 .system_session = optee_system_session, 1185 .invoke_func = optee_invoke_func, 1186 .cancel_req = optee_cancel_req, 1187 .shm_register = optee_shm_register, 1188 .shm_unregister = optee_shm_unregister, 1189 }; 1190 1191 static const struct tee_desc optee_clnt_desc = { 1192 .name = DRIVER_NAME "-clnt", 1193 .ops = &optee_clnt_ops, 1194 .owner = THIS_MODULE, 1195 }; 1196 1197 static const struct tee_driver_ops optee_supp_ops = { 1198 .get_version = optee_get_version, 1199 .open = optee_smc_open, 1200 .release = optee_release_supp, 1201 .supp_recv = optee_supp_recv, 1202 .supp_send = optee_supp_send, 1203 .shm_register = optee_shm_register_supp, 1204 .shm_unregister = optee_shm_unregister_supp, 1205 }; 1206 1207 static const struct tee_desc optee_supp_desc = { 1208 .name = DRIVER_NAME "-supp", 1209 .ops = &optee_supp_ops, 1210 .owner = THIS_MODULE, 1211 .flags = TEE_DESC_PRIVILEGED, 1212 }; 1213 1214 static const struct optee_ops optee_ops = { 1215 .do_call_with_arg = optee_smc_do_call_with_arg, 1216 .to_msg_param = optee_to_msg_param, 1217 .from_msg_param = optee_from_msg_param, 1218 }; 1219 1220 static int enable_async_notif(optee_invoke_fn *invoke_fn) 1221 { 1222 struct arm_smccc_res res; 1223 1224 invoke_fn(OPTEE_SMC_ENABLE_ASYNC_NOTIF, 0, 0, 0, 0, 0, 0, 0, &res); 1225 1226 if (res.a0) 1227 return -EINVAL; 1228 return 0; 1229 } 1230 1231 static bool optee_msg_api_uid_is_optee_api(optee_invoke_fn *invoke_fn) 1232 { 1233 struct arm_smccc_res res; 1234 1235 invoke_fn(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res); 1236 1237 if (res.a0 == OPTEE_MSG_UID_0 && res.a1 == OPTEE_MSG_UID_1 && 1238 res.a2 == OPTEE_MSG_UID_2 && res.a3 == OPTEE_MSG_UID_3) 1239 return true; 1240 return false; 1241 } 1242 1243 #ifdef CONFIG_OPTEE_INSECURE_LOAD_IMAGE 1244 static bool optee_msg_api_uid_is_optee_image_load(optee_invoke_fn *invoke_fn) 1245 { 1246 struct arm_smccc_res res; 1247 1248 invoke_fn(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res); 1249 1250 if (res.a0 == OPTEE_MSG_IMAGE_LOAD_UID_0 && 1251 res.a1 == OPTEE_MSG_IMAGE_LOAD_UID_1 && 1252 res.a2 == OPTEE_MSG_IMAGE_LOAD_UID_2 && 1253 res.a3 == OPTEE_MSG_IMAGE_LOAD_UID_3) 1254 return true; 1255 return false; 1256 } 1257 #endif 1258 1259 static void optee_msg_get_os_revision(optee_invoke_fn *invoke_fn) 1260 { 1261 union { 1262 struct arm_smccc_res smccc; 1263 struct optee_smc_call_get_os_revision_result result; 1264 } res = { 1265 .result = { 1266 .build_id = 0 1267 } 1268 }; 1269 1270 invoke_fn(OPTEE_SMC_CALL_GET_OS_REVISION, 0, 0, 0, 0, 0, 0, 0, 1271 &res.smccc); 1272 1273 if (res.result.build_id) 1274 pr_info("revision %lu.%lu (%08lx)", res.result.major, 1275 res.result.minor, res.result.build_id); 1276 else 1277 pr_info("revision %lu.%lu", res.result.major, res.result.minor); 1278 } 1279 1280 static bool optee_msg_api_revision_is_compatible(optee_invoke_fn *invoke_fn) 1281 { 1282 union { 1283 struct arm_smccc_res smccc; 1284 struct optee_smc_calls_revision_result result; 1285 } res; 1286 1287 invoke_fn(OPTEE_SMC_CALLS_REVISION, 0, 0, 0, 0, 0, 0, 0, &res.smccc); 1288 1289 if (res.result.major == OPTEE_MSG_REVISION_MAJOR && 1290 (int)res.result.minor >= OPTEE_MSG_REVISION_MINOR) 1291 return true; 1292 return false; 1293 } 1294 1295 static bool optee_msg_exchange_capabilities(optee_invoke_fn *invoke_fn, 1296 u32 *sec_caps, u32 *max_notif_value, 1297 unsigned int *rpc_param_count) 1298 { 1299 union { 1300 struct arm_smccc_res smccc; 1301 struct optee_smc_exchange_capabilities_result result; 1302 } res; 1303 u32 a1 = 0; 1304 1305 /* 1306 * TODO This isn't enough to tell if it's UP system (from kernel 1307 * point of view) or not, is_smp() returns the information 1308 * needed, but can't be called directly from here. 1309 */ 1310 if (!IS_ENABLED(CONFIG_SMP) || nr_cpu_ids == 1) 1311 a1 |= OPTEE_SMC_NSEC_CAP_UNIPROCESSOR; 1312 1313 invoke_fn(OPTEE_SMC_EXCHANGE_CAPABILITIES, a1, 0, 0, 0, 0, 0, 0, 1314 &res.smccc); 1315 1316 if (res.result.status != OPTEE_SMC_RETURN_OK) 1317 return false; 1318 1319 *sec_caps = res.result.capabilities; 1320 if (*sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) 1321 *max_notif_value = res.result.max_notif_value; 1322 else 1323 *max_notif_value = OPTEE_DEFAULT_MAX_NOTIF_VALUE; 1324 if (*sec_caps & OPTEE_SMC_SEC_CAP_RPC_ARG) 1325 *rpc_param_count = (u8)res.result.data; 1326 else 1327 *rpc_param_count = 0; 1328 1329 return true; 1330 } 1331 1332 static unsigned int optee_msg_get_thread_count(optee_invoke_fn *invoke_fn) 1333 { 1334 struct arm_smccc_res res; 1335 1336 invoke_fn(OPTEE_SMC_GET_THREAD_COUNT, 0, 0, 0, 0, 0, 0, 0, &res); 1337 if (res.a0) 1338 return 0; 1339 return res.a1; 1340 } 1341 1342 static struct tee_shm_pool * 1343 optee_config_shm_memremap(optee_invoke_fn *invoke_fn, void **memremaped_shm) 1344 { 1345 union { 1346 struct arm_smccc_res smccc; 1347 struct optee_smc_get_shm_config_result result; 1348 } res; 1349 unsigned long vaddr; 1350 phys_addr_t paddr; 1351 size_t size; 1352 phys_addr_t begin; 1353 phys_addr_t end; 1354 void *va; 1355 void *rc; 1356 1357 invoke_fn(OPTEE_SMC_GET_SHM_CONFIG, 0, 0, 0, 0, 0, 0, 0, &res.smccc); 1358 if (res.result.status != OPTEE_SMC_RETURN_OK) { 1359 pr_err("static shm service not available\n"); 1360 return ERR_PTR(-ENOENT); 1361 } 1362 1363 if (res.result.settings != OPTEE_SMC_SHM_CACHED) { 1364 pr_err("only normal cached shared memory supported\n"); 1365 return ERR_PTR(-EINVAL); 1366 } 1367 1368 begin = roundup(res.result.start, PAGE_SIZE); 1369 end = rounddown(res.result.start + res.result.size, PAGE_SIZE); 1370 paddr = begin; 1371 size = end - begin; 1372 1373 va = memremap(paddr, size, MEMREMAP_WB); 1374 if (!va) { 1375 pr_err("shared memory ioremap failed\n"); 1376 return ERR_PTR(-EINVAL); 1377 } 1378 vaddr = (unsigned long)va; 1379 1380 rc = tee_shm_pool_alloc_res_mem(vaddr, paddr, size, 1381 OPTEE_MIN_STATIC_POOL_ALIGN); 1382 if (IS_ERR(rc)) 1383 memunmap(va); 1384 else 1385 *memremaped_shm = va; 1386 1387 return rc; 1388 } 1389 1390 /* Simple wrapper functions to be able to use a function pointer */ 1391 static void optee_smccc_smc(unsigned long a0, unsigned long a1, 1392 unsigned long a2, unsigned long a3, 1393 unsigned long a4, unsigned long a5, 1394 unsigned long a6, unsigned long a7, 1395 struct arm_smccc_res *res) 1396 { 1397 arm_smccc_smc(a0, a1, a2, a3, a4, a5, a6, a7, res); 1398 } 1399 1400 static void optee_smccc_hvc(unsigned long a0, unsigned long a1, 1401 unsigned long a2, unsigned long a3, 1402 unsigned long a4, unsigned long a5, 1403 unsigned long a6, unsigned long a7, 1404 struct arm_smccc_res *res) 1405 { 1406 arm_smccc_hvc(a0, a1, a2, a3, a4, a5, a6, a7, res); 1407 } 1408 1409 static optee_invoke_fn *get_invoke_func(struct device *dev) 1410 { 1411 const char *method; 1412 1413 pr_info("probing for conduit method.\n"); 1414 1415 if (device_property_read_string(dev, "method", &method)) { 1416 pr_warn("missing \"method\" property\n"); 1417 return ERR_PTR(-ENXIO); 1418 } 1419 1420 if (!strcmp("hvc", method)) 1421 return optee_smccc_hvc; 1422 else if (!strcmp("smc", method)) 1423 return optee_smccc_smc; 1424 1425 pr_warn("invalid \"method\" property: %s\n", method); 1426 return ERR_PTR(-EINVAL); 1427 } 1428 1429 /* optee_remove - Device Removal Routine 1430 * @pdev: platform device information struct 1431 * 1432 * optee_remove is called by platform subsystem to alert the driver 1433 * that it should release the device 1434 */ 1435 static void optee_smc_remove(struct platform_device *pdev) 1436 { 1437 struct optee *optee = platform_get_drvdata(pdev); 1438 1439 /* 1440 * Ask OP-TEE to free all cached shared memory objects to decrease 1441 * reference counters and also avoid wild pointers in secure world 1442 * into the old shared memory range. 1443 */ 1444 if (!optee->rpc_param_count) 1445 optee_disable_shm_cache(optee); 1446 1447 optee_smc_notif_uninit_irq(optee); 1448 1449 optee_remove_common(optee); 1450 1451 if (optee->smc.memremaped_shm) 1452 memunmap(optee->smc.memremaped_shm); 1453 1454 kfree(optee); 1455 } 1456 1457 /* optee_shutdown - Device Removal Routine 1458 * @pdev: platform device information struct 1459 * 1460 * platform_shutdown is called by the platform subsystem to alert 1461 * the driver that a shutdown, reboot, or kexec is happening and 1462 * device must be disabled. 1463 */ 1464 static void optee_shutdown(struct platform_device *pdev) 1465 { 1466 struct optee *optee = platform_get_drvdata(pdev); 1467 1468 if (!optee->rpc_param_count) 1469 optee_disable_shm_cache(optee); 1470 } 1471 1472 #ifdef CONFIG_OPTEE_INSECURE_LOAD_IMAGE 1473 1474 #define OPTEE_FW_IMAGE "optee/tee.bin" 1475 1476 static optee_invoke_fn *cpuhp_invoke_fn; 1477 1478 static int optee_cpuhp_probe(unsigned int cpu) 1479 { 1480 /* 1481 * Invoking a call on a CPU will cause OP-TEE to perform the required 1482 * setup for that CPU. Just invoke the call to get the UID since that 1483 * has no side effects. 1484 */ 1485 if (optee_msg_api_uid_is_optee_api(cpuhp_invoke_fn)) 1486 return 0; 1487 else 1488 return -EINVAL; 1489 } 1490 1491 static int optee_load_fw(struct platform_device *pdev, 1492 optee_invoke_fn *invoke_fn) 1493 { 1494 const struct firmware *fw = NULL; 1495 struct arm_smccc_res res; 1496 phys_addr_t data_pa; 1497 u8 *data_buf = NULL; 1498 u64 data_size; 1499 u32 data_pa_high, data_pa_low; 1500 u32 data_size_high, data_size_low; 1501 int rc; 1502 int hp_state; 1503 1504 if (!optee_msg_api_uid_is_optee_image_load(invoke_fn)) 1505 return 0; 1506 1507 rc = request_firmware(&fw, OPTEE_FW_IMAGE, &pdev->dev); 1508 if (rc) { 1509 /* 1510 * The firmware in the rootfs will not be accessible until we 1511 * are in the SYSTEM_RUNNING state, so return EPROBE_DEFER until 1512 * that point. 1513 */ 1514 if (system_state < SYSTEM_RUNNING) 1515 return -EPROBE_DEFER; 1516 goto fw_err; 1517 } 1518 1519 data_size = fw->size; 1520 /* 1521 * This uses the GFP_DMA flag to ensure we are allocated memory in the 1522 * 32-bit space since TF-A cannot map memory beyond the 32-bit boundary. 1523 */ 1524 data_buf = kmemdup(fw->data, fw->size, GFP_KERNEL | GFP_DMA); 1525 if (!data_buf) { 1526 rc = -ENOMEM; 1527 goto fw_err; 1528 } 1529 data_pa = virt_to_phys(data_buf); 1530 reg_pair_from_64(&data_pa_high, &data_pa_low, data_pa); 1531 reg_pair_from_64(&data_size_high, &data_size_low, data_size); 1532 goto fw_load; 1533 1534 fw_err: 1535 pr_warn("image loading failed\n"); 1536 data_pa_high = 0; 1537 data_pa_low = 0; 1538 data_size_high = 0; 1539 data_size_low = 0; 1540 1541 fw_load: 1542 /* 1543 * Always invoke the SMC, even if loading the image fails, to indicate 1544 * to EL3 that we have passed the point where it should allow invoking 1545 * this SMC. 1546 */ 1547 pr_warn("OP-TEE image loaded from kernel, this can be insecure"); 1548 invoke_fn(OPTEE_SMC_CALL_LOAD_IMAGE, data_size_high, data_size_low, 1549 data_pa_high, data_pa_low, 0, 0, 0, &res); 1550 if (!rc) 1551 rc = res.a0; 1552 if (fw) 1553 release_firmware(fw); 1554 kfree(data_buf); 1555 1556 if (!rc) { 1557 /* 1558 * We need to initialize OP-TEE on all other running cores as 1559 * well. Any cores that aren't running yet will get initialized 1560 * when they are brought up by the power management functions in 1561 * TF-A which are registered by the OP-TEE SPD. Due to that we 1562 * can un-register the callback right after registering it. 1563 */ 1564 cpuhp_invoke_fn = invoke_fn; 1565 hp_state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "optee:probe", 1566 optee_cpuhp_probe, NULL); 1567 if (hp_state < 0) { 1568 pr_warn("Failed with CPU hotplug setup for OP-TEE"); 1569 return -EINVAL; 1570 } 1571 cpuhp_remove_state(hp_state); 1572 cpuhp_invoke_fn = NULL; 1573 } 1574 1575 return rc; 1576 } 1577 #else 1578 static inline int optee_load_fw(struct platform_device *pdev, 1579 optee_invoke_fn *invoke_fn) 1580 { 1581 return 0; 1582 } 1583 #endif 1584 1585 static int optee_probe(struct platform_device *pdev) 1586 { 1587 optee_invoke_fn *invoke_fn; 1588 struct tee_shm_pool *pool = ERR_PTR(-EINVAL); 1589 struct optee *optee = NULL; 1590 void *memremaped_shm = NULL; 1591 unsigned int rpc_param_count; 1592 unsigned int thread_count; 1593 struct tee_device *teedev; 1594 struct tee_context *ctx; 1595 u32 max_notif_value; 1596 u32 arg_cache_flags; 1597 u32 sec_caps; 1598 int rc; 1599 1600 invoke_fn = get_invoke_func(&pdev->dev); 1601 if (IS_ERR(invoke_fn)) 1602 return PTR_ERR(invoke_fn); 1603 1604 rc = optee_load_fw(pdev, invoke_fn); 1605 if (rc) 1606 return rc; 1607 1608 if (!optee_msg_api_uid_is_optee_api(invoke_fn)) { 1609 pr_warn("api uid mismatch\n"); 1610 return -EINVAL; 1611 } 1612 1613 optee_msg_get_os_revision(invoke_fn); 1614 1615 if (!optee_msg_api_revision_is_compatible(invoke_fn)) { 1616 pr_warn("api revision mismatch\n"); 1617 return -EINVAL; 1618 } 1619 1620 thread_count = optee_msg_get_thread_count(invoke_fn); 1621 if (!optee_msg_exchange_capabilities(invoke_fn, &sec_caps, 1622 &max_notif_value, 1623 &rpc_param_count)) { 1624 pr_warn("capabilities mismatch\n"); 1625 return -EINVAL; 1626 } 1627 1628 /* 1629 * Try to use dynamic shared memory if possible 1630 */ 1631 if (sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM) { 1632 /* 1633 * If we have OPTEE_SMC_SEC_CAP_RPC_ARG we can ask 1634 * optee_get_msg_arg() to pre-register (by having 1635 * OPTEE_SHM_ARG_ALLOC_PRIV cleared) the page used to pass 1636 * an argument struct. 1637 * 1638 * With the page is pre-registered we can use a non-zero 1639 * offset for argument struct, this is indicated with 1640 * OPTEE_SHM_ARG_SHARED. 1641 * 1642 * This means that optee_smc_do_call_with_arg() will use 1643 * OPTEE_SMC_CALL_WITH_REGD_ARG for pre-registered pages. 1644 */ 1645 if (sec_caps & OPTEE_SMC_SEC_CAP_RPC_ARG) 1646 arg_cache_flags = OPTEE_SHM_ARG_SHARED; 1647 else 1648 arg_cache_flags = OPTEE_SHM_ARG_ALLOC_PRIV; 1649 1650 pool = optee_shm_pool_alloc_pages(); 1651 } 1652 1653 /* 1654 * If dynamic shared memory is not available or failed - try static one 1655 */ 1656 if (IS_ERR(pool) && (sec_caps & OPTEE_SMC_SEC_CAP_HAVE_RESERVED_SHM)) { 1657 /* 1658 * The static memory pool can use non-zero page offsets so 1659 * let optee_get_msg_arg() know that with OPTEE_SHM_ARG_SHARED. 1660 * 1661 * optee_get_msg_arg() should not pre-register the 1662 * allocated page used to pass an argument struct, this is 1663 * indicated with OPTEE_SHM_ARG_ALLOC_PRIV. 1664 * 1665 * This means that optee_smc_do_call_with_arg() will use 1666 * OPTEE_SMC_CALL_WITH_ARG if rpc_param_count is 0, else 1667 * OPTEE_SMC_CALL_WITH_RPC_ARG. 1668 */ 1669 arg_cache_flags = OPTEE_SHM_ARG_SHARED | 1670 OPTEE_SHM_ARG_ALLOC_PRIV; 1671 pool = optee_config_shm_memremap(invoke_fn, &memremaped_shm); 1672 } 1673 1674 if (IS_ERR(pool)) 1675 return PTR_ERR(pool); 1676 1677 optee = kzalloc(sizeof(*optee), GFP_KERNEL); 1678 if (!optee) { 1679 rc = -ENOMEM; 1680 goto err_free_pool; 1681 } 1682 1683 optee->ops = &optee_ops; 1684 optee->smc.invoke_fn = invoke_fn; 1685 optee->smc.sec_caps = sec_caps; 1686 optee->rpc_param_count = rpc_param_count; 1687 1688 teedev = tee_device_alloc(&optee_clnt_desc, NULL, pool, optee); 1689 if (IS_ERR(teedev)) { 1690 rc = PTR_ERR(teedev); 1691 goto err_free_optee; 1692 } 1693 optee->teedev = teedev; 1694 1695 teedev = tee_device_alloc(&optee_supp_desc, NULL, pool, optee); 1696 if (IS_ERR(teedev)) { 1697 rc = PTR_ERR(teedev); 1698 goto err_unreg_teedev; 1699 } 1700 optee->supp_teedev = teedev; 1701 1702 rc = tee_device_register(optee->teedev); 1703 if (rc) 1704 goto err_unreg_supp_teedev; 1705 1706 rc = tee_device_register(optee->supp_teedev); 1707 if (rc) 1708 goto err_unreg_supp_teedev; 1709 1710 optee_cq_init(&optee->call_queue, thread_count); 1711 optee_supp_init(&optee->supp); 1712 optee->smc.memremaped_shm = memremaped_shm; 1713 optee->pool = pool; 1714 optee_shm_arg_cache_init(optee, arg_cache_flags); 1715 1716 platform_set_drvdata(pdev, optee); 1717 ctx = teedev_open(optee->teedev); 1718 if (IS_ERR(ctx)) { 1719 rc = PTR_ERR(ctx); 1720 goto err_supp_uninit; 1721 } 1722 optee->ctx = ctx; 1723 rc = optee_notif_init(optee, max_notif_value); 1724 if (rc) 1725 goto err_close_ctx; 1726 1727 if (sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) { 1728 unsigned int irq; 1729 1730 rc = platform_get_irq(pdev, 0); 1731 if (rc < 0) { 1732 pr_err("platform_get_irq: ret %d\n", rc); 1733 goto err_notif_uninit; 1734 } 1735 irq = rc; 1736 1737 rc = optee_smc_notif_init_irq(optee, irq); 1738 if (rc) { 1739 irq_dispose_mapping(irq); 1740 goto err_notif_uninit; 1741 } 1742 enable_async_notif(optee->smc.invoke_fn); 1743 pr_info("Asynchronous notifications enabled\n"); 1744 } 1745 1746 /* 1747 * Ensure that there are no pre-existing shm objects before enabling 1748 * the shm cache so that there's no chance of receiving an invalid 1749 * address during shutdown. This could occur, for example, if we're 1750 * kexec booting from an older kernel that did not properly cleanup the 1751 * shm cache. 1752 */ 1753 optee_disable_unmapped_shm_cache(optee); 1754 1755 /* 1756 * Only enable the shm cache in case we're not able to pass the RPC 1757 * arg struct right after the normal arg struct. 1758 */ 1759 if (!optee->rpc_param_count) 1760 optee_enable_shm_cache(optee); 1761 1762 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM) 1763 pr_info("dynamic shared memory is enabled\n"); 1764 1765 rc = optee_enumerate_devices(PTA_CMD_GET_DEVICES); 1766 if (rc) 1767 goto err_disable_shm_cache; 1768 1769 pr_info("initialized driver\n"); 1770 return 0; 1771 1772 err_disable_shm_cache: 1773 if (!optee->rpc_param_count) 1774 optee_disable_shm_cache(optee); 1775 optee_smc_notif_uninit_irq(optee); 1776 optee_unregister_devices(); 1777 err_notif_uninit: 1778 optee_notif_uninit(optee); 1779 err_close_ctx: 1780 teedev_close_context(ctx); 1781 err_supp_uninit: 1782 optee_shm_arg_cache_uninit(optee); 1783 optee_supp_uninit(&optee->supp); 1784 mutex_destroy(&optee->call_queue.mutex); 1785 err_unreg_supp_teedev: 1786 tee_device_unregister(optee->supp_teedev); 1787 err_unreg_teedev: 1788 tee_device_unregister(optee->teedev); 1789 err_free_optee: 1790 kfree(optee); 1791 err_free_pool: 1792 tee_shm_pool_free(pool); 1793 if (memremaped_shm) 1794 memunmap(memremaped_shm); 1795 return rc; 1796 } 1797 1798 static const struct of_device_id optee_dt_match[] = { 1799 { .compatible = "linaro,optee-tz" }, 1800 {}, 1801 }; 1802 MODULE_DEVICE_TABLE(of, optee_dt_match); 1803 1804 static struct platform_driver optee_driver = { 1805 .probe = optee_probe, 1806 .remove_new = optee_smc_remove, 1807 .shutdown = optee_shutdown, 1808 .driver = { 1809 .name = "optee", 1810 .of_match_table = optee_dt_match, 1811 }, 1812 }; 1813 1814 int optee_smc_abi_register(void) 1815 { 1816 return platform_driver_register(&optee_driver); 1817 } 1818 1819 void optee_smc_abi_unregister(void) 1820 { 1821 platform_driver_unregister(&optee_driver); 1822 } 1823