1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2021, 2023 Linaro Limited 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/arm_ffa.h> 9 #include <linux/errno.h> 10 #include <linux/rpmb.h> 11 #include <linux/scatterlist.h> 12 #include <linux/sched.h> 13 #include <linux/slab.h> 14 #include <linux/string.h> 15 #include <linux/tee_core.h> 16 #include <linux/types.h> 17 #include "optee_private.h" 18 #include "optee_ffa.h" 19 #include "optee_rpc_cmd.h" 20 21 /* 22 * This file implement the FF-A ABI used when communicating with secure world 23 * OP-TEE OS via FF-A. 24 * This file is divided into the following sections: 25 * 1. Maintain a hash table for lookup of a global FF-A memory handle 26 * 2. Convert between struct tee_param and struct optee_msg_param 27 * 3. Low level support functions to register shared memory in secure world 28 * 4. Dynamic shared memory pool based on alloc_pages() 29 * 5. Do a normal scheduled call into secure world 30 * 6. Driver initialization. 31 */ 32 33 /* 34 * 1. Maintain a hash table for lookup of a global FF-A memory handle 35 * 36 * FF-A assigns a global memory handle for each piece shared memory. 37 * This handle is then used when communicating with secure world. 38 * 39 * Main functions are optee_shm_add_ffa_handle() and optee_shm_rem_ffa_handle() 40 */ 41 struct shm_rhash { 42 struct tee_shm *shm; 43 u64 global_id; 44 struct rhash_head linkage; 45 }; 46 47 static void rh_free_fn(void *ptr, void *arg) 48 { 49 kfree(ptr); 50 } 51 52 static const struct rhashtable_params shm_rhash_params = { 53 .head_offset = offsetof(struct shm_rhash, linkage), 54 .key_len = sizeof(u64), 55 .key_offset = offsetof(struct shm_rhash, global_id), 56 .automatic_shrinking = true, 57 }; 58 59 static struct tee_shm *optee_shm_from_ffa_handle(struct optee *optee, 60 u64 global_id) 61 { 62 struct tee_shm *shm = NULL; 63 struct shm_rhash *r; 64 65 mutex_lock(&optee->ffa.mutex); 66 r = rhashtable_lookup_fast(&optee->ffa.global_ids, &global_id, 67 shm_rhash_params); 68 if (r) 69 shm = r->shm; 70 mutex_unlock(&optee->ffa.mutex); 71 72 return shm; 73 } 74 75 static int optee_shm_add_ffa_handle(struct optee *optee, struct tee_shm *shm, 76 u64 global_id) 77 { 78 struct shm_rhash *r; 79 int rc; 80 81 r = kmalloc(sizeof(*r), GFP_KERNEL); 82 if (!r) 83 return -ENOMEM; 84 r->shm = shm; 85 r->global_id = global_id; 86 87 mutex_lock(&optee->ffa.mutex); 88 rc = rhashtable_lookup_insert_fast(&optee->ffa.global_ids, &r->linkage, 89 shm_rhash_params); 90 mutex_unlock(&optee->ffa.mutex); 91 92 if (rc) 93 kfree(r); 94 95 return rc; 96 } 97 98 static int optee_shm_rem_ffa_handle(struct optee *optee, u64 global_id) 99 { 100 struct shm_rhash *r; 101 int rc = -ENOENT; 102 103 mutex_lock(&optee->ffa.mutex); 104 r = rhashtable_lookup_fast(&optee->ffa.global_ids, &global_id, 105 shm_rhash_params); 106 if (r) 107 rc = rhashtable_remove_fast(&optee->ffa.global_ids, 108 &r->linkage, shm_rhash_params); 109 mutex_unlock(&optee->ffa.mutex); 110 111 if (!rc) 112 kfree(r); 113 114 return rc; 115 } 116 117 /* 118 * 2. Convert between struct tee_param and struct optee_msg_param 119 * 120 * optee_ffa_from_msg_param() and optee_ffa_to_msg_param() are the main 121 * functions. 122 */ 123 124 static void from_msg_param_ffa_mem(struct optee *optee, struct tee_param *p, 125 u32 attr, const struct optee_msg_param *mp) 126 { 127 struct tee_shm *shm = NULL; 128 u64 offs_high = 0; 129 u64 offs_low = 0; 130 131 p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT + 132 attr - OPTEE_MSG_ATTR_TYPE_FMEM_INPUT; 133 p->u.memref.size = mp->u.fmem.size; 134 135 if (mp->u.fmem.global_id != OPTEE_MSG_FMEM_INVALID_GLOBAL_ID) 136 shm = optee_shm_from_ffa_handle(optee, mp->u.fmem.global_id); 137 p->u.memref.shm = shm; 138 139 if (shm) { 140 offs_low = mp->u.fmem.offs_low; 141 offs_high = mp->u.fmem.offs_high; 142 } 143 p->u.memref.shm_offs = offs_low | offs_high << 32; 144 } 145 146 /** 147 * optee_ffa_from_msg_param() - convert from OPTEE_MSG parameters to 148 * struct tee_param 149 * @optee: main service struct 150 * @params: subsystem internal parameter representation 151 * @num_params: number of elements in the parameter arrays 152 * @msg_params: OPTEE_MSG parameters 153 * 154 * Returns 0 on success or <0 on failure 155 */ 156 static int optee_ffa_from_msg_param(struct optee *optee, 157 struct tee_param *params, size_t num_params, 158 const struct optee_msg_param *msg_params) 159 { 160 size_t n; 161 162 for (n = 0; n < num_params; n++) { 163 struct tee_param *p = params + n; 164 const struct optee_msg_param *mp = msg_params + n; 165 u32 attr = mp->attr & OPTEE_MSG_ATTR_TYPE_MASK; 166 167 switch (attr) { 168 case OPTEE_MSG_ATTR_TYPE_NONE: 169 p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE; 170 memset(&p->u, 0, sizeof(p->u)); 171 break; 172 case OPTEE_MSG_ATTR_TYPE_VALUE_INPUT: 173 case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT: 174 case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT: 175 optee_from_msg_param_value(p, attr, mp); 176 break; 177 case OPTEE_MSG_ATTR_TYPE_FMEM_INPUT: 178 case OPTEE_MSG_ATTR_TYPE_FMEM_OUTPUT: 179 case OPTEE_MSG_ATTR_TYPE_FMEM_INOUT: 180 from_msg_param_ffa_mem(optee, p, attr, mp); 181 break; 182 default: 183 return -EINVAL; 184 } 185 } 186 187 return 0; 188 } 189 190 static int to_msg_param_ffa_mem(struct optee_msg_param *mp, 191 const struct tee_param *p) 192 { 193 struct tee_shm *shm = p->u.memref.shm; 194 195 mp->attr = OPTEE_MSG_ATTR_TYPE_FMEM_INPUT + p->attr - 196 TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT; 197 198 if (shm) { 199 u64 shm_offs = p->u.memref.shm_offs; 200 201 mp->u.fmem.internal_offs = shm->offset; 202 203 mp->u.fmem.offs_low = shm_offs; 204 mp->u.fmem.offs_high = shm_offs >> 32; 205 /* Check that the entire offset could be stored. */ 206 if (mp->u.fmem.offs_high != shm_offs >> 32) 207 return -EINVAL; 208 209 mp->u.fmem.global_id = shm->sec_world_id; 210 } else { 211 memset(&mp->u, 0, sizeof(mp->u)); 212 mp->u.fmem.global_id = OPTEE_MSG_FMEM_INVALID_GLOBAL_ID; 213 } 214 mp->u.fmem.size = p->u.memref.size; 215 216 return 0; 217 } 218 219 /** 220 * optee_ffa_to_msg_param() - convert from struct tee_params to OPTEE_MSG 221 * parameters 222 * @optee: main service struct 223 * @msg_params: OPTEE_MSG parameters 224 * @num_params: number of elements in the parameter arrays 225 * @params: subsystem itnernal parameter representation 226 * Returns 0 on success or <0 on failure 227 */ 228 static int optee_ffa_to_msg_param(struct optee *optee, 229 struct optee_msg_param *msg_params, 230 size_t num_params, 231 const struct tee_param *params) 232 { 233 size_t n; 234 235 for (n = 0; n < num_params; n++) { 236 const struct tee_param *p = params + n; 237 struct optee_msg_param *mp = msg_params + n; 238 239 switch (p->attr) { 240 case TEE_IOCTL_PARAM_ATTR_TYPE_NONE: 241 mp->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE; 242 memset(&mp->u, 0, sizeof(mp->u)); 243 break; 244 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INPUT: 245 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_OUTPUT: 246 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INOUT: 247 optee_to_msg_param_value(mp, p); 248 break; 249 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT: 250 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_OUTPUT: 251 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INOUT: 252 if (to_msg_param_ffa_mem(mp, p)) 253 return -EINVAL; 254 break; 255 default: 256 return -EINVAL; 257 } 258 } 259 260 return 0; 261 } 262 263 /* 264 * 3. Low level support functions to register shared memory in secure world 265 * 266 * Functions to register and unregister shared memory both for normal 267 * clients and for tee-supplicant. 268 */ 269 270 static int optee_ffa_shm_register(struct tee_context *ctx, struct tee_shm *shm, 271 struct page **pages, size_t num_pages, 272 unsigned long start) 273 { 274 struct optee *optee = tee_get_drvdata(ctx->teedev); 275 struct ffa_device *ffa_dev = optee->ffa.ffa_dev; 276 const struct ffa_mem_ops *mem_ops = ffa_dev->ops->mem_ops; 277 struct ffa_mem_region_attributes mem_attr = { 278 .receiver = ffa_dev->vm_id, 279 .attrs = FFA_MEM_RW, 280 }; 281 struct ffa_mem_ops_args args = { 282 .use_txbuf = true, 283 .attrs = &mem_attr, 284 .nattrs = 1, 285 }; 286 struct sg_table sgt; 287 int rc; 288 289 rc = optee_check_mem_type(start, num_pages); 290 if (rc) 291 return rc; 292 293 rc = sg_alloc_table_from_pages(&sgt, pages, num_pages, 0, 294 num_pages * PAGE_SIZE, GFP_KERNEL); 295 if (rc) 296 return rc; 297 args.sg = sgt.sgl; 298 rc = mem_ops->memory_share(&args); 299 sg_free_table(&sgt); 300 if (rc) 301 return rc; 302 303 rc = optee_shm_add_ffa_handle(optee, shm, args.g_handle); 304 if (rc) { 305 mem_ops->memory_reclaim(args.g_handle, 0); 306 return rc; 307 } 308 309 shm->sec_world_id = args.g_handle; 310 311 return 0; 312 } 313 314 static int optee_ffa_shm_unregister(struct tee_context *ctx, 315 struct tee_shm *shm) 316 { 317 struct optee *optee = tee_get_drvdata(ctx->teedev); 318 struct ffa_device *ffa_dev = optee->ffa.ffa_dev; 319 const struct ffa_msg_ops *msg_ops = ffa_dev->ops->msg_ops; 320 const struct ffa_mem_ops *mem_ops = ffa_dev->ops->mem_ops; 321 u64 global_handle = shm->sec_world_id; 322 struct ffa_send_direct_data data = { 323 .data0 = OPTEE_FFA_UNREGISTER_SHM, 324 .data1 = (u32)global_handle, 325 .data2 = (u32)(global_handle >> 32) 326 }; 327 int rc; 328 329 optee_shm_rem_ffa_handle(optee, global_handle); 330 shm->sec_world_id = 0; 331 332 rc = msg_ops->sync_send_receive(ffa_dev, &data); 333 if (rc) 334 pr_err("Unregister SHM id 0x%llx rc %d\n", global_handle, rc); 335 336 rc = mem_ops->memory_reclaim(global_handle, 0); 337 if (rc) 338 pr_err("mem_reclaim: 0x%llx %d", global_handle, rc); 339 340 return rc; 341 } 342 343 static int optee_ffa_shm_unregister_supp(struct tee_context *ctx, 344 struct tee_shm *shm) 345 { 346 struct optee *optee = tee_get_drvdata(ctx->teedev); 347 const struct ffa_mem_ops *mem_ops; 348 u64 global_handle = shm->sec_world_id; 349 int rc; 350 351 /* 352 * We're skipping the OPTEE_FFA_YIELDING_CALL_UNREGISTER_SHM call 353 * since this is OP-TEE freeing via RPC so it has already retired 354 * this ID. 355 */ 356 357 optee_shm_rem_ffa_handle(optee, global_handle); 358 mem_ops = optee->ffa.ffa_dev->ops->mem_ops; 359 rc = mem_ops->memory_reclaim(global_handle, 0); 360 if (rc) 361 pr_err("mem_reclaim: 0x%llx %d", global_handle, rc); 362 363 shm->sec_world_id = 0; 364 365 return rc; 366 } 367 368 /* 369 * 4. Dynamic shared memory pool based on alloc_pages() 370 * 371 * Implements an OP-TEE specific shared memory pool. 372 * The main function is optee_ffa_shm_pool_alloc_pages(). 373 */ 374 375 static int pool_ffa_op_alloc(struct tee_shm_pool *pool, 376 struct tee_shm *shm, size_t size, size_t align) 377 { 378 return tee_dyn_shm_alloc_helper(shm, size, align, 379 optee_ffa_shm_register); 380 } 381 382 static void pool_ffa_op_free(struct tee_shm_pool *pool, 383 struct tee_shm *shm) 384 { 385 tee_dyn_shm_free_helper(shm, optee_ffa_shm_unregister); 386 } 387 388 static void pool_ffa_op_destroy_pool(struct tee_shm_pool *pool) 389 { 390 kfree(pool); 391 } 392 393 static const struct tee_shm_pool_ops pool_ffa_ops = { 394 .alloc = pool_ffa_op_alloc, 395 .free = pool_ffa_op_free, 396 .destroy_pool = pool_ffa_op_destroy_pool, 397 }; 398 399 /** 400 * optee_ffa_shm_pool_alloc_pages() - create page-based allocator pool 401 * 402 * This pool is used with OP-TEE over FF-A. In this case command buffers 403 * and such are allocated from kernel's own memory. 404 */ 405 static struct tee_shm_pool *optee_ffa_shm_pool_alloc_pages(void) 406 { 407 struct tee_shm_pool *pool = kzalloc(sizeof(*pool), GFP_KERNEL); 408 409 if (!pool) 410 return ERR_PTR(-ENOMEM); 411 412 pool->ops = &pool_ffa_ops; 413 414 return pool; 415 } 416 417 /* 418 * 5. Do a normal scheduled call into secure world 419 * 420 * The function optee_ffa_do_call_with_arg() performs a normal scheduled 421 * call into secure world. During this call may normal world request help 422 * from normal world using RPCs, Remote Procedure Calls. This includes 423 * delivery of non-secure interrupts to for instance allow rescheduling of 424 * the current task. 425 */ 426 427 static void handle_ffa_rpc_func_cmd_shm_alloc(struct tee_context *ctx, 428 struct optee *optee, 429 struct optee_msg_arg *arg) 430 { 431 struct tee_shm *shm; 432 433 if (arg->num_params != 1 || 434 arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) { 435 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 436 return; 437 } 438 439 switch (arg->params[0].u.value.a) { 440 case OPTEE_RPC_SHM_TYPE_APPL: 441 shm = optee_rpc_cmd_alloc_suppl(ctx, arg->params[0].u.value.b); 442 break; 443 case OPTEE_RPC_SHM_TYPE_KERNEL: 444 shm = tee_shm_alloc_priv_buf(optee->ctx, 445 arg->params[0].u.value.b); 446 break; 447 default: 448 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 449 return; 450 } 451 452 if (IS_ERR(shm)) { 453 arg->ret = TEEC_ERROR_OUT_OF_MEMORY; 454 return; 455 } 456 457 arg->params[0] = (struct optee_msg_param){ 458 .attr = OPTEE_MSG_ATTR_TYPE_FMEM_OUTPUT, 459 .u.fmem.size = tee_shm_get_size(shm), 460 .u.fmem.global_id = shm->sec_world_id, 461 .u.fmem.internal_offs = shm->offset, 462 }; 463 464 arg->ret = TEEC_SUCCESS; 465 } 466 467 static void handle_ffa_rpc_func_cmd_shm_free(struct tee_context *ctx, 468 struct optee *optee, 469 struct optee_msg_arg *arg) 470 { 471 struct tee_shm *shm; 472 473 if (arg->num_params != 1 || 474 arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) 475 goto err_bad_param; 476 477 shm = optee_shm_from_ffa_handle(optee, arg->params[0].u.value.b); 478 if (!shm) 479 goto err_bad_param; 480 switch (arg->params[0].u.value.a) { 481 case OPTEE_RPC_SHM_TYPE_APPL: 482 optee_rpc_cmd_free_suppl(ctx, shm); 483 break; 484 case OPTEE_RPC_SHM_TYPE_KERNEL: 485 tee_shm_free(shm); 486 break; 487 default: 488 goto err_bad_param; 489 } 490 arg->ret = TEEC_SUCCESS; 491 return; 492 493 err_bad_param: 494 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 495 } 496 497 static void handle_ffa_rpc_func_cmd(struct tee_context *ctx, 498 struct optee *optee, 499 struct optee_msg_arg *arg) 500 { 501 arg->ret_origin = TEEC_ORIGIN_COMMS; 502 switch (arg->cmd) { 503 case OPTEE_RPC_CMD_SHM_ALLOC: 504 handle_ffa_rpc_func_cmd_shm_alloc(ctx, optee, arg); 505 break; 506 case OPTEE_RPC_CMD_SHM_FREE: 507 handle_ffa_rpc_func_cmd_shm_free(ctx, optee, arg); 508 break; 509 default: 510 optee_rpc_cmd(ctx, optee, arg); 511 } 512 } 513 514 static void optee_handle_ffa_rpc(struct tee_context *ctx, struct optee *optee, 515 u32 cmd, struct optee_msg_arg *arg) 516 { 517 switch (cmd) { 518 case OPTEE_FFA_YIELDING_CALL_RETURN_RPC_CMD: 519 handle_ffa_rpc_func_cmd(ctx, optee, arg); 520 break; 521 case OPTEE_FFA_YIELDING_CALL_RETURN_INTERRUPT: 522 /* Interrupt delivered by now */ 523 break; 524 default: 525 pr_warn("Unknown RPC func 0x%x\n", cmd); 526 break; 527 } 528 } 529 530 static int optee_ffa_yielding_call(struct tee_context *ctx, 531 struct ffa_send_direct_data *data, 532 struct optee_msg_arg *rpc_arg, 533 bool system_thread) 534 { 535 struct optee *optee = tee_get_drvdata(ctx->teedev); 536 struct ffa_device *ffa_dev = optee->ffa.ffa_dev; 537 const struct ffa_msg_ops *msg_ops = ffa_dev->ops->msg_ops; 538 struct optee_call_waiter w; 539 u32 cmd = data->data0; 540 u32 w4 = data->data1; 541 u32 w5 = data->data2; 542 u32 w6 = data->data3; 543 int rc; 544 545 /* Initialize waiter */ 546 optee_cq_wait_init(&optee->call_queue, &w, system_thread); 547 while (true) { 548 rc = msg_ops->sync_send_receive(ffa_dev, data); 549 if (rc) 550 goto done; 551 552 switch ((int)data->data0) { 553 case TEEC_SUCCESS: 554 break; 555 case TEEC_ERROR_BUSY: 556 if (cmd == OPTEE_FFA_YIELDING_CALL_RESUME) { 557 rc = -EIO; 558 goto done; 559 } 560 561 /* 562 * Out of threads in secure world, wait for a thread 563 * become available. 564 */ 565 optee_cq_wait_for_completion(&optee->call_queue, &w); 566 data->data0 = cmd; 567 data->data1 = w4; 568 data->data2 = w5; 569 data->data3 = w6; 570 continue; 571 default: 572 rc = -EIO; 573 goto done; 574 } 575 576 if (data->data1 == OPTEE_FFA_YIELDING_CALL_RETURN_DONE) 577 goto done; 578 579 /* 580 * OP-TEE has returned with a RPC request. 581 * 582 * Note that data->data4 (passed in register w7) is already 583 * filled in by ffa_mem_ops->sync_send_receive() returning 584 * above. 585 */ 586 cond_resched(); 587 optee_handle_ffa_rpc(ctx, optee, data->data1, rpc_arg); 588 cmd = OPTEE_FFA_YIELDING_CALL_RESUME; 589 data->data0 = cmd; 590 data->data1 = 0; 591 data->data2 = 0; 592 data->data3 = 0; 593 } 594 done: 595 /* 596 * We're done with our thread in secure world, if there's any 597 * thread waiters wake up one. 598 */ 599 optee_cq_wait_final(&optee->call_queue, &w); 600 601 return rc; 602 } 603 604 /** 605 * optee_ffa_do_call_with_arg() - Do a FF-A call to enter OP-TEE in secure world 606 * @ctx: calling context 607 * @shm: shared memory holding the message to pass to secure world 608 * @offs: offset of the message in @shm 609 * @system_thread: true if caller requests TEE system thread support 610 * 611 * Does a FF-A call to OP-TEE in secure world and handles eventual resulting 612 * Remote Procedure Calls (RPC) from OP-TEE. 613 * 614 * Returns return code from FF-A, 0 is OK 615 */ 616 617 static int optee_ffa_do_call_with_arg(struct tee_context *ctx, 618 struct tee_shm *shm, u_int offs, 619 bool system_thread) 620 { 621 struct ffa_send_direct_data data = { 622 .data0 = OPTEE_FFA_YIELDING_CALL_WITH_ARG, 623 .data1 = (u32)shm->sec_world_id, 624 .data2 = (u32)(shm->sec_world_id >> 32), 625 .data3 = offs, 626 }; 627 struct optee_msg_arg *arg; 628 unsigned int rpc_arg_offs; 629 struct optee_msg_arg *rpc_arg; 630 631 /* 632 * The shared memory object has to start on a page when passed as 633 * an argument struct. This is also what the shm pool allocator 634 * returns, but check this before calling secure world to catch 635 * eventual errors early in case something changes. 636 */ 637 if (shm->offset) 638 return -EINVAL; 639 640 arg = tee_shm_get_va(shm, offs); 641 if (IS_ERR(arg)) 642 return PTR_ERR(arg); 643 644 rpc_arg_offs = OPTEE_MSG_GET_ARG_SIZE(arg->num_params); 645 rpc_arg = tee_shm_get_va(shm, offs + rpc_arg_offs); 646 if (IS_ERR(rpc_arg)) 647 return PTR_ERR(rpc_arg); 648 649 return optee_ffa_yielding_call(ctx, &data, rpc_arg, system_thread); 650 } 651 652 static int do_call_lend_protmem(struct optee *optee, u64 cookie, u32 use_case) 653 { 654 struct optee_shm_arg_entry *entry; 655 struct optee_msg_arg *msg_arg; 656 struct tee_shm *shm; 657 u_int offs; 658 int rc; 659 660 msg_arg = optee_get_msg_arg(optee->ctx, 1, &entry, &shm, &offs); 661 if (IS_ERR(msg_arg)) 662 return PTR_ERR(msg_arg); 663 664 msg_arg->cmd = OPTEE_MSG_CMD_ASSIGN_PROTMEM; 665 msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; 666 msg_arg->params[0].u.value.a = cookie; 667 msg_arg->params[0].u.value.b = use_case; 668 669 rc = optee->ops->do_call_with_arg(optee->ctx, shm, offs, false); 670 if (rc) 671 goto out; 672 if (msg_arg->ret != TEEC_SUCCESS) { 673 rc = -EINVAL; 674 goto out; 675 } 676 677 out: 678 optee_free_msg_arg(optee->ctx, entry, offs); 679 return rc; 680 } 681 682 static int optee_ffa_lend_protmem(struct optee *optee, struct tee_shm *protmem, 683 u32 *mem_attrs, unsigned int ma_count, 684 u32 use_case) 685 { 686 struct ffa_device *ffa_dev = optee->ffa.ffa_dev; 687 const struct ffa_mem_ops *mem_ops = ffa_dev->ops->mem_ops; 688 const struct ffa_msg_ops *msg_ops = ffa_dev->ops->msg_ops; 689 struct ffa_send_direct_data data; 690 struct ffa_mem_region_attributes *mem_attr; 691 struct ffa_mem_ops_args args = { 692 .use_txbuf = true, 693 .tag = use_case, 694 }; 695 struct page *page; 696 struct scatterlist sgl; 697 unsigned int n; 698 int rc; 699 700 mem_attr = kcalloc(ma_count, sizeof(*mem_attr), GFP_KERNEL); 701 for (n = 0; n < ma_count; n++) { 702 mem_attr[n].receiver = mem_attrs[n] & U16_MAX; 703 mem_attr[n].attrs = mem_attrs[n] >> 16; 704 } 705 args.attrs = mem_attr; 706 args.nattrs = ma_count; 707 708 page = phys_to_page(protmem->paddr); 709 sg_init_table(&sgl, 1); 710 sg_set_page(&sgl, page, protmem->size, 0); 711 712 args.sg = &sgl; 713 rc = mem_ops->memory_lend(&args); 714 kfree(mem_attr); 715 if (rc) 716 return rc; 717 718 rc = do_call_lend_protmem(optee, args.g_handle, use_case); 719 if (rc) 720 goto err_reclaim; 721 722 rc = optee_shm_add_ffa_handle(optee, protmem, args.g_handle); 723 if (rc) 724 goto err_unreg; 725 726 protmem->sec_world_id = args.g_handle; 727 728 return 0; 729 730 err_unreg: 731 data = (struct ffa_send_direct_data){ 732 .data0 = OPTEE_FFA_RELEASE_PROTMEM, 733 .data1 = (u32)args.g_handle, 734 .data2 = (u32)(args.g_handle >> 32), 735 }; 736 msg_ops->sync_send_receive(ffa_dev, &data); 737 err_reclaim: 738 mem_ops->memory_reclaim(args.g_handle, 0); 739 return rc; 740 } 741 742 static int optee_ffa_reclaim_protmem(struct optee *optee, 743 struct tee_shm *protmem) 744 { 745 struct ffa_device *ffa_dev = optee->ffa.ffa_dev; 746 const struct ffa_msg_ops *msg_ops = ffa_dev->ops->msg_ops; 747 const struct ffa_mem_ops *mem_ops = ffa_dev->ops->mem_ops; 748 u64 global_handle = protmem->sec_world_id; 749 struct ffa_send_direct_data data = { 750 .data0 = OPTEE_FFA_RELEASE_PROTMEM, 751 .data1 = (u32)global_handle, 752 .data2 = (u32)(global_handle >> 32) 753 }; 754 int rc; 755 756 optee_shm_rem_ffa_handle(optee, global_handle); 757 protmem->sec_world_id = 0; 758 759 rc = msg_ops->sync_send_receive(ffa_dev, &data); 760 if (rc) 761 pr_err("Release SHM id 0x%llx rc %d\n", global_handle, rc); 762 763 rc = mem_ops->memory_reclaim(global_handle, 0); 764 if (rc) 765 pr_err("mem_reclaim: 0x%llx %d", global_handle, rc); 766 767 return rc; 768 } 769 770 /* 771 * 6. Driver initialization 772 * 773 * During driver inititialization is the OP-TEE Secure Partition is probed 774 * to find out which features it supports so the driver can be initialized 775 * with a matching configuration. 776 */ 777 778 static bool optee_ffa_api_is_compatible(struct ffa_device *ffa_dev, 779 const struct ffa_ops *ops) 780 { 781 const struct ffa_msg_ops *msg_ops = ops->msg_ops; 782 struct ffa_send_direct_data data = { 783 .data0 = OPTEE_FFA_GET_API_VERSION, 784 }; 785 int rc; 786 787 msg_ops->mode_32bit_set(ffa_dev); 788 789 rc = msg_ops->sync_send_receive(ffa_dev, &data); 790 if (rc) { 791 pr_err("Unexpected error %d\n", rc); 792 return false; 793 } 794 if (data.data0 != OPTEE_FFA_VERSION_MAJOR || 795 data.data1 < OPTEE_FFA_VERSION_MINOR) { 796 pr_err("Incompatible OP-TEE API version %lu.%lu", 797 data.data0, data.data1); 798 return false; 799 } 800 801 data = (struct ffa_send_direct_data){ 802 .data0 = OPTEE_FFA_GET_OS_VERSION, 803 }; 804 rc = msg_ops->sync_send_receive(ffa_dev, &data); 805 if (rc) { 806 pr_err("Unexpected error %d\n", rc); 807 return false; 808 } 809 if (data.data2) 810 pr_info("revision %lu.%lu (%08lx)", 811 data.data0, data.data1, data.data2); 812 else 813 pr_info("revision %lu.%lu", data.data0, data.data1); 814 815 return true; 816 } 817 818 static bool optee_ffa_exchange_caps(struct ffa_device *ffa_dev, 819 const struct ffa_ops *ops, 820 u32 *sec_caps, 821 unsigned int *rpc_param_count, 822 unsigned int *max_notif_value) 823 { 824 struct ffa_send_direct_data data = { 825 .data0 = OPTEE_FFA_EXCHANGE_CAPABILITIES, 826 }; 827 int rc; 828 829 rc = ops->msg_ops->sync_send_receive(ffa_dev, &data); 830 if (rc) { 831 pr_err("Unexpected error %d", rc); 832 return false; 833 } 834 if (data.data0) { 835 pr_err("Unexpected exchange error %lu", data.data0); 836 return false; 837 } 838 839 *rpc_param_count = (u8)data.data1; 840 *sec_caps = data.data2; 841 if (data.data3) 842 *max_notif_value = data.data3; 843 else 844 *max_notif_value = OPTEE_DEFAULT_MAX_NOTIF_VALUE; 845 846 return true; 847 } 848 849 static void notif_work_fn(struct work_struct *work) 850 { 851 struct optee_ffa *optee_ffa = container_of(work, struct optee_ffa, 852 notif_work); 853 struct optee *optee = container_of(optee_ffa, struct optee, ffa); 854 855 optee_do_bottom_half(optee->ctx); 856 } 857 858 static void notif_callback(int notify_id, void *cb_data) 859 { 860 struct optee *optee = cb_data; 861 862 if (notify_id == optee->ffa.bottom_half_value) 863 queue_work(optee->ffa.notif_wq, &optee->ffa.notif_work); 864 else 865 optee_notif_send(optee, notify_id); 866 } 867 868 static int enable_async_notif(struct optee *optee) 869 { 870 struct ffa_device *ffa_dev = optee->ffa.ffa_dev; 871 struct ffa_send_direct_data data = { 872 .data0 = OPTEE_FFA_ENABLE_ASYNC_NOTIF, 873 .data1 = optee->ffa.bottom_half_value, 874 }; 875 int rc; 876 877 rc = ffa_dev->ops->msg_ops->sync_send_receive(ffa_dev, &data); 878 if (rc) 879 return rc; 880 return data.data0; 881 } 882 883 static void optee_ffa_get_version(struct tee_device *teedev, 884 struct tee_ioctl_version_data *vers) 885 { 886 struct tee_ioctl_version_data v = { 887 .impl_id = TEE_IMPL_ID_OPTEE, 888 .impl_caps = TEE_OPTEE_CAP_TZ, 889 .gen_caps = TEE_GEN_CAP_GP | TEE_GEN_CAP_REG_MEM | 890 TEE_GEN_CAP_MEMREF_NULL, 891 }; 892 893 *vers = v; 894 } 895 896 static int optee_ffa_open(struct tee_context *ctx) 897 { 898 return optee_open(ctx, true); 899 } 900 901 static const struct tee_driver_ops optee_ffa_clnt_ops = { 902 .get_version = optee_ffa_get_version, 903 .open = optee_ffa_open, 904 .release = optee_release, 905 .open_session = optee_open_session, 906 .close_session = optee_close_session, 907 .invoke_func = optee_invoke_func, 908 .cancel_req = optee_cancel_req, 909 .shm_register = optee_ffa_shm_register, 910 .shm_unregister = optee_ffa_shm_unregister, 911 }; 912 913 static const struct tee_desc optee_ffa_clnt_desc = { 914 .name = DRIVER_NAME "-ffa-clnt", 915 .ops = &optee_ffa_clnt_ops, 916 .owner = THIS_MODULE, 917 }; 918 919 static const struct tee_driver_ops optee_ffa_supp_ops = { 920 .get_version = optee_ffa_get_version, 921 .open = optee_ffa_open, 922 .release = optee_release_supp, 923 .supp_recv = optee_supp_recv, 924 .supp_send = optee_supp_send, 925 .shm_register = optee_ffa_shm_register, /* same as for clnt ops */ 926 .shm_unregister = optee_ffa_shm_unregister_supp, 927 }; 928 929 static const struct tee_desc optee_ffa_supp_desc = { 930 .name = DRIVER_NAME "-ffa-supp", 931 .ops = &optee_ffa_supp_ops, 932 .owner = THIS_MODULE, 933 .flags = TEE_DESC_PRIVILEGED, 934 }; 935 936 static const struct optee_ops optee_ffa_ops = { 937 .do_call_with_arg = optee_ffa_do_call_with_arg, 938 .to_msg_param = optee_ffa_to_msg_param, 939 .from_msg_param = optee_ffa_from_msg_param, 940 .lend_protmem = optee_ffa_lend_protmem, 941 .reclaim_protmem = optee_ffa_reclaim_protmem, 942 }; 943 944 static void optee_ffa_remove(struct ffa_device *ffa_dev) 945 { 946 struct optee *optee = ffa_dev_get_drvdata(ffa_dev); 947 u32 bottom_half_id = optee->ffa.bottom_half_value; 948 949 if (bottom_half_id != U32_MAX) { 950 ffa_dev->ops->notifier_ops->notify_relinquish(ffa_dev, 951 bottom_half_id); 952 destroy_workqueue(optee->ffa.notif_wq); 953 } 954 optee_remove_common(optee); 955 956 mutex_destroy(&optee->ffa.mutex); 957 rhashtable_free_and_destroy(&optee->ffa.global_ids, rh_free_fn, NULL); 958 959 kfree(optee); 960 } 961 962 static int optee_ffa_async_notif_init(struct ffa_device *ffa_dev, 963 struct optee *optee) 964 { 965 bool is_per_vcpu = false; 966 u32 notif_id = 0; 967 int rc; 968 969 INIT_WORK(&optee->ffa.notif_work, notif_work_fn); 970 optee->ffa.notif_wq = create_workqueue("optee_notification"); 971 if (!optee->ffa.notif_wq) { 972 rc = -EINVAL; 973 goto err; 974 } 975 976 while (true) { 977 rc = ffa_dev->ops->notifier_ops->notify_request(ffa_dev, 978 is_per_vcpu, 979 notif_callback, 980 optee, 981 notif_id); 982 if (!rc) 983 break; 984 /* 985 * -EACCES means that the notification ID was 986 * already bound, try the next one as long as we 987 * haven't reached the max. Any other error is a 988 * permanent error, so skip asynchronous 989 * notifications in that case. 990 */ 991 if (rc != -EACCES) 992 goto err_wq; 993 notif_id++; 994 if (notif_id >= OPTEE_FFA_MAX_ASYNC_NOTIF_VALUE) 995 goto err_wq; 996 } 997 optee->ffa.bottom_half_value = notif_id; 998 999 rc = enable_async_notif(optee); 1000 if (rc < 0) 1001 goto err_rel; 1002 1003 return 0; 1004 err_rel: 1005 ffa_dev->ops->notifier_ops->notify_relinquish(ffa_dev, notif_id); 1006 err_wq: 1007 destroy_workqueue(optee->ffa.notif_wq); 1008 err: 1009 optee->ffa.bottom_half_value = U32_MAX; 1010 1011 return rc; 1012 } 1013 1014 static int optee_ffa_protmem_pool_init(struct optee *optee, u32 sec_caps) 1015 { 1016 enum tee_dma_heap_id id = TEE_DMA_HEAP_SECURE_VIDEO_PLAY; 1017 struct tee_protmem_pool *pool; 1018 int rc = 0; 1019 1020 if (sec_caps & OPTEE_FFA_SEC_CAP_PROTMEM) { 1021 pool = optee_protmem_alloc_dyn_pool(optee, id); 1022 if (IS_ERR(pool)) 1023 return PTR_ERR(pool); 1024 1025 rc = tee_device_register_dma_heap(optee->teedev, id, pool); 1026 if (rc) 1027 pool->ops->destroy_pool(pool); 1028 } 1029 1030 return rc; 1031 } 1032 1033 static int optee_ffa_probe(struct ffa_device *ffa_dev) 1034 { 1035 const struct ffa_notifier_ops *notif_ops; 1036 const struct ffa_ops *ffa_ops; 1037 unsigned int max_notif_value; 1038 unsigned int rpc_param_count; 1039 struct tee_shm_pool *pool; 1040 struct tee_device *teedev; 1041 struct tee_context *ctx; 1042 u32 arg_cache_flags = 0; 1043 struct optee *optee; 1044 u32 sec_caps; 1045 int rc; 1046 1047 ffa_ops = ffa_dev->ops; 1048 notif_ops = ffa_ops->notifier_ops; 1049 1050 if (!optee_ffa_api_is_compatible(ffa_dev, ffa_ops)) 1051 return -EINVAL; 1052 1053 if (!optee_ffa_exchange_caps(ffa_dev, ffa_ops, &sec_caps, 1054 &rpc_param_count, &max_notif_value)) 1055 return -EINVAL; 1056 if (sec_caps & OPTEE_FFA_SEC_CAP_ARG_OFFSET) 1057 arg_cache_flags |= OPTEE_SHM_ARG_SHARED; 1058 1059 optee = kzalloc(sizeof(*optee), GFP_KERNEL); 1060 if (!optee) 1061 return -ENOMEM; 1062 1063 pool = optee_ffa_shm_pool_alloc_pages(); 1064 if (IS_ERR(pool)) { 1065 rc = PTR_ERR(pool); 1066 goto err_free_optee; 1067 } 1068 optee->pool = pool; 1069 1070 optee->ops = &optee_ffa_ops; 1071 optee->ffa.ffa_dev = ffa_dev; 1072 optee->ffa.bottom_half_value = U32_MAX; 1073 optee->rpc_param_count = rpc_param_count; 1074 1075 if (IS_REACHABLE(CONFIG_RPMB) && 1076 (sec_caps & OPTEE_FFA_SEC_CAP_RPMB_PROBE)) 1077 optee->in_kernel_rpmb_routing = true; 1078 1079 teedev = tee_device_alloc(&optee_ffa_clnt_desc, NULL, optee->pool, 1080 optee); 1081 if (IS_ERR(teedev)) { 1082 rc = PTR_ERR(teedev); 1083 goto err_free_shm_pool; 1084 } 1085 optee->teedev = teedev; 1086 1087 teedev = tee_device_alloc(&optee_ffa_supp_desc, NULL, optee->pool, 1088 optee); 1089 if (IS_ERR(teedev)) { 1090 rc = PTR_ERR(teedev); 1091 goto err_unreg_teedev; 1092 } 1093 optee->supp_teedev = teedev; 1094 1095 optee_set_dev_group(optee); 1096 1097 rc = tee_device_register(optee->teedev); 1098 if (rc) 1099 goto err_unreg_supp_teedev; 1100 1101 rc = tee_device_register(optee->supp_teedev); 1102 if (rc) 1103 goto err_unreg_supp_teedev; 1104 1105 rc = rhashtable_init(&optee->ffa.global_ids, &shm_rhash_params); 1106 if (rc) 1107 goto err_unreg_supp_teedev; 1108 mutex_init(&optee->ffa.mutex); 1109 optee_cq_init(&optee->call_queue, 0); 1110 optee_supp_init(&optee->supp); 1111 optee_shm_arg_cache_init(optee, arg_cache_flags); 1112 mutex_init(&optee->rpmb_dev_mutex); 1113 ffa_dev_set_drvdata(ffa_dev, optee); 1114 ctx = teedev_open(optee->teedev); 1115 if (IS_ERR(ctx)) { 1116 rc = PTR_ERR(ctx); 1117 goto err_rhashtable_free; 1118 } 1119 optee->ctx = ctx; 1120 rc = optee_notif_init(optee, OPTEE_DEFAULT_MAX_NOTIF_VALUE); 1121 if (rc) 1122 goto err_close_ctx; 1123 if (sec_caps & OPTEE_FFA_SEC_CAP_ASYNC_NOTIF) { 1124 rc = optee_ffa_async_notif_init(ffa_dev, optee); 1125 if (rc < 0) 1126 pr_err("Failed to initialize async notifications: %d", 1127 rc); 1128 } 1129 1130 if (optee_ffa_protmem_pool_init(optee, sec_caps)) 1131 pr_info("Protected memory service not available\n"); 1132 1133 rc = optee_enumerate_devices(PTA_CMD_GET_DEVICES); 1134 if (rc) 1135 goto err_unregister_devices; 1136 1137 INIT_WORK(&optee->rpmb_scan_bus_work, optee_bus_scan_rpmb); 1138 optee->rpmb_intf.notifier_call = optee_rpmb_intf_rdev; 1139 blocking_notifier_chain_register(&optee_rpmb_intf_added, 1140 &optee->rpmb_intf); 1141 pr_info("initialized driver\n"); 1142 return 0; 1143 1144 err_unregister_devices: 1145 optee_unregister_devices(); 1146 if (optee->ffa.bottom_half_value != U32_MAX) 1147 notif_ops->notify_relinquish(ffa_dev, 1148 optee->ffa.bottom_half_value); 1149 optee_notif_uninit(optee); 1150 err_close_ctx: 1151 teedev_close_context(ctx); 1152 err_rhashtable_free: 1153 rhashtable_free_and_destroy(&optee->ffa.global_ids, rh_free_fn, NULL); 1154 rpmb_dev_put(optee->rpmb_dev); 1155 mutex_destroy(&optee->rpmb_dev_mutex); 1156 optee_supp_uninit(&optee->supp); 1157 mutex_destroy(&optee->call_queue.mutex); 1158 mutex_destroy(&optee->ffa.mutex); 1159 err_unreg_supp_teedev: 1160 tee_device_unregister(optee->supp_teedev); 1161 err_unreg_teedev: 1162 tee_device_unregister(optee->teedev); 1163 err_free_shm_pool: 1164 tee_shm_pool_free(pool); 1165 err_free_optee: 1166 kfree(optee); 1167 return rc; 1168 } 1169 1170 static const struct ffa_device_id optee_ffa_device_id[] = { 1171 /* 486178e0-e7f8-11e3-bc5e0002a5d5c51b */ 1172 { UUID_INIT(0x486178e0, 0xe7f8, 0x11e3, 1173 0xbc, 0x5e, 0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b) }, 1174 {} 1175 }; 1176 1177 static struct ffa_driver optee_ffa_driver = { 1178 .name = "optee", 1179 .probe = optee_ffa_probe, 1180 .remove = optee_ffa_remove, 1181 .id_table = optee_ffa_device_id, 1182 }; 1183 1184 int optee_ffa_abi_register(void) 1185 { 1186 if (IS_REACHABLE(CONFIG_ARM_FFA_TRANSPORT)) 1187 return ffa_register(&optee_ffa_driver); 1188 else 1189 return -EOPNOTSUPP; 1190 } 1191 1192 void optee_ffa_abi_unregister(void) 1193 { 1194 if (IS_REACHABLE(CONFIG_ARM_FFA_TRANSPORT)) 1195 ffa_unregister(&optee_ffa_driver); 1196 } 1197