xref: /linux/drivers/tee/optee/call.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015-2021, 2023 Linaro Limited
4  */
5 #include <linux/device.h>
6 #include <linux/err.h>
7 #include <linux/errno.h>
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/tee_core.h>
11 #include <linux/types.h>
12 #include "optee_private.h"
13 
14 #define MAX_ARG_PARAM_COUNT	6
15 
16 /*
17  * How much memory we allocate for each entry. This doesn't have to be a
18  * single page, but it makes sense to keep at least keep it as multiples of
19  * the page size.
20  */
21 #define SHM_ENTRY_SIZE		PAGE_SIZE
22 
23 /*
24  * We need to have a compile time constant to be able to determine the
25  * maximum needed size of the bit field.
26  */
27 #define MIN_ARG_SIZE		OPTEE_MSG_GET_ARG_SIZE(MAX_ARG_PARAM_COUNT)
28 #define MAX_ARG_COUNT_PER_ENTRY	(SHM_ENTRY_SIZE / MIN_ARG_SIZE)
29 
30 /*
31  * Shared memory for argument structs are cached here. The number of
32  * arguments structs that can fit is determined at runtime depending on the
33  * needed RPC parameter count reported by secure world
34  * (optee->rpc_param_count).
35  */
36 struct optee_shm_arg_entry {
37 	struct list_head list_node;
38 	struct tee_shm *shm;
39 	DECLARE_BITMAP(map, MAX_ARG_COUNT_PER_ENTRY);
40 };
41 
42 void optee_cq_init(struct optee_call_queue *cq, int thread_count)
43 {
44 	mutex_init(&cq->mutex);
45 	INIT_LIST_HEAD(&cq->waiters);
46 
47 	/*
48 	 * If cq->total_thread_count is 0 then we're not trying to keep
49 	 * track of how many free threads we have, instead we're relying on
50 	 * the secure world to tell us when we're out of thread and have to
51 	 * wait for another thread to become available.
52 	 */
53 	cq->total_thread_count = thread_count;
54 	cq->free_thread_count = thread_count;
55 }
56 
57 void optee_cq_wait_init(struct optee_call_queue *cq,
58 			struct optee_call_waiter *w, bool sys_thread)
59 {
60 	unsigned int free_thread_threshold;
61 	bool need_wait = false;
62 
63 	memset(w, 0, sizeof(*w));
64 
65 	/*
66 	 * We're preparing to make a call to secure world. In case we can't
67 	 * allocate a thread in secure world we'll end up waiting in
68 	 * optee_cq_wait_for_completion().
69 	 *
70 	 * Normally if there's no contention in secure world the call will
71 	 * complete and we can cleanup directly with optee_cq_wait_final().
72 	 */
73 	mutex_lock(&cq->mutex);
74 
75 	/*
76 	 * We add ourselves to the queue, but we don't wait. This
77 	 * guarantees that we don't lose a completion if secure world
78 	 * returns busy and another thread just exited and try to complete
79 	 * someone.
80 	 */
81 	init_completion(&w->c);
82 	list_add_tail(&w->list_node, &cq->waiters);
83 	w->sys_thread = sys_thread;
84 
85 	if (cq->total_thread_count) {
86 		if (sys_thread || !cq->sys_thread_req_count)
87 			free_thread_threshold = 0;
88 		else
89 			free_thread_threshold = 1;
90 
91 		if (cq->free_thread_count > free_thread_threshold)
92 			cq->free_thread_count--;
93 		else
94 			need_wait = true;
95 	}
96 
97 	mutex_unlock(&cq->mutex);
98 
99 	while (need_wait) {
100 		optee_cq_wait_for_completion(cq, w);
101 		mutex_lock(&cq->mutex);
102 
103 		if (sys_thread || !cq->sys_thread_req_count)
104 			free_thread_threshold = 0;
105 		else
106 			free_thread_threshold = 1;
107 
108 		if (cq->free_thread_count > free_thread_threshold) {
109 			cq->free_thread_count--;
110 			need_wait = false;
111 		}
112 
113 		mutex_unlock(&cq->mutex);
114 	}
115 }
116 
117 void optee_cq_wait_for_completion(struct optee_call_queue *cq,
118 				  struct optee_call_waiter *w)
119 {
120 	wait_for_completion(&w->c);
121 
122 	mutex_lock(&cq->mutex);
123 
124 	/* Move to end of list to get out of the way for other waiters */
125 	list_del(&w->list_node);
126 	reinit_completion(&w->c);
127 	list_add_tail(&w->list_node, &cq->waiters);
128 
129 	mutex_unlock(&cq->mutex);
130 }
131 
132 static void optee_cq_complete_one(struct optee_call_queue *cq)
133 {
134 	struct optee_call_waiter *w;
135 
136 	/* Wake a waiting system session if any, prior to a normal session */
137 	list_for_each_entry(w, &cq->waiters, list_node) {
138 		if (w->sys_thread && !completion_done(&w->c)) {
139 			complete(&w->c);
140 			return;
141 		}
142 	}
143 
144 	list_for_each_entry(w, &cq->waiters, list_node) {
145 		if (!completion_done(&w->c)) {
146 			complete(&w->c);
147 			break;
148 		}
149 	}
150 }
151 
152 void optee_cq_wait_final(struct optee_call_queue *cq,
153 			 struct optee_call_waiter *w)
154 {
155 	/*
156 	 * We're done with the call to secure world. The thread in secure
157 	 * world that was used for this call is now available for some
158 	 * other task to use.
159 	 */
160 	mutex_lock(&cq->mutex);
161 
162 	/* Get out of the list */
163 	list_del(&w->list_node);
164 
165 	cq->free_thread_count++;
166 
167 	/* Wake up one eventual waiting task */
168 	optee_cq_complete_one(cq);
169 
170 	/*
171 	 * If we're completed we've got a completion from another task that
172 	 * was just done with its call to secure world. Since yet another
173 	 * thread now is available in secure world wake up another eventual
174 	 * waiting task.
175 	 */
176 	if (completion_done(&w->c))
177 		optee_cq_complete_one(cq);
178 
179 	mutex_unlock(&cq->mutex);
180 }
181 
182 /* Count registered system sessions to reserved a system thread or not */
183 static bool optee_cq_incr_sys_thread_count(struct optee_call_queue *cq)
184 {
185 	if (cq->total_thread_count <= 1)
186 		return false;
187 
188 	mutex_lock(&cq->mutex);
189 	cq->sys_thread_req_count++;
190 	mutex_unlock(&cq->mutex);
191 
192 	return true;
193 }
194 
195 static void optee_cq_decr_sys_thread_count(struct optee_call_queue *cq)
196 {
197 	mutex_lock(&cq->mutex);
198 	cq->sys_thread_req_count--;
199 	/* If there's someone waiting, let it resume */
200 	optee_cq_complete_one(cq);
201 	mutex_unlock(&cq->mutex);
202 }
203 
204 /* Requires the filpstate mutex to be held */
205 static struct optee_session *find_session(struct optee_context_data *ctxdata,
206 					  u32 session_id)
207 {
208 	struct optee_session *sess;
209 
210 	list_for_each_entry(sess, &ctxdata->sess_list, list_node)
211 		if (sess->session_id == session_id)
212 			return sess;
213 
214 	return NULL;
215 }
216 
217 void optee_shm_arg_cache_init(struct optee *optee, u32 flags)
218 {
219 	INIT_LIST_HEAD(&optee->shm_arg_cache.shm_args);
220 	mutex_init(&optee->shm_arg_cache.mutex);
221 	optee->shm_arg_cache.flags = flags;
222 }
223 
224 void optee_shm_arg_cache_uninit(struct optee *optee)
225 {
226 	struct list_head *head = &optee->shm_arg_cache.shm_args;
227 	struct optee_shm_arg_entry *entry;
228 
229 	mutex_destroy(&optee->shm_arg_cache.mutex);
230 	while (!list_empty(head)) {
231 		entry = list_first_entry(head, struct optee_shm_arg_entry,
232 					 list_node);
233 		list_del(&entry->list_node);
234 		if (find_first_bit(entry->map, MAX_ARG_COUNT_PER_ENTRY) !=
235 		     MAX_ARG_COUNT_PER_ENTRY) {
236 			pr_err("Freeing non-free entry\n");
237 		}
238 		tee_shm_free(entry->shm);
239 		kfree(entry);
240 	}
241 }
242 
243 size_t optee_msg_arg_size(size_t rpc_param_count)
244 {
245 	size_t sz = OPTEE_MSG_GET_ARG_SIZE(MAX_ARG_PARAM_COUNT);
246 
247 	if (rpc_param_count)
248 		sz += OPTEE_MSG_GET_ARG_SIZE(rpc_param_count);
249 
250 	return sz;
251 }
252 
253 /**
254  * optee_get_msg_arg() - Provide shared memory for argument struct
255  * @ctx:	Caller TEE context
256  * @num_params:	Number of parameter to store
257  * @entry_ret:	Entry pointer, needed when freeing the buffer
258  * @shm_ret:	Shared memory buffer
259  * @offs_ret:	Offset of argument strut in shared memory buffer
260  *
261  * @returns a pointer to the argument struct in memory, else an ERR_PTR
262  */
263 struct optee_msg_arg *optee_get_msg_arg(struct tee_context *ctx,
264 					size_t num_params,
265 					struct optee_shm_arg_entry **entry_ret,
266 					struct tee_shm **shm_ret,
267 					u_int *offs_ret)
268 {
269 	struct optee *optee = tee_get_drvdata(ctx->teedev);
270 	size_t sz = optee_msg_arg_size(optee->rpc_param_count);
271 	struct optee_shm_arg_entry *entry;
272 	struct optee_msg_arg *ma;
273 	size_t args_per_entry;
274 	u_long bit;
275 	u_int offs;
276 	void *res;
277 
278 	if (num_params > MAX_ARG_PARAM_COUNT)
279 		return ERR_PTR(-EINVAL);
280 
281 	if (optee->shm_arg_cache.flags & OPTEE_SHM_ARG_SHARED)
282 		args_per_entry = SHM_ENTRY_SIZE / sz;
283 	else
284 		args_per_entry = 1;
285 
286 	mutex_lock(&optee->shm_arg_cache.mutex);
287 	list_for_each_entry(entry, &optee->shm_arg_cache.shm_args, list_node) {
288 		bit = find_first_zero_bit(entry->map, MAX_ARG_COUNT_PER_ENTRY);
289 		if (bit < args_per_entry)
290 			goto have_entry;
291 	}
292 
293 	/*
294 	 * No entry was found, let's allocate a new.
295 	 */
296 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
297 	if (!entry) {
298 		res = ERR_PTR(-ENOMEM);
299 		goto out;
300 	}
301 
302 	if (optee->shm_arg_cache.flags & OPTEE_SHM_ARG_ALLOC_PRIV)
303 		res = tee_shm_alloc_priv_buf(ctx, SHM_ENTRY_SIZE);
304 	else
305 		res = tee_shm_alloc_kernel_buf(ctx, SHM_ENTRY_SIZE);
306 
307 	if (IS_ERR(res)) {
308 		kfree(entry);
309 		goto out;
310 	}
311 	entry->shm = res;
312 	list_add(&entry->list_node, &optee->shm_arg_cache.shm_args);
313 	bit = 0;
314 
315 have_entry:
316 	offs = bit * sz;
317 	res = tee_shm_get_va(entry->shm, offs);
318 	if (IS_ERR(res))
319 		goto out;
320 	ma = res;
321 	set_bit(bit, entry->map);
322 	memset(ma, 0, sz);
323 	ma->num_params = num_params;
324 	*entry_ret = entry;
325 	*shm_ret = entry->shm;
326 	*offs_ret = offs;
327 out:
328 	mutex_unlock(&optee->shm_arg_cache.mutex);
329 	return res;
330 }
331 
332 /**
333  * optee_free_msg_arg() - Free previsouly obtained shared memory
334  * @ctx:	Caller TEE context
335  * @entry:	Pointer returned when the shared memory was obtained
336  * @offs:	Offset of shared memory buffer to free
337  *
338  * This function frees the shared memory obtained with optee_get_msg_arg().
339  */
340 void optee_free_msg_arg(struct tee_context *ctx,
341 			struct optee_shm_arg_entry *entry, u_int offs)
342 {
343 	struct optee *optee = tee_get_drvdata(ctx->teedev);
344 	size_t sz = optee_msg_arg_size(optee->rpc_param_count);
345 	u_long bit;
346 
347 	if (offs > SHM_ENTRY_SIZE || offs % sz) {
348 		pr_err("Invalid offs %u\n", offs);
349 		return;
350 	}
351 	bit = offs / sz;
352 
353 	mutex_lock(&optee->shm_arg_cache.mutex);
354 
355 	if (!test_bit(bit, entry->map))
356 		pr_err("Bit pos %lu is already free\n", bit);
357 	clear_bit(bit, entry->map);
358 
359 	mutex_unlock(&optee->shm_arg_cache.mutex);
360 }
361 
362 int optee_open_session(struct tee_context *ctx,
363 		       struct tee_ioctl_open_session_arg *arg,
364 		       struct tee_param *param)
365 {
366 	struct optee *optee = tee_get_drvdata(ctx->teedev);
367 	struct optee_context_data *ctxdata = ctx->data;
368 	struct optee_shm_arg_entry *entry;
369 	struct tee_shm *shm;
370 	struct optee_msg_arg *msg_arg;
371 	struct optee_session *sess = NULL;
372 	uuid_t client_uuid;
373 	u_int offs;
374 	int rc;
375 
376 	/* +2 for the meta parameters added below */
377 	msg_arg = optee_get_msg_arg(ctx, arg->num_params + 2,
378 				    &entry, &shm, &offs);
379 	if (IS_ERR(msg_arg))
380 		return PTR_ERR(msg_arg);
381 
382 	msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
383 	msg_arg->cancel_id = arg->cancel_id;
384 
385 	/*
386 	 * Initialize and add the meta parameters needed when opening a
387 	 * session.
388 	 */
389 	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
390 				  OPTEE_MSG_ATTR_META;
391 	msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
392 				  OPTEE_MSG_ATTR_META;
393 	memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
394 	msg_arg->params[1].u.value.c = arg->clnt_login;
395 
396 	rc = tee_session_calc_client_uuid(&client_uuid, arg->clnt_login,
397 					  arg->clnt_uuid);
398 	if (rc)
399 		goto out;
400 	export_uuid(msg_arg->params[1].u.octets, &client_uuid);
401 
402 	rc = optee->ops->to_msg_param(optee, msg_arg->params + 2,
403 				      arg->num_params, param);
404 	if (rc)
405 		goto out;
406 
407 	sess = kzalloc(sizeof(*sess), GFP_KERNEL);
408 	if (!sess) {
409 		rc = -ENOMEM;
410 		goto out;
411 	}
412 
413 	if (optee->ops->do_call_with_arg(ctx, shm, offs,
414 					 sess->use_sys_thread)) {
415 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
416 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
417 	}
418 
419 	if (msg_arg->ret == TEEC_SUCCESS) {
420 		/* A new session has been created, add it to the list. */
421 		sess->session_id = msg_arg->session;
422 		mutex_lock(&ctxdata->mutex);
423 		list_add(&sess->list_node, &ctxdata->sess_list);
424 		mutex_unlock(&ctxdata->mutex);
425 	} else {
426 		kfree(sess);
427 	}
428 
429 	if (optee->ops->from_msg_param(optee, param, arg->num_params,
430 				       msg_arg->params + 2)) {
431 		arg->ret = TEEC_ERROR_COMMUNICATION;
432 		arg->ret_origin = TEEC_ORIGIN_COMMS;
433 		/* Close session again to avoid leakage */
434 		optee_close_session(ctx, msg_arg->session);
435 	} else {
436 		arg->session = msg_arg->session;
437 		arg->ret = msg_arg->ret;
438 		arg->ret_origin = msg_arg->ret_origin;
439 	}
440 out:
441 	optee_free_msg_arg(ctx, entry, offs);
442 
443 	return rc;
444 }
445 
446 int optee_system_session(struct tee_context *ctx, u32 session)
447 {
448 	struct optee *optee = tee_get_drvdata(ctx->teedev);
449 	struct optee_context_data *ctxdata = ctx->data;
450 	struct optee_session *sess;
451 	int rc = -EINVAL;
452 
453 	mutex_lock(&ctxdata->mutex);
454 
455 	sess = find_session(ctxdata, session);
456 	if (sess && (sess->use_sys_thread ||
457 		     optee_cq_incr_sys_thread_count(&optee->call_queue))) {
458 		sess->use_sys_thread = true;
459 		rc = 0;
460 	}
461 
462 	mutex_unlock(&ctxdata->mutex);
463 
464 	return rc;
465 }
466 
467 int optee_close_session_helper(struct tee_context *ctx, u32 session,
468 			       bool system_thread)
469 {
470 	struct optee *optee = tee_get_drvdata(ctx->teedev);
471 	struct optee_shm_arg_entry *entry;
472 	struct optee_msg_arg *msg_arg;
473 	struct tee_shm *shm;
474 	u_int offs;
475 
476 	msg_arg = optee_get_msg_arg(ctx, 0, &entry, &shm, &offs);
477 	if (IS_ERR(msg_arg))
478 		return PTR_ERR(msg_arg);
479 
480 	msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
481 	msg_arg->session = session;
482 	optee->ops->do_call_with_arg(ctx, shm, offs, system_thread);
483 
484 	optee_free_msg_arg(ctx, entry, offs);
485 
486 	if (system_thread)
487 		optee_cq_decr_sys_thread_count(&optee->call_queue);
488 
489 	return 0;
490 }
491 
492 int optee_close_session(struct tee_context *ctx, u32 session)
493 {
494 	struct optee_context_data *ctxdata = ctx->data;
495 	struct optee_session *sess;
496 	bool system_thread;
497 
498 	/* Check that the session is valid and remove it from the list */
499 	mutex_lock(&ctxdata->mutex);
500 	sess = find_session(ctxdata, session);
501 	if (sess)
502 		list_del(&sess->list_node);
503 	mutex_unlock(&ctxdata->mutex);
504 	if (!sess)
505 		return -EINVAL;
506 	system_thread = sess->use_sys_thread;
507 	kfree(sess);
508 
509 	return optee_close_session_helper(ctx, session, system_thread);
510 }
511 
512 int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
513 		      struct tee_param *param)
514 {
515 	struct optee *optee = tee_get_drvdata(ctx->teedev);
516 	struct optee_context_data *ctxdata = ctx->data;
517 	struct optee_shm_arg_entry *entry;
518 	struct optee_msg_arg *msg_arg;
519 	struct optee_session *sess;
520 	struct tee_shm *shm;
521 	bool system_thread;
522 	u_int offs;
523 	int rc;
524 
525 	/* Check that the session is valid */
526 	mutex_lock(&ctxdata->mutex);
527 	sess = find_session(ctxdata, arg->session);
528 	if (sess)
529 		system_thread = sess->use_sys_thread;
530 	mutex_unlock(&ctxdata->mutex);
531 	if (!sess)
532 		return -EINVAL;
533 
534 	msg_arg = optee_get_msg_arg(ctx, arg->num_params,
535 				    &entry, &shm, &offs);
536 	if (IS_ERR(msg_arg))
537 		return PTR_ERR(msg_arg);
538 	msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
539 	msg_arg->func = arg->func;
540 	msg_arg->session = arg->session;
541 	msg_arg->cancel_id = arg->cancel_id;
542 
543 	rc = optee->ops->to_msg_param(optee, msg_arg->params, arg->num_params,
544 				      param);
545 	if (rc)
546 		goto out;
547 
548 	if (optee->ops->do_call_with_arg(ctx, shm, offs, system_thread)) {
549 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
550 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
551 	}
552 
553 	if (optee->ops->from_msg_param(optee, param, arg->num_params,
554 				       msg_arg->params)) {
555 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
556 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
557 	}
558 
559 	arg->ret = msg_arg->ret;
560 	arg->ret_origin = msg_arg->ret_origin;
561 out:
562 	optee_free_msg_arg(ctx, entry, offs);
563 	return rc;
564 }
565 
566 int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
567 {
568 	struct optee *optee = tee_get_drvdata(ctx->teedev);
569 	struct optee_context_data *ctxdata = ctx->data;
570 	struct optee_shm_arg_entry *entry;
571 	struct optee_msg_arg *msg_arg;
572 	struct optee_session *sess;
573 	bool system_thread;
574 	struct tee_shm *shm;
575 	u_int offs;
576 
577 	/* Check that the session is valid */
578 	mutex_lock(&ctxdata->mutex);
579 	sess = find_session(ctxdata, session);
580 	if (sess)
581 		system_thread = sess->use_sys_thread;
582 	mutex_unlock(&ctxdata->mutex);
583 	if (!sess)
584 		return -EINVAL;
585 
586 	msg_arg = optee_get_msg_arg(ctx, 0, &entry, &shm, &offs);
587 	if (IS_ERR(msg_arg))
588 		return PTR_ERR(msg_arg);
589 
590 	msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
591 	msg_arg->session = session;
592 	msg_arg->cancel_id = cancel_id;
593 	optee->ops->do_call_with_arg(ctx, shm, offs, system_thread);
594 
595 	optee_free_msg_arg(ctx, entry, offs);
596 	return 0;
597 }
598 
599 static bool is_normal_memory(pgprot_t p)
600 {
601 #if defined(CONFIG_ARM)
602 	return (((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC) ||
603 		((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEBACK));
604 #elif defined(CONFIG_ARM64)
605 	return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
606 #else
607 #error "Unsupported architecture"
608 #endif
609 }
610 
611 static int __check_mem_type(struct mm_struct *mm, unsigned long start,
612 				unsigned long end)
613 {
614 	struct vm_area_struct *vma;
615 	VMA_ITERATOR(vmi, mm, start);
616 
617 	for_each_vma_range(vmi, vma, end) {
618 		if (!is_normal_memory(vma->vm_page_prot))
619 			return -EINVAL;
620 	}
621 
622 	return 0;
623 }
624 
625 int optee_check_mem_type(unsigned long start, size_t num_pages)
626 {
627 	struct mm_struct *mm = current->mm;
628 	int rc;
629 
630 	/*
631 	 * Allow kernel address to register with OP-TEE as kernel
632 	 * pages are configured as normal memory only.
633 	 */
634 	if (virt_addr_valid((void *)start) || is_vmalloc_addr((void *)start))
635 		return 0;
636 
637 	mmap_read_lock(mm);
638 	rc = __check_mem_type(mm, start, start + num_pages * PAGE_SIZE);
639 	mmap_read_unlock(mm);
640 
641 	return rc;
642 }
643 
644 static int simple_call_with_arg(struct tee_context *ctx, u32 cmd)
645 {
646 	struct optee *optee = tee_get_drvdata(ctx->teedev);
647 	struct optee_shm_arg_entry *entry;
648 	struct optee_msg_arg *msg_arg;
649 	struct tee_shm *shm;
650 	u_int offs;
651 
652 	msg_arg = optee_get_msg_arg(ctx, 0, &entry, &shm, &offs);
653 	if (IS_ERR(msg_arg))
654 		return PTR_ERR(msg_arg);
655 
656 	msg_arg->cmd = cmd;
657 	optee->ops->do_call_with_arg(ctx, shm, offs, false);
658 
659 	optee_free_msg_arg(ctx, entry, offs);
660 	return 0;
661 }
662 
663 int optee_do_bottom_half(struct tee_context *ctx)
664 {
665 	return simple_call_with_arg(ctx, OPTEE_MSG_CMD_DO_BOTTOM_HALF);
666 }
667 
668 int optee_stop_async_notif(struct tee_context *ctx)
669 {
670 	return simple_call_with_arg(ctx, OPTEE_MSG_CMD_STOP_ASYNC_NOTIF);
671 }
672