xref: /linux/drivers/tee/optee/call.c (revision bdd1a21b52557ea8f61d0a5dc2f77151b576eb70)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, Linaro Limited
4  */
5 #include <linux/arm-smccc.h>
6 #include <linux/device.h>
7 #include <linux/err.h>
8 #include <linux/errno.h>
9 #include <linux/mm.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/tee_drv.h>
13 #include <linux/types.h>
14 #include <linux/uaccess.h>
15 #include "optee_private.h"
16 #include "optee_smc.h"
17 #define CREATE_TRACE_POINTS
18 #include "optee_trace.h"
19 
20 struct optee_call_waiter {
21 	struct list_head list_node;
22 	struct completion c;
23 };
24 
25 static void optee_cq_wait_init(struct optee_call_queue *cq,
26 			       struct optee_call_waiter *w)
27 {
28 	/*
29 	 * We're preparing to make a call to secure world. In case we can't
30 	 * allocate a thread in secure world we'll end up waiting in
31 	 * optee_cq_wait_for_completion().
32 	 *
33 	 * Normally if there's no contention in secure world the call will
34 	 * complete and we can cleanup directly with optee_cq_wait_final().
35 	 */
36 	mutex_lock(&cq->mutex);
37 
38 	/*
39 	 * We add ourselves to the queue, but we don't wait. This
40 	 * guarantees that we don't lose a completion if secure world
41 	 * returns busy and another thread just exited and try to complete
42 	 * someone.
43 	 */
44 	init_completion(&w->c);
45 	list_add_tail(&w->list_node, &cq->waiters);
46 
47 	mutex_unlock(&cq->mutex);
48 }
49 
50 static void optee_cq_wait_for_completion(struct optee_call_queue *cq,
51 					 struct optee_call_waiter *w)
52 {
53 	wait_for_completion(&w->c);
54 
55 	mutex_lock(&cq->mutex);
56 
57 	/* Move to end of list to get out of the way for other waiters */
58 	list_del(&w->list_node);
59 	reinit_completion(&w->c);
60 	list_add_tail(&w->list_node, &cq->waiters);
61 
62 	mutex_unlock(&cq->mutex);
63 }
64 
65 static void optee_cq_complete_one(struct optee_call_queue *cq)
66 {
67 	struct optee_call_waiter *w;
68 
69 	list_for_each_entry(w, &cq->waiters, list_node) {
70 		if (!completion_done(&w->c)) {
71 			complete(&w->c);
72 			break;
73 		}
74 	}
75 }
76 
77 static void optee_cq_wait_final(struct optee_call_queue *cq,
78 				struct optee_call_waiter *w)
79 {
80 	/*
81 	 * We're done with the call to secure world. The thread in secure
82 	 * world that was used for this call is now available for some
83 	 * other task to use.
84 	 */
85 	mutex_lock(&cq->mutex);
86 
87 	/* Get out of the list */
88 	list_del(&w->list_node);
89 
90 	/* Wake up one eventual waiting task */
91 	optee_cq_complete_one(cq);
92 
93 	/*
94 	 * If we're completed we've got a completion from another task that
95 	 * was just done with its call to secure world. Since yet another
96 	 * thread now is available in secure world wake up another eventual
97 	 * waiting task.
98 	 */
99 	if (completion_done(&w->c))
100 		optee_cq_complete_one(cq);
101 
102 	mutex_unlock(&cq->mutex);
103 }
104 
105 /* Requires the filpstate mutex to be held */
106 static struct optee_session *find_session(struct optee_context_data *ctxdata,
107 					  u32 session_id)
108 {
109 	struct optee_session *sess;
110 
111 	list_for_each_entry(sess, &ctxdata->sess_list, list_node)
112 		if (sess->session_id == session_id)
113 			return sess;
114 
115 	return NULL;
116 }
117 
118 /**
119  * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world
120  * @ctx:	calling context
121  * @parg:	physical address of message to pass to secure world
122  *
123  * Does and SMC to OP-TEE in secure world and handles eventual resulting
124  * Remote Procedure Calls (RPC) from OP-TEE.
125  *
126  * Returns return code from secure world, 0 is OK
127  */
128 u32 optee_do_call_with_arg(struct tee_context *ctx, phys_addr_t parg)
129 {
130 	struct optee *optee = tee_get_drvdata(ctx->teedev);
131 	struct optee_call_waiter w;
132 	struct optee_rpc_param param = { };
133 	struct optee_call_ctx call_ctx = { };
134 	u32 ret;
135 
136 	param.a0 = OPTEE_SMC_CALL_WITH_ARG;
137 	reg_pair_from_64(&param.a1, &param.a2, parg);
138 	/* Initialize waiter */
139 	optee_cq_wait_init(&optee->call_queue, &w);
140 	while (true) {
141 		struct arm_smccc_res res;
142 
143 		trace_optee_invoke_fn_begin(&param);
144 		optee->invoke_fn(param.a0, param.a1, param.a2, param.a3,
145 				 param.a4, param.a5, param.a6, param.a7,
146 				 &res);
147 		trace_optee_invoke_fn_end(&param, &res);
148 
149 		if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
150 			/*
151 			 * Out of threads in secure world, wait for a thread
152 			 * become available.
153 			 */
154 			optee_cq_wait_for_completion(&optee->call_queue, &w);
155 		} else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
156 			cond_resched();
157 			param.a0 = res.a0;
158 			param.a1 = res.a1;
159 			param.a2 = res.a2;
160 			param.a3 = res.a3;
161 			optee_handle_rpc(ctx, &param, &call_ctx);
162 		} else {
163 			ret = res.a0;
164 			break;
165 		}
166 	}
167 
168 	optee_rpc_finalize_call(&call_ctx);
169 	/*
170 	 * We're done with our thread in secure world, if there's any
171 	 * thread waiters wake up one.
172 	 */
173 	optee_cq_wait_final(&optee->call_queue, &w);
174 
175 	return ret;
176 }
177 
178 static struct tee_shm *get_msg_arg(struct tee_context *ctx, size_t num_params,
179 				   struct optee_msg_arg **msg_arg,
180 				   phys_addr_t *msg_parg)
181 {
182 	int rc;
183 	struct tee_shm *shm;
184 	struct optee_msg_arg *ma;
185 
186 	shm = tee_shm_alloc(ctx, OPTEE_MSG_GET_ARG_SIZE(num_params),
187 			    TEE_SHM_MAPPED);
188 	if (IS_ERR(shm))
189 		return shm;
190 
191 	ma = tee_shm_get_va(shm, 0);
192 	if (IS_ERR(ma)) {
193 		rc = PTR_ERR(ma);
194 		goto out;
195 	}
196 
197 	rc = tee_shm_get_pa(shm, 0, msg_parg);
198 	if (rc)
199 		goto out;
200 
201 	memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params));
202 	ma->num_params = num_params;
203 	*msg_arg = ma;
204 out:
205 	if (rc) {
206 		tee_shm_free(shm);
207 		return ERR_PTR(rc);
208 	}
209 
210 	return shm;
211 }
212 
213 int optee_open_session(struct tee_context *ctx,
214 		       struct tee_ioctl_open_session_arg *arg,
215 		       struct tee_param *param)
216 {
217 	struct optee_context_data *ctxdata = ctx->data;
218 	int rc;
219 	struct tee_shm *shm;
220 	struct optee_msg_arg *msg_arg;
221 	phys_addr_t msg_parg;
222 	struct optee_session *sess = NULL;
223 	uuid_t client_uuid;
224 
225 	/* +2 for the meta parameters added below */
226 	shm = get_msg_arg(ctx, arg->num_params + 2, &msg_arg, &msg_parg);
227 	if (IS_ERR(shm))
228 		return PTR_ERR(shm);
229 
230 	msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
231 	msg_arg->cancel_id = arg->cancel_id;
232 
233 	/*
234 	 * Initialize and add the meta parameters needed when opening a
235 	 * session.
236 	 */
237 	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
238 				  OPTEE_MSG_ATTR_META;
239 	msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
240 				  OPTEE_MSG_ATTR_META;
241 	memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
242 	msg_arg->params[1].u.value.c = arg->clnt_login;
243 
244 	rc = tee_session_calc_client_uuid(&client_uuid, arg->clnt_login,
245 					  arg->clnt_uuid);
246 	if (rc)
247 		goto out;
248 	export_uuid(msg_arg->params[1].u.octets, &client_uuid);
249 
250 	rc = optee_to_msg_param(msg_arg->params + 2, arg->num_params, param);
251 	if (rc)
252 		goto out;
253 
254 	sess = kzalloc(sizeof(*sess), GFP_KERNEL);
255 	if (!sess) {
256 		rc = -ENOMEM;
257 		goto out;
258 	}
259 
260 	if (optee_do_call_with_arg(ctx, msg_parg)) {
261 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
262 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
263 	}
264 
265 	if (msg_arg->ret == TEEC_SUCCESS) {
266 		/* A new session has been created, add it to the list. */
267 		sess->session_id = msg_arg->session;
268 		mutex_lock(&ctxdata->mutex);
269 		list_add(&sess->list_node, &ctxdata->sess_list);
270 		mutex_unlock(&ctxdata->mutex);
271 	} else {
272 		kfree(sess);
273 	}
274 
275 	if (optee_from_msg_param(param, arg->num_params, msg_arg->params + 2)) {
276 		arg->ret = TEEC_ERROR_COMMUNICATION;
277 		arg->ret_origin = TEEC_ORIGIN_COMMS;
278 		/* Close session again to avoid leakage */
279 		optee_close_session(ctx, msg_arg->session);
280 	} else {
281 		arg->session = msg_arg->session;
282 		arg->ret = msg_arg->ret;
283 		arg->ret_origin = msg_arg->ret_origin;
284 	}
285 out:
286 	tee_shm_free(shm);
287 
288 	return rc;
289 }
290 
291 int optee_close_session(struct tee_context *ctx, u32 session)
292 {
293 	struct optee_context_data *ctxdata = ctx->data;
294 	struct tee_shm *shm;
295 	struct optee_msg_arg *msg_arg;
296 	phys_addr_t msg_parg;
297 	struct optee_session *sess;
298 
299 	/* Check that the session is valid and remove it from the list */
300 	mutex_lock(&ctxdata->mutex);
301 	sess = find_session(ctxdata, session);
302 	if (sess)
303 		list_del(&sess->list_node);
304 	mutex_unlock(&ctxdata->mutex);
305 	if (!sess)
306 		return -EINVAL;
307 	kfree(sess);
308 
309 	shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
310 	if (IS_ERR(shm))
311 		return PTR_ERR(shm);
312 
313 	msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
314 	msg_arg->session = session;
315 	optee_do_call_with_arg(ctx, msg_parg);
316 
317 	tee_shm_free(shm);
318 	return 0;
319 }
320 
321 int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
322 		      struct tee_param *param)
323 {
324 	struct optee_context_data *ctxdata = ctx->data;
325 	struct tee_shm *shm;
326 	struct optee_msg_arg *msg_arg;
327 	phys_addr_t msg_parg;
328 	struct optee_session *sess;
329 	int rc;
330 
331 	/* Check that the session is valid */
332 	mutex_lock(&ctxdata->mutex);
333 	sess = find_session(ctxdata, arg->session);
334 	mutex_unlock(&ctxdata->mutex);
335 	if (!sess)
336 		return -EINVAL;
337 
338 	shm = get_msg_arg(ctx, arg->num_params, &msg_arg, &msg_parg);
339 	if (IS_ERR(shm))
340 		return PTR_ERR(shm);
341 	msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
342 	msg_arg->func = arg->func;
343 	msg_arg->session = arg->session;
344 	msg_arg->cancel_id = arg->cancel_id;
345 
346 	rc = optee_to_msg_param(msg_arg->params, arg->num_params, param);
347 	if (rc)
348 		goto out;
349 
350 	if (optee_do_call_with_arg(ctx, msg_parg)) {
351 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
352 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
353 	}
354 
355 	if (optee_from_msg_param(param, arg->num_params, msg_arg->params)) {
356 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
357 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
358 	}
359 
360 	arg->ret = msg_arg->ret;
361 	arg->ret_origin = msg_arg->ret_origin;
362 out:
363 	tee_shm_free(shm);
364 	return rc;
365 }
366 
367 int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
368 {
369 	struct optee_context_data *ctxdata = ctx->data;
370 	struct tee_shm *shm;
371 	struct optee_msg_arg *msg_arg;
372 	phys_addr_t msg_parg;
373 	struct optee_session *sess;
374 
375 	/* Check that the session is valid */
376 	mutex_lock(&ctxdata->mutex);
377 	sess = find_session(ctxdata, session);
378 	mutex_unlock(&ctxdata->mutex);
379 	if (!sess)
380 		return -EINVAL;
381 
382 	shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
383 	if (IS_ERR(shm))
384 		return PTR_ERR(shm);
385 
386 	msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
387 	msg_arg->session = session;
388 	msg_arg->cancel_id = cancel_id;
389 	optee_do_call_with_arg(ctx, msg_parg);
390 
391 	tee_shm_free(shm);
392 	return 0;
393 }
394 
395 /**
396  * optee_enable_shm_cache() - Enables caching of some shared memory allocation
397  *			      in OP-TEE
398  * @optee:	main service struct
399  */
400 void optee_enable_shm_cache(struct optee *optee)
401 {
402 	struct optee_call_waiter w;
403 
404 	/* We need to retry until secure world isn't busy. */
405 	optee_cq_wait_init(&optee->call_queue, &w);
406 	while (true) {
407 		struct arm_smccc_res res;
408 
409 		optee->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
410 				 0, &res);
411 		if (res.a0 == OPTEE_SMC_RETURN_OK)
412 			break;
413 		optee_cq_wait_for_completion(&optee->call_queue, &w);
414 	}
415 	optee_cq_wait_final(&optee->call_queue, &w);
416 }
417 
418 /**
419  * optee_disable_shm_cache() - Disables caching of some shared memory allocation
420  *			      in OP-TEE
421  * @optee:	main service struct
422  */
423 void optee_disable_shm_cache(struct optee *optee)
424 {
425 	struct optee_call_waiter w;
426 
427 	/* We need to retry until secure world isn't busy. */
428 	optee_cq_wait_init(&optee->call_queue, &w);
429 	while (true) {
430 		union {
431 			struct arm_smccc_res smccc;
432 			struct optee_smc_disable_shm_cache_result result;
433 		} res;
434 
435 		optee->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
436 				 0, &res.smccc);
437 		if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
438 			break; /* All shm's freed */
439 		if (res.result.status == OPTEE_SMC_RETURN_OK) {
440 			struct tee_shm *shm;
441 
442 			shm = reg_pair_to_ptr(res.result.shm_upper32,
443 					      res.result.shm_lower32);
444 			tee_shm_free(shm);
445 		} else {
446 			optee_cq_wait_for_completion(&optee->call_queue, &w);
447 		}
448 	}
449 	optee_cq_wait_final(&optee->call_queue, &w);
450 }
451 
452 #define PAGELIST_ENTRIES_PER_PAGE				\
453 	((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
454 
455 /**
456  * optee_fill_pages_list() - write list of user pages to given shared
457  * buffer.
458  *
459  * @dst: page-aligned buffer where list of pages will be stored
460  * @pages: array of pages that represents shared buffer
461  * @num_pages: number of entries in @pages
462  * @page_offset: offset of user buffer from page start
463  *
464  * @dst should be big enough to hold list of user page addresses and
465  *	links to the next pages of buffer
466  */
467 void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
468 			   size_t page_offset)
469 {
470 	int n = 0;
471 	phys_addr_t optee_page;
472 	/*
473 	 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
474 	 * for details.
475 	 */
476 	struct {
477 		u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
478 		u64 next_page_data;
479 	} *pages_data;
480 
481 	/*
482 	 * Currently OP-TEE uses 4k page size and it does not looks
483 	 * like this will change in the future.  On other hand, there are
484 	 * no know ARM architectures with page size < 4k.
485 	 * Thus the next built assert looks redundant. But the following
486 	 * code heavily relies on this assumption, so it is better be
487 	 * safe than sorry.
488 	 */
489 	BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
490 
491 	pages_data = (void *)dst;
492 	/*
493 	 * If linux page is bigger than 4k, and user buffer offset is
494 	 * larger than 4k/8k/12k/etc this will skip first 4k pages,
495 	 * because they bear no value data for OP-TEE.
496 	 */
497 	optee_page = page_to_phys(*pages) +
498 		round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
499 
500 	while (true) {
501 		pages_data->pages_list[n++] = optee_page;
502 
503 		if (n == PAGELIST_ENTRIES_PER_PAGE) {
504 			pages_data->next_page_data =
505 				virt_to_phys(pages_data + 1);
506 			pages_data++;
507 			n = 0;
508 		}
509 
510 		optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
511 		if (!(optee_page & ~PAGE_MASK)) {
512 			if (!--num_pages)
513 				break;
514 			pages++;
515 			optee_page = page_to_phys(*pages);
516 		}
517 	}
518 }
519 
520 /*
521  * The final entry in each pagelist page is a pointer to the next
522  * pagelist page.
523  */
524 static size_t get_pages_list_size(size_t num_entries)
525 {
526 	int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
527 
528 	return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
529 }
530 
531 u64 *optee_allocate_pages_list(size_t num_entries)
532 {
533 	return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
534 }
535 
536 void optee_free_pages_list(void *list, size_t num_entries)
537 {
538 	free_pages_exact(list, get_pages_list_size(num_entries));
539 }
540 
541 static bool is_normal_memory(pgprot_t p)
542 {
543 #if defined(CONFIG_ARM)
544 	return (((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC) ||
545 		((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEBACK));
546 #elif defined(CONFIG_ARM64)
547 	return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
548 #else
549 #error "Unuspported architecture"
550 #endif
551 }
552 
553 static int __check_mem_type(struct vm_area_struct *vma, unsigned long end)
554 {
555 	while (vma && is_normal_memory(vma->vm_page_prot)) {
556 		if (vma->vm_end >= end)
557 			return 0;
558 		vma = vma->vm_next;
559 	}
560 
561 	return -EINVAL;
562 }
563 
564 static int check_mem_type(unsigned long start, size_t num_pages)
565 {
566 	struct mm_struct *mm = current->mm;
567 	int rc;
568 
569 	/*
570 	 * Allow kernel address to register with OP-TEE as kernel
571 	 * pages are configured as normal memory only.
572 	 */
573 	if (virt_addr_valid(start))
574 		return 0;
575 
576 	mmap_read_lock(mm);
577 	rc = __check_mem_type(find_vma(mm, start),
578 			      start + num_pages * PAGE_SIZE);
579 	mmap_read_unlock(mm);
580 
581 	return rc;
582 }
583 
584 int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
585 		       struct page **pages, size_t num_pages,
586 		       unsigned long start)
587 {
588 	struct tee_shm *shm_arg = NULL;
589 	struct optee_msg_arg *msg_arg;
590 	u64 *pages_list;
591 	phys_addr_t msg_parg;
592 	int rc;
593 
594 	if (!num_pages)
595 		return -EINVAL;
596 
597 	rc = check_mem_type(start, num_pages);
598 	if (rc)
599 		return rc;
600 
601 	pages_list = optee_allocate_pages_list(num_pages);
602 	if (!pages_list)
603 		return -ENOMEM;
604 
605 	shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
606 	if (IS_ERR(shm_arg)) {
607 		rc = PTR_ERR(shm_arg);
608 		goto out;
609 	}
610 
611 	optee_fill_pages_list(pages_list, pages, num_pages,
612 			      tee_shm_get_page_offset(shm));
613 
614 	msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
615 	msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
616 				OPTEE_MSG_ATTR_NONCONTIG;
617 	msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
618 	msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
619 	/*
620 	 * In the least bits of msg_arg->params->u.tmem.buf_ptr we
621 	 * store buffer offset from 4k page, as described in OP-TEE ABI.
622 	 */
623 	msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
624 	  (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
625 
626 	if (optee_do_call_with_arg(ctx, msg_parg) ||
627 	    msg_arg->ret != TEEC_SUCCESS)
628 		rc = -EINVAL;
629 
630 	tee_shm_free(shm_arg);
631 out:
632 	optee_free_pages_list(pages_list, num_pages);
633 	return rc;
634 }
635 
636 int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
637 {
638 	struct tee_shm *shm_arg;
639 	struct optee_msg_arg *msg_arg;
640 	phys_addr_t msg_parg;
641 	int rc = 0;
642 
643 	shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
644 	if (IS_ERR(shm_arg))
645 		return PTR_ERR(shm_arg);
646 
647 	msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
648 
649 	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
650 	msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
651 
652 	if (optee_do_call_with_arg(ctx, msg_parg) ||
653 	    msg_arg->ret != TEEC_SUCCESS)
654 		rc = -EINVAL;
655 	tee_shm_free(shm_arg);
656 	return rc;
657 }
658 
659 int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
660 			    struct page **pages, size_t num_pages,
661 			    unsigned long start)
662 {
663 	/*
664 	 * We don't want to register supplicant memory in OP-TEE.
665 	 * Instead information about it will be passed in RPC code.
666 	 */
667 	return check_mem_type(start, num_pages);
668 }
669 
670 int optee_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm)
671 {
672 	return 0;
673 }
674