1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015, Linaro Limited 4 */ 5 #include <linux/arm-smccc.h> 6 #include <linux/device.h> 7 #include <linux/err.h> 8 #include <linux/errno.h> 9 #include <linux/mm.h> 10 #include <linux/sched.h> 11 #include <linux/slab.h> 12 #include <linux/tee_drv.h> 13 #include <linux/types.h> 14 #include <linux/uaccess.h> 15 #include "optee_private.h" 16 #include "optee_smc.h" 17 #define CREATE_TRACE_POINTS 18 #include "optee_trace.h" 19 20 struct optee_call_waiter { 21 struct list_head list_node; 22 struct completion c; 23 }; 24 25 static void optee_cq_wait_init(struct optee_call_queue *cq, 26 struct optee_call_waiter *w) 27 { 28 /* 29 * We're preparing to make a call to secure world. In case we can't 30 * allocate a thread in secure world we'll end up waiting in 31 * optee_cq_wait_for_completion(). 32 * 33 * Normally if there's no contention in secure world the call will 34 * complete and we can cleanup directly with optee_cq_wait_final(). 35 */ 36 mutex_lock(&cq->mutex); 37 38 /* 39 * We add ourselves to the queue, but we don't wait. This 40 * guarantees that we don't lose a completion if secure world 41 * returns busy and another thread just exited and try to complete 42 * someone. 43 */ 44 init_completion(&w->c); 45 list_add_tail(&w->list_node, &cq->waiters); 46 47 mutex_unlock(&cq->mutex); 48 } 49 50 static void optee_cq_wait_for_completion(struct optee_call_queue *cq, 51 struct optee_call_waiter *w) 52 { 53 wait_for_completion(&w->c); 54 55 mutex_lock(&cq->mutex); 56 57 /* Move to end of list to get out of the way for other waiters */ 58 list_del(&w->list_node); 59 reinit_completion(&w->c); 60 list_add_tail(&w->list_node, &cq->waiters); 61 62 mutex_unlock(&cq->mutex); 63 } 64 65 static void optee_cq_complete_one(struct optee_call_queue *cq) 66 { 67 struct optee_call_waiter *w; 68 69 list_for_each_entry(w, &cq->waiters, list_node) { 70 if (!completion_done(&w->c)) { 71 complete(&w->c); 72 break; 73 } 74 } 75 } 76 77 static void optee_cq_wait_final(struct optee_call_queue *cq, 78 struct optee_call_waiter *w) 79 { 80 /* 81 * We're done with the call to secure world. The thread in secure 82 * world that was used for this call is now available for some 83 * other task to use. 84 */ 85 mutex_lock(&cq->mutex); 86 87 /* Get out of the list */ 88 list_del(&w->list_node); 89 90 /* Wake up one eventual waiting task */ 91 optee_cq_complete_one(cq); 92 93 /* 94 * If we're completed we've got a completion from another task that 95 * was just done with its call to secure world. Since yet another 96 * thread now is available in secure world wake up another eventual 97 * waiting task. 98 */ 99 if (completion_done(&w->c)) 100 optee_cq_complete_one(cq); 101 102 mutex_unlock(&cq->mutex); 103 } 104 105 /* Requires the filpstate mutex to be held */ 106 static struct optee_session *find_session(struct optee_context_data *ctxdata, 107 u32 session_id) 108 { 109 struct optee_session *sess; 110 111 list_for_each_entry(sess, &ctxdata->sess_list, list_node) 112 if (sess->session_id == session_id) 113 return sess; 114 115 return NULL; 116 } 117 118 /** 119 * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world 120 * @ctx: calling context 121 * @parg: physical address of message to pass to secure world 122 * 123 * Does and SMC to OP-TEE in secure world and handles eventual resulting 124 * Remote Procedure Calls (RPC) from OP-TEE. 125 * 126 * Returns return code from secure world, 0 is OK 127 */ 128 u32 optee_do_call_with_arg(struct tee_context *ctx, phys_addr_t parg) 129 { 130 struct optee *optee = tee_get_drvdata(ctx->teedev); 131 struct optee_call_waiter w; 132 struct optee_rpc_param param = { }; 133 struct optee_call_ctx call_ctx = { }; 134 u32 ret; 135 136 param.a0 = OPTEE_SMC_CALL_WITH_ARG; 137 reg_pair_from_64(¶m.a1, ¶m.a2, parg); 138 /* Initialize waiter */ 139 optee_cq_wait_init(&optee->call_queue, &w); 140 while (true) { 141 struct arm_smccc_res res; 142 143 trace_optee_invoke_fn_begin(¶m); 144 optee->invoke_fn(param.a0, param.a1, param.a2, param.a3, 145 param.a4, param.a5, param.a6, param.a7, 146 &res); 147 trace_optee_invoke_fn_end(¶m, &res); 148 149 if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) { 150 /* 151 * Out of threads in secure world, wait for a thread 152 * become available. 153 */ 154 optee_cq_wait_for_completion(&optee->call_queue, &w); 155 } else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) { 156 cond_resched(); 157 param.a0 = res.a0; 158 param.a1 = res.a1; 159 param.a2 = res.a2; 160 param.a3 = res.a3; 161 optee_handle_rpc(ctx, ¶m, &call_ctx); 162 } else { 163 ret = res.a0; 164 break; 165 } 166 } 167 168 optee_rpc_finalize_call(&call_ctx); 169 /* 170 * We're done with our thread in secure world, if there's any 171 * thread waiters wake up one. 172 */ 173 optee_cq_wait_final(&optee->call_queue, &w); 174 175 return ret; 176 } 177 178 static struct tee_shm *get_msg_arg(struct tee_context *ctx, size_t num_params, 179 struct optee_msg_arg **msg_arg, 180 phys_addr_t *msg_parg) 181 { 182 int rc; 183 struct tee_shm *shm; 184 struct optee_msg_arg *ma; 185 186 shm = tee_shm_alloc(ctx, OPTEE_MSG_GET_ARG_SIZE(num_params), 187 TEE_SHM_MAPPED); 188 if (IS_ERR(shm)) 189 return shm; 190 191 ma = tee_shm_get_va(shm, 0); 192 if (IS_ERR(ma)) { 193 rc = PTR_ERR(ma); 194 goto out; 195 } 196 197 rc = tee_shm_get_pa(shm, 0, msg_parg); 198 if (rc) 199 goto out; 200 201 memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params)); 202 ma->num_params = num_params; 203 *msg_arg = ma; 204 out: 205 if (rc) { 206 tee_shm_free(shm); 207 return ERR_PTR(rc); 208 } 209 210 return shm; 211 } 212 213 int optee_open_session(struct tee_context *ctx, 214 struct tee_ioctl_open_session_arg *arg, 215 struct tee_param *param) 216 { 217 struct optee_context_data *ctxdata = ctx->data; 218 int rc; 219 struct tee_shm *shm; 220 struct optee_msg_arg *msg_arg; 221 phys_addr_t msg_parg; 222 struct optee_session *sess = NULL; 223 224 /* +2 for the meta parameters added below */ 225 shm = get_msg_arg(ctx, arg->num_params + 2, &msg_arg, &msg_parg); 226 if (IS_ERR(shm)) 227 return PTR_ERR(shm); 228 229 msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION; 230 msg_arg->cancel_id = arg->cancel_id; 231 232 /* 233 * Initialize and add the meta parameters needed when opening a 234 * session. 235 */ 236 msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT | 237 OPTEE_MSG_ATTR_META; 238 msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT | 239 OPTEE_MSG_ATTR_META; 240 memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid)); 241 msg_arg->params[1].u.value.c = arg->clnt_login; 242 243 rc = tee_session_calc_client_uuid((uuid_t *)&msg_arg->params[1].u.value, 244 arg->clnt_login, arg->clnt_uuid); 245 if (rc) 246 goto out; 247 248 rc = optee_to_msg_param(msg_arg->params + 2, arg->num_params, param); 249 if (rc) 250 goto out; 251 252 sess = kzalloc(sizeof(*sess), GFP_KERNEL); 253 if (!sess) { 254 rc = -ENOMEM; 255 goto out; 256 } 257 258 if (optee_do_call_with_arg(ctx, msg_parg)) { 259 msg_arg->ret = TEEC_ERROR_COMMUNICATION; 260 msg_arg->ret_origin = TEEC_ORIGIN_COMMS; 261 } 262 263 if (msg_arg->ret == TEEC_SUCCESS) { 264 /* A new session has been created, add it to the list. */ 265 sess->session_id = msg_arg->session; 266 mutex_lock(&ctxdata->mutex); 267 list_add(&sess->list_node, &ctxdata->sess_list); 268 mutex_unlock(&ctxdata->mutex); 269 } else { 270 kfree(sess); 271 } 272 273 if (optee_from_msg_param(param, arg->num_params, msg_arg->params + 2)) { 274 arg->ret = TEEC_ERROR_COMMUNICATION; 275 arg->ret_origin = TEEC_ORIGIN_COMMS; 276 /* Close session again to avoid leakage */ 277 optee_close_session(ctx, msg_arg->session); 278 } else { 279 arg->session = msg_arg->session; 280 arg->ret = msg_arg->ret; 281 arg->ret_origin = msg_arg->ret_origin; 282 } 283 out: 284 tee_shm_free(shm); 285 286 return rc; 287 } 288 289 int optee_close_session(struct tee_context *ctx, u32 session) 290 { 291 struct optee_context_data *ctxdata = ctx->data; 292 struct tee_shm *shm; 293 struct optee_msg_arg *msg_arg; 294 phys_addr_t msg_parg; 295 struct optee_session *sess; 296 297 /* Check that the session is valid and remove it from the list */ 298 mutex_lock(&ctxdata->mutex); 299 sess = find_session(ctxdata, session); 300 if (sess) 301 list_del(&sess->list_node); 302 mutex_unlock(&ctxdata->mutex); 303 if (!sess) 304 return -EINVAL; 305 kfree(sess); 306 307 shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg); 308 if (IS_ERR(shm)) 309 return PTR_ERR(shm); 310 311 msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION; 312 msg_arg->session = session; 313 optee_do_call_with_arg(ctx, msg_parg); 314 315 tee_shm_free(shm); 316 return 0; 317 } 318 319 int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg, 320 struct tee_param *param) 321 { 322 struct optee_context_data *ctxdata = ctx->data; 323 struct tee_shm *shm; 324 struct optee_msg_arg *msg_arg; 325 phys_addr_t msg_parg; 326 struct optee_session *sess; 327 int rc; 328 329 /* Check that the session is valid */ 330 mutex_lock(&ctxdata->mutex); 331 sess = find_session(ctxdata, arg->session); 332 mutex_unlock(&ctxdata->mutex); 333 if (!sess) 334 return -EINVAL; 335 336 shm = get_msg_arg(ctx, arg->num_params, &msg_arg, &msg_parg); 337 if (IS_ERR(shm)) 338 return PTR_ERR(shm); 339 msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND; 340 msg_arg->func = arg->func; 341 msg_arg->session = arg->session; 342 msg_arg->cancel_id = arg->cancel_id; 343 344 rc = optee_to_msg_param(msg_arg->params, arg->num_params, param); 345 if (rc) 346 goto out; 347 348 if (optee_do_call_with_arg(ctx, msg_parg)) { 349 msg_arg->ret = TEEC_ERROR_COMMUNICATION; 350 msg_arg->ret_origin = TEEC_ORIGIN_COMMS; 351 } 352 353 if (optee_from_msg_param(param, arg->num_params, msg_arg->params)) { 354 msg_arg->ret = TEEC_ERROR_COMMUNICATION; 355 msg_arg->ret_origin = TEEC_ORIGIN_COMMS; 356 } 357 358 arg->ret = msg_arg->ret; 359 arg->ret_origin = msg_arg->ret_origin; 360 out: 361 tee_shm_free(shm); 362 return rc; 363 } 364 365 int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session) 366 { 367 struct optee_context_data *ctxdata = ctx->data; 368 struct tee_shm *shm; 369 struct optee_msg_arg *msg_arg; 370 phys_addr_t msg_parg; 371 struct optee_session *sess; 372 373 /* Check that the session is valid */ 374 mutex_lock(&ctxdata->mutex); 375 sess = find_session(ctxdata, session); 376 mutex_unlock(&ctxdata->mutex); 377 if (!sess) 378 return -EINVAL; 379 380 shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg); 381 if (IS_ERR(shm)) 382 return PTR_ERR(shm); 383 384 msg_arg->cmd = OPTEE_MSG_CMD_CANCEL; 385 msg_arg->session = session; 386 msg_arg->cancel_id = cancel_id; 387 optee_do_call_with_arg(ctx, msg_parg); 388 389 tee_shm_free(shm); 390 return 0; 391 } 392 393 /** 394 * optee_enable_shm_cache() - Enables caching of some shared memory allocation 395 * in OP-TEE 396 * @optee: main service struct 397 */ 398 void optee_enable_shm_cache(struct optee *optee) 399 { 400 struct optee_call_waiter w; 401 402 /* We need to retry until secure world isn't busy. */ 403 optee_cq_wait_init(&optee->call_queue, &w); 404 while (true) { 405 struct arm_smccc_res res; 406 407 optee->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0, 408 0, &res); 409 if (res.a0 == OPTEE_SMC_RETURN_OK) 410 break; 411 optee_cq_wait_for_completion(&optee->call_queue, &w); 412 } 413 optee_cq_wait_final(&optee->call_queue, &w); 414 } 415 416 /** 417 * optee_disable_shm_cache() - Disables caching of some shared memory allocation 418 * in OP-TEE 419 * @optee: main service struct 420 */ 421 void optee_disable_shm_cache(struct optee *optee) 422 { 423 struct optee_call_waiter w; 424 425 /* We need to retry until secure world isn't busy. */ 426 optee_cq_wait_init(&optee->call_queue, &w); 427 while (true) { 428 union { 429 struct arm_smccc_res smccc; 430 struct optee_smc_disable_shm_cache_result result; 431 } res; 432 433 optee->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0, 434 0, &res.smccc); 435 if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL) 436 break; /* All shm's freed */ 437 if (res.result.status == OPTEE_SMC_RETURN_OK) { 438 struct tee_shm *shm; 439 440 shm = reg_pair_to_ptr(res.result.shm_upper32, 441 res.result.shm_lower32); 442 tee_shm_free(shm); 443 } else { 444 optee_cq_wait_for_completion(&optee->call_queue, &w); 445 } 446 } 447 optee_cq_wait_final(&optee->call_queue, &w); 448 } 449 450 #define PAGELIST_ENTRIES_PER_PAGE \ 451 ((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1) 452 453 /** 454 * optee_fill_pages_list() - write list of user pages to given shared 455 * buffer. 456 * 457 * @dst: page-aligned buffer where list of pages will be stored 458 * @pages: array of pages that represents shared buffer 459 * @num_pages: number of entries in @pages 460 * @page_offset: offset of user buffer from page start 461 * 462 * @dst should be big enough to hold list of user page addresses and 463 * links to the next pages of buffer 464 */ 465 void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages, 466 size_t page_offset) 467 { 468 int n = 0; 469 phys_addr_t optee_page; 470 /* 471 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h 472 * for details. 473 */ 474 struct { 475 u64 pages_list[PAGELIST_ENTRIES_PER_PAGE]; 476 u64 next_page_data; 477 } *pages_data; 478 479 /* 480 * Currently OP-TEE uses 4k page size and it does not looks 481 * like this will change in the future. On other hand, there are 482 * no know ARM architectures with page size < 4k. 483 * Thus the next built assert looks redundant. But the following 484 * code heavily relies on this assumption, so it is better be 485 * safe than sorry. 486 */ 487 BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE); 488 489 pages_data = (void *)dst; 490 /* 491 * If linux page is bigger than 4k, and user buffer offset is 492 * larger than 4k/8k/12k/etc this will skip first 4k pages, 493 * because they bear no value data for OP-TEE. 494 */ 495 optee_page = page_to_phys(*pages) + 496 round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE); 497 498 while (true) { 499 pages_data->pages_list[n++] = optee_page; 500 501 if (n == PAGELIST_ENTRIES_PER_PAGE) { 502 pages_data->next_page_data = 503 virt_to_phys(pages_data + 1); 504 pages_data++; 505 n = 0; 506 } 507 508 optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE; 509 if (!(optee_page & ~PAGE_MASK)) { 510 if (!--num_pages) 511 break; 512 pages++; 513 optee_page = page_to_phys(*pages); 514 } 515 } 516 } 517 518 /* 519 * The final entry in each pagelist page is a pointer to the next 520 * pagelist page. 521 */ 522 static size_t get_pages_list_size(size_t num_entries) 523 { 524 int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE); 525 526 return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE; 527 } 528 529 u64 *optee_allocate_pages_list(size_t num_entries) 530 { 531 return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL); 532 } 533 534 void optee_free_pages_list(void *list, size_t num_entries) 535 { 536 free_pages_exact(list, get_pages_list_size(num_entries)); 537 } 538 539 static bool is_normal_memory(pgprot_t p) 540 { 541 #if defined(CONFIG_ARM) 542 return (((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC) || 543 ((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEBACK)); 544 #elif defined(CONFIG_ARM64) 545 return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL); 546 #else 547 #error "Unuspported architecture" 548 #endif 549 } 550 551 static int __check_mem_type(struct vm_area_struct *vma, unsigned long end) 552 { 553 while (vma && is_normal_memory(vma->vm_page_prot)) { 554 if (vma->vm_end >= end) 555 return 0; 556 vma = vma->vm_next; 557 } 558 559 return -EINVAL; 560 } 561 562 static int check_mem_type(unsigned long start, size_t num_pages) 563 { 564 struct mm_struct *mm = current->mm; 565 int rc; 566 567 /* 568 * Allow kernel address to register with OP-TEE as kernel 569 * pages are configured as normal memory only. 570 */ 571 if (virt_addr_valid(start)) 572 return 0; 573 574 mmap_read_lock(mm); 575 rc = __check_mem_type(find_vma(mm, start), 576 start + num_pages * PAGE_SIZE); 577 mmap_read_unlock(mm); 578 579 return rc; 580 } 581 582 int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm, 583 struct page **pages, size_t num_pages, 584 unsigned long start) 585 { 586 struct tee_shm *shm_arg = NULL; 587 struct optee_msg_arg *msg_arg; 588 u64 *pages_list; 589 phys_addr_t msg_parg; 590 int rc; 591 592 if (!num_pages) 593 return -EINVAL; 594 595 rc = check_mem_type(start, num_pages); 596 if (rc) 597 return rc; 598 599 pages_list = optee_allocate_pages_list(num_pages); 600 if (!pages_list) 601 return -ENOMEM; 602 603 shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg); 604 if (IS_ERR(shm_arg)) { 605 rc = PTR_ERR(shm_arg); 606 goto out; 607 } 608 609 optee_fill_pages_list(pages_list, pages, num_pages, 610 tee_shm_get_page_offset(shm)); 611 612 msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM; 613 msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT | 614 OPTEE_MSG_ATTR_NONCONTIG; 615 msg_arg->params->u.tmem.shm_ref = (unsigned long)shm; 616 msg_arg->params->u.tmem.size = tee_shm_get_size(shm); 617 /* 618 * In the least bits of msg_arg->params->u.tmem.buf_ptr we 619 * store buffer offset from 4k page, as described in OP-TEE ABI. 620 */ 621 msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) | 622 (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1)); 623 624 if (optee_do_call_with_arg(ctx, msg_parg) || 625 msg_arg->ret != TEEC_SUCCESS) 626 rc = -EINVAL; 627 628 tee_shm_free(shm_arg); 629 out: 630 optee_free_pages_list(pages_list, num_pages); 631 return rc; 632 } 633 634 int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm) 635 { 636 struct tee_shm *shm_arg; 637 struct optee_msg_arg *msg_arg; 638 phys_addr_t msg_parg; 639 int rc = 0; 640 641 shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg); 642 if (IS_ERR(shm_arg)) 643 return PTR_ERR(shm_arg); 644 645 msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM; 646 647 msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT; 648 msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm; 649 650 if (optee_do_call_with_arg(ctx, msg_parg) || 651 msg_arg->ret != TEEC_SUCCESS) 652 rc = -EINVAL; 653 tee_shm_free(shm_arg); 654 return rc; 655 } 656 657 int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm, 658 struct page **pages, size_t num_pages, 659 unsigned long start) 660 { 661 /* 662 * We don't want to register supplicant memory in OP-TEE. 663 * Instead information about it will be passed in RPC code. 664 */ 665 return check_mem_type(start, num_pages); 666 } 667 668 int optee_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm) 669 { 670 return 0; 671 } 672