xref: /linux/drivers/tee/optee/call.c (revision 26fbb4c8c7c3ee9a4c3b4de555a8587b5a19154e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, Linaro Limited
4  */
5 #include <linux/arm-smccc.h>
6 #include <linux/device.h>
7 #include <linux/err.h>
8 #include <linux/errno.h>
9 #include <linux/mm.h>
10 #include <linux/slab.h>
11 #include <linux/tee_drv.h>
12 #include <linux/types.h>
13 #include <linux/uaccess.h>
14 #include "optee_private.h"
15 #include "optee_smc.h"
16 
17 struct optee_call_waiter {
18 	struct list_head list_node;
19 	struct completion c;
20 };
21 
22 static void optee_cq_wait_init(struct optee_call_queue *cq,
23 			       struct optee_call_waiter *w)
24 {
25 	/*
26 	 * We're preparing to make a call to secure world. In case we can't
27 	 * allocate a thread in secure world we'll end up waiting in
28 	 * optee_cq_wait_for_completion().
29 	 *
30 	 * Normally if there's no contention in secure world the call will
31 	 * complete and we can cleanup directly with optee_cq_wait_final().
32 	 */
33 	mutex_lock(&cq->mutex);
34 
35 	/*
36 	 * We add ourselves to the queue, but we don't wait. This
37 	 * guarantees that we don't lose a completion if secure world
38 	 * returns busy and another thread just exited and try to complete
39 	 * someone.
40 	 */
41 	init_completion(&w->c);
42 	list_add_tail(&w->list_node, &cq->waiters);
43 
44 	mutex_unlock(&cq->mutex);
45 }
46 
47 static void optee_cq_wait_for_completion(struct optee_call_queue *cq,
48 					 struct optee_call_waiter *w)
49 {
50 	wait_for_completion(&w->c);
51 
52 	mutex_lock(&cq->mutex);
53 
54 	/* Move to end of list to get out of the way for other waiters */
55 	list_del(&w->list_node);
56 	reinit_completion(&w->c);
57 	list_add_tail(&w->list_node, &cq->waiters);
58 
59 	mutex_unlock(&cq->mutex);
60 }
61 
62 static void optee_cq_complete_one(struct optee_call_queue *cq)
63 {
64 	struct optee_call_waiter *w;
65 
66 	list_for_each_entry(w, &cq->waiters, list_node) {
67 		if (!completion_done(&w->c)) {
68 			complete(&w->c);
69 			break;
70 		}
71 	}
72 }
73 
74 static void optee_cq_wait_final(struct optee_call_queue *cq,
75 				struct optee_call_waiter *w)
76 {
77 	/*
78 	 * We're done with the call to secure world. The thread in secure
79 	 * world that was used for this call is now available for some
80 	 * other task to use.
81 	 */
82 	mutex_lock(&cq->mutex);
83 
84 	/* Get out of the list */
85 	list_del(&w->list_node);
86 
87 	/* Wake up one eventual waiting task */
88 	optee_cq_complete_one(cq);
89 
90 	/*
91 	 * If we're completed we've got a completion from another task that
92 	 * was just done with its call to secure world. Since yet another
93 	 * thread now is available in secure world wake up another eventual
94 	 * waiting task.
95 	 */
96 	if (completion_done(&w->c))
97 		optee_cq_complete_one(cq);
98 
99 	mutex_unlock(&cq->mutex);
100 }
101 
102 /* Requires the filpstate mutex to be held */
103 static struct optee_session *find_session(struct optee_context_data *ctxdata,
104 					  u32 session_id)
105 {
106 	struct optee_session *sess;
107 
108 	list_for_each_entry(sess, &ctxdata->sess_list, list_node)
109 		if (sess->session_id == session_id)
110 			return sess;
111 
112 	return NULL;
113 }
114 
115 /**
116  * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world
117  * @ctx:	calling context
118  * @parg:	physical address of message to pass to secure world
119  *
120  * Does and SMC to OP-TEE in secure world and handles eventual resulting
121  * Remote Procedure Calls (RPC) from OP-TEE.
122  *
123  * Returns return code from secure world, 0 is OK
124  */
125 u32 optee_do_call_with_arg(struct tee_context *ctx, phys_addr_t parg)
126 {
127 	struct optee *optee = tee_get_drvdata(ctx->teedev);
128 	struct optee_call_waiter w;
129 	struct optee_rpc_param param = { };
130 	struct optee_call_ctx call_ctx = { };
131 	u32 ret;
132 
133 	param.a0 = OPTEE_SMC_CALL_WITH_ARG;
134 	reg_pair_from_64(&param.a1, &param.a2, parg);
135 	/* Initialize waiter */
136 	optee_cq_wait_init(&optee->call_queue, &w);
137 	while (true) {
138 		struct arm_smccc_res res;
139 
140 		optee->invoke_fn(param.a0, param.a1, param.a2, param.a3,
141 				 param.a4, param.a5, param.a6, param.a7,
142 				 &res);
143 
144 		if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
145 			/*
146 			 * Out of threads in secure world, wait for a thread
147 			 * become available.
148 			 */
149 			optee_cq_wait_for_completion(&optee->call_queue, &w);
150 		} else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
151 			might_sleep();
152 			param.a0 = res.a0;
153 			param.a1 = res.a1;
154 			param.a2 = res.a2;
155 			param.a3 = res.a3;
156 			optee_handle_rpc(ctx, &param, &call_ctx);
157 		} else {
158 			ret = res.a0;
159 			break;
160 		}
161 	}
162 
163 	optee_rpc_finalize_call(&call_ctx);
164 	/*
165 	 * We're done with our thread in secure world, if there's any
166 	 * thread waiters wake up one.
167 	 */
168 	optee_cq_wait_final(&optee->call_queue, &w);
169 
170 	return ret;
171 }
172 
173 static struct tee_shm *get_msg_arg(struct tee_context *ctx, size_t num_params,
174 				   struct optee_msg_arg **msg_arg,
175 				   phys_addr_t *msg_parg)
176 {
177 	int rc;
178 	struct tee_shm *shm;
179 	struct optee_msg_arg *ma;
180 
181 	shm = tee_shm_alloc(ctx, OPTEE_MSG_GET_ARG_SIZE(num_params),
182 			    TEE_SHM_MAPPED);
183 	if (IS_ERR(shm))
184 		return shm;
185 
186 	ma = tee_shm_get_va(shm, 0);
187 	if (IS_ERR(ma)) {
188 		rc = PTR_ERR(ma);
189 		goto out;
190 	}
191 
192 	rc = tee_shm_get_pa(shm, 0, msg_parg);
193 	if (rc)
194 		goto out;
195 
196 	memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params));
197 	ma->num_params = num_params;
198 	*msg_arg = ma;
199 out:
200 	if (rc) {
201 		tee_shm_free(shm);
202 		return ERR_PTR(rc);
203 	}
204 
205 	return shm;
206 }
207 
208 int optee_open_session(struct tee_context *ctx,
209 		       struct tee_ioctl_open_session_arg *arg,
210 		       struct tee_param *param)
211 {
212 	struct optee_context_data *ctxdata = ctx->data;
213 	int rc;
214 	struct tee_shm *shm;
215 	struct optee_msg_arg *msg_arg;
216 	phys_addr_t msg_parg;
217 	struct optee_session *sess = NULL;
218 
219 	/* +2 for the meta parameters added below */
220 	shm = get_msg_arg(ctx, arg->num_params + 2, &msg_arg, &msg_parg);
221 	if (IS_ERR(shm))
222 		return PTR_ERR(shm);
223 
224 	msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
225 	msg_arg->cancel_id = arg->cancel_id;
226 
227 	/*
228 	 * Initialize and add the meta parameters needed when opening a
229 	 * session.
230 	 */
231 	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
232 				  OPTEE_MSG_ATTR_META;
233 	msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
234 				  OPTEE_MSG_ATTR_META;
235 	memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
236 	msg_arg->params[1].u.value.c = arg->clnt_login;
237 
238 	rc = tee_session_calc_client_uuid((uuid_t *)&msg_arg->params[1].u.value,
239 					  arg->clnt_login, arg->clnt_uuid);
240 	if (rc)
241 		goto out;
242 
243 	rc = optee_to_msg_param(msg_arg->params + 2, arg->num_params, param);
244 	if (rc)
245 		goto out;
246 
247 	sess = kzalloc(sizeof(*sess), GFP_KERNEL);
248 	if (!sess) {
249 		rc = -ENOMEM;
250 		goto out;
251 	}
252 
253 	if (optee_do_call_with_arg(ctx, msg_parg)) {
254 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
255 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
256 	}
257 
258 	if (msg_arg->ret == TEEC_SUCCESS) {
259 		/* A new session has been created, add it to the list. */
260 		sess->session_id = msg_arg->session;
261 		mutex_lock(&ctxdata->mutex);
262 		list_add(&sess->list_node, &ctxdata->sess_list);
263 		mutex_unlock(&ctxdata->mutex);
264 	} else {
265 		kfree(sess);
266 	}
267 
268 	if (optee_from_msg_param(param, arg->num_params, msg_arg->params + 2)) {
269 		arg->ret = TEEC_ERROR_COMMUNICATION;
270 		arg->ret_origin = TEEC_ORIGIN_COMMS;
271 		/* Close session again to avoid leakage */
272 		optee_close_session(ctx, msg_arg->session);
273 	} else {
274 		arg->session = msg_arg->session;
275 		arg->ret = msg_arg->ret;
276 		arg->ret_origin = msg_arg->ret_origin;
277 	}
278 out:
279 	tee_shm_free(shm);
280 
281 	return rc;
282 }
283 
284 int optee_close_session(struct tee_context *ctx, u32 session)
285 {
286 	struct optee_context_data *ctxdata = ctx->data;
287 	struct tee_shm *shm;
288 	struct optee_msg_arg *msg_arg;
289 	phys_addr_t msg_parg;
290 	struct optee_session *sess;
291 
292 	/* Check that the session is valid and remove it from the list */
293 	mutex_lock(&ctxdata->mutex);
294 	sess = find_session(ctxdata, session);
295 	if (sess)
296 		list_del(&sess->list_node);
297 	mutex_unlock(&ctxdata->mutex);
298 	if (!sess)
299 		return -EINVAL;
300 	kfree(sess);
301 
302 	shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
303 	if (IS_ERR(shm))
304 		return PTR_ERR(shm);
305 
306 	msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
307 	msg_arg->session = session;
308 	optee_do_call_with_arg(ctx, msg_parg);
309 
310 	tee_shm_free(shm);
311 	return 0;
312 }
313 
314 int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
315 		      struct tee_param *param)
316 {
317 	struct optee_context_data *ctxdata = ctx->data;
318 	struct tee_shm *shm;
319 	struct optee_msg_arg *msg_arg;
320 	phys_addr_t msg_parg;
321 	struct optee_session *sess;
322 	int rc;
323 
324 	/* Check that the session is valid */
325 	mutex_lock(&ctxdata->mutex);
326 	sess = find_session(ctxdata, arg->session);
327 	mutex_unlock(&ctxdata->mutex);
328 	if (!sess)
329 		return -EINVAL;
330 
331 	shm = get_msg_arg(ctx, arg->num_params, &msg_arg, &msg_parg);
332 	if (IS_ERR(shm))
333 		return PTR_ERR(shm);
334 	msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
335 	msg_arg->func = arg->func;
336 	msg_arg->session = arg->session;
337 	msg_arg->cancel_id = arg->cancel_id;
338 
339 	rc = optee_to_msg_param(msg_arg->params, arg->num_params, param);
340 	if (rc)
341 		goto out;
342 
343 	if (optee_do_call_with_arg(ctx, msg_parg)) {
344 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
345 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
346 	}
347 
348 	if (optee_from_msg_param(param, arg->num_params, msg_arg->params)) {
349 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
350 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
351 	}
352 
353 	arg->ret = msg_arg->ret;
354 	arg->ret_origin = msg_arg->ret_origin;
355 out:
356 	tee_shm_free(shm);
357 	return rc;
358 }
359 
360 int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
361 {
362 	struct optee_context_data *ctxdata = ctx->data;
363 	struct tee_shm *shm;
364 	struct optee_msg_arg *msg_arg;
365 	phys_addr_t msg_parg;
366 	struct optee_session *sess;
367 
368 	/* Check that the session is valid */
369 	mutex_lock(&ctxdata->mutex);
370 	sess = find_session(ctxdata, session);
371 	mutex_unlock(&ctxdata->mutex);
372 	if (!sess)
373 		return -EINVAL;
374 
375 	shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
376 	if (IS_ERR(shm))
377 		return PTR_ERR(shm);
378 
379 	msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
380 	msg_arg->session = session;
381 	msg_arg->cancel_id = cancel_id;
382 	optee_do_call_with_arg(ctx, msg_parg);
383 
384 	tee_shm_free(shm);
385 	return 0;
386 }
387 
388 /**
389  * optee_enable_shm_cache() - Enables caching of some shared memory allocation
390  *			      in OP-TEE
391  * @optee:	main service struct
392  */
393 void optee_enable_shm_cache(struct optee *optee)
394 {
395 	struct optee_call_waiter w;
396 
397 	/* We need to retry until secure world isn't busy. */
398 	optee_cq_wait_init(&optee->call_queue, &w);
399 	while (true) {
400 		struct arm_smccc_res res;
401 
402 		optee->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
403 				 0, &res);
404 		if (res.a0 == OPTEE_SMC_RETURN_OK)
405 			break;
406 		optee_cq_wait_for_completion(&optee->call_queue, &w);
407 	}
408 	optee_cq_wait_final(&optee->call_queue, &w);
409 }
410 
411 /**
412  * optee_disable_shm_cache() - Disables caching of some shared memory allocation
413  *			      in OP-TEE
414  * @optee:	main service struct
415  */
416 void optee_disable_shm_cache(struct optee *optee)
417 {
418 	struct optee_call_waiter w;
419 
420 	/* We need to retry until secure world isn't busy. */
421 	optee_cq_wait_init(&optee->call_queue, &w);
422 	while (true) {
423 		union {
424 			struct arm_smccc_res smccc;
425 			struct optee_smc_disable_shm_cache_result result;
426 		} res;
427 
428 		optee->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
429 				 0, &res.smccc);
430 		if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
431 			break; /* All shm's freed */
432 		if (res.result.status == OPTEE_SMC_RETURN_OK) {
433 			struct tee_shm *shm;
434 
435 			shm = reg_pair_to_ptr(res.result.shm_upper32,
436 					      res.result.shm_lower32);
437 			tee_shm_free(shm);
438 		} else {
439 			optee_cq_wait_for_completion(&optee->call_queue, &w);
440 		}
441 	}
442 	optee_cq_wait_final(&optee->call_queue, &w);
443 }
444 
445 #define PAGELIST_ENTRIES_PER_PAGE				\
446 	((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
447 
448 /**
449  * optee_fill_pages_list() - write list of user pages to given shared
450  * buffer.
451  *
452  * @dst: page-aligned buffer where list of pages will be stored
453  * @pages: array of pages that represents shared buffer
454  * @num_pages: number of entries in @pages
455  * @page_offset: offset of user buffer from page start
456  *
457  * @dst should be big enough to hold list of user page addresses and
458  *	links to the next pages of buffer
459  */
460 void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
461 			   size_t page_offset)
462 {
463 	int n = 0;
464 	phys_addr_t optee_page;
465 	/*
466 	 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
467 	 * for details.
468 	 */
469 	struct {
470 		u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
471 		u64 next_page_data;
472 	} *pages_data;
473 
474 	/*
475 	 * Currently OP-TEE uses 4k page size and it does not looks
476 	 * like this will change in the future.  On other hand, there are
477 	 * no know ARM architectures with page size < 4k.
478 	 * Thus the next built assert looks redundant. But the following
479 	 * code heavily relies on this assumption, so it is better be
480 	 * safe than sorry.
481 	 */
482 	BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
483 
484 	pages_data = (void *)dst;
485 	/*
486 	 * If linux page is bigger than 4k, and user buffer offset is
487 	 * larger than 4k/8k/12k/etc this will skip first 4k pages,
488 	 * because they bear no value data for OP-TEE.
489 	 */
490 	optee_page = page_to_phys(*pages) +
491 		round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
492 
493 	while (true) {
494 		pages_data->pages_list[n++] = optee_page;
495 
496 		if (n == PAGELIST_ENTRIES_PER_PAGE) {
497 			pages_data->next_page_data =
498 				virt_to_phys(pages_data + 1);
499 			pages_data++;
500 			n = 0;
501 		}
502 
503 		optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
504 		if (!(optee_page & ~PAGE_MASK)) {
505 			if (!--num_pages)
506 				break;
507 			pages++;
508 			optee_page = page_to_phys(*pages);
509 		}
510 	}
511 }
512 
513 /*
514  * The final entry in each pagelist page is a pointer to the next
515  * pagelist page.
516  */
517 static size_t get_pages_list_size(size_t num_entries)
518 {
519 	int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
520 
521 	return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
522 }
523 
524 u64 *optee_allocate_pages_list(size_t num_entries)
525 {
526 	return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
527 }
528 
529 void optee_free_pages_list(void *list, size_t num_entries)
530 {
531 	free_pages_exact(list, get_pages_list_size(num_entries));
532 }
533 
534 static bool is_normal_memory(pgprot_t p)
535 {
536 #if defined(CONFIG_ARM)
537 	return (((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC) ||
538 		((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEBACK));
539 #elif defined(CONFIG_ARM64)
540 	return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
541 #else
542 #error "Unuspported architecture"
543 #endif
544 }
545 
546 static int __check_mem_type(struct vm_area_struct *vma, unsigned long end)
547 {
548 	while (vma && is_normal_memory(vma->vm_page_prot)) {
549 		if (vma->vm_end >= end)
550 			return 0;
551 		vma = vma->vm_next;
552 	}
553 
554 	return -EINVAL;
555 }
556 
557 static int check_mem_type(unsigned long start, size_t num_pages)
558 {
559 	struct mm_struct *mm = current->mm;
560 	int rc;
561 
562 	/*
563 	 * Allow kernel address to register with OP-TEE as kernel
564 	 * pages are configured as normal memory only.
565 	 */
566 	if (virt_addr_valid(start))
567 		return 0;
568 
569 	mmap_read_lock(mm);
570 	rc = __check_mem_type(find_vma(mm, start),
571 			      start + num_pages * PAGE_SIZE);
572 	mmap_read_unlock(mm);
573 
574 	return rc;
575 }
576 
577 int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
578 		       struct page **pages, size_t num_pages,
579 		       unsigned long start)
580 {
581 	struct tee_shm *shm_arg = NULL;
582 	struct optee_msg_arg *msg_arg;
583 	u64 *pages_list;
584 	phys_addr_t msg_parg;
585 	int rc;
586 
587 	if (!num_pages)
588 		return -EINVAL;
589 
590 	rc = check_mem_type(start, num_pages);
591 	if (rc)
592 		return rc;
593 
594 	pages_list = optee_allocate_pages_list(num_pages);
595 	if (!pages_list)
596 		return -ENOMEM;
597 
598 	shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
599 	if (IS_ERR(shm_arg)) {
600 		rc = PTR_ERR(shm_arg);
601 		goto out;
602 	}
603 
604 	optee_fill_pages_list(pages_list, pages, num_pages,
605 			      tee_shm_get_page_offset(shm));
606 
607 	msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
608 	msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
609 				OPTEE_MSG_ATTR_NONCONTIG;
610 	msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
611 	msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
612 	/*
613 	 * In the least bits of msg_arg->params->u.tmem.buf_ptr we
614 	 * store buffer offset from 4k page, as described in OP-TEE ABI.
615 	 */
616 	msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
617 	  (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
618 
619 	if (optee_do_call_with_arg(ctx, msg_parg) ||
620 	    msg_arg->ret != TEEC_SUCCESS)
621 		rc = -EINVAL;
622 
623 	tee_shm_free(shm_arg);
624 out:
625 	optee_free_pages_list(pages_list, num_pages);
626 	return rc;
627 }
628 
629 int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
630 {
631 	struct tee_shm *shm_arg;
632 	struct optee_msg_arg *msg_arg;
633 	phys_addr_t msg_parg;
634 	int rc = 0;
635 
636 	shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
637 	if (IS_ERR(shm_arg))
638 		return PTR_ERR(shm_arg);
639 
640 	msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
641 
642 	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
643 	msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
644 
645 	if (optee_do_call_with_arg(ctx, msg_parg) ||
646 	    msg_arg->ret != TEEC_SUCCESS)
647 		rc = -EINVAL;
648 	tee_shm_free(shm_arg);
649 	return rc;
650 }
651 
652 int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
653 			    struct page **pages, size_t num_pages,
654 			    unsigned long start)
655 {
656 	/*
657 	 * We don't want to register supplicant memory in OP-TEE.
658 	 * Instead information about it will be passed in RPC code.
659 	 */
660 	return check_mem_type(start, num_pages);
661 }
662 
663 int optee_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm)
664 {
665 	return 0;
666 }
667