1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015, Linaro Limited 4 */ 5 #include <linux/arm-smccc.h> 6 #include <linux/device.h> 7 #include <linux/err.h> 8 #include <linux/errno.h> 9 #include <linux/mm.h> 10 #include <linux/slab.h> 11 #include <linux/tee_drv.h> 12 #include <linux/types.h> 13 #include <linux/uaccess.h> 14 #include "optee_private.h" 15 #include "optee_smc.h" 16 17 struct optee_call_waiter { 18 struct list_head list_node; 19 struct completion c; 20 }; 21 22 static void optee_cq_wait_init(struct optee_call_queue *cq, 23 struct optee_call_waiter *w) 24 { 25 /* 26 * We're preparing to make a call to secure world. In case we can't 27 * allocate a thread in secure world we'll end up waiting in 28 * optee_cq_wait_for_completion(). 29 * 30 * Normally if there's no contention in secure world the call will 31 * complete and we can cleanup directly with optee_cq_wait_final(). 32 */ 33 mutex_lock(&cq->mutex); 34 35 /* 36 * We add ourselves to the queue, but we don't wait. This 37 * guarantees that we don't lose a completion if secure world 38 * returns busy and another thread just exited and try to complete 39 * someone. 40 */ 41 init_completion(&w->c); 42 list_add_tail(&w->list_node, &cq->waiters); 43 44 mutex_unlock(&cq->mutex); 45 } 46 47 static void optee_cq_wait_for_completion(struct optee_call_queue *cq, 48 struct optee_call_waiter *w) 49 { 50 wait_for_completion(&w->c); 51 52 mutex_lock(&cq->mutex); 53 54 /* Move to end of list to get out of the way for other waiters */ 55 list_del(&w->list_node); 56 reinit_completion(&w->c); 57 list_add_tail(&w->list_node, &cq->waiters); 58 59 mutex_unlock(&cq->mutex); 60 } 61 62 static void optee_cq_complete_one(struct optee_call_queue *cq) 63 { 64 struct optee_call_waiter *w; 65 66 list_for_each_entry(w, &cq->waiters, list_node) { 67 if (!completion_done(&w->c)) { 68 complete(&w->c); 69 break; 70 } 71 } 72 } 73 74 static void optee_cq_wait_final(struct optee_call_queue *cq, 75 struct optee_call_waiter *w) 76 { 77 /* 78 * We're done with the call to secure world. The thread in secure 79 * world that was used for this call is now available for some 80 * other task to use. 81 */ 82 mutex_lock(&cq->mutex); 83 84 /* Get out of the list */ 85 list_del(&w->list_node); 86 87 /* Wake up one eventual waiting task */ 88 optee_cq_complete_one(cq); 89 90 /* 91 * If we're completed we've got a completion from another task that 92 * was just done with its call to secure world. Since yet another 93 * thread now is available in secure world wake up another eventual 94 * waiting task. 95 */ 96 if (completion_done(&w->c)) 97 optee_cq_complete_one(cq); 98 99 mutex_unlock(&cq->mutex); 100 } 101 102 /* Requires the filpstate mutex to be held */ 103 static struct optee_session *find_session(struct optee_context_data *ctxdata, 104 u32 session_id) 105 { 106 struct optee_session *sess; 107 108 list_for_each_entry(sess, &ctxdata->sess_list, list_node) 109 if (sess->session_id == session_id) 110 return sess; 111 112 return NULL; 113 } 114 115 /** 116 * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world 117 * @ctx: calling context 118 * @parg: physical address of message to pass to secure world 119 * 120 * Does and SMC to OP-TEE in secure world and handles eventual resulting 121 * Remote Procedure Calls (RPC) from OP-TEE. 122 * 123 * Returns return code from secure world, 0 is OK 124 */ 125 u32 optee_do_call_with_arg(struct tee_context *ctx, phys_addr_t parg) 126 { 127 struct optee *optee = tee_get_drvdata(ctx->teedev); 128 struct optee_call_waiter w; 129 struct optee_rpc_param param = { }; 130 struct optee_call_ctx call_ctx = { }; 131 u32 ret; 132 133 param.a0 = OPTEE_SMC_CALL_WITH_ARG; 134 reg_pair_from_64(¶m.a1, ¶m.a2, parg); 135 /* Initialize waiter */ 136 optee_cq_wait_init(&optee->call_queue, &w); 137 while (true) { 138 struct arm_smccc_res res; 139 140 optee->invoke_fn(param.a0, param.a1, param.a2, param.a3, 141 param.a4, param.a5, param.a6, param.a7, 142 &res); 143 144 if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) { 145 /* 146 * Out of threads in secure world, wait for a thread 147 * become available. 148 */ 149 optee_cq_wait_for_completion(&optee->call_queue, &w); 150 } else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) { 151 might_sleep(); 152 param.a0 = res.a0; 153 param.a1 = res.a1; 154 param.a2 = res.a2; 155 param.a3 = res.a3; 156 optee_handle_rpc(ctx, ¶m, &call_ctx); 157 } else { 158 ret = res.a0; 159 break; 160 } 161 } 162 163 optee_rpc_finalize_call(&call_ctx); 164 /* 165 * We're done with our thread in secure world, if there's any 166 * thread waiters wake up one. 167 */ 168 optee_cq_wait_final(&optee->call_queue, &w); 169 170 return ret; 171 } 172 173 static struct tee_shm *get_msg_arg(struct tee_context *ctx, size_t num_params, 174 struct optee_msg_arg **msg_arg, 175 phys_addr_t *msg_parg) 176 { 177 int rc; 178 struct tee_shm *shm; 179 struct optee_msg_arg *ma; 180 181 shm = tee_shm_alloc(ctx, OPTEE_MSG_GET_ARG_SIZE(num_params), 182 TEE_SHM_MAPPED); 183 if (IS_ERR(shm)) 184 return shm; 185 186 ma = tee_shm_get_va(shm, 0); 187 if (IS_ERR(ma)) { 188 rc = PTR_ERR(ma); 189 goto out; 190 } 191 192 rc = tee_shm_get_pa(shm, 0, msg_parg); 193 if (rc) 194 goto out; 195 196 memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params)); 197 ma->num_params = num_params; 198 *msg_arg = ma; 199 out: 200 if (rc) { 201 tee_shm_free(shm); 202 return ERR_PTR(rc); 203 } 204 205 return shm; 206 } 207 208 int optee_open_session(struct tee_context *ctx, 209 struct tee_ioctl_open_session_arg *arg, 210 struct tee_param *param) 211 { 212 struct optee_context_data *ctxdata = ctx->data; 213 int rc; 214 struct tee_shm *shm; 215 struct optee_msg_arg *msg_arg; 216 phys_addr_t msg_parg; 217 struct optee_session *sess = NULL; 218 219 /* +2 for the meta parameters added below */ 220 shm = get_msg_arg(ctx, arg->num_params + 2, &msg_arg, &msg_parg); 221 if (IS_ERR(shm)) 222 return PTR_ERR(shm); 223 224 msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION; 225 msg_arg->cancel_id = arg->cancel_id; 226 227 /* 228 * Initialize and add the meta parameters needed when opening a 229 * session. 230 */ 231 msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT | 232 OPTEE_MSG_ATTR_META; 233 msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT | 234 OPTEE_MSG_ATTR_META; 235 memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid)); 236 msg_arg->params[1].u.value.c = arg->clnt_login; 237 238 rc = tee_session_calc_client_uuid((uuid_t *)&msg_arg->params[1].u.value, 239 arg->clnt_login, arg->clnt_uuid); 240 if (rc) 241 goto out; 242 243 rc = optee_to_msg_param(msg_arg->params + 2, arg->num_params, param); 244 if (rc) 245 goto out; 246 247 sess = kzalloc(sizeof(*sess), GFP_KERNEL); 248 if (!sess) { 249 rc = -ENOMEM; 250 goto out; 251 } 252 253 if (optee_do_call_with_arg(ctx, msg_parg)) { 254 msg_arg->ret = TEEC_ERROR_COMMUNICATION; 255 msg_arg->ret_origin = TEEC_ORIGIN_COMMS; 256 } 257 258 if (msg_arg->ret == TEEC_SUCCESS) { 259 /* A new session has been created, add it to the list. */ 260 sess->session_id = msg_arg->session; 261 mutex_lock(&ctxdata->mutex); 262 list_add(&sess->list_node, &ctxdata->sess_list); 263 mutex_unlock(&ctxdata->mutex); 264 } else { 265 kfree(sess); 266 } 267 268 if (optee_from_msg_param(param, arg->num_params, msg_arg->params + 2)) { 269 arg->ret = TEEC_ERROR_COMMUNICATION; 270 arg->ret_origin = TEEC_ORIGIN_COMMS; 271 /* Close session again to avoid leakage */ 272 optee_close_session(ctx, msg_arg->session); 273 } else { 274 arg->session = msg_arg->session; 275 arg->ret = msg_arg->ret; 276 arg->ret_origin = msg_arg->ret_origin; 277 } 278 out: 279 tee_shm_free(shm); 280 281 return rc; 282 } 283 284 int optee_close_session(struct tee_context *ctx, u32 session) 285 { 286 struct optee_context_data *ctxdata = ctx->data; 287 struct tee_shm *shm; 288 struct optee_msg_arg *msg_arg; 289 phys_addr_t msg_parg; 290 struct optee_session *sess; 291 292 /* Check that the session is valid and remove it from the list */ 293 mutex_lock(&ctxdata->mutex); 294 sess = find_session(ctxdata, session); 295 if (sess) 296 list_del(&sess->list_node); 297 mutex_unlock(&ctxdata->mutex); 298 if (!sess) 299 return -EINVAL; 300 kfree(sess); 301 302 shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg); 303 if (IS_ERR(shm)) 304 return PTR_ERR(shm); 305 306 msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION; 307 msg_arg->session = session; 308 optee_do_call_with_arg(ctx, msg_parg); 309 310 tee_shm_free(shm); 311 return 0; 312 } 313 314 int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg, 315 struct tee_param *param) 316 { 317 struct optee_context_data *ctxdata = ctx->data; 318 struct tee_shm *shm; 319 struct optee_msg_arg *msg_arg; 320 phys_addr_t msg_parg; 321 struct optee_session *sess; 322 int rc; 323 324 /* Check that the session is valid */ 325 mutex_lock(&ctxdata->mutex); 326 sess = find_session(ctxdata, arg->session); 327 mutex_unlock(&ctxdata->mutex); 328 if (!sess) 329 return -EINVAL; 330 331 shm = get_msg_arg(ctx, arg->num_params, &msg_arg, &msg_parg); 332 if (IS_ERR(shm)) 333 return PTR_ERR(shm); 334 msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND; 335 msg_arg->func = arg->func; 336 msg_arg->session = arg->session; 337 msg_arg->cancel_id = arg->cancel_id; 338 339 rc = optee_to_msg_param(msg_arg->params, arg->num_params, param); 340 if (rc) 341 goto out; 342 343 if (optee_do_call_with_arg(ctx, msg_parg)) { 344 msg_arg->ret = TEEC_ERROR_COMMUNICATION; 345 msg_arg->ret_origin = TEEC_ORIGIN_COMMS; 346 } 347 348 if (optee_from_msg_param(param, arg->num_params, msg_arg->params)) { 349 msg_arg->ret = TEEC_ERROR_COMMUNICATION; 350 msg_arg->ret_origin = TEEC_ORIGIN_COMMS; 351 } 352 353 arg->ret = msg_arg->ret; 354 arg->ret_origin = msg_arg->ret_origin; 355 out: 356 tee_shm_free(shm); 357 return rc; 358 } 359 360 int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session) 361 { 362 struct optee_context_data *ctxdata = ctx->data; 363 struct tee_shm *shm; 364 struct optee_msg_arg *msg_arg; 365 phys_addr_t msg_parg; 366 struct optee_session *sess; 367 368 /* Check that the session is valid */ 369 mutex_lock(&ctxdata->mutex); 370 sess = find_session(ctxdata, session); 371 mutex_unlock(&ctxdata->mutex); 372 if (!sess) 373 return -EINVAL; 374 375 shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg); 376 if (IS_ERR(shm)) 377 return PTR_ERR(shm); 378 379 msg_arg->cmd = OPTEE_MSG_CMD_CANCEL; 380 msg_arg->session = session; 381 msg_arg->cancel_id = cancel_id; 382 optee_do_call_with_arg(ctx, msg_parg); 383 384 tee_shm_free(shm); 385 return 0; 386 } 387 388 /** 389 * optee_enable_shm_cache() - Enables caching of some shared memory allocation 390 * in OP-TEE 391 * @optee: main service struct 392 */ 393 void optee_enable_shm_cache(struct optee *optee) 394 { 395 struct optee_call_waiter w; 396 397 /* We need to retry until secure world isn't busy. */ 398 optee_cq_wait_init(&optee->call_queue, &w); 399 while (true) { 400 struct arm_smccc_res res; 401 402 optee->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0, 403 0, &res); 404 if (res.a0 == OPTEE_SMC_RETURN_OK) 405 break; 406 optee_cq_wait_for_completion(&optee->call_queue, &w); 407 } 408 optee_cq_wait_final(&optee->call_queue, &w); 409 } 410 411 /** 412 * optee_disable_shm_cache() - Disables caching of some shared memory allocation 413 * in OP-TEE 414 * @optee: main service struct 415 */ 416 void optee_disable_shm_cache(struct optee *optee) 417 { 418 struct optee_call_waiter w; 419 420 /* We need to retry until secure world isn't busy. */ 421 optee_cq_wait_init(&optee->call_queue, &w); 422 while (true) { 423 union { 424 struct arm_smccc_res smccc; 425 struct optee_smc_disable_shm_cache_result result; 426 } res; 427 428 optee->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0, 429 0, &res.smccc); 430 if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL) 431 break; /* All shm's freed */ 432 if (res.result.status == OPTEE_SMC_RETURN_OK) { 433 struct tee_shm *shm; 434 435 shm = reg_pair_to_ptr(res.result.shm_upper32, 436 res.result.shm_lower32); 437 tee_shm_free(shm); 438 } else { 439 optee_cq_wait_for_completion(&optee->call_queue, &w); 440 } 441 } 442 optee_cq_wait_final(&optee->call_queue, &w); 443 } 444 445 #define PAGELIST_ENTRIES_PER_PAGE \ 446 ((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1) 447 448 /** 449 * optee_fill_pages_list() - write list of user pages to given shared 450 * buffer. 451 * 452 * @dst: page-aligned buffer where list of pages will be stored 453 * @pages: array of pages that represents shared buffer 454 * @num_pages: number of entries in @pages 455 * @page_offset: offset of user buffer from page start 456 * 457 * @dst should be big enough to hold list of user page addresses and 458 * links to the next pages of buffer 459 */ 460 void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages, 461 size_t page_offset) 462 { 463 int n = 0; 464 phys_addr_t optee_page; 465 /* 466 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h 467 * for details. 468 */ 469 struct { 470 u64 pages_list[PAGELIST_ENTRIES_PER_PAGE]; 471 u64 next_page_data; 472 } *pages_data; 473 474 /* 475 * Currently OP-TEE uses 4k page size and it does not looks 476 * like this will change in the future. On other hand, there are 477 * no know ARM architectures with page size < 4k. 478 * Thus the next built assert looks redundant. But the following 479 * code heavily relies on this assumption, so it is better be 480 * safe than sorry. 481 */ 482 BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE); 483 484 pages_data = (void *)dst; 485 /* 486 * If linux page is bigger than 4k, and user buffer offset is 487 * larger than 4k/8k/12k/etc this will skip first 4k pages, 488 * because they bear no value data for OP-TEE. 489 */ 490 optee_page = page_to_phys(*pages) + 491 round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE); 492 493 while (true) { 494 pages_data->pages_list[n++] = optee_page; 495 496 if (n == PAGELIST_ENTRIES_PER_PAGE) { 497 pages_data->next_page_data = 498 virt_to_phys(pages_data + 1); 499 pages_data++; 500 n = 0; 501 } 502 503 optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE; 504 if (!(optee_page & ~PAGE_MASK)) { 505 if (!--num_pages) 506 break; 507 pages++; 508 optee_page = page_to_phys(*pages); 509 } 510 } 511 } 512 513 /* 514 * The final entry in each pagelist page is a pointer to the next 515 * pagelist page. 516 */ 517 static size_t get_pages_list_size(size_t num_entries) 518 { 519 int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE); 520 521 return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE; 522 } 523 524 u64 *optee_allocate_pages_list(size_t num_entries) 525 { 526 return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL); 527 } 528 529 void optee_free_pages_list(void *list, size_t num_entries) 530 { 531 free_pages_exact(list, get_pages_list_size(num_entries)); 532 } 533 534 static bool is_normal_memory(pgprot_t p) 535 { 536 #if defined(CONFIG_ARM) 537 return (((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC) || 538 ((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEBACK)); 539 #elif defined(CONFIG_ARM64) 540 return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL); 541 #else 542 #error "Unuspported architecture" 543 #endif 544 } 545 546 static int __check_mem_type(struct vm_area_struct *vma, unsigned long end) 547 { 548 while (vma && is_normal_memory(vma->vm_page_prot)) { 549 if (vma->vm_end >= end) 550 return 0; 551 vma = vma->vm_next; 552 } 553 554 return -EINVAL; 555 } 556 557 static int check_mem_type(unsigned long start, size_t num_pages) 558 { 559 struct mm_struct *mm = current->mm; 560 int rc; 561 562 /* 563 * Allow kernel address to register with OP-TEE as kernel 564 * pages are configured as normal memory only. 565 */ 566 if (virt_addr_valid(start)) 567 return 0; 568 569 mmap_read_lock(mm); 570 rc = __check_mem_type(find_vma(mm, start), 571 start + num_pages * PAGE_SIZE); 572 mmap_read_unlock(mm); 573 574 return rc; 575 } 576 577 int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm, 578 struct page **pages, size_t num_pages, 579 unsigned long start) 580 { 581 struct tee_shm *shm_arg = NULL; 582 struct optee_msg_arg *msg_arg; 583 u64 *pages_list; 584 phys_addr_t msg_parg; 585 int rc; 586 587 if (!num_pages) 588 return -EINVAL; 589 590 rc = check_mem_type(start, num_pages); 591 if (rc) 592 return rc; 593 594 pages_list = optee_allocate_pages_list(num_pages); 595 if (!pages_list) 596 return -ENOMEM; 597 598 shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg); 599 if (IS_ERR(shm_arg)) { 600 rc = PTR_ERR(shm_arg); 601 goto out; 602 } 603 604 optee_fill_pages_list(pages_list, pages, num_pages, 605 tee_shm_get_page_offset(shm)); 606 607 msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM; 608 msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT | 609 OPTEE_MSG_ATTR_NONCONTIG; 610 msg_arg->params->u.tmem.shm_ref = (unsigned long)shm; 611 msg_arg->params->u.tmem.size = tee_shm_get_size(shm); 612 /* 613 * In the least bits of msg_arg->params->u.tmem.buf_ptr we 614 * store buffer offset from 4k page, as described in OP-TEE ABI. 615 */ 616 msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) | 617 (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1)); 618 619 if (optee_do_call_with_arg(ctx, msg_parg) || 620 msg_arg->ret != TEEC_SUCCESS) 621 rc = -EINVAL; 622 623 tee_shm_free(shm_arg); 624 out: 625 optee_free_pages_list(pages_list, num_pages); 626 return rc; 627 } 628 629 int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm) 630 { 631 struct tee_shm *shm_arg; 632 struct optee_msg_arg *msg_arg; 633 phys_addr_t msg_parg; 634 int rc = 0; 635 636 shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg); 637 if (IS_ERR(shm_arg)) 638 return PTR_ERR(shm_arg); 639 640 msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM; 641 642 msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT; 643 msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm; 644 645 if (optee_do_call_with_arg(ctx, msg_parg) || 646 msg_arg->ret != TEEC_SUCCESS) 647 rc = -EINVAL; 648 tee_shm_free(shm_arg); 649 return rc; 650 } 651 652 int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm, 653 struct page **pages, size_t num_pages, 654 unsigned long start) 655 { 656 /* 657 * We don't want to register supplicant memory in OP-TEE. 658 * Instead information about it will be passed in RPC code. 659 */ 660 return check_mem_type(start, num_pages); 661 } 662 663 int optee_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm) 664 { 665 return 0; 666 } 667