xref: /linux/drivers/target/target_core_user.c (revision 2a2dfc869d3345ccdd91322b023f4b0da84acbe7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 Shaohua Li <shli@kernel.org>
4  * Copyright (C) 2014 Red Hat, Inc.
5  * Copyright (C) 2015 Arrikto, Inc.
6  * Copyright (C) 2017 Chinamobile, Inc.
7  */
8 
9 #include <linux/spinlock.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/timer.h>
13 #include <linux/parser.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uio_driver.h>
16 #include <linux/xarray.h>
17 #include <linux/stringify.h>
18 #include <linux/bitops.h>
19 #include <linux/highmem.h>
20 #include <linux/configfs.h>
21 #include <linux/mutex.h>
22 #include <linux/workqueue.h>
23 #include <linux/pagemap.h>
24 #include <net/genetlink.h>
25 #include <scsi/scsi_common.h>
26 #include <scsi/scsi_proto.h>
27 #include <target/target_core_base.h>
28 #include <target/target_core_fabric.h>
29 #include <target/target_core_backend.h>
30 
31 #include <linux/target_core_user.h>
32 
33 /**
34  * DOC: Userspace I/O
35  * Userspace I/O
36  * -------------
37  *
38  * Define a shared-memory interface for LIO to pass SCSI commands and
39  * data to userspace for processing. This is to allow backends that
40  * are too complex for in-kernel support to be possible.
41  *
42  * It uses the UIO framework to do a lot of the device-creation and
43  * introspection work for us.
44  *
45  * See the .h file for how the ring is laid out. Note that while the
46  * command ring is defined, the particulars of the data area are
47  * not. Offset values in the command entry point to other locations
48  * internal to the mmap-ed area. There is separate space outside the
49  * command ring for data buffers. This leaves maximum flexibility for
50  * moving buffer allocations, or even page flipping or other
51  * allocation techniques, without altering the command ring layout.
52  *
53  * SECURITY:
54  * The user process must be assumed to be malicious. There's no way to
55  * prevent it breaking the command ring protocol if it wants, but in
56  * order to prevent other issues we must only ever read *data* from
57  * the shared memory area, not offsets or sizes. This applies to
58  * command ring entries as well as the mailbox. Extra code needed for
59  * this may have a 'UAM' comment.
60  */
61 
62 #define TCMU_TIME_OUT (30 * MSEC_PER_SEC)
63 
64 /* For mailbox plus cmd ring, the size is fixed 8MB */
65 #define MB_CMDR_SIZE_DEF (8 * 1024 * 1024)
66 /* Offset of cmd ring is size of mailbox */
67 #define CMDR_OFF ((__u32)sizeof(struct tcmu_mailbox))
68 #define CMDR_SIZE_DEF (MB_CMDR_SIZE_DEF - CMDR_OFF)
69 
70 /*
71  * For data area, the default block size is PAGE_SIZE and
72  * the default total size is 256K * PAGE_SIZE.
73  */
74 #define DATA_PAGES_PER_BLK_DEF 1
75 #define DATA_AREA_PAGES_DEF (256 * 1024)
76 
77 #define TCMU_MBS_TO_PAGES(_mbs) ((size_t)_mbs << (20 - PAGE_SHIFT))
78 #define TCMU_PAGES_TO_MBS(_pages) (_pages >> (20 - PAGE_SHIFT))
79 
80 /*
81  * Default number of global data blocks(512K * PAGE_SIZE)
82  * when the unmap thread will be started.
83  */
84 #define TCMU_GLOBAL_MAX_PAGES_DEF (512 * 1024)
85 
86 static u8 tcmu_kern_cmd_reply_supported;
87 static u8 tcmu_netlink_blocked;
88 
89 static struct device *tcmu_root_device;
90 
91 struct tcmu_hba {
92 	u32 host_id;
93 };
94 
95 #define TCMU_CONFIG_LEN 256
96 
97 static DEFINE_MUTEX(tcmu_nl_cmd_mutex);
98 static LIST_HEAD(tcmu_nl_cmd_list);
99 
100 struct tcmu_dev;
101 
102 struct tcmu_nl_cmd {
103 	/* wake up thread waiting for reply */
104 	struct completion complete;
105 	struct list_head nl_list;
106 	struct tcmu_dev *udev;
107 	int cmd;
108 	int status;
109 };
110 
111 struct tcmu_dev {
112 	struct list_head node;
113 	struct kref kref;
114 
115 	struct se_device se_dev;
116 	struct se_dev_plug se_plug;
117 
118 	char *name;
119 	struct se_hba *hba;
120 
121 #define TCMU_DEV_BIT_OPEN 0
122 #define TCMU_DEV_BIT_BROKEN 1
123 #define TCMU_DEV_BIT_BLOCKED 2
124 #define TCMU_DEV_BIT_TMR_NOTIFY 3
125 #define TCMU_DEV_BIT_PLUGGED 4
126 	unsigned long flags;
127 
128 	struct uio_info uio_info;
129 
130 	struct inode *inode;
131 
132 	uint64_t dev_size;
133 
134 	struct tcmu_mailbox *mb_addr;
135 	void *cmdr;
136 	u32 cmdr_size;
137 	u32 cmdr_last_cleaned;
138 	/* Offset of data area from start of mb */
139 	/* Must add data_off and mb_addr to get the address */
140 	size_t data_off;
141 	int data_area_mb;
142 	uint32_t max_blocks;
143 	size_t mmap_pages;
144 
145 	struct mutex cmdr_lock;
146 	struct list_head qfull_queue;
147 	struct list_head tmr_queue;
148 
149 	uint32_t dbi_max;
150 	uint32_t dbi_thresh;
151 	unsigned long *data_bitmap;
152 	struct xarray data_pages;
153 	uint32_t data_pages_per_blk;
154 	uint32_t data_blk_size;
155 
156 	struct xarray commands;
157 
158 	struct timer_list cmd_timer;
159 	unsigned int cmd_time_out;
160 	struct list_head inflight_queue;
161 
162 	struct timer_list qfull_timer;
163 	int qfull_time_out;
164 
165 	struct list_head timedout_entry;
166 
167 	struct tcmu_nl_cmd curr_nl_cmd;
168 
169 	char dev_config[TCMU_CONFIG_LEN];
170 
171 	int nl_reply_supported;
172 };
173 
174 #define TCMU_DEV(_se_dev) container_of(_se_dev, struct tcmu_dev, se_dev)
175 
176 struct tcmu_cmd {
177 	struct se_cmd *se_cmd;
178 	struct tcmu_dev *tcmu_dev;
179 	struct list_head queue_entry;
180 
181 	uint16_t cmd_id;
182 
183 	/* Can't use se_cmd when cleaning up expired cmds, because if
184 	   cmd has been completed then accessing se_cmd is off limits */
185 	uint32_t dbi_cnt;
186 	uint32_t dbi_bidi_cnt;
187 	uint32_t dbi_cur;
188 	uint32_t *dbi;
189 
190 	uint32_t data_len_bidi;
191 
192 	unsigned long deadline;
193 
194 #define TCMU_CMD_BIT_EXPIRED 0
195 #define TCMU_CMD_BIT_KEEP_BUF 1
196 	unsigned long flags;
197 };
198 
199 struct tcmu_tmr {
200 	struct list_head queue_entry;
201 
202 	uint8_t tmr_type;
203 	uint32_t tmr_cmd_cnt;
204 	int16_t tmr_cmd_ids[];
205 };
206 
207 /*
208  * To avoid dead lock the mutex lock order should always be:
209  *
210  * mutex_lock(&root_udev_mutex);
211  * ...
212  * mutex_lock(&tcmu_dev->cmdr_lock);
213  * mutex_unlock(&tcmu_dev->cmdr_lock);
214  * ...
215  * mutex_unlock(&root_udev_mutex);
216  */
217 static DEFINE_MUTEX(root_udev_mutex);
218 static LIST_HEAD(root_udev);
219 
220 static DEFINE_SPINLOCK(timed_out_udevs_lock);
221 static LIST_HEAD(timed_out_udevs);
222 
223 static struct kmem_cache *tcmu_cmd_cache;
224 
225 static atomic_t global_page_count = ATOMIC_INIT(0);
226 static struct delayed_work tcmu_unmap_work;
227 static int tcmu_global_max_pages = TCMU_GLOBAL_MAX_PAGES_DEF;
228 
229 static int tcmu_set_global_max_data_area(const char *str,
230 					 const struct kernel_param *kp)
231 {
232 	int ret, max_area_mb;
233 
234 	ret = kstrtoint(str, 10, &max_area_mb);
235 	if (ret)
236 		return -EINVAL;
237 
238 	if (max_area_mb <= 0) {
239 		pr_err("global_max_data_area must be larger than 0.\n");
240 		return -EINVAL;
241 	}
242 
243 	tcmu_global_max_pages = TCMU_MBS_TO_PAGES(max_area_mb);
244 	if (atomic_read(&global_page_count) > tcmu_global_max_pages)
245 		schedule_delayed_work(&tcmu_unmap_work, 0);
246 	else
247 		cancel_delayed_work_sync(&tcmu_unmap_work);
248 
249 	return 0;
250 }
251 
252 static int tcmu_get_global_max_data_area(char *buffer,
253 					 const struct kernel_param *kp)
254 {
255 	return sprintf(buffer, "%d\n", TCMU_PAGES_TO_MBS(tcmu_global_max_pages));
256 }
257 
258 static const struct kernel_param_ops tcmu_global_max_data_area_op = {
259 	.set = tcmu_set_global_max_data_area,
260 	.get = tcmu_get_global_max_data_area,
261 };
262 
263 module_param_cb(global_max_data_area_mb, &tcmu_global_max_data_area_op, NULL,
264 		S_IWUSR | S_IRUGO);
265 MODULE_PARM_DESC(global_max_data_area_mb,
266 		 "Max MBs allowed to be allocated to all the tcmu device's "
267 		 "data areas.");
268 
269 static int tcmu_get_block_netlink(char *buffer,
270 				  const struct kernel_param *kp)
271 {
272 	return sprintf(buffer, "%s\n", tcmu_netlink_blocked ?
273 		       "blocked" : "unblocked");
274 }
275 
276 static int tcmu_set_block_netlink(const char *str,
277 				  const struct kernel_param *kp)
278 {
279 	int ret;
280 	u8 val;
281 
282 	ret = kstrtou8(str, 0, &val);
283 	if (ret < 0)
284 		return ret;
285 
286 	if (val > 1) {
287 		pr_err("Invalid block netlink value %u\n", val);
288 		return -EINVAL;
289 	}
290 
291 	tcmu_netlink_blocked = val;
292 	return 0;
293 }
294 
295 static const struct kernel_param_ops tcmu_block_netlink_op = {
296 	.set = tcmu_set_block_netlink,
297 	.get = tcmu_get_block_netlink,
298 };
299 
300 module_param_cb(block_netlink, &tcmu_block_netlink_op, NULL, S_IWUSR | S_IRUGO);
301 MODULE_PARM_DESC(block_netlink, "Block new netlink commands.");
302 
303 static int tcmu_fail_netlink_cmd(struct tcmu_nl_cmd *nl_cmd)
304 {
305 	struct tcmu_dev *udev = nl_cmd->udev;
306 
307 	if (!tcmu_netlink_blocked) {
308 		pr_err("Could not reset device's netlink interface. Netlink is not blocked.\n");
309 		return -EBUSY;
310 	}
311 
312 	if (nl_cmd->cmd != TCMU_CMD_UNSPEC) {
313 		pr_debug("Aborting nl cmd %d on %s\n", nl_cmd->cmd, udev->name);
314 		nl_cmd->status = -EINTR;
315 		list_del(&nl_cmd->nl_list);
316 		complete(&nl_cmd->complete);
317 	}
318 	return 0;
319 }
320 
321 static int tcmu_set_reset_netlink(const char *str,
322 				  const struct kernel_param *kp)
323 {
324 	struct tcmu_nl_cmd *nl_cmd, *tmp_cmd;
325 	int ret;
326 	u8 val;
327 
328 	ret = kstrtou8(str, 0, &val);
329 	if (ret < 0)
330 		return ret;
331 
332 	if (val != 1) {
333 		pr_err("Invalid reset netlink value %u\n", val);
334 		return -EINVAL;
335 	}
336 
337 	mutex_lock(&tcmu_nl_cmd_mutex);
338 	list_for_each_entry_safe(nl_cmd, tmp_cmd, &tcmu_nl_cmd_list, nl_list) {
339 		ret = tcmu_fail_netlink_cmd(nl_cmd);
340 		if (ret)
341 			break;
342 	}
343 	mutex_unlock(&tcmu_nl_cmd_mutex);
344 
345 	return ret;
346 }
347 
348 static const struct kernel_param_ops tcmu_reset_netlink_op = {
349 	.set = tcmu_set_reset_netlink,
350 };
351 
352 module_param_cb(reset_netlink, &tcmu_reset_netlink_op, NULL, S_IWUSR);
353 MODULE_PARM_DESC(reset_netlink, "Reset netlink commands.");
354 
355 /* multicast group */
356 enum tcmu_multicast_groups {
357 	TCMU_MCGRP_CONFIG,
358 };
359 
360 static const struct genl_multicast_group tcmu_mcgrps[] = {
361 	[TCMU_MCGRP_CONFIG] = { .name = "config", },
362 };
363 
364 static struct nla_policy tcmu_attr_policy[TCMU_ATTR_MAX+1] = {
365 	[TCMU_ATTR_DEVICE]	= { .type = NLA_STRING },
366 	[TCMU_ATTR_MINOR]	= { .type = NLA_U32 },
367 	[TCMU_ATTR_CMD_STATUS]	= { .type = NLA_S32 },
368 	[TCMU_ATTR_DEVICE_ID]	= { .type = NLA_U32 },
369 	[TCMU_ATTR_SUPP_KERN_CMD_REPLY] = { .type = NLA_U8 },
370 };
371 
372 static int tcmu_genl_cmd_done(struct genl_info *info, int completed_cmd)
373 {
374 	struct tcmu_dev *udev = NULL;
375 	struct tcmu_nl_cmd *nl_cmd;
376 	int dev_id, rc, ret = 0;
377 
378 	if (!info->attrs[TCMU_ATTR_CMD_STATUS] ||
379 	    !info->attrs[TCMU_ATTR_DEVICE_ID]) {
380 		printk(KERN_ERR "TCMU_ATTR_CMD_STATUS or TCMU_ATTR_DEVICE_ID not set, doing nothing\n");
381 		return -EINVAL;
382         }
383 
384 	dev_id = nla_get_u32(info->attrs[TCMU_ATTR_DEVICE_ID]);
385 	rc = nla_get_s32(info->attrs[TCMU_ATTR_CMD_STATUS]);
386 
387 	mutex_lock(&tcmu_nl_cmd_mutex);
388 	list_for_each_entry(nl_cmd, &tcmu_nl_cmd_list, nl_list) {
389 		if (nl_cmd->udev->se_dev.dev_index == dev_id) {
390 			udev = nl_cmd->udev;
391 			break;
392 		}
393 	}
394 
395 	if (!udev) {
396 		pr_err("tcmu nl cmd %u/%d completion could not find device with dev id %u.\n",
397 		       completed_cmd, rc, dev_id);
398 		ret = -ENODEV;
399 		goto unlock;
400 	}
401 	list_del(&nl_cmd->nl_list);
402 
403 	pr_debug("%s genl cmd done got id %d curr %d done %d rc %d stat %d\n",
404 		 udev->name, dev_id, nl_cmd->cmd, completed_cmd, rc,
405 		 nl_cmd->status);
406 
407 	if (nl_cmd->cmd != completed_cmd) {
408 		pr_err("Mismatched commands on %s (Expecting reply for %d. Current %d).\n",
409 		       udev->name, completed_cmd, nl_cmd->cmd);
410 		ret = -EINVAL;
411 		goto unlock;
412 	}
413 
414 	nl_cmd->status = rc;
415 	complete(&nl_cmd->complete);
416 unlock:
417 	mutex_unlock(&tcmu_nl_cmd_mutex);
418 	return ret;
419 }
420 
421 static int tcmu_genl_rm_dev_done(struct sk_buff *skb, struct genl_info *info)
422 {
423 	return tcmu_genl_cmd_done(info, TCMU_CMD_REMOVED_DEVICE);
424 }
425 
426 static int tcmu_genl_add_dev_done(struct sk_buff *skb, struct genl_info *info)
427 {
428 	return tcmu_genl_cmd_done(info, TCMU_CMD_ADDED_DEVICE);
429 }
430 
431 static int tcmu_genl_reconfig_dev_done(struct sk_buff *skb,
432 				       struct genl_info *info)
433 {
434 	return tcmu_genl_cmd_done(info, TCMU_CMD_RECONFIG_DEVICE);
435 }
436 
437 static int tcmu_genl_set_features(struct sk_buff *skb, struct genl_info *info)
438 {
439 	if (info->attrs[TCMU_ATTR_SUPP_KERN_CMD_REPLY]) {
440 		tcmu_kern_cmd_reply_supported  =
441 			nla_get_u8(info->attrs[TCMU_ATTR_SUPP_KERN_CMD_REPLY]);
442 		printk(KERN_INFO "tcmu daemon: command reply support %u.\n",
443 		       tcmu_kern_cmd_reply_supported);
444 	}
445 
446 	return 0;
447 }
448 
449 static const struct genl_small_ops tcmu_genl_ops[] = {
450 	{
451 		.cmd	= TCMU_CMD_SET_FEATURES,
452 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
453 		.flags	= GENL_ADMIN_PERM,
454 		.doit	= tcmu_genl_set_features,
455 	},
456 	{
457 		.cmd	= TCMU_CMD_ADDED_DEVICE_DONE,
458 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
459 		.flags	= GENL_ADMIN_PERM,
460 		.doit	= tcmu_genl_add_dev_done,
461 	},
462 	{
463 		.cmd	= TCMU_CMD_REMOVED_DEVICE_DONE,
464 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
465 		.flags	= GENL_ADMIN_PERM,
466 		.doit	= tcmu_genl_rm_dev_done,
467 	},
468 	{
469 		.cmd	= TCMU_CMD_RECONFIG_DEVICE_DONE,
470 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
471 		.flags	= GENL_ADMIN_PERM,
472 		.doit	= tcmu_genl_reconfig_dev_done,
473 	},
474 };
475 
476 /* Our generic netlink family */
477 static struct genl_family tcmu_genl_family __ro_after_init = {
478 	.module = THIS_MODULE,
479 	.hdrsize = 0,
480 	.name = "TCM-USER",
481 	.version = 2,
482 	.maxattr = TCMU_ATTR_MAX,
483 	.policy = tcmu_attr_policy,
484 	.mcgrps = tcmu_mcgrps,
485 	.n_mcgrps = ARRAY_SIZE(tcmu_mcgrps),
486 	.netnsok = true,
487 	.small_ops = tcmu_genl_ops,
488 	.n_small_ops = ARRAY_SIZE(tcmu_genl_ops),
489 };
490 
491 #define tcmu_cmd_set_dbi_cur(cmd, index) ((cmd)->dbi_cur = (index))
492 #define tcmu_cmd_reset_dbi_cur(cmd) tcmu_cmd_set_dbi_cur(cmd, 0)
493 #define tcmu_cmd_set_dbi(cmd, index) ((cmd)->dbi[(cmd)->dbi_cur++] = (index))
494 #define tcmu_cmd_get_dbi(cmd) ((cmd)->dbi[(cmd)->dbi_cur++])
495 
496 static void tcmu_cmd_free_data(struct tcmu_cmd *tcmu_cmd, uint32_t len)
497 {
498 	struct tcmu_dev *udev = tcmu_cmd->tcmu_dev;
499 	uint32_t i;
500 
501 	for (i = 0; i < len; i++)
502 		clear_bit(tcmu_cmd->dbi[i], udev->data_bitmap);
503 }
504 
505 static inline int tcmu_get_empty_block(struct tcmu_dev *udev,
506 				       struct tcmu_cmd *tcmu_cmd,
507 				       int prev_dbi, int length, int *iov_cnt)
508 {
509 	XA_STATE(xas, &udev->data_pages, 0);
510 	struct page *page;
511 	int i, cnt, dbi, dpi;
512 	int page_cnt = DIV_ROUND_UP(length, PAGE_SIZE);
513 
514 	dbi = find_first_zero_bit(udev->data_bitmap, udev->dbi_thresh);
515 	if (dbi == udev->dbi_thresh)
516 		return -1;
517 
518 	dpi = dbi * udev->data_pages_per_blk;
519 	/* Count the number of already allocated pages */
520 	xas_set(&xas, dpi);
521 	rcu_read_lock();
522 	for (cnt = 0; xas_next(&xas) && cnt < page_cnt;)
523 		cnt++;
524 	rcu_read_unlock();
525 
526 	for (i = cnt; i < page_cnt; i++) {
527 		/* try to get new zeroed page from the mm */
528 		page = alloc_page(GFP_NOIO | __GFP_ZERO);
529 		if (!page)
530 			break;
531 
532 		if (xa_store(&udev->data_pages, dpi + i, page, GFP_NOIO)) {
533 			__free_page(page);
534 			break;
535 		}
536 	}
537 	if (atomic_add_return(i - cnt, &global_page_count) >
538 			      tcmu_global_max_pages)
539 		schedule_delayed_work(&tcmu_unmap_work, 0);
540 
541 	if (i && dbi > udev->dbi_max)
542 		udev->dbi_max = dbi;
543 
544 	set_bit(dbi, udev->data_bitmap);
545 	tcmu_cmd_set_dbi(tcmu_cmd, dbi);
546 
547 	if (dbi != prev_dbi + 1)
548 		*iov_cnt += 1;
549 
550 	return i == page_cnt ? dbi : -1;
551 }
552 
553 static int tcmu_get_empty_blocks(struct tcmu_dev *udev,
554 				 struct tcmu_cmd *tcmu_cmd, int length)
555 {
556 	/* start value of dbi + 1 must not be a valid dbi */
557 	int dbi = -2;
558 	int blk_data_len, iov_cnt = 0;
559 	uint32_t blk_size = udev->data_blk_size;
560 
561 	for (; length > 0; length -= blk_size) {
562 		blk_data_len = min_t(uint32_t, length, blk_size);
563 		dbi = tcmu_get_empty_block(udev, tcmu_cmd, dbi, blk_data_len,
564 					   &iov_cnt);
565 		if (dbi < 0)
566 			return -1;
567 	}
568 	return iov_cnt;
569 }
570 
571 static inline void tcmu_free_cmd(struct tcmu_cmd *tcmu_cmd)
572 {
573 	kfree(tcmu_cmd->dbi);
574 	kmem_cache_free(tcmu_cmd_cache, tcmu_cmd);
575 }
576 
577 static inline void tcmu_cmd_set_block_cnts(struct tcmu_cmd *cmd)
578 {
579 	int i, len;
580 	struct se_cmd *se_cmd = cmd->se_cmd;
581 	uint32_t blk_size = cmd->tcmu_dev->data_blk_size;
582 
583 	cmd->dbi_cnt = DIV_ROUND_UP(se_cmd->data_length, blk_size);
584 
585 	if (se_cmd->se_cmd_flags & SCF_BIDI) {
586 		BUG_ON(!(se_cmd->t_bidi_data_sg && se_cmd->t_bidi_data_nents));
587 		for (i = 0, len = 0; i < se_cmd->t_bidi_data_nents; i++)
588 			len += se_cmd->t_bidi_data_sg[i].length;
589 		cmd->dbi_bidi_cnt = DIV_ROUND_UP(len, blk_size);
590 		cmd->dbi_cnt += cmd->dbi_bidi_cnt;
591 		cmd->data_len_bidi = len;
592 	}
593 }
594 
595 static int new_block_to_iov(struct tcmu_dev *udev, struct tcmu_cmd *cmd,
596 			    struct iovec **iov, int prev_dbi, int len)
597 {
598 	/* Get the next dbi */
599 	int dbi = tcmu_cmd_get_dbi(cmd);
600 
601 	/* Do not add more than udev->data_blk_size to iov */
602 	len = min_t(int,  len, udev->data_blk_size);
603 
604 	/*
605 	 * The following code will gather and map the blocks to the same iovec
606 	 * when the blocks are all next to each other.
607 	 */
608 	if (dbi != prev_dbi + 1) {
609 		/* dbi is not next to previous dbi, so start new iov */
610 		if (prev_dbi >= 0)
611 			(*iov)++;
612 		/* write offset relative to mb_addr */
613 		(*iov)->iov_base = (void __user *)
614 				   (udev->data_off + dbi * udev->data_blk_size);
615 	}
616 	(*iov)->iov_len += len;
617 
618 	return dbi;
619 }
620 
621 static void tcmu_setup_iovs(struct tcmu_dev *udev, struct tcmu_cmd *cmd,
622 			    struct iovec **iov, int data_length)
623 {
624 	/* start value of dbi + 1 must not be a valid dbi */
625 	int dbi = -2;
626 
627 	/* We prepare the IOVs for DMA_FROM_DEVICE transfer direction */
628 	for (; data_length > 0; data_length -= udev->data_blk_size)
629 		dbi = new_block_to_iov(udev, cmd, iov, dbi, data_length);
630 }
631 
632 static struct tcmu_cmd *tcmu_alloc_cmd(struct se_cmd *se_cmd)
633 {
634 	struct se_device *se_dev = se_cmd->se_dev;
635 	struct tcmu_dev *udev = TCMU_DEV(se_dev);
636 	struct tcmu_cmd *tcmu_cmd;
637 
638 	tcmu_cmd = kmem_cache_zalloc(tcmu_cmd_cache, GFP_NOIO);
639 	if (!tcmu_cmd)
640 		return NULL;
641 
642 	INIT_LIST_HEAD(&tcmu_cmd->queue_entry);
643 	tcmu_cmd->se_cmd = se_cmd;
644 	tcmu_cmd->tcmu_dev = udev;
645 
646 	tcmu_cmd_set_block_cnts(tcmu_cmd);
647 	tcmu_cmd->dbi = kcalloc(tcmu_cmd->dbi_cnt, sizeof(uint32_t),
648 				GFP_NOIO);
649 	if (!tcmu_cmd->dbi) {
650 		kmem_cache_free(tcmu_cmd_cache, tcmu_cmd);
651 		return NULL;
652 	}
653 
654 	return tcmu_cmd;
655 }
656 
657 static inline void tcmu_flush_dcache_range(void *vaddr, size_t size)
658 {
659 	unsigned long offset = offset_in_page(vaddr);
660 	void *start = vaddr - offset;
661 
662 	size = round_up(size+offset, PAGE_SIZE);
663 
664 	while (size) {
665 		flush_dcache_page(vmalloc_to_page(start));
666 		start += PAGE_SIZE;
667 		size -= PAGE_SIZE;
668 	}
669 }
670 
671 /*
672  * Some ring helper functions. We don't assume size is a power of 2 so
673  * we can't use circ_buf.h.
674  */
675 static inline size_t spc_used(size_t head, size_t tail, size_t size)
676 {
677 	int diff = head - tail;
678 
679 	if (diff >= 0)
680 		return diff;
681 	else
682 		return size + diff;
683 }
684 
685 static inline size_t spc_free(size_t head, size_t tail, size_t size)
686 {
687 	/* Keep 1 byte unused or we can't tell full from empty */
688 	return (size - spc_used(head, tail, size) - 1);
689 }
690 
691 static inline size_t head_to_end(size_t head, size_t size)
692 {
693 	return size - head;
694 }
695 
696 #define UPDATE_HEAD(head, used, size) smp_store_release(&head, ((head % size) + used) % size)
697 
698 #define TCMU_SG_TO_DATA_AREA 1
699 #define TCMU_DATA_AREA_TO_SG 2
700 
701 static inline void tcmu_copy_data(struct tcmu_dev *udev,
702 				  struct tcmu_cmd *tcmu_cmd, uint32_t direction,
703 				  struct scatterlist *sg, unsigned int sg_nents,
704 				  struct iovec **iov, size_t data_len)
705 {
706 	/* start value of dbi + 1 must not be a valid dbi */
707 	int dbi = -2;
708 	size_t page_remaining, cp_len;
709 	int page_cnt, page_inx, dpi;
710 	struct sg_mapping_iter sg_iter;
711 	unsigned int sg_flags;
712 	struct page *page;
713 	void *data_page_start, *data_addr;
714 
715 	if (direction == TCMU_SG_TO_DATA_AREA)
716 		sg_flags = SG_MITER_ATOMIC | SG_MITER_FROM_SG;
717 	else
718 		sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
719 	sg_miter_start(&sg_iter, sg, sg_nents, sg_flags);
720 
721 	while (data_len) {
722 		if (direction == TCMU_SG_TO_DATA_AREA)
723 			dbi = new_block_to_iov(udev, tcmu_cmd, iov, dbi,
724 					       data_len);
725 		else
726 			dbi = tcmu_cmd_get_dbi(tcmu_cmd);
727 
728 		page_cnt = DIV_ROUND_UP(data_len, PAGE_SIZE);
729 		if (page_cnt > udev->data_pages_per_blk)
730 			page_cnt = udev->data_pages_per_blk;
731 
732 		dpi = dbi * udev->data_pages_per_blk;
733 		for (page_inx = 0; page_inx < page_cnt && data_len;
734 		     page_inx++, dpi++) {
735 			page = xa_load(&udev->data_pages, dpi);
736 
737 			if (direction == TCMU_DATA_AREA_TO_SG)
738 				flush_dcache_page(page);
739 			data_page_start = kmap_atomic(page);
740 			page_remaining = PAGE_SIZE;
741 
742 			while (page_remaining && data_len) {
743 				if (!sg_miter_next(&sg_iter)) {
744 					/* set length to 0 to abort outer loop */
745 					data_len = 0;
746 					pr_debug("%s: aborting data copy due to exhausted sg_list\n",
747 						 __func__);
748 					break;
749 				}
750 				cp_len = min3(sg_iter.length, page_remaining,
751 					      data_len);
752 
753 				data_addr = data_page_start +
754 					    PAGE_SIZE - page_remaining;
755 				if (direction == TCMU_SG_TO_DATA_AREA)
756 					memcpy(data_addr, sg_iter.addr, cp_len);
757 				else
758 					memcpy(sg_iter.addr, data_addr, cp_len);
759 
760 				data_len -= cp_len;
761 				page_remaining -= cp_len;
762 				sg_iter.consumed = cp_len;
763 			}
764 			sg_miter_stop(&sg_iter);
765 
766 			kunmap_atomic(data_page_start);
767 			if (direction == TCMU_SG_TO_DATA_AREA)
768 				flush_dcache_page(page);
769 		}
770 	}
771 }
772 
773 static void scatter_data_area(struct tcmu_dev *udev, struct tcmu_cmd *tcmu_cmd,
774 			      struct iovec **iov)
775 {
776 	struct se_cmd *se_cmd = tcmu_cmd->se_cmd;
777 
778 	tcmu_copy_data(udev, tcmu_cmd, TCMU_SG_TO_DATA_AREA, se_cmd->t_data_sg,
779 		       se_cmd->t_data_nents, iov, se_cmd->data_length);
780 }
781 
782 static void gather_data_area(struct tcmu_dev *udev, struct tcmu_cmd *tcmu_cmd,
783 			     bool bidi, uint32_t read_len)
784 {
785 	struct se_cmd *se_cmd = tcmu_cmd->se_cmd;
786 	struct scatterlist *data_sg;
787 	unsigned int data_nents;
788 
789 	if (!bidi) {
790 		data_sg = se_cmd->t_data_sg;
791 		data_nents = se_cmd->t_data_nents;
792 	} else {
793 		/*
794 		 * For bidi case, the first count blocks are for Data-Out
795 		 * buffer blocks, and before gathering the Data-In buffer
796 		 * the Data-Out buffer blocks should be skipped.
797 		 */
798 		tcmu_cmd_set_dbi_cur(tcmu_cmd,
799 				     tcmu_cmd->dbi_cnt - tcmu_cmd->dbi_bidi_cnt);
800 
801 		data_sg = se_cmd->t_bidi_data_sg;
802 		data_nents = se_cmd->t_bidi_data_nents;
803 	}
804 
805 	tcmu_copy_data(udev, tcmu_cmd, TCMU_DATA_AREA_TO_SG, data_sg,
806 		       data_nents, NULL, read_len);
807 }
808 
809 static inline size_t spc_bitmap_free(unsigned long *bitmap, uint32_t thresh)
810 {
811 	return thresh - bitmap_weight(bitmap, thresh);
812 }
813 
814 /*
815  * We can't queue a command until we have space available on the cmd ring.
816  *
817  * Called with ring lock held.
818  */
819 static bool is_ring_space_avail(struct tcmu_dev *udev, size_t cmd_size)
820 {
821 	struct tcmu_mailbox *mb = udev->mb_addr;
822 	size_t space, cmd_needed;
823 	u32 cmd_head;
824 
825 	tcmu_flush_dcache_range(mb, sizeof(*mb));
826 
827 	cmd_head = mb->cmd_head % udev->cmdr_size; /* UAM */
828 
829 	/*
830 	 * If cmd end-of-ring space is too small then we need space for a NOP plus
831 	 * original cmd - cmds are internally contiguous.
832 	 */
833 	if (head_to_end(cmd_head, udev->cmdr_size) >= cmd_size)
834 		cmd_needed = cmd_size;
835 	else
836 		cmd_needed = cmd_size + head_to_end(cmd_head, udev->cmdr_size);
837 
838 	space = spc_free(cmd_head, udev->cmdr_last_cleaned, udev->cmdr_size);
839 	if (space < cmd_needed) {
840 		pr_debug("no cmd space: %u %u %u\n", cmd_head,
841 		       udev->cmdr_last_cleaned, udev->cmdr_size);
842 		return false;
843 	}
844 	return true;
845 }
846 
847 /*
848  * We have to allocate data buffers before we can queue a command.
849  * Returns -1 on error (not enough space) or number of needed iovs on success
850  *
851  * Called with ring lock held.
852  */
853 static int tcmu_alloc_data_space(struct tcmu_dev *udev, struct tcmu_cmd *cmd,
854 				  int *iov_bidi_cnt)
855 {
856 	int space, iov_cnt = 0, ret = 0;
857 
858 	if (!cmd->dbi_cnt)
859 		goto wr_iov_cnts;
860 
861 	/* try to check and get the data blocks as needed */
862 	space = spc_bitmap_free(udev->data_bitmap, udev->dbi_thresh);
863 	if (space < cmd->dbi_cnt) {
864 		unsigned long blocks_left =
865 				(udev->max_blocks - udev->dbi_thresh) + space;
866 
867 		if (blocks_left < cmd->dbi_cnt) {
868 			pr_debug("no data space: only %lu available, but ask for %u\n",
869 					blocks_left * udev->data_blk_size,
870 					cmd->dbi_cnt * udev->data_blk_size);
871 			return -1;
872 		}
873 
874 		udev->dbi_thresh += cmd->dbi_cnt;
875 		if (udev->dbi_thresh > udev->max_blocks)
876 			udev->dbi_thresh = udev->max_blocks;
877 	}
878 
879 	iov_cnt = tcmu_get_empty_blocks(udev, cmd, cmd->se_cmd->data_length);
880 	if (iov_cnt < 0)
881 		return -1;
882 
883 	if (cmd->dbi_bidi_cnt) {
884 		ret = tcmu_get_empty_blocks(udev, cmd, cmd->data_len_bidi);
885 		if (ret < 0)
886 			return -1;
887 	}
888 wr_iov_cnts:
889 	*iov_bidi_cnt = ret;
890 	return iov_cnt + ret;
891 }
892 
893 static inline size_t tcmu_cmd_get_base_cmd_size(size_t iov_cnt)
894 {
895 	return max(offsetof(struct tcmu_cmd_entry, req.iov[iov_cnt]),
896 			sizeof(struct tcmu_cmd_entry));
897 }
898 
899 static inline size_t tcmu_cmd_get_cmd_size(struct tcmu_cmd *tcmu_cmd,
900 					   size_t base_command_size)
901 {
902 	struct se_cmd *se_cmd = tcmu_cmd->se_cmd;
903 	size_t command_size;
904 
905 	command_size = base_command_size +
906 		round_up(scsi_command_size(se_cmd->t_task_cdb),
907 				TCMU_OP_ALIGN_SIZE);
908 
909 	WARN_ON(command_size & (TCMU_OP_ALIGN_SIZE-1));
910 
911 	return command_size;
912 }
913 
914 static void tcmu_setup_cmd_timer(struct tcmu_cmd *tcmu_cmd, unsigned int tmo,
915 				 struct timer_list *timer)
916 {
917 	if (!tmo)
918 		return;
919 
920 	tcmu_cmd->deadline = round_jiffies_up(jiffies + msecs_to_jiffies(tmo));
921 	if (!timer_pending(timer))
922 		mod_timer(timer, tcmu_cmd->deadline);
923 
924 	pr_debug("Timeout set up for cmd %p, dev = %s, tmo = %lu\n", tcmu_cmd,
925 		 tcmu_cmd->tcmu_dev->name, tmo / MSEC_PER_SEC);
926 }
927 
928 static int add_to_qfull_queue(struct tcmu_cmd *tcmu_cmd)
929 {
930 	struct tcmu_dev *udev = tcmu_cmd->tcmu_dev;
931 	unsigned int tmo;
932 
933 	/*
934 	 * For backwards compat if qfull_time_out is not set use
935 	 * cmd_time_out and if that's not set use the default time out.
936 	 */
937 	if (!udev->qfull_time_out)
938 		return -ETIMEDOUT;
939 	else if (udev->qfull_time_out > 0)
940 		tmo = udev->qfull_time_out;
941 	else if (udev->cmd_time_out)
942 		tmo = udev->cmd_time_out;
943 	else
944 		tmo = TCMU_TIME_OUT;
945 
946 	tcmu_setup_cmd_timer(tcmu_cmd, tmo, &udev->qfull_timer);
947 
948 	list_add_tail(&tcmu_cmd->queue_entry, &udev->qfull_queue);
949 	pr_debug("adding cmd %p on dev %s to ring space wait queue\n",
950 		 tcmu_cmd, udev->name);
951 	return 0;
952 }
953 
954 static uint32_t ring_insert_padding(struct tcmu_dev *udev, size_t cmd_size)
955 {
956 	struct tcmu_cmd_entry_hdr *hdr;
957 	struct tcmu_mailbox *mb = udev->mb_addr;
958 	uint32_t cmd_head = mb->cmd_head % udev->cmdr_size; /* UAM */
959 
960 	/* Insert a PAD if end-of-ring space is too small */
961 	if (head_to_end(cmd_head, udev->cmdr_size) < cmd_size) {
962 		size_t pad_size = head_to_end(cmd_head, udev->cmdr_size);
963 
964 		hdr = udev->cmdr + cmd_head;
965 		tcmu_hdr_set_op(&hdr->len_op, TCMU_OP_PAD);
966 		tcmu_hdr_set_len(&hdr->len_op, pad_size);
967 		hdr->cmd_id = 0; /* not used for PAD */
968 		hdr->kflags = 0;
969 		hdr->uflags = 0;
970 		tcmu_flush_dcache_range(hdr, sizeof(*hdr));
971 
972 		UPDATE_HEAD(mb->cmd_head, pad_size, udev->cmdr_size);
973 		tcmu_flush_dcache_range(mb, sizeof(*mb));
974 
975 		cmd_head = mb->cmd_head % udev->cmdr_size; /* UAM */
976 		WARN_ON(cmd_head != 0);
977 	}
978 
979 	return cmd_head;
980 }
981 
982 static void tcmu_unplug_device(struct se_dev_plug *se_plug)
983 {
984 	struct se_device *se_dev = se_plug->se_dev;
985 	struct tcmu_dev *udev = TCMU_DEV(se_dev);
986 
987 	clear_bit(TCMU_DEV_BIT_PLUGGED, &udev->flags);
988 	uio_event_notify(&udev->uio_info);
989 }
990 
991 static struct se_dev_plug *tcmu_plug_device(struct se_device *se_dev)
992 {
993 	struct tcmu_dev *udev = TCMU_DEV(se_dev);
994 
995 	if (!test_and_set_bit(TCMU_DEV_BIT_PLUGGED, &udev->flags))
996 		return &udev->se_plug;
997 
998 	return NULL;
999 }
1000 
1001 /**
1002  * queue_cmd_ring - queue cmd to ring or internally
1003  * @tcmu_cmd: cmd to queue
1004  * @scsi_err: TCM error code if failure (-1) returned.
1005  *
1006  * Returns:
1007  * -1 we cannot queue internally or to the ring.
1008  *  0 success
1009  *  1 internally queued to wait for ring memory to free.
1010  */
1011 static int queue_cmd_ring(struct tcmu_cmd *tcmu_cmd, sense_reason_t *scsi_err)
1012 {
1013 	struct tcmu_dev *udev = tcmu_cmd->tcmu_dev;
1014 	struct se_cmd *se_cmd = tcmu_cmd->se_cmd;
1015 	size_t base_command_size, command_size;
1016 	struct tcmu_mailbox *mb = udev->mb_addr;
1017 	struct tcmu_cmd_entry *entry;
1018 	struct iovec *iov;
1019 	int iov_cnt, iov_bidi_cnt;
1020 	uint32_t cmd_id, cmd_head;
1021 	uint64_t cdb_off;
1022 	uint32_t blk_size = udev->data_blk_size;
1023 	/* size of data buffer needed */
1024 	size_t data_length = (size_t)tcmu_cmd->dbi_cnt * blk_size;
1025 
1026 	*scsi_err = TCM_NO_SENSE;
1027 
1028 	if (test_bit(TCMU_DEV_BIT_BLOCKED, &udev->flags)) {
1029 		*scsi_err = TCM_LUN_BUSY;
1030 		return -1;
1031 	}
1032 
1033 	if (test_bit(TCMU_DEV_BIT_BROKEN, &udev->flags)) {
1034 		*scsi_err = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1035 		return -1;
1036 	}
1037 
1038 	if (!list_empty(&udev->qfull_queue))
1039 		goto queue;
1040 
1041 	if (data_length > (size_t)udev->max_blocks * blk_size) {
1042 		pr_warn("TCMU: Request of size %zu is too big for %zu data area\n",
1043 			data_length, (size_t)udev->max_blocks * blk_size);
1044 		*scsi_err = TCM_INVALID_CDB_FIELD;
1045 		return -1;
1046 	}
1047 
1048 	iov_cnt = tcmu_alloc_data_space(udev, tcmu_cmd, &iov_bidi_cnt);
1049 	if (iov_cnt < 0)
1050 		goto free_and_queue;
1051 
1052 	/*
1053 	 * Must be a certain minimum size for response sense info, but
1054 	 * also may be larger if the iov array is large.
1055 	 */
1056 	base_command_size = tcmu_cmd_get_base_cmd_size(iov_cnt);
1057 	command_size = tcmu_cmd_get_cmd_size(tcmu_cmd, base_command_size);
1058 
1059 	if (command_size > (udev->cmdr_size / 2)) {
1060 		pr_warn("TCMU: Request of size %zu is too big for %u cmd ring\n",
1061 			command_size, udev->cmdr_size);
1062 		tcmu_cmd_free_data(tcmu_cmd, tcmu_cmd->dbi_cur);
1063 		*scsi_err = TCM_INVALID_CDB_FIELD;
1064 		return -1;
1065 	}
1066 
1067 	if (!is_ring_space_avail(udev, command_size))
1068 		/*
1069 		 * Don't leave commands partially setup because the unmap
1070 		 * thread might need the blocks to make forward progress.
1071 		 */
1072 		goto free_and_queue;
1073 
1074 	if (xa_alloc(&udev->commands, &cmd_id, tcmu_cmd, XA_LIMIT(1, 0xffff),
1075 		     GFP_NOWAIT) < 0) {
1076 		pr_err("tcmu: Could not allocate cmd id.\n");
1077 
1078 		tcmu_cmd_free_data(tcmu_cmd, tcmu_cmd->dbi_cnt);
1079 		*scsi_err = TCM_OUT_OF_RESOURCES;
1080 		return -1;
1081 	}
1082 	tcmu_cmd->cmd_id = cmd_id;
1083 
1084 	pr_debug("allocated cmd id %u for cmd %p dev %s\n", tcmu_cmd->cmd_id,
1085 		 tcmu_cmd, udev->name);
1086 
1087 	cmd_head = ring_insert_padding(udev, command_size);
1088 
1089 	entry = udev->cmdr + cmd_head;
1090 	memset(entry, 0, command_size);
1091 	tcmu_hdr_set_op(&entry->hdr.len_op, TCMU_OP_CMD);
1092 
1093 	/* prepare iov list and copy data to data area if necessary */
1094 	tcmu_cmd_reset_dbi_cur(tcmu_cmd);
1095 	iov = &entry->req.iov[0];
1096 
1097 	if (se_cmd->data_direction == DMA_TO_DEVICE ||
1098 	    se_cmd->se_cmd_flags & SCF_BIDI)
1099 		scatter_data_area(udev, tcmu_cmd, &iov);
1100 	else
1101 		tcmu_setup_iovs(udev, tcmu_cmd, &iov, se_cmd->data_length);
1102 
1103 	entry->req.iov_cnt = iov_cnt - iov_bidi_cnt;
1104 
1105 	/* Handle BIDI commands */
1106 	if (se_cmd->se_cmd_flags & SCF_BIDI) {
1107 		iov++;
1108 		tcmu_setup_iovs(udev, tcmu_cmd, &iov, tcmu_cmd->data_len_bidi);
1109 		entry->req.iov_bidi_cnt = iov_bidi_cnt;
1110 	}
1111 
1112 	tcmu_setup_cmd_timer(tcmu_cmd, udev->cmd_time_out, &udev->cmd_timer);
1113 
1114 	entry->hdr.cmd_id = tcmu_cmd->cmd_id;
1115 
1116 	tcmu_hdr_set_len(&entry->hdr.len_op, command_size);
1117 
1118 	/* All offsets relative to mb_addr, not start of entry! */
1119 	cdb_off = CMDR_OFF + cmd_head + base_command_size;
1120 	memcpy((void *) mb + cdb_off, se_cmd->t_task_cdb, scsi_command_size(se_cmd->t_task_cdb));
1121 	entry->req.cdb_off = cdb_off;
1122 	tcmu_flush_dcache_range(entry, command_size);
1123 
1124 	UPDATE_HEAD(mb->cmd_head, command_size, udev->cmdr_size);
1125 	tcmu_flush_dcache_range(mb, sizeof(*mb));
1126 
1127 	list_add_tail(&tcmu_cmd->queue_entry, &udev->inflight_queue);
1128 
1129 	if (!test_bit(TCMU_DEV_BIT_PLUGGED, &udev->flags))
1130 		uio_event_notify(&udev->uio_info);
1131 
1132 	return 0;
1133 
1134 free_and_queue:
1135 	tcmu_cmd_free_data(tcmu_cmd, tcmu_cmd->dbi_cur);
1136 	tcmu_cmd_reset_dbi_cur(tcmu_cmd);
1137 
1138 queue:
1139 	if (add_to_qfull_queue(tcmu_cmd)) {
1140 		*scsi_err = TCM_OUT_OF_RESOURCES;
1141 		return -1;
1142 	}
1143 
1144 	return 1;
1145 }
1146 
1147 /**
1148  * queue_tmr_ring - queue tmr info to ring or internally
1149  * @udev: related tcmu_dev
1150  * @tmr: tcmu_tmr containing tmr info to queue
1151  *
1152  * Returns:
1153  *  0 success
1154  *  1 internally queued to wait for ring memory to free.
1155  */
1156 static int
1157 queue_tmr_ring(struct tcmu_dev *udev, struct tcmu_tmr *tmr)
1158 {
1159 	struct tcmu_tmr_entry *entry;
1160 	int cmd_size;
1161 	int id_list_sz;
1162 	struct tcmu_mailbox *mb = udev->mb_addr;
1163 	uint32_t cmd_head;
1164 
1165 	if (test_bit(TCMU_DEV_BIT_BROKEN, &udev->flags))
1166 		goto out_free;
1167 
1168 	id_list_sz = sizeof(tmr->tmr_cmd_ids[0]) * tmr->tmr_cmd_cnt;
1169 	cmd_size = round_up(sizeof(*entry) + id_list_sz, TCMU_OP_ALIGN_SIZE);
1170 
1171 	if (!list_empty(&udev->tmr_queue) ||
1172 	    !is_ring_space_avail(udev, cmd_size)) {
1173 		list_add_tail(&tmr->queue_entry, &udev->tmr_queue);
1174 		pr_debug("adding tmr %p on dev %s to TMR ring space wait queue\n",
1175 			 tmr, udev->name);
1176 		return 1;
1177 	}
1178 
1179 	cmd_head = ring_insert_padding(udev, cmd_size);
1180 
1181 	entry = udev->cmdr + cmd_head;
1182 	memset(entry, 0, cmd_size);
1183 	tcmu_hdr_set_op(&entry->hdr.len_op, TCMU_OP_TMR);
1184 	tcmu_hdr_set_len(&entry->hdr.len_op, cmd_size);
1185 	entry->tmr_type = tmr->tmr_type;
1186 	entry->cmd_cnt = tmr->tmr_cmd_cnt;
1187 	memcpy(&entry->cmd_ids[0], &tmr->tmr_cmd_ids[0], id_list_sz);
1188 	tcmu_flush_dcache_range(entry, cmd_size);
1189 
1190 	UPDATE_HEAD(mb->cmd_head, cmd_size, udev->cmdr_size);
1191 	tcmu_flush_dcache_range(mb, sizeof(*mb));
1192 
1193 	uio_event_notify(&udev->uio_info);
1194 
1195 out_free:
1196 	kfree(tmr);
1197 
1198 	return 0;
1199 }
1200 
1201 static sense_reason_t
1202 tcmu_queue_cmd(struct se_cmd *se_cmd)
1203 {
1204 	struct se_device *se_dev = se_cmd->se_dev;
1205 	struct tcmu_dev *udev = TCMU_DEV(se_dev);
1206 	struct tcmu_cmd *tcmu_cmd;
1207 	sense_reason_t scsi_ret = TCM_CHECK_CONDITION_ABORT_CMD;
1208 	int ret = -1;
1209 
1210 	tcmu_cmd = tcmu_alloc_cmd(se_cmd);
1211 	if (!tcmu_cmd)
1212 		return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1213 
1214 	mutex_lock(&udev->cmdr_lock);
1215 	if (!(se_cmd->transport_state & CMD_T_ABORTED))
1216 		ret = queue_cmd_ring(tcmu_cmd, &scsi_ret);
1217 	if (ret < 0)
1218 		tcmu_free_cmd(tcmu_cmd);
1219 	else
1220 		se_cmd->priv = tcmu_cmd;
1221 	mutex_unlock(&udev->cmdr_lock);
1222 	return scsi_ret;
1223 }
1224 
1225 static void tcmu_set_next_deadline(struct list_head *queue,
1226 				   struct timer_list *timer)
1227 {
1228 	struct tcmu_cmd *cmd;
1229 
1230 	if (!list_empty(queue)) {
1231 		cmd = list_first_entry(queue, struct tcmu_cmd, queue_entry);
1232 		mod_timer(timer, cmd->deadline);
1233 	} else
1234 		del_timer(timer);
1235 }
1236 
1237 static int
1238 tcmu_tmr_type(enum tcm_tmreq_table tmf)
1239 {
1240 	switch (tmf) {
1241 	case TMR_ABORT_TASK:		return TCMU_TMR_ABORT_TASK;
1242 	case TMR_ABORT_TASK_SET:	return TCMU_TMR_ABORT_TASK_SET;
1243 	case TMR_CLEAR_ACA:		return TCMU_TMR_CLEAR_ACA;
1244 	case TMR_CLEAR_TASK_SET:	return TCMU_TMR_CLEAR_TASK_SET;
1245 	case TMR_LUN_RESET:		return TCMU_TMR_LUN_RESET;
1246 	case TMR_TARGET_WARM_RESET:	return TCMU_TMR_TARGET_WARM_RESET;
1247 	case TMR_TARGET_COLD_RESET:	return TCMU_TMR_TARGET_COLD_RESET;
1248 	case TMR_LUN_RESET_PRO:		return TCMU_TMR_LUN_RESET_PRO;
1249 	default:			return TCMU_TMR_UNKNOWN;
1250 	}
1251 }
1252 
1253 static void
1254 tcmu_tmr_notify(struct se_device *se_dev, enum tcm_tmreq_table tmf,
1255 		struct list_head *cmd_list)
1256 {
1257 	int i = 0, cmd_cnt = 0;
1258 	bool unqueued = false;
1259 	struct tcmu_cmd *cmd;
1260 	struct se_cmd *se_cmd;
1261 	struct tcmu_tmr *tmr;
1262 	struct tcmu_dev *udev = TCMU_DEV(se_dev);
1263 
1264 	mutex_lock(&udev->cmdr_lock);
1265 
1266 	/* First we check for aborted commands in qfull_queue */
1267 	list_for_each_entry(se_cmd, cmd_list, state_list) {
1268 		i++;
1269 		if (!se_cmd->priv)
1270 			continue;
1271 		cmd = se_cmd->priv;
1272 		/* Commands on qfull queue have no id yet */
1273 		if (cmd->cmd_id) {
1274 			cmd_cnt++;
1275 			continue;
1276 		}
1277 		pr_debug("Removing aborted command %p from queue on dev %s.\n",
1278 			 cmd, udev->name);
1279 
1280 		list_del_init(&cmd->queue_entry);
1281 		tcmu_free_cmd(cmd);
1282 		se_cmd->priv = NULL;
1283 		target_complete_cmd(se_cmd, SAM_STAT_TASK_ABORTED);
1284 		unqueued = true;
1285 	}
1286 	if (unqueued)
1287 		tcmu_set_next_deadline(&udev->qfull_queue, &udev->qfull_timer);
1288 
1289 	if (!test_bit(TCMU_DEV_BIT_TMR_NOTIFY, &udev->flags))
1290 		goto unlock;
1291 
1292 	pr_debug("TMR event %d on dev %s, aborted cmds %d, afflicted cmd_ids %d\n",
1293 		 tcmu_tmr_type(tmf), udev->name, i, cmd_cnt);
1294 
1295 	tmr = kmalloc(struct_size(tmr, tmr_cmd_ids, cmd_cnt), GFP_NOIO);
1296 	if (!tmr)
1297 		goto unlock;
1298 
1299 	tmr->tmr_type = tcmu_tmr_type(tmf);
1300 	tmr->tmr_cmd_cnt = cmd_cnt;
1301 
1302 	if (cmd_cnt != 0) {
1303 		cmd_cnt = 0;
1304 		list_for_each_entry(se_cmd, cmd_list, state_list) {
1305 			if (!se_cmd->priv)
1306 				continue;
1307 			cmd = se_cmd->priv;
1308 			if (cmd->cmd_id)
1309 				tmr->tmr_cmd_ids[cmd_cnt++] = cmd->cmd_id;
1310 		}
1311 	}
1312 
1313 	queue_tmr_ring(udev, tmr);
1314 
1315 unlock:
1316 	mutex_unlock(&udev->cmdr_lock);
1317 }
1318 
1319 static bool tcmu_handle_completion(struct tcmu_cmd *cmd,
1320 				   struct tcmu_cmd_entry *entry, bool keep_buf)
1321 {
1322 	struct se_cmd *se_cmd = cmd->se_cmd;
1323 	struct tcmu_dev *udev = cmd->tcmu_dev;
1324 	bool read_len_valid = false;
1325 	bool ret = true;
1326 	uint32_t read_len;
1327 
1328 	/*
1329 	 * cmd has been completed already from timeout, just reclaim
1330 	 * data area space and free cmd
1331 	 */
1332 	if (test_bit(TCMU_CMD_BIT_EXPIRED, &cmd->flags)) {
1333 		WARN_ON_ONCE(se_cmd);
1334 		goto out;
1335 	}
1336 	if (test_bit(TCMU_CMD_BIT_KEEP_BUF, &cmd->flags)) {
1337 		pr_err("cmd_id %u already completed with KEEP_BUF, ring is broken\n",
1338 		       entry->hdr.cmd_id);
1339 		set_bit(TCMU_DEV_BIT_BROKEN, &udev->flags);
1340 		ret = false;
1341 		goto out;
1342 	}
1343 
1344 	list_del_init(&cmd->queue_entry);
1345 
1346 	tcmu_cmd_reset_dbi_cur(cmd);
1347 
1348 	if (entry->hdr.uflags & TCMU_UFLAG_UNKNOWN_OP) {
1349 		pr_warn("TCMU: Userspace set UNKNOWN_OP flag on se_cmd %p\n",
1350 			cmd->se_cmd);
1351 		entry->rsp.scsi_status = SAM_STAT_CHECK_CONDITION;
1352 		goto done;
1353 	}
1354 
1355 	read_len = se_cmd->data_length;
1356 	if (se_cmd->data_direction == DMA_FROM_DEVICE &&
1357 	    (entry->hdr.uflags & TCMU_UFLAG_READ_LEN) && entry->rsp.read_len) {
1358 		read_len_valid = true;
1359 		if (entry->rsp.read_len < read_len)
1360 			read_len = entry->rsp.read_len;
1361 	}
1362 
1363 	if (entry->rsp.scsi_status == SAM_STAT_CHECK_CONDITION) {
1364 		transport_copy_sense_to_cmd(se_cmd, entry->rsp.sense_buffer);
1365 		if (!read_len_valid )
1366 			goto done;
1367 		else
1368 			se_cmd->se_cmd_flags |= SCF_TREAT_READ_AS_NORMAL;
1369 	}
1370 	if (se_cmd->se_cmd_flags & SCF_BIDI) {
1371 		/* Get Data-In buffer before clean up */
1372 		gather_data_area(udev, cmd, true, read_len);
1373 	} else if (se_cmd->data_direction == DMA_FROM_DEVICE) {
1374 		gather_data_area(udev, cmd, false, read_len);
1375 	} else if (se_cmd->data_direction == DMA_TO_DEVICE) {
1376 		/* TODO: */
1377 	} else if (se_cmd->data_direction != DMA_NONE) {
1378 		pr_warn("TCMU: data direction was %d!\n",
1379 			se_cmd->data_direction);
1380 	}
1381 
1382 done:
1383 	se_cmd->priv = NULL;
1384 	if (read_len_valid) {
1385 		pr_debug("read_len = %d\n", read_len);
1386 		target_complete_cmd_with_length(cmd->se_cmd,
1387 					entry->rsp.scsi_status, read_len);
1388 	} else
1389 		target_complete_cmd(cmd->se_cmd, entry->rsp.scsi_status);
1390 
1391 out:
1392 	if (!keep_buf) {
1393 		tcmu_cmd_free_data(cmd, cmd->dbi_cnt);
1394 		tcmu_free_cmd(cmd);
1395 	} else {
1396 		/*
1397 		 * Keep this command after completion, since userspace still
1398 		 * needs the data buffer. Mark it with TCMU_CMD_BIT_KEEP_BUF
1399 		 * and reset potential TCMU_CMD_BIT_EXPIRED, so we don't accept
1400 		 * a second completion later.
1401 		 * Userspace can free the buffer later by writing the cmd_id
1402 		 * to new action attribute free_kept_buf.
1403 		 */
1404 		clear_bit(TCMU_CMD_BIT_EXPIRED, &cmd->flags);
1405 		set_bit(TCMU_CMD_BIT_KEEP_BUF, &cmd->flags);
1406 	}
1407 	return ret;
1408 }
1409 
1410 static int tcmu_run_tmr_queue(struct tcmu_dev *udev)
1411 {
1412 	struct tcmu_tmr *tmr, *tmp;
1413 	LIST_HEAD(tmrs);
1414 
1415 	if (list_empty(&udev->tmr_queue))
1416 		return 1;
1417 
1418 	pr_debug("running %s's tmr queue\n", udev->name);
1419 
1420 	list_splice_init(&udev->tmr_queue, &tmrs);
1421 
1422 	list_for_each_entry_safe(tmr, tmp, &tmrs, queue_entry) {
1423 		list_del_init(&tmr->queue_entry);
1424 
1425 		pr_debug("removing tmr %p on dev %s from queue\n",
1426 			 tmr, udev->name);
1427 
1428 		if (queue_tmr_ring(udev, tmr)) {
1429 			pr_debug("ran out of space during tmr queue run\n");
1430 			/*
1431 			 * tmr was requeued, so just put all tmrs back in
1432 			 * the queue
1433 			 */
1434 			list_splice_tail(&tmrs, &udev->tmr_queue);
1435 			return 0;
1436 		}
1437 	}
1438 
1439 	return 1;
1440 }
1441 
1442 static bool tcmu_handle_completions(struct tcmu_dev *udev)
1443 {
1444 	struct tcmu_mailbox *mb;
1445 	struct tcmu_cmd *cmd;
1446 	bool free_space = false;
1447 
1448 	if (test_bit(TCMU_DEV_BIT_BROKEN, &udev->flags)) {
1449 		pr_err("ring broken, not handling completions\n");
1450 		return false;
1451 	}
1452 
1453 	mb = udev->mb_addr;
1454 	tcmu_flush_dcache_range(mb, sizeof(*mb));
1455 
1456 	while (udev->cmdr_last_cleaned != READ_ONCE(mb->cmd_tail)) {
1457 
1458 		struct tcmu_cmd_entry *entry = udev->cmdr + udev->cmdr_last_cleaned;
1459 		bool keep_buf;
1460 
1461 		/*
1462 		 * Flush max. up to end of cmd ring since current entry might
1463 		 * be a padding that is shorter than sizeof(*entry)
1464 		 */
1465 		size_t ring_left = head_to_end(udev->cmdr_last_cleaned,
1466 					       udev->cmdr_size);
1467 		tcmu_flush_dcache_range(entry, ring_left < sizeof(*entry) ?
1468 					ring_left : sizeof(*entry));
1469 
1470 		free_space = true;
1471 
1472 		if (tcmu_hdr_get_op(entry->hdr.len_op) == TCMU_OP_PAD ||
1473 		    tcmu_hdr_get_op(entry->hdr.len_op) == TCMU_OP_TMR) {
1474 			UPDATE_HEAD(udev->cmdr_last_cleaned,
1475 				    tcmu_hdr_get_len(entry->hdr.len_op),
1476 				    udev->cmdr_size);
1477 			continue;
1478 		}
1479 		WARN_ON(tcmu_hdr_get_op(entry->hdr.len_op) != TCMU_OP_CMD);
1480 
1481 		keep_buf = !!(entry->hdr.uflags & TCMU_UFLAG_KEEP_BUF);
1482 		if (keep_buf)
1483 			cmd = xa_load(&udev->commands, entry->hdr.cmd_id);
1484 		else
1485 			cmd = xa_erase(&udev->commands, entry->hdr.cmd_id);
1486 		if (!cmd) {
1487 			pr_err("cmd_id %u not found, ring is broken\n",
1488 			       entry->hdr.cmd_id);
1489 			set_bit(TCMU_DEV_BIT_BROKEN, &udev->flags);
1490 			return false;
1491 		}
1492 
1493 		if (!tcmu_handle_completion(cmd, entry, keep_buf))
1494 			break;
1495 
1496 		UPDATE_HEAD(udev->cmdr_last_cleaned,
1497 			    tcmu_hdr_get_len(entry->hdr.len_op),
1498 			    udev->cmdr_size);
1499 	}
1500 	if (free_space)
1501 		free_space = tcmu_run_tmr_queue(udev);
1502 
1503 	if (atomic_read(&global_page_count) > tcmu_global_max_pages &&
1504 	    xa_empty(&udev->commands) && list_empty(&udev->qfull_queue)) {
1505 		/*
1506 		 * Allocated blocks exceeded global block limit, currently no
1507 		 * more pending or waiting commands so try to reclaim blocks.
1508 		 */
1509 		schedule_delayed_work(&tcmu_unmap_work, 0);
1510 	}
1511 	if (udev->cmd_time_out)
1512 		tcmu_set_next_deadline(&udev->inflight_queue, &udev->cmd_timer);
1513 
1514 	return free_space;
1515 }
1516 
1517 static void tcmu_check_expired_ring_cmd(struct tcmu_cmd *cmd)
1518 {
1519 	struct se_cmd *se_cmd;
1520 
1521 	if (!time_after_eq(jiffies, cmd->deadline))
1522 		return;
1523 
1524 	set_bit(TCMU_CMD_BIT_EXPIRED, &cmd->flags);
1525 	list_del_init(&cmd->queue_entry);
1526 	se_cmd = cmd->se_cmd;
1527 	se_cmd->priv = NULL;
1528 	cmd->se_cmd = NULL;
1529 
1530 	pr_debug("Timing out inflight cmd %u on dev %s.\n",
1531 		 cmd->cmd_id, cmd->tcmu_dev->name);
1532 
1533 	target_complete_cmd(se_cmd, SAM_STAT_CHECK_CONDITION);
1534 }
1535 
1536 static void tcmu_check_expired_queue_cmd(struct tcmu_cmd *cmd)
1537 {
1538 	struct se_cmd *se_cmd;
1539 
1540 	if (!time_after_eq(jiffies, cmd->deadline))
1541 		return;
1542 
1543 	pr_debug("Timing out queued cmd %p on dev %s.\n",
1544 		  cmd, cmd->tcmu_dev->name);
1545 
1546 	list_del_init(&cmd->queue_entry);
1547 	se_cmd = cmd->se_cmd;
1548 	tcmu_free_cmd(cmd);
1549 
1550 	se_cmd->priv = NULL;
1551 	target_complete_cmd(se_cmd, SAM_STAT_TASK_SET_FULL);
1552 }
1553 
1554 static void tcmu_device_timedout(struct tcmu_dev *udev)
1555 {
1556 	spin_lock(&timed_out_udevs_lock);
1557 	if (list_empty(&udev->timedout_entry))
1558 		list_add_tail(&udev->timedout_entry, &timed_out_udevs);
1559 	spin_unlock(&timed_out_udevs_lock);
1560 
1561 	schedule_delayed_work(&tcmu_unmap_work, 0);
1562 }
1563 
1564 static void tcmu_cmd_timedout(struct timer_list *t)
1565 {
1566 	struct tcmu_dev *udev = from_timer(udev, t, cmd_timer);
1567 
1568 	pr_debug("%s cmd timeout has expired\n", udev->name);
1569 	tcmu_device_timedout(udev);
1570 }
1571 
1572 static void tcmu_qfull_timedout(struct timer_list *t)
1573 {
1574 	struct tcmu_dev *udev = from_timer(udev, t, qfull_timer);
1575 
1576 	pr_debug("%s qfull timeout has expired\n", udev->name);
1577 	tcmu_device_timedout(udev);
1578 }
1579 
1580 static int tcmu_attach_hba(struct se_hba *hba, u32 host_id)
1581 {
1582 	struct tcmu_hba *tcmu_hba;
1583 
1584 	tcmu_hba = kzalloc(sizeof(struct tcmu_hba), GFP_KERNEL);
1585 	if (!tcmu_hba)
1586 		return -ENOMEM;
1587 
1588 	tcmu_hba->host_id = host_id;
1589 	hba->hba_ptr = tcmu_hba;
1590 
1591 	return 0;
1592 }
1593 
1594 static void tcmu_detach_hba(struct se_hba *hba)
1595 {
1596 	kfree(hba->hba_ptr);
1597 	hba->hba_ptr = NULL;
1598 }
1599 
1600 static struct se_device *tcmu_alloc_device(struct se_hba *hba, const char *name)
1601 {
1602 	struct tcmu_dev *udev;
1603 
1604 	udev = kzalloc(sizeof(struct tcmu_dev), GFP_KERNEL);
1605 	if (!udev)
1606 		return NULL;
1607 	kref_init(&udev->kref);
1608 
1609 	udev->name = kstrdup(name, GFP_KERNEL);
1610 	if (!udev->name) {
1611 		kfree(udev);
1612 		return NULL;
1613 	}
1614 
1615 	udev->hba = hba;
1616 	udev->cmd_time_out = TCMU_TIME_OUT;
1617 	udev->qfull_time_out = -1;
1618 
1619 	udev->data_pages_per_blk = DATA_PAGES_PER_BLK_DEF;
1620 	udev->max_blocks = DATA_AREA_PAGES_DEF / udev->data_pages_per_blk;
1621 	udev->cmdr_size = CMDR_SIZE_DEF;
1622 	udev->data_area_mb = TCMU_PAGES_TO_MBS(DATA_AREA_PAGES_DEF);
1623 
1624 	mutex_init(&udev->cmdr_lock);
1625 
1626 	INIT_LIST_HEAD(&udev->node);
1627 	INIT_LIST_HEAD(&udev->timedout_entry);
1628 	INIT_LIST_HEAD(&udev->qfull_queue);
1629 	INIT_LIST_HEAD(&udev->tmr_queue);
1630 	INIT_LIST_HEAD(&udev->inflight_queue);
1631 	xa_init_flags(&udev->commands, XA_FLAGS_ALLOC1);
1632 
1633 	timer_setup(&udev->qfull_timer, tcmu_qfull_timedout, 0);
1634 	timer_setup(&udev->cmd_timer, tcmu_cmd_timedout, 0);
1635 
1636 	xa_init(&udev->data_pages);
1637 
1638 	return &udev->se_dev;
1639 }
1640 
1641 static void tcmu_dev_call_rcu(struct rcu_head *p)
1642 {
1643 	struct se_device *dev = container_of(p, struct se_device, rcu_head);
1644 	struct tcmu_dev *udev = TCMU_DEV(dev);
1645 
1646 	kfree(udev->uio_info.name);
1647 	kfree(udev->name);
1648 	kfree(udev);
1649 }
1650 
1651 static int tcmu_check_and_free_pending_cmd(struct tcmu_cmd *cmd)
1652 {
1653 	if (test_bit(TCMU_CMD_BIT_EXPIRED, &cmd->flags) ||
1654 	    test_bit(TCMU_CMD_BIT_KEEP_BUF, &cmd->flags)) {
1655 		kmem_cache_free(tcmu_cmd_cache, cmd);
1656 		return 0;
1657 	}
1658 	return -EINVAL;
1659 }
1660 
1661 static u32 tcmu_blocks_release(struct tcmu_dev *udev, unsigned long first,
1662 				unsigned long last)
1663 {
1664 	struct page *page;
1665 	unsigned long dpi;
1666 	u32 pages_freed = 0;
1667 
1668 	first = first * udev->data_pages_per_blk;
1669 	last = (last + 1) * udev->data_pages_per_blk - 1;
1670 	xa_for_each_range(&udev->data_pages, dpi, page, first, last) {
1671 		xa_erase(&udev->data_pages, dpi);
1672 		/*
1673 		 * While reaching here there may be page faults occurring on
1674 		 * the to-be-released pages. A race condition may occur if
1675 		 * unmap_mapping_range() is called before page faults on these
1676 		 * pages have completed; a valid but stale map is created.
1677 		 *
1678 		 * If another command subsequently runs and needs to extend
1679 		 * dbi_thresh, it may reuse the slot corresponding to the
1680 		 * previous page in data_bitmap. Though we will allocate a new
1681 		 * page for the slot in data_area, no page fault will happen
1682 		 * because we have a valid map. Therefore the command's data
1683 		 * will be lost.
1684 		 *
1685 		 * We lock and unlock pages that are to be released to ensure
1686 		 * all page faults have completed. This way
1687 		 * unmap_mapping_range() can ensure stale maps are cleanly
1688 		 * removed.
1689 		 */
1690 		lock_page(page);
1691 		unlock_page(page);
1692 		__free_page(page);
1693 		pages_freed++;
1694 	}
1695 
1696 	atomic_sub(pages_freed, &global_page_count);
1697 
1698 	return pages_freed;
1699 }
1700 
1701 static void tcmu_remove_all_queued_tmr(struct tcmu_dev *udev)
1702 {
1703 	struct tcmu_tmr *tmr, *tmp;
1704 
1705 	list_for_each_entry_safe(tmr, tmp, &udev->tmr_queue, queue_entry) {
1706 		list_del_init(&tmr->queue_entry);
1707 		kfree(tmr);
1708 	}
1709 }
1710 
1711 static void tcmu_dev_kref_release(struct kref *kref)
1712 {
1713 	struct tcmu_dev *udev = container_of(kref, struct tcmu_dev, kref);
1714 	struct se_device *dev = &udev->se_dev;
1715 	struct tcmu_cmd *cmd;
1716 	bool all_expired = true;
1717 	unsigned long i;
1718 
1719 	vfree(udev->mb_addr);
1720 	udev->mb_addr = NULL;
1721 
1722 	spin_lock_bh(&timed_out_udevs_lock);
1723 	if (!list_empty(&udev->timedout_entry))
1724 		list_del(&udev->timedout_entry);
1725 	spin_unlock_bh(&timed_out_udevs_lock);
1726 
1727 	/* Upper layer should drain all requests before calling this */
1728 	mutex_lock(&udev->cmdr_lock);
1729 	xa_for_each(&udev->commands, i, cmd) {
1730 		if (tcmu_check_and_free_pending_cmd(cmd) != 0)
1731 			all_expired = false;
1732 	}
1733 	/* There can be left over TMR cmds. Remove them. */
1734 	tcmu_remove_all_queued_tmr(udev);
1735 	if (!list_empty(&udev->qfull_queue))
1736 		all_expired = false;
1737 	xa_destroy(&udev->commands);
1738 	WARN_ON(!all_expired);
1739 
1740 	tcmu_blocks_release(udev, 0, udev->dbi_max);
1741 	bitmap_free(udev->data_bitmap);
1742 	mutex_unlock(&udev->cmdr_lock);
1743 
1744 	pr_debug("dev_kref_release\n");
1745 
1746 	call_rcu(&dev->rcu_head, tcmu_dev_call_rcu);
1747 }
1748 
1749 static void run_qfull_queue(struct tcmu_dev *udev, bool fail)
1750 {
1751 	struct tcmu_cmd *tcmu_cmd, *tmp_cmd;
1752 	LIST_HEAD(cmds);
1753 	sense_reason_t scsi_ret;
1754 	int ret;
1755 
1756 	if (list_empty(&udev->qfull_queue))
1757 		return;
1758 
1759 	pr_debug("running %s's cmdr queue forcefail %d\n", udev->name, fail);
1760 
1761 	list_splice_init(&udev->qfull_queue, &cmds);
1762 
1763 	list_for_each_entry_safe(tcmu_cmd, tmp_cmd, &cmds, queue_entry) {
1764 		list_del_init(&tcmu_cmd->queue_entry);
1765 
1766 		pr_debug("removing cmd %p on dev %s from queue\n",
1767 			 tcmu_cmd, udev->name);
1768 
1769 		if (fail) {
1770 			/*
1771 			 * We were not able to even start the command, so
1772 			 * fail with busy to allow a retry in case runner
1773 			 * was only temporarily down. If the device is being
1774 			 * removed then LIO core will do the right thing and
1775 			 * fail the retry.
1776 			 */
1777 			tcmu_cmd->se_cmd->priv = NULL;
1778 			target_complete_cmd(tcmu_cmd->se_cmd, SAM_STAT_BUSY);
1779 			tcmu_free_cmd(tcmu_cmd);
1780 			continue;
1781 		}
1782 
1783 		ret = queue_cmd_ring(tcmu_cmd, &scsi_ret);
1784 		if (ret < 0) {
1785 			pr_debug("cmd %p on dev %s failed with %u\n",
1786 				 tcmu_cmd, udev->name, scsi_ret);
1787 			/*
1788 			 * Ignore scsi_ret for now. target_complete_cmd
1789 			 * drops it.
1790 			 */
1791 			tcmu_cmd->se_cmd->priv = NULL;
1792 			target_complete_cmd(tcmu_cmd->se_cmd,
1793 					    SAM_STAT_CHECK_CONDITION);
1794 			tcmu_free_cmd(tcmu_cmd);
1795 		} else if (ret > 0) {
1796 			pr_debug("ran out of space during cmdr queue run\n");
1797 			/*
1798 			 * cmd was requeued, so just put all cmds back in
1799 			 * the queue
1800 			 */
1801 			list_splice_tail(&cmds, &udev->qfull_queue);
1802 			break;
1803 		}
1804 	}
1805 
1806 	tcmu_set_next_deadline(&udev->qfull_queue, &udev->qfull_timer);
1807 }
1808 
1809 static int tcmu_irqcontrol(struct uio_info *info, s32 irq_on)
1810 {
1811 	struct tcmu_dev *udev = container_of(info, struct tcmu_dev, uio_info);
1812 
1813 	mutex_lock(&udev->cmdr_lock);
1814 	if (tcmu_handle_completions(udev))
1815 		run_qfull_queue(udev, false);
1816 	mutex_unlock(&udev->cmdr_lock);
1817 
1818 	return 0;
1819 }
1820 
1821 /*
1822  * mmap code from uio.c. Copied here because we want to hook mmap()
1823  * and this stuff must come along.
1824  */
1825 static int tcmu_find_mem_index(struct vm_area_struct *vma)
1826 {
1827 	struct tcmu_dev *udev = vma->vm_private_data;
1828 	struct uio_info *info = &udev->uio_info;
1829 
1830 	if (vma->vm_pgoff < MAX_UIO_MAPS) {
1831 		if (info->mem[vma->vm_pgoff].size == 0)
1832 			return -1;
1833 		return (int)vma->vm_pgoff;
1834 	}
1835 	return -1;
1836 }
1837 
1838 static struct page *tcmu_try_get_data_page(struct tcmu_dev *udev, uint32_t dpi)
1839 {
1840 	struct page *page;
1841 
1842 	mutex_lock(&udev->cmdr_lock);
1843 	page = xa_load(&udev->data_pages, dpi);
1844 	if (likely(page)) {
1845 		get_page(page);
1846 		lock_page(page);
1847 		mutex_unlock(&udev->cmdr_lock);
1848 		return page;
1849 	}
1850 
1851 	/*
1852 	 * Userspace messed up and passed in a address not in the
1853 	 * data iov passed to it.
1854 	 */
1855 	pr_err("Invalid addr to data page mapping (dpi %u) on device %s\n",
1856 	       dpi, udev->name);
1857 	mutex_unlock(&udev->cmdr_lock);
1858 
1859 	return NULL;
1860 }
1861 
1862 static void tcmu_vma_open(struct vm_area_struct *vma)
1863 {
1864 	struct tcmu_dev *udev = vma->vm_private_data;
1865 
1866 	pr_debug("vma_open\n");
1867 
1868 	kref_get(&udev->kref);
1869 }
1870 
1871 static void tcmu_vma_close(struct vm_area_struct *vma)
1872 {
1873 	struct tcmu_dev *udev = vma->vm_private_data;
1874 
1875 	pr_debug("vma_close\n");
1876 
1877 	/* release ref from tcmu_vma_open */
1878 	kref_put(&udev->kref, tcmu_dev_kref_release);
1879 }
1880 
1881 static vm_fault_t tcmu_vma_fault(struct vm_fault *vmf)
1882 {
1883 	struct tcmu_dev *udev = vmf->vma->vm_private_data;
1884 	struct uio_info *info = &udev->uio_info;
1885 	struct page *page;
1886 	unsigned long offset;
1887 	void *addr;
1888 	vm_fault_t ret = 0;
1889 
1890 	int mi = tcmu_find_mem_index(vmf->vma);
1891 	if (mi < 0)
1892 		return VM_FAULT_SIGBUS;
1893 
1894 	/*
1895 	 * We need to subtract mi because userspace uses offset = N*PAGE_SIZE
1896 	 * to use mem[N].
1897 	 */
1898 	offset = (vmf->pgoff - mi) << PAGE_SHIFT;
1899 
1900 	if (offset < udev->data_off) {
1901 		/* For the vmalloc()ed cmd area pages */
1902 		addr = (void *)(unsigned long)info->mem[mi].addr + offset;
1903 		page = vmalloc_to_page(addr);
1904 		get_page(page);
1905 	} else {
1906 		uint32_t dpi;
1907 
1908 		/* For the dynamically growing data area pages */
1909 		dpi = (offset - udev->data_off) / PAGE_SIZE;
1910 		page = tcmu_try_get_data_page(udev, dpi);
1911 		if (!page)
1912 			return VM_FAULT_SIGBUS;
1913 		ret = VM_FAULT_LOCKED;
1914 	}
1915 
1916 	vmf->page = page;
1917 	return ret;
1918 }
1919 
1920 static const struct vm_operations_struct tcmu_vm_ops = {
1921 	.open = tcmu_vma_open,
1922 	.close = tcmu_vma_close,
1923 	.fault = tcmu_vma_fault,
1924 };
1925 
1926 static int tcmu_mmap(struct uio_info *info, struct vm_area_struct *vma)
1927 {
1928 	struct tcmu_dev *udev = container_of(info, struct tcmu_dev, uio_info);
1929 
1930 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1931 	vma->vm_ops = &tcmu_vm_ops;
1932 
1933 	vma->vm_private_data = udev;
1934 
1935 	/* Ensure the mmap is exactly the right size */
1936 	if (vma_pages(vma) != udev->mmap_pages)
1937 		return -EINVAL;
1938 
1939 	tcmu_vma_open(vma);
1940 
1941 	return 0;
1942 }
1943 
1944 static int tcmu_open(struct uio_info *info, struct inode *inode)
1945 {
1946 	struct tcmu_dev *udev = container_of(info, struct tcmu_dev, uio_info);
1947 
1948 	/* O_EXCL not supported for char devs, so fake it? */
1949 	if (test_and_set_bit(TCMU_DEV_BIT_OPEN, &udev->flags))
1950 		return -EBUSY;
1951 
1952 	udev->inode = inode;
1953 
1954 	pr_debug("open\n");
1955 
1956 	return 0;
1957 }
1958 
1959 static int tcmu_release(struct uio_info *info, struct inode *inode)
1960 {
1961 	struct tcmu_dev *udev = container_of(info, struct tcmu_dev, uio_info);
1962 	struct tcmu_cmd *cmd;
1963 	unsigned long i;
1964 	bool freed = false;
1965 
1966 	mutex_lock(&udev->cmdr_lock);
1967 
1968 	xa_for_each(&udev->commands, i, cmd) {
1969 		/* Cmds with KEEP_BUF set are no longer on the ring, but
1970 		 * userspace still holds the data buffer. If userspace closes
1971 		 * we implicitly free these cmds and buffers, since after new
1972 		 * open the (new ?) userspace cannot find the cmd in the ring
1973 		 * and thus never will release the buffer by writing cmd_id to
1974 		 * free_kept_buf action attribute.
1975 		 */
1976 		if (!test_bit(TCMU_CMD_BIT_KEEP_BUF, &cmd->flags))
1977 			continue;
1978 		pr_debug("removing KEEP_BUF cmd %u on dev %s from ring\n",
1979 			 cmd->cmd_id, udev->name);
1980 		freed = true;
1981 
1982 		xa_erase(&udev->commands, i);
1983 		tcmu_cmd_free_data(cmd, cmd->dbi_cnt);
1984 		tcmu_free_cmd(cmd);
1985 	}
1986 	/*
1987 	 * We only freed data space, not ring space. Therefore we dont call
1988 	 * run_tmr_queue, but call run_qfull_queue if tmr_list is empty.
1989 	 */
1990 	if (freed && list_empty(&udev->tmr_queue))
1991 		run_qfull_queue(udev, false);
1992 
1993 	mutex_unlock(&udev->cmdr_lock);
1994 
1995 	clear_bit(TCMU_DEV_BIT_OPEN, &udev->flags);
1996 
1997 	pr_debug("close\n");
1998 
1999 	return 0;
2000 }
2001 
2002 static int tcmu_init_genl_cmd_reply(struct tcmu_dev *udev, int cmd)
2003 {
2004 	struct tcmu_nl_cmd *nl_cmd = &udev->curr_nl_cmd;
2005 
2006 	if (!tcmu_kern_cmd_reply_supported)
2007 		return 0;
2008 
2009 	if (udev->nl_reply_supported <= 0)
2010 		return 0;
2011 
2012 	mutex_lock(&tcmu_nl_cmd_mutex);
2013 
2014 	if (tcmu_netlink_blocked) {
2015 		mutex_unlock(&tcmu_nl_cmd_mutex);
2016 		pr_warn("Failing nl cmd %d on %s. Interface is blocked.\n", cmd,
2017 			udev->name);
2018 		return -EAGAIN;
2019 	}
2020 
2021 	if (nl_cmd->cmd != TCMU_CMD_UNSPEC) {
2022 		mutex_unlock(&tcmu_nl_cmd_mutex);
2023 		pr_warn("netlink cmd %d already executing on %s\n",
2024 			 nl_cmd->cmd, udev->name);
2025 		return -EBUSY;
2026 	}
2027 
2028 	memset(nl_cmd, 0, sizeof(*nl_cmd));
2029 	nl_cmd->cmd = cmd;
2030 	nl_cmd->udev = udev;
2031 	init_completion(&nl_cmd->complete);
2032 	INIT_LIST_HEAD(&nl_cmd->nl_list);
2033 
2034 	list_add_tail(&nl_cmd->nl_list, &tcmu_nl_cmd_list);
2035 
2036 	mutex_unlock(&tcmu_nl_cmd_mutex);
2037 	return 0;
2038 }
2039 
2040 static void tcmu_destroy_genl_cmd_reply(struct tcmu_dev *udev)
2041 {
2042 	struct tcmu_nl_cmd *nl_cmd = &udev->curr_nl_cmd;
2043 
2044 	if (!tcmu_kern_cmd_reply_supported)
2045 		return;
2046 
2047 	if (udev->nl_reply_supported <= 0)
2048 		return;
2049 
2050 	mutex_lock(&tcmu_nl_cmd_mutex);
2051 
2052 	list_del(&nl_cmd->nl_list);
2053 	memset(nl_cmd, 0, sizeof(*nl_cmd));
2054 
2055 	mutex_unlock(&tcmu_nl_cmd_mutex);
2056 }
2057 
2058 static int tcmu_wait_genl_cmd_reply(struct tcmu_dev *udev)
2059 {
2060 	struct tcmu_nl_cmd *nl_cmd = &udev->curr_nl_cmd;
2061 	int ret;
2062 
2063 	if (!tcmu_kern_cmd_reply_supported)
2064 		return 0;
2065 
2066 	if (udev->nl_reply_supported <= 0)
2067 		return 0;
2068 
2069 	pr_debug("sleeping for nl reply\n");
2070 	wait_for_completion(&nl_cmd->complete);
2071 
2072 	mutex_lock(&tcmu_nl_cmd_mutex);
2073 	nl_cmd->cmd = TCMU_CMD_UNSPEC;
2074 	ret = nl_cmd->status;
2075 	mutex_unlock(&tcmu_nl_cmd_mutex);
2076 
2077 	return ret;
2078 }
2079 
2080 static int tcmu_netlink_event_init(struct tcmu_dev *udev,
2081 				   enum tcmu_genl_cmd cmd,
2082 				   struct sk_buff **buf, void **hdr)
2083 {
2084 	struct sk_buff *skb;
2085 	void *msg_header;
2086 	int ret = -ENOMEM;
2087 
2088 	skb = genlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL);
2089 	if (!skb)
2090 		return ret;
2091 
2092 	msg_header = genlmsg_put(skb, 0, 0, &tcmu_genl_family, 0, cmd);
2093 	if (!msg_header)
2094 		goto free_skb;
2095 
2096 	ret = nla_put_string(skb, TCMU_ATTR_DEVICE, udev->uio_info.name);
2097 	if (ret < 0)
2098 		goto free_skb;
2099 
2100 	ret = nla_put_u32(skb, TCMU_ATTR_MINOR, udev->uio_info.uio_dev->minor);
2101 	if (ret < 0)
2102 		goto free_skb;
2103 
2104 	ret = nla_put_u32(skb, TCMU_ATTR_DEVICE_ID, udev->se_dev.dev_index);
2105 	if (ret < 0)
2106 		goto free_skb;
2107 
2108 	*buf = skb;
2109 	*hdr = msg_header;
2110 	return ret;
2111 
2112 free_skb:
2113 	nlmsg_free(skb);
2114 	return ret;
2115 }
2116 
2117 static int tcmu_netlink_event_send(struct tcmu_dev *udev,
2118 				   enum tcmu_genl_cmd cmd,
2119 				   struct sk_buff *skb, void *msg_header)
2120 {
2121 	int ret;
2122 
2123 	genlmsg_end(skb, msg_header);
2124 
2125 	ret = tcmu_init_genl_cmd_reply(udev, cmd);
2126 	if (ret) {
2127 		nlmsg_free(skb);
2128 		return ret;
2129 	}
2130 
2131 	ret = genlmsg_multicast_allns(&tcmu_genl_family, skb, 0,
2132 				      TCMU_MCGRP_CONFIG, GFP_KERNEL);
2133 
2134 	/* Wait during an add as the listener may not be up yet */
2135 	if (ret == 0 ||
2136 	   (ret == -ESRCH && cmd == TCMU_CMD_ADDED_DEVICE))
2137 		return tcmu_wait_genl_cmd_reply(udev);
2138 	else
2139 		tcmu_destroy_genl_cmd_reply(udev);
2140 
2141 	return ret;
2142 }
2143 
2144 static int tcmu_send_dev_add_event(struct tcmu_dev *udev)
2145 {
2146 	struct sk_buff *skb = NULL;
2147 	void *msg_header = NULL;
2148 	int ret = 0;
2149 
2150 	ret = tcmu_netlink_event_init(udev, TCMU_CMD_ADDED_DEVICE, &skb,
2151 				      &msg_header);
2152 	if (ret < 0)
2153 		return ret;
2154 	return tcmu_netlink_event_send(udev, TCMU_CMD_ADDED_DEVICE, skb,
2155 				       msg_header);
2156 }
2157 
2158 static int tcmu_send_dev_remove_event(struct tcmu_dev *udev)
2159 {
2160 	struct sk_buff *skb = NULL;
2161 	void *msg_header = NULL;
2162 	int ret = 0;
2163 
2164 	ret = tcmu_netlink_event_init(udev, TCMU_CMD_REMOVED_DEVICE,
2165 				      &skb, &msg_header);
2166 	if (ret < 0)
2167 		return ret;
2168 	return tcmu_netlink_event_send(udev, TCMU_CMD_REMOVED_DEVICE,
2169 				       skb, msg_header);
2170 }
2171 
2172 static int tcmu_update_uio_info(struct tcmu_dev *udev)
2173 {
2174 	struct tcmu_hba *hba = udev->hba->hba_ptr;
2175 	struct uio_info *info;
2176 	char *str;
2177 
2178 	info = &udev->uio_info;
2179 
2180 	if (udev->dev_config[0])
2181 		str = kasprintf(GFP_KERNEL, "tcm-user/%u/%s/%s", hba->host_id,
2182 				udev->name, udev->dev_config);
2183 	else
2184 		str = kasprintf(GFP_KERNEL, "tcm-user/%u/%s", hba->host_id,
2185 				udev->name);
2186 	if (!str)
2187 		return -ENOMEM;
2188 
2189 	/* If the old string exists, free it */
2190 	kfree(info->name);
2191 	info->name = str;
2192 
2193 	return 0;
2194 }
2195 
2196 static int tcmu_configure_device(struct se_device *dev)
2197 {
2198 	struct tcmu_dev *udev = TCMU_DEV(dev);
2199 	struct uio_info *info;
2200 	struct tcmu_mailbox *mb;
2201 	size_t data_size;
2202 	int ret = 0;
2203 
2204 	ret = tcmu_update_uio_info(udev);
2205 	if (ret)
2206 		return ret;
2207 
2208 	info = &udev->uio_info;
2209 
2210 	mutex_lock(&udev->cmdr_lock);
2211 	udev->data_bitmap = bitmap_zalloc(udev->max_blocks, GFP_KERNEL);
2212 	mutex_unlock(&udev->cmdr_lock);
2213 	if (!udev->data_bitmap) {
2214 		ret = -ENOMEM;
2215 		goto err_bitmap_alloc;
2216 	}
2217 
2218 	mb = vzalloc(udev->cmdr_size + CMDR_OFF);
2219 	if (!mb) {
2220 		ret = -ENOMEM;
2221 		goto err_vzalloc;
2222 	}
2223 
2224 	/* mailbox fits in first part of CMDR space */
2225 	udev->mb_addr = mb;
2226 	udev->cmdr = (void *)mb + CMDR_OFF;
2227 	udev->data_off = udev->cmdr_size + CMDR_OFF;
2228 	data_size = TCMU_MBS_TO_PAGES(udev->data_area_mb) << PAGE_SHIFT;
2229 	udev->mmap_pages = (data_size + udev->cmdr_size + CMDR_OFF) >> PAGE_SHIFT;
2230 	udev->data_blk_size = udev->data_pages_per_blk * PAGE_SIZE;
2231 	udev->dbi_thresh = 0; /* Default in Idle state */
2232 
2233 	/* Initialise the mailbox of the ring buffer */
2234 	mb->version = TCMU_MAILBOX_VERSION;
2235 	mb->flags = TCMU_MAILBOX_FLAG_CAP_OOOC |
2236 		    TCMU_MAILBOX_FLAG_CAP_READ_LEN |
2237 		    TCMU_MAILBOX_FLAG_CAP_TMR |
2238 		    TCMU_MAILBOX_FLAG_CAP_KEEP_BUF;
2239 	mb->cmdr_off = CMDR_OFF;
2240 	mb->cmdr_size = udev->cmdr_size;
2241 
2242 	WARN_ON(!PAGE_ALIGNED(udev->data_off));
2243 	WARN_ON(data_size % PAGE_SIZE);
2244 
2245 	info->version = __stringify(TCMU_MAILBOX_VERSION);
2246 
2247 	info->mem[0].name = "tcm-user command & data buffer";
2248 	info->mem[0].addr = (phys_addr_t)(uintptr_t)udev->mb_addr;
2249 	info->mem[0].size = data_size + udev->cmdr_size + CMDR_OFF;
2250 	info->mem[0].memtype = UIO_MEM_NONE;
2251 
2252 	info->irqcontrol = tcmu_irqcontrol;
2253 	info->irq = UIO_IRQ_CUSTOM;
2254 
2255 	info->mmap = tcmu_mmap;
2256 	info->open = tcmu_open;
2257 	info->release = tcmu_release;
2258 
2259 	ret = uio_register_device(tcmu_root_device, info);
2260 	if (ret)
2261 		goto err_register;
2262 
2263 	/* User can set hw_block_size before enable the device */
2264 	if (dev->dev_attrib.hw_block_size == 0)
2265 		dev->dev_attrib.hw_block_size = 512;
2266 	/* Other attributes can be configured in userspace */
2267 	if (!dev->dev_attrib.hw_max_sectors)
2268 		dev->dev_attrib.hw_max_sectors = 128;
2269 	if (!dev->dev_attrib.emulate_write_cache)
2270 		dev->dev_attrib.emulate_write_cache = 0;
2271 	dev->dev_attrib.hw_queue_depth = 128;
2272 
2273 	/* If user didn't explicitly disable netlink reply support, use
2274 	 * module scope setting.
2275 	 */
2276 	if (udev->nl_reply_supported >= 0)
2277 		udev->nl_reply_supported = tcmu_kern_cmd_reply_supported;
2278 
2279 	/*
2280 	 * Get a ref incase userspace does a close on the uio device before
2281 	 * LIO has initiated tcmu_free_device.
2282 	 */
2283 	kref_get(&udev->kref);
2284 
2285 	ret = tcmu_send_dev_add_event(udev);
2286 	if (ret)
2287 		goto err_netlink;
2288 
2289 	mutex_lock(&root_udev_mutex);
2290 	list_add(&udev->node, &root_udev);
2291 	mutex_unlock(&root_udev_mutex);
2292 
2293 	return 0;
2294 
2295 err_netlink:
2296 	kref_put(&udev->kref, tcmu_dev_kref_release);
2297 	uio_unregister_device(&udev->uio_info);
2298 err_register:
2299 	vfree(udev->mb_addr);
2300 	udev->mb_addr = NULL;
2301 err_vzalloc:
2302 	bitmap_free(udev->data_bitmap);
2303 	udev->data_bitmap = NULL;
2304 err_bitmap_alloc:
2305 	kfree(info->name);
2306 	info->name = NULL;
2307 
2308 	return ret;
2309 }
2310 
2311 static void tcmu_free_device(struct se_device *dev)
2312 {
2313 	struct tcmu_dev *udev = TCMU_DEV(dev);
2314 
2315 	/* release ref from init */
2316 	kref_put(&udev->kref, tcmu_dev_kref_release);
2317 }
2318 
2319 static void tcmu_destroy_device(struct se_device *dev)
2320 {
2321 	struct tcmu_dev *udev = TCMU_DEV(dev);
2322 
2323 	del_timer_sync(&udev->cmd_timer);
2324 	del_timer_sync(&udev->qfull_timer);
2325 
2326 	mutex_lock(&root_udev_mutex);
2327 	list_del(&udev->node);
2328 	mutex_unlock(&root_udev_mutex);
2329 
2330 	tcmu_send_dev_remove_event(udev);
2331 
2332 	uio_unregister_device(&udev->uio_info);
2333 
2334 	/* release ref from configure */
2335 	kref_put(&udev->kref, tcmu_dev_kref_release);
2336 }
2337 
2338 static void tcmu_unblock_dev(struct tcmu_dev *udev)
2339 {
2340 	mutex_lock(&udev->cmdr_lock);
2341 	clear_bit(TCMU_DEV_BIT_BLOCKED, &udev->flags);
2342 	mutex_unlock(&udev->cmdr_lock);
2343 }
2344 
2345 static void tcmu_block_dev(struct tcmu_dev *udev)
2346 {
2347 	mutex_lock(&udev->cmdr_lock);
2348 
2349 	if (test_and_set_bit(TCMU_DEV_BIT_BLOCKED, &udev->flags))
2350 		goto unlock;
2351 
2352 	/* complete IO that has executed successfully */
2353 	tcmu_handle_completions(udev);
2354 	/* fail IO waiting to be queued */
2355 	run_qfull_queue(udev, true);
2356 
2357 unlock:
2358 	mutex_unlock(&udev->cmdr_lock);
2359 }
2360 
2361 static void tcmu_reset_ring(struct tcmu_dev *udev, u8 err_level)
2362 {
2363 	struct tcmu_mailbox *mb;
2364 	struct tcmu_cmd *cmd;
2365 	unsigned long i;
2366 
2367 	mutex_lock(&udev->cmdr_lock);
2368 
2369 	xa_for_each(&udev->commands, i, cmd) {
2370 		pr_debug("removing cmd %u on dev %s from ring %s\n",
2371 			 cmd->cmd_id, udev->name,
2372 			 test_bit(TCMU_CMD_BIT_EXPIRED, &cmd->flags) ?
2373 			 "(is expired)" :
2374 			 (test_bit(TCMU_CMD_BIT_KEEP_BUF, &cmd->flags) ?
2375 			 "(is keep buffer)" : ""));
2376 
2377 		xa_erase(&udev->commands, i);
2378 		if (!test_bit(TCMU_CMD_BIT_EXPIRED, &cmd->flags) &&
2379 		    !test_bit(TCMU_CMD_BIT_KEEP_BUF, &cmd->flags)) {
2380 			WARN_ON(!cmd->se_cmd);
2381 			list_del_init(&cmd->queue_entry);
2382 			cmd->se_cmd->priv = NULL;
2383 			if (err_level == 1) {
2384 				/*
2385 				 * Userspace was not able to start the
2386 				 * command or it is retryable.
2387 				 */
2388 				target_complete_cmd(cmd->se_cmd, SAM_STAT_BUSY);
2389 			} else {
2390 				/* hard failure */
2391 				target_complete_cmd(cmd->se_cmd,
2392 						    SAM_STAT_CHECK_CONDITION);
2393 			}
2394 		}
2395 		tcmu_cmd_free_data(cmd, cmd->dbi_cnt);
2396 		tcmu_free_cmd(cmd);
2397 	}
2398 
2399 	mb = udev->mb_addr;
2400 	tcmu_flush_dcache_range(mb, sizeof(*mb));
2401 	pr_debug("mb last %u head %u tail %u\n", udev->cmdr_last_cleaned,
2402 		 mb->cmd_tail, mb->cmd_head);
2403 
2404 	udev->cmdr_last_cleaned = 0;
2405 	mb->cmd_tail = 0;
2406 	mb->cmd_head = 0;
2407 	tcmu_flush_dcache_range(mb, sizeof(*mb));
2408 	clear_bit(TCMU_DEV_BIT_BROKEN, &udev->flags);
2409 
2410 	del_timer(&udev->cmd_timer);
2411 
2412 	/*
2413 	 * ring is empty and qfull queue never contains aborted commands.
2414 	 * So TMRs in tmr queue do not contain relevant cmd_ids.
2415 	 * After a ring reset userspace should do a fresh start, so
2416 	 * even LUN RESET message is no longer relevant.
2417 	 * Therefore remove all TMRs from qfull queue
2418 	 */
2419 	tcmu_remove_all_queued_tmr(udev);
2420 
2421 	run_qfull_queue(udev, false);
2422 
2423 	mutex_unlock(&udev->cmdr_lock);
2424 }
2425 
2426 enum {
2427 	Opt_dev_config, Opt_dev_size, Opt_hw_block_size, Opt_hw_max_sectors,
2428 	Opt_nl_reply_supported, Opt_max_data_area_mb, Opt_data_pages_per_blk,
2429 	Opt_cmd_ring_size_mb, Opt_err,
2430 };
2431 
2432 static match_table_t tokens = {
2433 	{Opt_dev_config, "dev_config=%s"},
2434 	{Opt_dev_size, "dev_size=%s"},
2435 	{Opt_hw_block_size, "hw_block_size=%d"},
2436 	{Opt_hw_max_sectors, "hw_max_sectors=%d"},
2437 	{Opt_nl_reply_supported, "nl_reply_supported=%d"},
2438 	{Opt_max_data_area_mb, "max_data_area_mb=%d"},
2439 	{Opt_data_pages_per_blk, "data_pages_per_blk=%d"},
2440 	{Opt_cmd_ring_size_mb, "cmd_ring_size_mb=%d"},
2441 	{Opt_err, NULL}
2442 };
2443 
2444 static int tcmu_set_dev_attrib(substring_t *arg, u32 *dev_attrib)
2445 {
2446 	int val, ret;
2447 
2448 	ret = match_int(arg, &val);
2449 	if (ret < 0) {
2450 		pr_err("match_int() failed for dev attrib. Error %d.\n",
2451 		       ret);
2452 		return ret;
2453 	}
2454 
2455 	if (val <= 0) {
2456 		pr_err("Invalid dev attrib value %d. Must be greater than zero.\n",
2457 		       val);
2458 		return -EINVAL;
2459 	}
2460 	*dev_attrib = val;
2461 	return 0;
2462 }
2463 
2464 static int tcmu_set_max_blocks_param(struct tcmu_dev *udev, substring_t *arg)
2465 {
2466 	int val, ret;
2467 	uint32_t pages_per_blk = udev->data_pages_per_blk;
2468 
2469 	ret = match_int(arg, &val);
2470 	if (ret < 0) {
2471 		pr_err("match_int() failed for max_data_area_mb=. Error %d.\n",
2472 		       ret);
2473 		return ret;
2474 	}
2475 	if (val <= 0) {
2476 		pr_err("Invalid max_data_area %d.\n", val);
2477 		return -EINVAL;
2478 	}
2479 	if (val > TCMU_PAGES_TO_MBS(tcmu_global_max_pages)) {
2480 		pr_err("%d is too large. Adjusting max_data_area_mb to global limit of %u\n",
2481 		       val, TCMU_PAGES_TO_MBS(tcmu_global_max_pages));
2482 		val = TCMU_PAGES_TO_MBS(tcmu_global_max_pages);
2483 	}
2484 	if (TCMU_MBS_TO_PAGES(val) < pages_per_blk) {
2485 		pr_err("Invalid max_data_area %d (%zu pages): smaller than data_pages_per_blk (%u pages).\n",
2486 		       val, TCMU_MBS_TO_PAGES(val), pages_per_blk);
2487 		return -EINVAL;
2488 	}
2489 
2490 	mutex_lock(&udev->cmdr_lock);
2491 	if (udev->data_bitmap) {
2492 		pr_err("Cannot set max_data_area_mb after it has been enabled.\n");
2493 		ret = -EINVAL;
2494 		goto unlock;
2495 	}
2496 
2497 	udev->data_area_mb = val;
2498 	udev->max_blocks = TCMU_MBS_TO_PAGES(val) / pages_per_blk;
2499 
2500 unlock:
2501 	mutex_unlock(&udev->cmdr_lock);
2502 	return ret;
2503 }
2504 
2505 static int tcmu_set_data_pages_per_blk(struct tcmu_dev *udev, substring_t *arg)
2506 {
2507 	int val, ret;
2508 
2509 	ret = match_int(arg, &val);
2510 	if (ret < 0) {
2511 		pr_err("match_int() failed for data_pages_per_blk=. Error %d.\n",
2512 		       ret);
2513 		return ret;
2514 	}
2515 
2516 	if (val > TCMU_MBS_TO_PAGES(udev->data_area_mb)) {
2517 		pr_err("Invalid data_pages_per_blk %d: greater than max_data_area_mb %d -> %zd pages).\n",
2518 		       val, udev->data_area_mb,
2519 		       TCMU_MBS_TO_PAGES(udev->data_area_mb));
2520 		return -EINVAL;
2521 	}
2522 
2523 	mutex_lock(&udev->cmdr_lock);
2524 	if (udev->data_bitmap) {
2525 		pr_err("Cannot set data_pages_per_blk after it has been enabled.\n");
2526 		ret = -EINVAL;
2527 		goto unlock;
2528 	}
2529 
2530 	udev->data_pages_per_blk = val;
2531 	udev->max_blocks = TCMU_MBS_TO_PAGES(udev->data_area_mb) / val;
2532 
2533 unlock:
2534 	mutex_unlock(&udev->cmdr_lock);
2535 	return ret;
2536 }
2537 
2538 static int tcmu_set_cmd_ring_size(struct tcmu_dev *udev, substring_t *arg)
2539 {
2540 	int val, ret;
2541 
2542 	ret = match_int(arg, &val);
2543 	if (ret < 0) {
2544 		pr_err("match_int() failed for cmd_ring_size_mb=. Error %d.\n",
2545 		       ret);
2546 		return ret;
2547 	}
2548 
2549 	if (val <= 0) {
2550 		pr_err("Invalid cmd_ring_size_mb %d.\n", val);
2551 		return -EINVAL;
2552 	}
2553 
2554 	mutex_lock(&udev->cmdr_lock);
2555 	if (udev->data_bitmap) {
2556 		pr_err("Cannot set cmd_ring_size_mb after it has been enabled.\n");
2557 		ret = -EINVAL;
2558 		goto unlock;
2559 	}
2560 
2561 	udev->cmdr_size = (val << 20) - CMDR_OFF;
2562 	if (val > (MB_CMDR_SIZE_DEF >> 20)) {
2563 		pr_err("%d is too large. Adjusting cmd_ring_size_mb to global limit of %u\n",
2564 		       val, (MB_CMDR_SIZE_DEF >> 20));
2565 		udev->cmdr_size = CMDR_SIZE_DEF;
2566 	}
2567 
2568 unlock:
2569 	mutex_unlock(&udev->cmdr_lock);
2570 	return ret;
2571 }
2572 
2573 static ssize_t tcmu_set_configfs_dev_params(struct se_device *dev,
2574 		const char *page, ssize_t count)
2575 {
2576 	struct tcmu_dev *udev = TCMU_DEV(dev);
2577 	char *orig, *ptr, *opts;
2578 	substring_t args[MAX_OPT_ARGS];
2579 	int ret = 0, token;
2580 
2581 	opts = kstrdup(page, GFP_KERNEL);
2582 	if (!opts)
2583 		return -ENOMEM;
2584 
2585 	orig = opts;
2586 
2587 	while ((ptr = strsep(&opts, ",\n")) != NULL) {
2588 		if (!*ptr)
2589 			continue;
2590 
2591 		token = match_token(ptr, tokens, args);
2592 		switch (token) {
2593 		case Opt_dev_config:
2594 			if (match_strlcpy(udev->dev_config, &args[0],
2595 					  TCMU_CONFIG_LEN) == 0) {
2596 				ret = -EINVAL;
2597 				break;
2598 			}
2599 			pr_debug("TCMU: Referencing Path: %s\n", udev->dev_config);
2600 			break;
2601 		case Opt_dev_size:
2602 			ret = match_u64(&args[0], &udev->dev_size);
2603 			if (ret < 0)
2604 				pr_err("match_u64() failed for dev_size=. Error %d.\n",
2605 				       ret);
2606 			break;
2607 		case Opt_hw_block_size:
2608 			ret = tcmu_set_dev_attrib(&args[0],
2609 					&(dev->dev_attrib.hw_block_size));
2610 			break;
2611 		case Opt_hw_max_sectors:
2612 			ret = tcmu_set_dev_attrib(&args[0],
2613 					&(dev->dev_attrib.hw_max_sectors));
2614 			break;
2615 		case Opt_nl_reply_supported:
2616 			ret = match_int(&args[0], &udev->nl_reply_supported);
2617 			if (ret < 0)
2618 				pr_err("match_int() failed for nl_reply_supported=. Error %d.\n",
2619 				       ret);
2620 			break;
2621 		case Opt_max_data_area_mb:
2622 			ret = tcmu_set_max_blocks_param(udev, &args[0]);
2623 			break;
2624 		case Opt_data_pages_per_blk:
2625 			ret = tcmu_set_data_pages_per_blk(udev, &args[0]);
2626 			break;
2627 		case Opt_cmd_ring_size_mb:
2628 			ret = tcmu_set_cmd_ring_size(udev, &args[0]);
2629 			break;
2630 		default:
2631 			break;
2632 		}
2633 
2634 		if (ret)
2635 			break;
2636 	}
2637 
2638 	kfree(orig);
2639 	return (!ret) ? count : ret;
2640 }
2641 
2642 static ssize_t tcmu_show_configfs_dev_params(struct se_device *dev, char *b)
2643 {
2644 	struct tcmu_dev *udev = TCMU_DEV(dev);
2645 	ssize_t bl = 0;
2646 
2647 	bl = sprintf(b + bl, "Config: %s ",
2648 		     udev->dev_config[0] ? udev->dev_config : "NULL");
2649 	bl += sprintf(b + bl, "Size: %llu ", udev->dev_size);
2650 	bl += sprintf(b + bl, "MaxDataAreaMB: %u ", udev->data_area_mb);
2651 	bl += sprintf(b + bl, "DataPagesPerBlk: %u ", udev->data_pages_per_blk);
2652 	bl += sprintf(b + bl, "CmdRingSizeMB: %u\n",
2653 		      (udev->cmdr_size + CMDR_OFF) >> 20);
2654 
2655 	return bl;
2656 }
2657 
2658 static sector_t tcmu_get_blocks(struct se_device *dev)
2659 {
2660 	struct tcmu_dev *udev = TCMU_DEV(dev);
2661 
2662 	return div_u64(udev->dev_size - dev->dev_attrib.block_size,
2663 		       dev->dev_attrib.block_size);
2664 }
2665 
2666 static sense_reason_t
2667 tcmu_parse_cdb(struct se_cmd *cmd)
2668 {
2669 	return passthrough_parse_cdb(cmd, tcmu_queue_cmd);
2670 }
2671 
2672 static ssize_t tcmu_cmd_time_out_show(struct config_item *item, char *page)
2673 {
2674 	struct se_dev_attrib *da = container_of(to_config_group(item),
2675 					struct se_dev_attrib, da_group);
2676 	struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
2677 
2678 	return snprintf(page, PAGE_SIZE, "%lu\n", udev->cmd_time_out / MSEC_PER_SEC);
2679 }
2680 
2681 static ssize_t tcmu_cmd_time_out_store(struct config_item *item, const char *page,
2682 				       size_t count)
2683 {
2684 	struct se_dev_attrib *da = container_of(to_config_group(item),
2685 					struct se_dev_attrib, da_group);
2686 	struct tcmu_dev *udev = container_of(da->da_dev,
2687 					struct tcmu_dev, se_dev);
2688 	u32 val;
2689 	int ret;
2690 
2691 	if (da->da_dev->export_count) {
2692 		pr_err("Unable to set tcmu cmd_time_out while exports exist\n");
2693 		return -EINVAL;
2694 	}
2695 
2696 	ret = kstrtou32(page, 0, &val);
2697 	if (ret < 0)
2698 		return ret;
2699 
2700 	udev->cmd_time_out = val * MSEC_PER_SEC;
2701 	return count;
2702 }
2703 CONFIGFS_ATTR(tcmu_, cmd_time_out);
2704 
2705 static ssize_t tcmu_qfull_time_out_show(struct config_item *item, char *page)
2706 {
2707 	struct se_dev_attrib *da = container_of(to_config_group(item),
2708 						struct se_dev_attrib, da_group);
2709 	struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
2710 
2711 	return snprintf(page, PAGE_SIZE, "%ld\n", udev->qfull_time_out <= 0 ?
2712 			udev->qfull_time_out :
2713 			udev->qfull_time_out / MSEC_PER_SEC);
2714 }
2715 
2716 static ssize_t tcmu_qfull_time_out_store(struct config_item *item,
2717 					 const char *page, size_t count)
2718 {
2719 	struct se_dev_attrib *da = container_of(to_config_group(item),
2720 					struct se_dev_attrib, da_group);
2721 	struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
2722 	s32 val;
2723 	int ret;
2724 
2725 	ret = kstrtos32(page, 0, &val);
2726 	if (ret < 0)
2727 		return ret;
2728 
2729 	if (val >= 0) {
2730 		udev->qfull_time_out = val * MSEC_PER_SEC;
2731 	} else if (val == -1) {
2732 		udev->qfull_time_out = val;
2733 	} else {
2734 		printk(KERN_ERR "Invalid qfull timeout value %d\n", val);
2735 		return -EINVAL;
2736 	}
2737 	return count;
2738 }
2739 CONFIGFS_ATTR(tcmu_, qfull_time_out);
2740 
2741 static ssize_t tcmu_max_data_area_mb_show(struct config_item *item, char *page)
2742 {
2743 	struct se_dev_attrib *da = container_of(to_config_group(item),
2744 						struct se_dev_attrib, da_group);
2745 	struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
2746 
2747 	return snprintf(page, PAGE_SIZE, "%u\n", udev->data_area_mb);
2748 }
2749 CONFIGFS_ATTR_RO(tcmu_, max_data_area_mb);
2750 
2751 static ssize_t tcmu_data_pages_per_blk_show(struct config_item *item,
2752 					    char *page)
2753 {
2754 	struct se_dev_attrib *da = container_of(to_config_group(item),
2755 						struct se_dev_attrib, da_group);
2756 	struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
2757 
2758 	return snprintf(page, PAGE_SIZE, "%u\n", udev->data_pages_per_blk);
2759 }
2760 CONFIGFS_ATTR_RO(tcmu_, data_pages_per_blk);
2761 
2762 static ssize_t tcmu_cmd_ring_size_mb_show(struct config_item *item, char *page)
2763 {
2764 	struct se_dev_attrib *da = container_of(to_config_group(item),
2765 						struct se_dev_attrib, da_group);
2766 	struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
2767 
2768 	return snprintf(page, PAGE_SIZE, "%u\n",
2769 			(udev->cmdr_size + CMDR_OFF) >> 20);
2770 }
2771 CONFIGFS_ATTR_RO(tcmu_, cmd_ring_size_mb);
2772 
2773 static ssize_t tcmu_dev_config_show(struct config_item *item, char *page)
2774 {
2775 	struct se_dev_attrib *da = container_of(to_config_group(item),
2776 						struct se_dev_attrib, da_group);
2777 	struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
2778 
2779 	return snprintf(page, PAGE_SIZE, "%s\n", udev->dev_config);
2780 }
2781 
2782 static int tcmu_send_dev_config_event(struct tcmu_dev *udev,
2783 				      const char *reconfig_data)
2784 {
2785 	struct sk_buff *skb = NULL;
2786 	void *msg_header = NULL;
2787 	int ret = 0;
2788 
2789 	ret = tcmu_netlink_event_init(udev, TCMU_CMD_RECONFIG_DEVICE,
2790 				      &skb, &msg_header);
2791 	if (ret < 0)
2792 		return ret;
2793 	ret = nla_put_string(skb, TCMU_ATTR_DEV_CFG, reconfig_data);
2794 	if (ret < 0) {
2795 		nlmsg_free(skb);
2796 		return ret;
2797 	}
2798 	return tcmu_netlink_event_send(udev, TCMU_CMD_RECONFIG_DEVICE,
2799 				       skb, msg_header);
2800 }
2801 
2802 
2803 static ssize_t tcmu_dev_config_store(struct config_item *item, const char *page,
2804 				     size_t count)
2805 {
2806 	struct se_dev_attrib *da = container_of(to_config_group(item),
2807 						struct se_dev_attrib, da_group);
2808 	struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
2809 	int ret, len;
2810 
2811 	len = strlen(page);
2812 	if (!len || len > TCMU_CONFIG_LEN - 1)
2813 		return -EINVAL;
2814 
2815 	/* Check if device has been configured before */
2816 	if (target_dev_configured(&udev->se_dev)) {
2817 		ret = tcmu_send_dev_config_event(udev, page);
2818 		if (ret) {
2819 			pr_err("Unable to reconfigure device\n");
2820 			return ret;
2821 		}
2822 		strlcpy(udev->dev_config, page, TCMU_CONFIG_LEN);
2823 
2824 		ret = tcmu_update_uio_info(udev);
2825 		if (ret)
2826 			return ret;
2827 		return count;
2828 	}
2829 	strlcpy(udev->dev_config, page, TCMU_CONFIG_LEN);
2830 
2831 	return count;
2832 }
2833 CONFIGFS_ATTR(tcmu_, dev_config);
2834 
2835 static ssize_t tcmu_dev_size_show(struct config_item *item, char *page)
2836 {
2837 	struct se_dev_attrib *da = container_of(to_config_group(item),
2838 						struct se_dev_attrib, da_group);
2839 	struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
2840 
2841 	return snprintf(page, PAGE_SIZE, "%llu\n", udev->dev_size);
2842 }
2843 
2844 static int tcmu_send_dev_size_event(struct tcmu_dev *udev, u64 size)
2845 {
2846 	struct sk_buff *skb = NULL;
2847 	void *msg_header = NULL;
2848 	int ret = 0;
2849 
2850 	ret = tcmu_netlink_event_init(udev, TCMU_CMD_RECONFIG_DEVICE,
2851 				      &skb, &msg_header);
2852 	if (ret < 0)
2853 		return ret;
2854 	ret = nla_put_u64_64bit(skb, TCMU_ATTR_DEV_SIZE,
2855 				size, TCMU_ATTR_PAD);
2856 	if (ret < 0) {
2857 		nlmsg_free(skb);
2858 		return ret;
2859 	}
2860 	return tcmu_netlink_event_send(udev, TCMU_CMD_RECONFIG_DEVICE,
2861 				       skb, msg_header);
2862 }
2863 
2864 static ssize_t tcmu_dev_size_store(struct config_item *item, const char *page,
2865 				   size_t count)
2866 {
2867 	struct se_dev_attrib *da = container_of(to_config_group(item),
2868 						struct se_dev_attrib, da_group);
2869 	struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
2870 	u64 val;
2871 	int ret;
2872 
2873 	ret = kstrtou64(page, 0, &val);
2874 	if (ret < 0)
2875 		return ret;
2876 
2877 	/* Check if device has been configured before */
2878 	if (target_dev_configured(&udev->se_dev)) {
2879 		ret = tcmu_send_dev_size_event(udev, val);
2880 		if (ret) {
2881 			pr_err("Unable to reconfigure device\n");
2882 			return ret;
2883 		}
2884 	}
2885 	udev->dev_size = val;
2886 	return count;
2887 }
2888 CONFIGFS_ATTR(tcmu_, dev_size);
2889 
2890 static ssize_t tcmu_nl_reply_supported_show(struct config_item *item,
2891 		char *page)
2892 {
2893 	struct se_dev_attrib *da = container_of(to_config_group(item),
2894 						struct se_dev_attrib, da_group);
2895 	struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
2896 
2897 	return snprintf(page, PAGE_SIZE, "%d\n", udev->nl_reply_supported);
2898 }
2899 
2900 static ssize_t tcmu_nl_reply_supported_store(struct config_item *item,
2901 		const char *page, size_t count)
2902 {
2903 	struct se_dev_attrib *da = container_of(to_config_group(item),
2904 						struct se_dev_attrib, da_group);
2905 	struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
2906 	s8 val;
2907 	int ret;
2908 
2909 	ret = kstrtos8(page, 0, &val);
2910 	if (ret < 0)
2911 		return ret;
2912 
2913 	udev->nl_reply_supported = val;
2914 	return count;
2915 }
2916 CONFIGFS_ATTR(tcmu_, nl_reply_supported);
2917 
2918 static ssize_t tcmu_emulate_write_cache_show(struct config_item *item,
2919 					     char *page)
2920 {
2921 	struct se_dev_attrib *da = container_of(to_config_group(item),
2922 					struct se_dev_attrib, da_group);
2923 
2924 	return snprintf(page, PAGE_SIZE, "%i\n", da->emulate_write_cache);
2925 }
2926 
2927 static int tcmu_send_emulate_write_cache(struct tcmu_dev *udev, u8 val)
2928 {
2929 	struct sk_buff *skb = NULL;
2930 	void *msg_header = NULL;
2931 	int ret = 0;
2932 
2933 	ret = tcmu_netlink_event_init(udev, TCMU_CMD_RECONFIG_DEVICE,
2934 				      &skb, &msg_header);
2935 	if (ret < 0)
2936 		return ret;
2937 	ret = nla_put_u8(skb, TCMU_ATTR_WRITECACHE, val);
2938 	if (ret < 0) {
2939 		nlmsg_free(skb);
2940 		return ret;
2941 	}
2942 	return tcmu_netlink_event_send(udev, TCMU_CMD_RECONFIG_DEVICE,
2943 				       skb, msg_header);
2944 }
2945 
2946 static ssize_t tcmu_emulate_write_cache_store(struct config_item *item,
2947 					      const char *page, size_t count)
2948 {
2949 	struct se_dev_attrib *da = container_of(to_config_group(item),
2950 					struct se_dev_attrib, da_group);
2951 	struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
2952 	u8 val;
2953 	int ret;
2954 
2955 	ret = kstrtou8(page, 0, &val);
2956 	if (ret < 0)
2957 		return ret;
2958 
2959 	/* Check if device has been configured before */
2960 	if (target_dev_configured(&udev->se_dev)) {
2961 		ret = tcmu_send_emulate_write_cache(udev, val);
2962 		if (ret) {
2963 			pr_err("Unable to reconfigure device\n");
2964 			return ret;
2965 		}
2966 	}
2967 
2968 	da->emulate_write_cache = val;
2969 	return count;
2970 }
2971 CONFIGFS_ATTR(tcmu_, emulate_write_cache);
2972 
2973 static ssize_t tcmu_tmr_notification_show(struct config_item *item, char *page)
2974 {
2975 	struct se_dev_attrib *da = container_of(to_config_group(item),
2976 					struct se_dev_attrib, da_group);
2977 	struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
2978 
2979 	return snprintf(page, PAGE_SIZE, "%i\n",
2980 			test_bit(TCMU_DEV_BIT_TMR_NOTIFY, &udev->flags));
2981 }
2982 
2983 static ssize_t tcmu_tmr_notification_store(struct config_item *item,
2984 					   const char *page, size_t count)
2985 {
2986 	struct se_dev_attrib *da = container_of(to_config_group(item),
2987 					struct se_dev_attrib, da_group);
2988 	struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
2989 	u8 val;
2990 	int ret;
2991 
2992 	ret = kstrtou8(page, 0, &val);
2993 	if (ret < 0)
2994 		return ret;
2995 	if (val > 1)
2996 		return -EINVAL;
2997 
2998 	if (val)
2999 		set_bit(TCMU_DEV_BIT_TMR_NOTIFY, &udev->flags);
3000 	else
3001 		clear_bit(TCMU_DEV_BIT_TMR_NOTIFY, &udev->flags);
3002 	return count;
3003 }
3004 CONFIGFS_ATTR(tcmu_, tmr_notification);
3005 
3006 static ssize_t tcmu_block_dev_show(struct config_item *item, char *page)
3007 {
3008 	struct se_device *se_dev = container_of(to_config_group(item),
3009 						struct se_device,
3010 						dev_action_group);
3011 	struct tcmu_dev *udev = TCMU_DEV(se_dev);
3012 
3013 	if (test_bit(TCMU_DEV_BIT_BLOCKED, &udev->flags))
3014 		return snprintf(page, PAGE_SIZE, "%s\n", "blocked");
3015 	else
3016 		return snprintf(page, PAGE_SIZE, "%s\n", "unblocked");
3017 }
3018 
3019 static ssize_t tcmu_block_dev_store(struct config_item *item, const char *page,
3020 				    size_t count)
3021 {
3022 	struct se_device *se_dev = container_of(to_config_group(item),
3023 						struct se_device,
3024 						dev_action_group);
3025 	struct tcmu_dev *udev = TCMU_DEV(se_dev);
3026 	u8 val;
3027 	int ret;
3028 
3029 	if (!target_dev_configured(&udev->se_dev)) {
3030 		pr_err("Device is not configured.\n");
3031 		return -EINVAL;
3032 	}
3033 
3034 	ret = kstrtou8(page, 0, &val);
3035 	if (ret < 0)
3036 		return ret;
3037 
3038 	if (val > 1) {
3039 		pr_err("Invalid block value %d\n", val);
3040 		return -EINVAL;
3041 	}
3042 
3043 	if (!val)
3044 		tcmu_unblock_dev(udev);
3045 	else
3046 		tcmu_block_dev(udev);
3047 	return count;
3048 }
3049 CONFIGFS_ATTR(tcmu_, block_dev);
3050 
3051 static ssize_t tcmu_reset_ring_store(struct config_item *item, const char *page,
3052 				     size_t count)
3053 {
3054 	struct se_device *se_dev = container_of(to_config_group(item),
3055 						struct se_device,
3056 						dev_action_group);
3057 	struct tcmu_dev *udev = TCMU_DEV(se_dev);
3058 	u8 val;
3059 	int ret;
3060 
3061 	if (!target_dev_configured(&udev->se_dev)) {
3062 		pr_err("Device is not configured.\n");
3063 		return -EINVAL;
3064 	}
3065 
3066 	ret = kstrtou8(page, 0, &val);
3067 	if (ret < 0)
3068 		return ret;
3069 
3070 	if (val != 1 && val != 2) {
3071 		pr_err("Invalid reset ring value %d\n", val);
3072 		return -EINVAL;
3073 	}
3074 
3075 	tcmu_reset_ring(udev, val);
3076 	return count;
3077 }
3078 CONFIGFS_ATTR_WO(tcmu_, reset_ring);
3079 
3080 static ssize_t tcmu_free_kept_buf_store(struct config_item *item, const char *page,
3081 					size_t count)
3082 {
3083 	struct se_device *se_dev = container_of(to_config_group(item),
3084 						struct se_device,
3085 						dev_action_group);
3086 	struct tcmu_dev *udev = TCMU_DEV(se_dev);
3087 	struct tcmu_cmd *cmd;
3088 	u16 cmd_id;
3089 	int ret;
3090 
3091 	if (!target_dev_configured(&udev->se_dev)) {
3092 		pr_err("Device is not configured.\n");
3093 		return -EINVAL;
3094 	}
3095 
3096 	ret = kstrtou16(page, 0, &cmd_id);
3097 	if (ret < 0)
3098 		return ret;
3099 
3100 	mutex_lock(&udev->cmdr_lock);
3101 
3102 	{
3103 		XA_STATE(xas, &udev->commands, cmd_id);
3104 
3105 		xas_lock(&xas);
3106 		cmd = xas_load(&xas);
3107 		if (!cmd) {
3108 			pr_err("free_kept_buf: cmd_id %d not found\n", cmd_id);
3109 			count = -EINVAL;
3110 			xas_unlock(&xas);
3111 			goto out_unlock;
3112 		}
3113 		if (!test_bit(TCMU_CMD_BIT_KEEP_BUF, &cmd->flags)) {
3114 			pr_err("free_kept_buf: cmd_id %d was not completed with KEEP_BUF\n",
3115 			       cmd_id);
3116 			count = -EINVAL;
3117 			xas_unlock(&xas);
3118 			goto out_unlock;
3119 		}
3120 		xas_store(&xas, NULL);
3121 		xas_unlock(&xas);
3122 	}
3123 
3124 	tcmu_cmd_free_data(cmd, cmd->dbi_cnt);
3125 	tcmu_free_cmd(cmd);
3126 	/*
3127 	 * We only freed data space, not ring space. Therefore we dont call
3128 	 * run_tmr_queue, but call run_qfull_queue if tmr_list is empty.
3129 	 */
3130 	if (list_empty(&udev->tmr_queue))
3131 		run_qfull_queue(udev, false);
3132 
3133 out_unlock:
3134 	mutex_unlock(&udev->cmdr_lock);
3135 	return count;
3136 }
3137 CONFIGFS_ATTR_WO(tcmu_, free_kept_buf);
3138 
3139 static struct configfs_attribute *tcmu_attrib_attrs[] = {
3140 	&tcmu_attr_cmd_time_out,
3141 	&tcmu_attr_qfull_time_out,
3142 	&tcmu_attr_max_data_area_mb,
3143 	&tcmu_attr_data_pages_per_blk,
3144 	&tcmu_attr_cmd_ring_size_mb,
3145 	&tcmu_attr_dev_config,
3146 	&tcmu_attr_dev_size,
3147 	&tcmu_attr_emulate_write_cache,
3148 	&tcmu_attr_tmr_notification,
3149 	&tcmu_attr_nl_reply_supported,
3150 	NULL,
3151 };
3152 
3153 static struct configfs_attribute **tcmu_attrs;
3154 
3155 static struct configfs_attribute *tcmu_action_attrs[] = {
3156 	&tcmu_attr_block_dev,
3157 	&tcmu_attr_reset_ring,
3158 	&tcmu_attr_free_kept_buf,
3159 	NULL,
3160 };
3161 
3162 static struct target_backend_ops tcmu_ops = {
3163 	.name			= "user",
3164 	.owner			= THIS_MODULE,
3165 	.transport_flags_default = TRANSPORT_FLAG_PASSTHROUGH,
3166 	.transport_flags_changeable = TRANSPORT_FLAG_PASSTHROUGH_PGR |
3167 				      TRANSPORT_FLAG_PASSTHROUGH_ALUA,
3168 	.attach_hba		= tcmu_attach_hba,
3169 	.detach_hba		= tcmu_detach_hba,
3170 	.alloc_device		= tcmu_alloc_device,
3171 	.configure_device	= tcmu_configure_device,
3172 	.destroy_device		= tcmu_destroy_device,
3173 	.free_device		= tcmu_free_device,
3174 	.unplug_device		= tcmu_unplug_device,
3175 	.plug_device		= tcmu_plug_device,
3176 	.parse_cdb		= tcmu_parse_cdb,
3177 	.tmr_notify		= tcmu_tmr_notify,
3178 	.set_configfs_dev_params = tcmu_set_configfs_dev_params,
3179 	.show_configfs_dev_params = tcmu_show_configfs_dev_params,
3180 	.get_device_type	= sbc_get_device_type,
3181 	.get_blocks		= tcmu_get_blocks,
3182 	.tb_dev_action_attrs	= tcmu_action_attrs,
3183 };
3184 
3185 static void find_free_blocks(void)
3186 {
3187 	struct tcmu_dev *udev;
3188 	loff_t off;
3189 	u32 pages_freed, total_pages_freed = 0;
3190 	u32 start, end, block, total_blocks_freed = 0;
3191 
3192 	if (atomic_read(&global_page_count) <= tcmu_global_max_pages)
3193 		return;
3194 
3195 	mutex_lock(&root_udev_mutex);
3196 	list_for_each_entry(udev, &root_udev, node) {
3197 		mutex_lock(&udev->cmdr_lock);
3198 
3199 		if (!target_dev_configured(&udev->se_dev)) {
3200 			mutex_unlock(&udev->cmdr_lock);
3201 			continue;
3202 		}
3203 
3204 		/* Try to complete the finished commands first */
3205 		if (tcmu_handle_completions(udev))
3206 			run_qfull_queue(udev, false);
3207 
3208 		/* Skip the udevs in idle */
3209 		if (!udev->dbi_thresh) {
3210 			mutex_unlock(&udev->cmdr_lock);
3211 			continue;
3212 		}
3213 
3214 		end = udev->dbi_max + 1;
3215 		block = find_last_bit(udev->data_bitmap, end);
3216 		if (block == udev->dbi_max) {
3217 			/*
3218 			 * The last bit is dbi_max, so it is not possible
3219 			 * reclaim any blocks.
3220 			 */
3221 			mutex_unlock(&udev->cmdr_lock);
3222 			continue;
3223 		} else if (block == end) {
3224 			/* The current udev will goto idle state */
3225 			udev->dbi_thresh = start = 0;
3226 			udev->dbi_max = 0;
3227 		} else {
3228 			udev->dbi_thresh = start = block + 1;
3229 			udev->dbi_max = block;
3230 		}
3231 
3232 		/*
3233 		 * Release the block pages.
3234 		 *
3235 		 * Also note that since tcmu_vma_fault() gets an extra page
3236 		 * refcount, tcmu_blocks_release() won't free pages if pages
3237 		 * are mapped. This means it is safe to call
3238 		 * tcmu_blocks_release() before unmap_mapping_range() which
3239 		 * drops the refcount of any pages it unmaps and thus releases
3240 		 * them.
3241 		 */
3242 		pages_freed = tcmu_blocks_release(udev, start, end - 1);
3243 
3244 		/* Here will truncate the data area from off */
3245 		off = udev->data_off + (loff_t)start * udev->data_blk_size;
3246 		unmap_mapping_range(udev->inode->i_mapping, off, 0, 1);
3247 
3248 		mutex_unlock(&udev->cmdr_lock);
3249 
3250 		total_pages_freed += pages_freed;
3251 		total_blocks_freed += end - start;
3252 		pr_debug("Freed %u pages (total %u) from %u blocks (total %u) from %s.\n",
3253 			 pages_freed, total_pages_freed, end - start,
3254 			 total_blocks_freed, udev->name);
3255 	}
3256 	mutex_unlock(&root_udev_mutex);
3257 
3258 	if (atomic_read(&global_page_count) > tcmu_global_max_pages)
3259 		schedule_delayed_work(&tcmu_unmap_work, msecs_to_jiffies(5000));
3260 }
3261 
3262 static void check_timedout_devices(void)
3263 {
3264 	struct tcmu_dev *udev, *tmp_dev;
3265 	struct tcmu_cmd *cmd, *tmp_cmd;
3266 	LIST_HEAD(devs);
3267 
3268 	spin_lock_bh(&timed_out_udevs_lock);
3269 	list_splice_init(&timed_out_udevs, &devs);
3270 
3271 	list_for_each_entry_safe(udev, tmp_dev, &devs, timedout_entry) {
3272 		list_del_init(&udev->timedout_entry);
3273 		spin_unlock_bh(&timed_out_udevs_lock);
3274 
3275 		mutex_lock(&udev->cmdr_lock);
3276 
3277 		/*
3278 		 * If cmd_time_out is disabled but qfull is set deadline
3279 		 * will only reflect the qfull timeout. Ignore it.
3280 		 */
3281 		if (udev->cmd_time_out) {
3282 			list_for_each_entry_safe(cmd, tmp_cmd,
3283 						 &udev->inflight_queue,
3284 						 queue_entry) {
3285 				tcmu_check_expired_ring_cmd(cmd);
3286 			}
3287 			tcmu_set_next_deadline(&udev->inflight_queue,
3288 					       &udev->cmd_timer);
3289 		}
3290 		list_for_each_entry_safe(cmd, tmp_cmd, &udev->qfull_queue,
3291 					 queue_entry) {
3292 			tcmu_check_expired_queue_cmd(cmd);
3293 		}
3294 		tcmu_set_next_deadline(&udev->qfull_queue, &udev->qfull_timer);
3295 
3296 		mutex_unlock(&udev->cmdr_lock);
3297 
3298 		spin_lock_bh(&timed_out_udevs_lock);
3299 	}
3300 
3301 	spin_unlock_bh(&timed_out_udevs_lock);
3302 }
3303 
3304 static void tcmu_unmap_work_fn(struct work_struct *work)
3305 {
3306 	check_timedout_devices();
3307 	find_free_blocks();
3308 }
3309 
3310 static int __init tcmu_module_init(void)
3311 {
3312 	int ret, i, k, len = 0;
3313 
3314 	BUILD_BUG_ON((sizeof(struct tcmu_cmd_entry) % TCMU_OP_ALIGN_SIZE) != 0);
3315 
3316 	INIT_DELAYED_WORK(&tcmu_unmap_work, tcmu_unmap_work_fn);
3317 
3318 	tcmu_cmd_cache = kmem_cache_create("tcmu_cmd_cache",
3319 				sizeof(struct tcmu_cmd),
3320 				__alignof__(struct tcmu_cmd),
3321 				0, NULL);
3322 	if (!tcmu_cmd_cache)
3323 		return -ENOMEM;
3324 
3325 	tcmu_root_device = root_device_register("tcm_user");
3326 	if (IS_ERR(tcmu_root_device)) {
3327 		ret = PTR_ERR(tcmu_root_device);
3328 		goto out_free_cache;
3329 	}
3330 
3331 	ret = genl_register_family(&tcmu_genl_family);
3332 	if (ret < 0) {
3333 		goto out_unreg_device;
3334 	}
3335 
3336 	for (i = 0; passthrough_attrib_attrs[i] != NULL; i++)
3337 		len += sizeof(struct configfs_attribute *);
3338 	for (i = 0; passthrough_pr_attrib_attrs[i] != NULL; i++)
3339 		len += sizeof(struct configfs_attribute *);
3340 	for (i = 0; tcmu_attrib_attrs[i] != NULL; i++)
3341 		len += sizeof(struct configfs_attribute *);
3342 	len += sizeof(struct configfs_attribute *);
3343 
3344 	tcmu_attrs = kzalloc(len, GFP_KERNEL);
3345 	if (!tcmu_attrs) {
3346 		ret = -ENOMEM;
3347 		goto out_unreg_genl;
3348 	}
3349 
3350 	for (i = 0; passthrough_attrib_attrs[i] != NULL; i++)
3351 		tcmu_attrs[i] = passthrough_attrib_attrs[i];
3352 	for (k = 0; passthrough_pr_attrib_attrs[k] != NULL; k++)
3353 		tcmu_attrs[i++] = passthrough_pr_attrib_attrs[k];
3354 	for (k = 0; tcmu_attrib_attrs[k] != NULL; k++)
3355 		tcmu_attrs[i++] = tcmu_attrib_attrs[k];
3356 	tcmu_ops.tb_dev_attrib_attrs = tcmu_attrs;
3357 
3358 	ret = transport_backend_register(&tcmu_ops);
3359 	if (ret)
3360 		goto out_attrs;
3361 
3362 	return 0;
3363 
3364 out_attrs:
3365 	kfree(tcmu_attrs);
3366 out_unreg_genl:
3367 	genl_unregister_family(&tcmu_genl_family);
3368 out_unreg_device:
3369 	root_device_unregister(tcmu_root_device);
3370 out_free_cache:
3371 	kmem_cache_destroy(tcmu_cmd_cache);
3372 
3373 	return ret;
3374 }
3375 
3376 static void __exit tcmu_module_exit(void)
3377 {
3378 	cancel_delayed_work_sync(&tcmu_unmap_work);
3379 	target_backend_unregister(&tcmu_ops);
3380 	kfree(tcmu_attrs);
3381 	genl_unregister_family(&tcmu_genl_family);
3382 	root_device_unregister(tcmu_root_device);
3383 	kmem_cache_destroy(tcmu_cmd_cache);
3384 }
3385 
3386 MODULE_DESCRIPTION("TCM USER subsystem plugin");
3387 MODULE_AUTHOR("Shaohua Li <shli@kernel.org>");
3388 MODULE_AUTHOR("Andy Grover <agrover@redhat.com>");
3389 MODULE_LICENSE("GPL");
3390 
3391 module_init(tcmu_module_init);
3392 module_exit(tcmu_module_exit);
3393