1 /******************************************************************************* 2 * Filename: target_core_transport.c 3 * 4 * This file contains the Generic Target Engine Core. 5 * 6 * (c) Copyright 2002-2013 Datera, Inc. 7 * 8 * Nicholas A. Bellinger <nab@kernel.org> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 23 * 24 ******************************************************************************/ 25 26 #include <linux/net.h> 27 #include <linux/delay.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/slab.h> 31 #include <linux/spinlock.h> 32 #include <linux/kthread.h> 33 #include <linux/in.h> 34 #include <linux/cdrom.h> 35 #include <linux/module.h> 36 #include <linux/ratelimit.h> 37 #include <linux/vmalloc.h> 38 #include <asm/unaligned.h> 39 #include <net/sock.h> 40 #include <net/tcp.h> 41 #include <scsi/scsi_proto.h> 42 #include <scsi/scsi_common.h> 43 44 #include <target/target_core_base.h> 45 #include <target/target_core_backend.h> 46 #include <target/target_core_fabric.h> 47 48 #include "target_core_internal.h" 49 #include "target_core_alua.h" 50 #include "target_core_pr.h" 51 #include "target_core_ua.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/target.h> 55 56 static struct workqueue_struct *target_completion_wq; 57 static struct kmem_cache *se_sess_cache; 58 struct kmem_cache *se_ua_cache; 59 struct kmem_cache *t10_pr_reg_cache; 60 struct kmem_cache *t10_alua_lu_gp_cache; 61 struct kmem_cache *t10_alua_lu_gp_mem_cache; 62 struct kmem_cache *t10_alua_tg_pt_gp_cache; 63 struct kmem_cache *t10_alua_lba_map_cache; 64 struct kmem_cache *t10_alua_lba_map_mem_cache; 65 66 static void transport_complete_task_attr(struct se_cmd *cmd); 67 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason); 68 static void transport_handle_queue_full(struct se_cmd *cmd, 69 struct se_device *dev, int err, bool write_pending); 70 static int transport_put_cmd(struct se_cmd *cmd); 71 static void target_complete_ok_work(struct work_struct *work); 72 73 int init_se_kmem_caches(void) 74 { 75 se_sess_cache = kmem_cache_create("se_sess_cache", 76 sizeof(struct se_session), __alignof__(struct se_session), 77 0, NULL); 78 if (!se_sess_cache) { 79 pr_err("kmem_cache_create() for struct se_session" 80 " failed\n"); 81 goto out; 82 } 83 se_ua_cache = kmem_cache_create("se_ua_cache", 84 sizeof(struct se_ua), __alignof__(struct se_ua), 85 0, NULL); 86 if (!se_ua_cache) { 87 pr_err("kmem_cache_create() for struct se_ua failed\n"); 88 goto out_free_sess_cache; 89 } 90 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 91 sizeof(struct t10_pr_registration), 92 __alignof__(struct t10_pr_registration), 0, NULL); 93 if (!t10_pr_reg_cache) { 94 pr_err("kmem_cache_create() for struct t10_pr_registration" 95 " failed\n"); 96 goto out_free_ua_cache; 97 } 98 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 99 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 100 0, NULL); 101 if (!t10_alua_lu_gp_cache) { 102 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 103 " failed\n"); 104 goto out_free_pr_reg_cache; 105 } 106 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 107 sizeof(struct t10_alua_lu_gp_member), 108 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 109 if (!t10_alua_lu_gp_mem_cache) { 110 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 111 "cache failed\n"); 112 goto out_free_lu_gp_cache; 113 } 114 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 115 sizeof(struct t10_alua_tg_pt_gp), 116 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 117 if (!t10_alua_tg_pt_gp_cache) { 118 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 119 "cache failed\n"); 120 goto out_free_lu_gp_mem_cache; 121 } 122 t10_alua_lba_map_cache = kmem_cache_create( 123 "t10_alua_lba_map_cache", 124 sizeof(struct t10_alua_lba_map), 125 __alignof__(struct t10_alua_lba_map), 0, NULL); 126 if (!t10_alua_lba_map_cache) { 127 pr_err("kmem_cache_create() for t10_alua_lba_map_" 128 "cache failed\n"); 129 goto out_free_tg_pt_gp_cache; 130 } 131 t10_alua_lba_map_mem_cache = kmem_cache_create( 132 "t10_alua_lba_map_mem_cache", 133 sizeof(struct t10_alua_lba_map_member), 134 __alignof__(struct t10_alua_lba_map_member), 0, NULL); 135 if (!t10_alua_lba_map_mem_cache) { 136 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_" 137 "cache failed\n"); 138 goto out_free_lba_map_cache; 139 } 140 141 target_completion_wq = alloc_workqueue("target_completion", 142 WQ_MEM_RECLAIM, 0); 143 if (!target_completion_wq) 144 goto out_free_lba_map_mem_cache; 145 146 return 0; 147 148 out_free_lba_map_mem_cache: 149 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 150 out_free_lba_map_cache: 151 kmem_cache_destroy(t10_alua_lba_map_cache); 152 out_free_tg_pt_gp_cache: 153 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 154 out_free_lu_gp_mem_cache: 155 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 156 out_free_lu_gp_cache: 157 kmem_cache_destroy(t10_alua_lu_gp_cache); 158 out_free_pr_reg_cache: 159 kmem_cache_destroy(t10_pr_reg_cache); 160 out_free_ua_cache: 161 kmem_cache_destroy(se_ua_cache); 162 out_free_sess_cache: 163 kmem_cache_destroy(se_sess_cache); 164 out: 165 return -ENOMEM; 166 } 167 168 void release_se_kmem_caches(void) 169 { 170 destroy_workqueue(target_completion_wq); 171 kmem_cache_destroy(se_sess_cache); 172 kmem_cache_destroy(se_ua_cache); 173 kmem_cache_destroy(t10_pr_reg_cache); 174 kmem_cache_destroy(t10_alua_lu_gp_cache); 175 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 176 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 177 kmem_cache_destroy(t10_alua_lba_map_cache); 178 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 179 } 180 181 /* This code ensures unique mib indexes are handed out. */ 182 static DEFINE_SPINLOCK(scsi_mib_index_lock); 183 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 184 185 /* 186 * Allocate a new row index for the entry type specified 187 */ 188 u32 scsi_get_new_index(scsi_index_t type) 189 { 190 u32 new_index; 191 192 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 193 194 spin_lock(&scsi_mib_index_lock); 195 new_index = ++scsi_mib_index[type]; 196 spin_unlock(&scsi_mib_index_lock); 197 198 return new_index; 199 } 200 201 void transport_subsystem_check_init(void) 202 { 203 int ret; 204 static int sub_api_initialized; 205 206 if (sub_api_initialized) 207 return; 208 209 ret = request_module("target_core_iblock"); 210 if (ret != 0) 211 pr_err("Unable to load target_core_iblock\n"); 212 213 ret = request_module("target_core_file"); 214 if (ret != 0) 215 pr_err("Unable to load target_core_file\n"); 216 217 ret = request_module("target_core_pscsi"); 218 if (ret != 0) 219 pr_err("Unable to load target_core_pscsi\n"); 220 221 ret = request_module("target_core_user"); 222 if (ret != 0) 223 pr_err("Unable to load target_core_user\n"); 224 225 sub_api_initialized = 1; 226 } 227 228 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops) 229 { 230 struct se_session *se_sess; 231 232 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 233 if (!se_sess) { 234 pr_err("Unable to allocate struct se_session from" 235 " se_sess_cache\n"); 236 return ERR_PTR(-ENOMEM); 237 } 238 INIT_LIST_HEAD(&se_sess->sess_list); 239 INIT_LIST_HEAD(&se_sess->sess_acl_list); 240 INIT_LIST_HEAD(&se_sess->sess_cmd_list); 241 INIT_LIST_HEAD(&se_sess->sess_wait_list); 242 spin_lock_init(&se_sess->sess_cmd_lock); 243 se_sess->sup_prot_ops = sup_prot_ops; 244 245 return se_sess; 246 } 247 EXPORT_SYMBOL(transport_init_session); 248 249 int transport_alloc_session_tags(struct se_session *se_sess, 250 unsigned int tag_num, unsigned int tag_size) 251 { 252 int rc; 253 254 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size, 255 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 256 if (!se_sess->sess_cmd_map) { 257 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size); 258 if (!se_sess->sess_cmd_map) { 259 pr_err("Unable to allocate se_sess->sess_cmd_map\n"); 260 return -ENOMEM; 261 } 262 } 263 264 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num); 265 if (rc < 0) { 266 pr_err("Unable to init se_sess->sess_tag_pool," 267 " tag_num: %u\n", tag_num); 268 kvfree(se_sess->sess_cmd_map); 269 se_sess->sess_cmd_map = NULL; 270 return -ENOMEM; 271 } 272 273 return 0; 274 } 275 EXPORT_SYMBOL(transport_alloc_session_tags); 276 277 struct se_session *transport_init_session_tags(unsigned int tag_num, 278 unsigned int tag_size, 279 enum target_prot_op sup_prot_ops) 280 { 281 struct se_session *se_sess; 282 int rc; 283 284 if (tag_num != 0 && !tag_size) { 285 pr_err("init_session_tags called with percpu-ida tag_num:" 286 " %u, but zero tag_size\n", tag_num); 287 return ERR_PTR(-EINVAL); 288 } 289 if (!tag_num && tag_size) { 290 pr_err("init_session_tags called with percpu-ida tag_size:" 291 " %u, but zero tag_num\n", tag_size); 292 return ERR_PTR(-EINVAL); 293 } 294 295 se_sess = transport_init_session(sup_prot_ops); 296 if (IS_ERR(se_sess)) 297 return se_sess; 298 299 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size); 300 if (rc < 0) { 301 transport_free_session(se_sess); 302 return ERR_PTR(-ENOMEM); 303 } 304 305 return se_sess; 306 } 307 EXPORT_SYMBOL(transport_init_session_tags); 308 309 /* 310 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 311 */ 312 void __transport_register_session( 313 struct se_portal_group *se_tpg, 314 struct se_node_acl *se_nacl, 315 struct se_session *se_sess, 316 void *fabric_sess_ptr) 317 { 318 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo; 319 unsigned char buf[PR_REG_ISID_LEN]; 320 321 se_sess->se_tpg = se_tpg; 322 se_sess->fabric_sess_ptr = fabric_sess_ptr; 323 /* 324 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 325 * 326 * Only set for struct se_session's that will actually be moving I/O. 327 * eg: *NOT* discovery sessions. 328 */ 329 if (se_nacl) { 330 /* 331 * 332 * Determine if fabric allows for T10-PI feature bits exposed to 333 * initiators for device backends with !dev->dev_attrib.pi_prot_type. 334 * 335 * If so, then always save prot_type on a per se_node_acl node 336 * basis and re-instate the previous sess_prot_type to avoid 337 * disabling PI from below any previously initiator side 338 * registered LUNs. 339 */ 340 if (se_nacl->saved_prot_type) 341 se_sess->sess_prot_type = se_nacl->saved_prot_type; 342 else if (tfo->tpg_check_prot_fabric_only) 343 se_sess->sess_prot_type = se_nacl->saved_prot_type = 344 tfo->tpg_check_prot_fabric_only(se_tpg); 345 /* 346 * If the fabric module supports an ISID based TransportID, 347 * save this value in binary from the fabric I_T Nexus now. 348 */ 349 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 350 memset(&buf[0], 0, PR_REG_ISID_LEN); 351 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 352 &buf[0], PR_REG_ISID_LEN); 353 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 354 } 355 356 spin_lock_irq(&se_nacl->nacl_sess_lock); 357 /* 358 * The se_nacl->nacl_sess pointer will be set to the 359 * last active I_T Nexus for each struct se_node_acl. 360 */ 361 se_nacl->nacl_sess = se_sess; 362 363 list_add_tail(&se_sess->sess_acl_list, 364 &se_nacl->acl_sess_list); 365 spin_unlock_irq(&se_nacl->nacl_sess_lock); 366 } 367 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 368 369 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 370 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr); 371 } 372 EXPORT_SYMBOL(__transport_register_session); 373 374 void transport_register_session( 375 struct se_portal_group *se_tpg, 376 struct se_node_acl *se_nacl, 377 struct se_session *se_sess, 378 void *fabric_sess_ptr) 379 { 380 unsigned long flags; 381 382 spin_lock_irqsave(&se_tpg->session_lock, flags); 383 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 384 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 385 } 386 EXPORT_SYMBOL(transport_register_session); 387 388 struct se_session * 389 target_alloc_session(struct se_portal_group *tpg, 390 unsigned int tag_num, unsigned int tag_size, 391 enum target_prot_op prot_op, 392 const char *initiatorname, void *private, 393 int (*callback)(struct se_portal_group *, 394 struct se_session *, void *)) 395 { 396 struct se_session *sess; 397 398 /* 399 * If the fabric driver is using percpu-ida based pre allocation 400 * of I/O descriptor tags, go ahead and perform that setup now.. 401 */ 402 if (tag_num != 0) 403 sess = transport_init_session_tags(tag_num, tag_size, prot_op); 404 else 405 sess = transport_init_session(prot_op); 406 407 if (IS_ERR(sess)) 408 return sess; 409 410 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg, 411 (unsigned char *)initiatorname); 412 if (!sess->se_node_acl) { 413 transport_free_session(sess); 414 return ERR_PTR(-EACCES); 415 } 416 /* 417 * Go ahead and perform any remaining fabric setup that is 418 * required before transport_register_session(). 419 */ 420 if (callback != NULL) { 421 int rc = callback(tpg, sess, private); 422 if (rc) { 423 transport_free_session(sess); 424 return ERR_PTR(rc); 425 } 426 } 427 428 transport_register_session(tpg, sess->se_node_acl, sess, private); 429 return sess; 430 } 431 EXPORT_SYMBOL(target_alloc_session); 432 433 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page) 434 { 435 struct se_session *se_sess; 436 ssize_t len = 0; 437 438 spin_lock_bh(&se_tpg->session_lock); 439 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) { 440 if (!se_sess->se_node_acl) 441 continue; 442 if (!se_sess->se_node_acl->dynamic_node_acl) 443 continue; 444 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE) 445 break; 446 447 len += snprintf(page + len, PAGE_SIZE - len, "%s\n", 448 se_sess->se_node_acl->initiatorname); 449 len += 1; /* Include NULL terminator */ 450 } 451 spin_unlock_bh(&se_tpg->session_lock); 452 453 return len; 454 } 455 EXPORT_SYMBOL(target_show_dynamic_sessions); 456 457 static void target_complete_nacl(struct kref *kref) 458 { 459 struct se_node_acl *nacl = container_of(kref, 460 struct se_node_acl, acl_kref); 461 struct se_portal_group *se_tpg = nacl->se_tpg; 462 463 if (!nacl->dynamic_stop) { 464 complete(&nacl->acl_free_comp); 465 return; 466 } 467 468 mutex_lock(&se_tpg->acl_node_mutex); 469 list_del(&nacl->acl_list); 470 mutex_unlock(&se_tpg->acl_node_mutex); 471 472 core_tpg_wait_for_nacl_pr_ref(nacl); 473 core_free_device_list_for_node(nacl, se_tpg); 474 kfree(nacl); 475 } 476 477 void target_put_nacl(struct se_node_acl *nacl) 478 { 479 kref_put(&nacl->acl_kref, target_complete_nacl); 480 } 481 EXPORT_SYMBOL(target_put_nacl); 482 483 void transport_deregister_session_configfs(struct se_session *se_sess) 484 { 485 struct se_node_acl *se_nacl; 486 unsigned long flags; 487 /* 488 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 489 */ 490 se_nacl = se_sess->se_node_acl; 491 if (se_nacl) { 492 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 493 if (!list_empty(&se_sess->sess_acl_list)) 494 list_del_init(&se_sess->sess_acl_list); 495 /* 496 * If the session list is empty, then clear the pointer. 497 * Otherwise, set the struct se_session pointer from the tail 498 * element of the per struct se_node_acl active session list. 499 */ 500 if (list_empty(&se_nacl->acl_sess_list)) 501 se_nacl->nacl_sess = NULL; 502 else { 503 se_nacl->nacl_sess = container_of( 504 se_nacl->acl_sess_list.prev, 505 struct se_session, sess_acl_list); 506 } 507 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 508 } 509 } 510 EXPORT_SYMBOL(transport_deregister_session_configfs); 511 512 void transport_free_session(struct se_session *se_sess) 513 { 514 struct se_node_acl *se_nacl = se_sess->se_node_acl; 515 516 /* 517 * Drop the se_node_acl->nacl_kref obtained from within 518 * core_tpg_get_initiator_node_acl(). 519 */ 520 if (se_nacl) { 521 struct se_portal_group *se_tpg = se_nacl->se_tpg; 522 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo; 523 unsigned long flags; 524 525 se_sess->se_node_acl = NULL; 526 527 /* 528 * Also determine if we need to drop the extra ->cmd_kref if 529 * it had been previously dynamically generated, and 530 * the endpoint is not caching dynamic ACLs. 531 */ 532 mutex_lock(&se_tpg->acl_node_mutex); 533 if (se_nacl->dynamic_node_acl && 534 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 535 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 536 if (list_empty(&se_nacl->acl_sess_list)) 537 se_nacl->dynamic_stop = true; 538 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 539 540 if (se_nacl->dynamic_stop) 541 list_del(&se_nacl->acl_list); 542 } 543 mutex_unlock(&se_tpg->acl_node_mutex); 544 545 if (se_nacl->dynamic_stop) 546 target_put_nacl(se_nacl); 547 548 target_put_nacl(se_nacl); 549 } 550 if (se_sess->sess_cmd_map) { 551 percpu_ida_destroy(&se_sess->sess_tag_pool); 552 kvfree(se_sess->sess_cmd_map); 553 } 554 kmem_cache_free(se_sess_cache, se_sess); 555 } 556 EXPORT_SYMBOL(transport_free_session); 557 558 void transport_deregister_session(struct se_session *se_sess) 559 { 560 struct se_portal_group *se_tpg = se_sess->se_tpg; 561 unsigned long flags; 562 563 if (!se_tpg) { 564 transport_free_session(se_sess); 565 return; 566 } 567 568 spin_lock_irqsave(&se_tpg->session_lock, flags); 569 list_del(&se_sess->sess_list); 570 se_sess->se_tpg = NULL; 571 se_sess->fabric_sess_ptr = NULL; 572 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 573 574 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 575 se_tpg->se_tpg_tfo->get_fabric_name()); 576 /* 577 * If last kref is dropping now for an explicit NodeACL, awake sleeping 578 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 579 * removal context from within transport_free_session() code. 580 * 581 * For dynamic ACL, target_put_nacl() uses target_complete_nacl() 582 * to release all remaining generate_node_acl=1 created ACL resources. 583 */ 584 585 transport_free_session(se_sess); 586 } 587 EXPORT_SYMBOL(transport_deregister_session); 588 589 static void target_remove_from_state_list(struct se_cmd *cmd) 590 { 591 struct se_device *dev = cmd->se_dev; 592 unsigned long flags; 593 594 if (!dev) 595 return; 596 597 spin_lock_irqsave(&dev->execute_task_lock, flags); 598 if (cmd->state_active) { 599 list_del(&cmd->state_list); 600 cmd->state_active = false; 601 } 602 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 603 } 604 605 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 606 { 607 unsigned long flags; 608 609 target_remove_from_state_list(cmd); 610 611 /* 612 * Clear struct se_cmd->se_lun before the handoff to FE. 613 */ 614 cmd->se_lun = NULL; 615 616 spin_lock_irqsave(&cmd->t_state_lock, flags); 617 /* 618 * Determine if frontend context caller is requesting the stopping of 619 * this command for frontend exceptions. 620 */ 621 if (cmd->transport_state & CMD_T_STOP) { 622 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 623 __func__, __LINE__, cmd->tag); 624 625 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 626 627 complete_all(&cmd->t_transport_stop_comp); 628 return 1; 629 } 630 cmd->transport_state &= ~CMD_T_ACTIVE; 631 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 632 633 /* 634 * Some fabric modules like tcm_loop can release their internally 635 * allocated I/O reference and struct se_cmd now. 636 * 637 * Fabric modules are expected to return '1' here if the se_cmd being 638 * passed is released at this point, or zero if not being released. 639 */ 640 return cmd->se_tfo->check_stop_free(cmd); 641 } 642 643 static void transport_lun_remove_cmd(struct se_cmd *cmd) 644 { 645 struct se_lun *lun = cmd->se_lun; 646 647 if (!lun) 648 return; 649 650 if (cmpxchg(&cmd->lun_ref_active, true, false)) 651 percpu_ref_put(&lun->lun_ref); 652 } 653 654 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove) 655 { 656 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF); 657 658 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) 659 transport_lun_remove_cmd(cmd); 660 /* 661 * Allow the fabric driver to unmap any resources before 662 * releasing the descriptor via TFO->release_cmd() 663 */ 664 if (remove) 665 cmd->se_tfo->aborted_task(cmd); 666 667 if (transport_cmd_check_stop_to_fabric(cmd)) 668 return; 669 if (remove && ack_kref) 670 transport_put_cmd(cmd); 671 } 672 673 static void target_complete_failure_work(struct work_struct *work) 674 { 675 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 676 677 transport_generic_request_failure(cmd, 678 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 679 } 680 681 /* 682 * Used when asking transport to copy Sense Data from the underlying 683 * Linux/SCSI struct scsi_cmnd 684 */ 685 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 686 { 687 struct se_device *dev = cmd->se_dev; 688 689 WARN_ON(!cmd->se_lun); 690 691 if (!dev) 692 return NULL; 693 694 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 695 return NULL; 696 697 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 698 699 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 700 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 701 return cmd->sense_buffer; 702 } 703 704 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 705 { 706 struct se_device *dev = cmd->se_dev; 707 int success = scsi_status == GOOD; 708 unsigned long flags; 709 710 cmd->scsi_status = scsi_status; 711 712 713 spin_lock_irqsave(&cmd->t_state_lock, flags); 714 715 if (dev && dev->transport->transport_complete) { 716 dev->transport->transport_complete(cmd, 717 cmd->t_data_sg, 718 transport_get_sense_buffer(cmd)); 719 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 720 success = 1; 721 } 722 723 /* 724 * Check for case where an explicit ABORT_TASK has been received 725 * and transport_wait_for_tasks() will be waiting for completion.. 726 */ 727 if (cmd->transport_state & CMD_T_ABORTED || 728 cmd->transport_state & CMD_T_STOP) { 729 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 730 complete_all(&cmd->t_transport_stop_comp); 731 return; 732 } else if (!success) { 733 INIT_WORK(&cmd->work, target_complete_failure_work); 734 } else { 735 INIT_WORK(&cmd->work, target_complete_ok_work); 736 } 737 738 cmd->t_state = TRANSPORT_COMPLETE; 739 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 740 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 741 742 if (cmd->se_cmd_flags & SCF_USE_CPUID) 743 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work); 744 else 745 queue_work(target_completion_wq, &cmd->work); 746 } 747 EXPORT_SYMBOL(target_complete_cmd); 748 749 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length) 750 { 751 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) { 752 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 753 cmd->residual_count += cmd->data_length - length; 754 } else { 755 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 756 cmd->residual_count = cmd->data_length - length; 757 } 758 759 cmd->data_length = length; 760 } 761 762 target_complete_cmd(cmd, scsi_status); 763 } 764 EXPORT_SYMBOL(target_complete_cmd_with_length); 765 766 static void target_add_to_state_list(struct se_cmd *cmd) 767 { 768 struct se_device *dev = cmd->se_dev; 769 unsigned long flags; 770 771 spin_lock_irqsave(&dev->execute_task_lock, flags); 772 if (!cmd->state_active) { 773 list_add_tail(&cmd->state_list, &dev->state_list); 774 cmd->state_active = true; 775 } 776 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 777 } 778 779 /* 780 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 781 */ 782 static void transport_write_pending_qf(struct se_cmd *cmd); 783 static void transport_complete_qf(struct se_cmd *cmd); 784 785 void target_qf_do_work(struct work_struct *work) 786 { 787 struct se_device *dev = container_of(work, struct se_device, 788 qf_work_queue); 789 LIST_HEAD(qf_cmd_list); 790 struct se_cmd *cmd, *cmd_tmp; 791 792 spin_lock_irq(&dev->qf_cmd_lock); 793 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 794 spin_unlock_irq(&dev->qf_cmd_lock); 795 796 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 797 list_del(&cmd->se_qf_node); 798 atomic_dec_mb(&dev->dev_qf_count); 799 800 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 801 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd, 802 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 803 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 804 : "UNKNOWN"); 805 806 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 807 transport_write_pending_qf(cmd); 808 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK || 809 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) 810 transport_complete_qf(cmd); 811 } 812 } 813 814 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 815 { 816 switch (cmd->data_direction) { 817 case DMA_NONE: 818 return "NONE"; 819 case DMA_FROM_DEVICE: 820 return "READ"; 821 case DMA_TO_DEVICE: 822 return "WRITE"; 823 case DMA_BIDIRECTIONAL: 824 return "BIDI"; 825 default: 826 break; 827 } 828 829 return "UNKNOWN"; 830 } 831 832 void transport_dump_dev_state( 833 struct se_device *dev, 834 char *b, 835 int *bl) 836 { 837 *bl += sprintf(b + *bl, "Status: "); 838 if (dev->export_count) 839 *bl += sprintf(b + *bl, "ACTIVATED"); 840 else 841 *bl += sprintf(b + *bl, "DEACTIVATED"); 842 843 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 844 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 845 dev->dev_attrib.block_size, 846 dev->dev_attrib.hw_max_sectors); 847 *bl += sprintf(b + *bl, " "); 848 } 849 850 void transport_dump_vpd_proto_id( 851 struct t10_vpd *vpd, 852 unsigned char *p_buf, 853 int p_buf_len) 854 { 855 unsigned char buf[VPD_TMP_BUF_SIZE]; 856 int len; 857 858 memset(buf, 0, VPD_TMP_BUF_SIZE); 859 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 860 861 switch (vpd->protocol_identifier) { 862 case 0x00: 863 sprintf(buf+len, "Fibre Channel\n"); 864 break; 865 case 0x10: 866 sprintf(buf+len, "Parallel SCSI\n"); 867 break; 868 case 0x20: 869 sprintf(buf+len, "SSA\n"); 870 break; 871 case 0x30: 872 sprintf(buf+len, "IEEE 1394\n"); 873 break; 874 case 0x40: 875 sprintf(buf+len, "SCSI Remote Direct Memory Access" 876 " Protocol\n"); 877 break; 878 case 0x50: 879 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 880 break; 881 case 0x60: 882 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 883 break; 884 case 0x70: 885 sprintf(buf+len, "Automation/Drive Interface Transport" 886 " Protocol\n"); 887 break; 888 case 0x80: 889 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 890 break; 891 default: 892 sprintf(buf+len, "Unknown 0x%02x\n", 893 vpd->protocol_identifier); 894 break; 895 } 896 897 if (p_buf) 898 strncpy(p_buf, buf, p_buf_len); 899 else 900 pr_debug("%s", buf); 901 } 902 903 void 904 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 905 { 906 /* 907 * Check if the Protocol Identifier Valid (PIV) bit is set.. 908 * 909 * from spc3r23.pdf section 7.5.1 910 */ 911 if (page_83[1] & 0x80) { 912 vpd->protocol_identifier = (page_83[0] & 0xf0); 913 vpd->protocol_identifier_set = 1; 914 transport_dump_vpd_proto_id(vpd, NULL, 0); 915 } 916 } 917 EXPORT_SYMBOL(transport_set_vpd_proto_id); 918 919 int transport_dump_vpd_assoc( 920 struct t10_vpd *vpd, 921 unsigned char *p_buf, 922 int p_buf_len) 923 { 924 unsigned char buf[VPD_TMP_BUF_SIZE]; 925 int ret = 0; 926 int len; 927 928 memset(buf, 0, VPD_TMP_BUF_SIZE); 929 len = sprintf(buf, "T10 VPD Identifier Association: "); 930 931 switch (vpd->association) { 932 case 0x00: 933 sprintf(buf+len, "addressed logical unit\n"); 934 break; 935 case 0x10: 936 sprintf(buf+len, "target port\n"); 937 break; 938 case 0x20: 939 sprintf(buf+len, "SCSI target device\n"); 940 break; 941 default: 942 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 943 ret = -EINVAL; 944 break; 945 } 946 947 if (p_buf) 948 strncpy(p_buf, buf, p_buf_len); 949 else 950 pr_debug("%s", buf); 951 952 return ret; 953 } 954 955 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 956 { 957 /* 958 * The VPD identification association.. 959 * 960 * from spc3r23.pdf Section 7.6.3.1 Table 297 961 */ 962 vpd->association = (page_83[1] & 0x30); 963 return transport_dump_vpd_assoc(vpd, NULL, 0); 964 } 965 EXPORT_SYMBOL(transport_set_vpd_assoc); 966 967 int transport_dump_vpd_ident_type( 968 struct t10_vpd *vpd, 969 unsigned char *p_buf, 970 int p_buf_len) 971 { 972 unsigned char buf[VPD_TMP_BUF_SIZE]; 973 int ret = 0; 974 int len; 975 976 memset(buf, 0, VPD_TMP_BUF_SIZE); 977 len = sprintf(buf, "T10 VPD Identifier Type: "); 978 979 switch (vpd->device_identifier_type) { 980 case 0x00: 981 sprintf(buf+len, "Vendor specific\n"); 982 break; 983 case 0x01: 984 sprintf(buf+len, "T10 Vendor ID based\n"); 985 break; 986 case 0x02: 987 sprintf(buf+len, "EUI-64 based\n"); 988 break; 989 case 0x03: 990 sprintf(buf+len, "NAA\n"); 991 break; 992 case 0x04: 993 sprintf(buf+len, "Relative target port identifier\n"); 994 break; 995 case 0x08: 996 sprintf(buf+len, "SCSI name string\n"); 997 break; 998 default: 999 sprintf(buf+len, "Unsupported: 0x%02x\n", 1000 vpd->device_identifier_type); 1001 ret = -EINVAL; 1002 break; 1003 } 1004 1005 if (p_buf) { 1006 if (p_buf_len < strlen(buf)+1) 1007 return -EINVAL; 1008 strncpy(p_buf, buf, p_buf_len); 1009 } else { 1010 pr_debug("%s", buf); 1011 } 1012 1013 return ret; 1014 } 1015 1016 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 1017 { 1018 /* 1019 * The VPD identifier type.. 1020 * 1021 * from spc3r23.pdf Section 7.6.3.1 Table 298 1022 */ 1023 vpd->device_identifier_type = (page_83[1] & 0x0f); 1024 return transport_dump_vpd_ident_type(vpd, NULL, 0); 1025 } 1026 EXPORT_SYMBOL(transport_set_vpd_ident_type); 1027 1028 int transport_dump_vpd_ident( 1029 struct t10_vpd *vpd, 1030 unsigned char *p_buf, 1031 int p_buf_len) 1032 { 1033 unsigned char buf[VPD_TMP_BUF_SIZE]; 1034 int ret = 0; 1035 1036 memset(buf, 0, VPD_TMP_BUF_SIZE); 1037 1038 switch (vpd->device_identifier_code_set) { 1039 case 0x01: /* Binary */ 1040 snprintf(buf, sizeof(buf), 1041 "T10 VPD Binary Device Identifier: %s\n", 1042 &vpd->device_identifier[0]); 1043 break; 1044 case 0x02: /* ASCII */ 1045 snprintf(buf, sizeof(buf), 1046 "T10 VPD ASCII Device Identifier: %s\n", 1047 &vpd->device_identifier[0]); 1048 break; 1049 case 0x03: /* UTF-8 */ 1050 snprintf(buf, sizeof(buf), 1051 "T10 VPD UTF-8 Device Identifier: %s\n", 1052 &vpd->device_identifier[0]); 1053 break; 1054 default: 1055 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 1056 " 0x%02x", vpd->device_identifier_code_set); 1057 ret = -EINVAL; 1058 break; 1059 } 1060 1061 if (p_buf) 1062 strncpy(p_buf, buf, p_buf_len); 1063 else 1064 pr_debug("%s", buf); 1065 1066 return ret; 1067 } 1068 1069 int 1070 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 1071 { 1072 static const char hex_str[] = "0123456789abcdef"; 1073 int j = 0, i = 4; /* offset to start of the identifier */ 1074 1075 /* 1076 * The VPD Code Set (encoding) 1077 * 1078 * from spc3r23.pdf Section 7.6.3.1 Table 296 1079 */ 1080 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 1081 switch (vpd->device_identifier_code_set) { 1082 case 0x01: /* Binary */ 1083 vpd->device_identifier[j++] = 1084 hex_str[vpd->device_identifier_type]; 1085 while (i < (4 + page_83[3])) { 1086 vpd->device_identifier[j++] = 1087 hex_str[(page_83[i] & 0xf0) >> 4]; 1088 vpd->device_identifier[j++] = 1089 hex_str[page_83[i] & 0x0f]; 1090 i++; 1091 } 1092 break; 1093 case 0x02: /* ASCII */ 1094 case 0x03: /* UTF-8 */ 1095 while (i < (4 + page_83[3])) 1096 vpd->device_identifier[j++] = page_83[i++]; 1097 break; 1098 default: 1099 break; 1100 } 1101 1102 return transport_dump_vpd_ident(vpd, NULL, 0); 1103 } 1104 EXPORT_SYMBOL(transport_set_vpd_ident); 1105 1106 static sense_reason_t 1107 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev, 1108 unsigned int size) 1109 { 1110 u32 mtl; 1111 1112 if (!cmd->se_tfo->max_data_sg_nents) 1113 return TCM_NO_SENSE; 1114 /* 1115 * Check if fabric enforced maximum SGL entries per I/O descriptor 1116 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT + 1117 * residual_count and reduce original cmd->data_length to maximum 1118 * length based on single PAGE_SIZE entry scatter-lists. 1119 */ 1120 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE); 1121 if (cmd->data_length > mtl) { 1122 /* 1123 * If an existing CDB overflow is present, calculate new residual 1124 * based on CDB size minus fabric maximum transfer length. 1125 * 1126 * If an existing CDB underflow is present, calculate new residual 1127 * based on original cmd->data_length minus fabric maximum transfer 1128 * length. 1129 * 1130 * Otherwise, set the underflow residual based on cmd->data_length 1131 * minus fabric maximum transfer length. 1132 */ 1133 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1134 cmd->residual_count = (size - mtl); 1135 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 1136 u32 orig_dl = size + cmd->residual_count; 1137 cmd->residual_count = (orig_dl - mtl); 1138 } else { 1139 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1140 cmd->residual_count = (cmd->data_length - mtl); 1141 } 1142 cmd->data_length = mtl; 1143 /* 1144 * Reset sbc_check_prot() calculated protection payload 1145 * length based upon the new smaller MTL. 1146 */ 1147 if (cmd->prot_length) { 1148 u32 sectors = (mtl / dev->dev_attrib.block_size); 1149 cmd->prot_length = dev->prot_length * sectors; 1150 } 1151 } 1152 return TCM_NO_SENSE; 1153 } 1154 1155 sense_reason_t 1156 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 1157 { 1158 struct se_device *dev = cmd->se_dev; 1159 1160 if (cmd->unknown_data_length) { 1161 cmd->data_length = size; 1162 } else if (size != cmd->data_length) { 1163 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:" 1164 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 1165 " 0x%02x\n", cmd->se_tfo->get_fabric_name(), 1166 cmd->data_length, size, cmd->t_task_cdb[0]); 1167 1168 if (cmd->data_direction == DMA_TO_DEVICE && 1169 cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) { 1170 pr_err("Rejecting underflow/overflow WRITE data\n"); 1171 return TCM_INVALID_CDB_FIELD; 1172 } 1173 /* 1174 * Reject READ_* or WRITE_* with overflow/underflow for 1175 * type SCF_SCSI_DATA_CDB. 1176 */ 1177 if (dev->dev_attrib.block_size != 512) { 1178 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 1179 " CDB on non 512-byte sector setup subsystem" 1180 " plugin: %s\n", dev->transport->name); 1181 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 1182 return TCM_INVALID_CDB_FIELD; 1183 } 1184 /* 1185 * For the overflow case keep the existing fabric provided 1186 * ->data_length. Otherwise for the underflow case, reset 1187 * ->data_length to the smaller SCSI expected data transfer 1188 * length. 1189 */ 1190 if (size > cmd->data_length) { 1191 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1192 cmd->residual_count = (size - cmd->data_length); 1193 } else { 1194 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1195 cmd->residual_count = (cmd->data_length - size); 1196 cmd->data_length = size; 1197 } 1198 } 1199 1200 return target_check_max_data_sg_nents(cmd, dev, size); 1201 1202 } 1203 1204 /* 1205 * Used by fabric modules containing a local struct se_cmd within their 1206 * fabric dependent per I/O descriptor. 1207 * 1208 * Preserves the value of @cmd->tag. 1209 */ 1210 void transport_init_se_cmd( 1211 struct se_cmd *cmd, 1212 const struct target_core_fabric_ops *tfo, 1213 struct se_session *se_sess, 1214 u32 data_length, 1215 int data_direction, 1216 int task_attr, 1217 unsigned char *sense_buffer) 1218 { 1219 INIT_LIST_HEAD(&cmd->se_delayed_node); 1220 INIT_LIST_HEAD(&cmd->se_qf_node); 1221 INIT_LIST_HEAD(&cmd->se_cmd_list); 1222 INIT_LIST_HEAD(&cmd->state_list); 1223 init_completion(&cmd->t_transport_stop_comp); 1224 init_completion(&cmd->cmd_wait_comp); 1225 spin_lock_init(&cmd->t_state_lock); 1226 kref_init(&cmd->cmd_kref); 1227 1228 cmd->se_tfo = tfo; 1229 cmd->se_sess = se_sess; 1230 cmd->data_length = data_length; 1231 cmd->data_direction = data_direction; 1232 cmd->sam_task_attr = task_attr; 1233 cmd->sense_buffer = sense_buffer; 1234 1235 cmd->state_active = false; 1236 } 1237 EXPORT_SYMBOL(transport_init_se_cmd); 1238 1239 static sense_reason_t 1240 transport_check_alloc_task_attr(struct se_cmd *cmd) 1241 { 1242 struct se_device *dev = cmd->se_dev; 1243 1244 /* 1245 * Check if SAM Task Attribute emulation is enabled for this 1246 * struct se_device storage object 1247 */ 1248 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1249 return 0; 1250 1251 if (cmd->sam_task_attr == TCM_ACA_TAG) { 1252 pr_debug("SAM Task Attribute ACA" 1253 " emulation is not supported\n"); 1254 return TCM_INVALID_CDB_FIELD; 1255 } 1256 1257 return 0; 1258 } 1259 1260 sense_reason_t 1261 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb) 1262 { 1263 struct se_device *dev = cmd->se_dev; 1264 sense_reason_t ret; 1265 1266 /* 1267 * Ensure that the received CDB is less than the max (252 + 8) bytes 1268 * for VARIABLE_LENGTH_CMD 1269 */ 1270 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1271 pr_err("Received SCSI CDB with command_size: %d that" 1272 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1273 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1274 return TCM_INVALID_CDB_FIELD; 1275 } 1276 /* 1277 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1278 * allocate the additional extended CDB buffer now.. Otherwise 1279 * setup the pointer from __t_task_cdb to t_task_cdb. 1280 */ 1281 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1282 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1283 GFP_KERNEL); 1284 if (!cmd->t_task_cdb) { 1285 pr_err("Unable to allocate cmd->t_task_cdb" 1286 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1287 scsi_command_size(cdb), 1288 (unsigned long)sizeof(cmd->__t_task_cdb)); 1289 return TCM_OUT_OF_RESOURCES; 1290 } 1291 } else 1292 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1293 /* 1294 * Copy the original CDB into cmd-> 1295 */ 1296 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1297 1298 trace_target_sequencer_start(cmd); 1299 1300 ret = dev->transport->parse_cdb(cmd); 1301 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE) 1302 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n", 1303 cmd->se_tfo->get_fabric_name(), 1304 cmd->se_sess->se_node_acl->initiatorname, 1305 cmd->t_task_cdb[0]); 1306 if (ret) 1307 return ret; 1308 1309 ret = transport_check_alloc_task_attr(cmd); 1310 if (ret) 1311 return ret; 1312 1313 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1314 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus); 1315 return 0; 1316 } 1317 EXPORT_SYMBOL(target_setup_cmd_from_cdb); 1318 1319 /* 1320 * Used by fabric module frontends to queue tasks directly. 1321 * May only be used from process context. 1322 */ 1323 int transport_handle_cdb_direct( 1324 struct se_cmd *cmd) 1325 { 1326 sense_reason_t ret; 1327 1328 if (!cmd->se_lun) { 1329 dump_stack(); 1330 pr_err("cmd->se_lun is NULL\n"); 1331 return -EINVAL; 1332 } 1333 if (in_interrupt()) { 1334 dump_stack(); 1335 pr_err("transport_generic_handle_cdb cannot be called" 1336 " from interrupt context\n"); 1337 return -EINVAL; 1338 } 1339 /* 1340 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1341 * outstanding descriptors are handled correctly during shutdown via 1342 * transport_wait_for_tasks() 1343 * 1344 * Also, we don't take cmd->t_state_lock here as we only expect 1345 * this to be called for initial descriptor submission. 1346 */ 1347 cmd->t_state = TRANSPORT_NEW_CMD; 1348 cmd->transport_state |= CMD_T_ACTIVE; 1349 1350 /* 1351 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1352 * so follow TRANSPORT_NEW_CMD processing thread context usage 1353 * and call transport_generic_request_failure() if necessary.. 1354 */ 1355 ret = transport_generic_new_cmd(cmd); 1356 if (ret) 1357 transport_generic_request_failure(cmd, ret); 1358 return 0; 1359 } 1360 EXPORT_SYMBOL(transport_handle_cdb_direct); 1361 1362 sense_reason_t 1363 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1364 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1365 { 1366 if (!sgl || !sgl_count) 1367 return 0; 1368 1369 /* 1370 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1371 * scatterlists already have been set to follow what the fabric 1372 * passes for the original expected data transfer length. 1373 */ 1374 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1375 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1376 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1377 return TCM_INVALID_CDB_FIELD; 1378 } 1379 1380 cmd->t_data_sg = sgl; 1381 cmd->t_data_nents = sgl_count; 1382 cmd->t_bidi_data_sg = sgl_bidi; 1383 cmd->t_bidi_data_nents = sgl_bidi_count; 1384 1385 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1386 return 0; 1387 } 1388 1389 /* 1390 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized 1391 * se_cmd + use pre-allocated SGL memory. 1392 * 1393 * @se_cmd: command descriptor to submit 1394 * @se_sess: associated se_sess for endpoint 1395 * @cdb: pointer to SCSI CDB 1396 * @sense: pointer to SCSI sense buffer 1397 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1398 * @data_length: fabric expected data transfer length 1399 * @task_addr: SAM task attribute 1400 * @data_dir: DMA data direction 1401 * @flags: flags for command submission from target_sc_flags_tables 1402 * @sgl: struct scatterlist memory for unidirectional mapping 1403 * @sgl_count: scatterlist count for unidirectional mapping 1404 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1405 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1406 * @sgl_prot: struct scatterlist memory protection information 1407 * @sgl_prot_count: scatterlist count for protection information 1408 * 1409 * Task tags are supported if the caller has set @se_cmd->tag. 1410 * 1411 * Returns non zero to signal active I/O shutdown failure. All other 1412 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1413 * but still return zero here. 1414 * 1415 * This may only be called from process context, and also currently 1416 * assumes internal allocation of fabric payload buffer by target-core. 1417 */ 1418 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, 1419 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1420 u32 data_length, int task_attr, int data_dir, int flags, 1421 struct scatterlist *sgl, u32 sgl_count, 1422 struct scatterlist *sgl_bidi, u32 sgl_bidi_count, 1423 struct scatterlist *sgl_prot, u32 sgl_prot_count) 1424 { 1425 struct se_portal_group *se_tpg; 1426 sense_reason_t rc; 1427 int ret; 1428 1429 se_tpg = se_sess->se_tpg; 1430 BUG_ON(!se_tpg); 1431 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1432 BUG_ON(in_interrupt()); 1433 /* 1434 * Initialize se_cmd for target operation. From this point 1435 * exceptions are handled by sending exception status via 1436 * target_core_fabric_ops->queue_status() callback 1437 */ 1438 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1439 data_length, data_dir, task_attr, sense); 1440 1441 if (flags & TARGET_SCF_USE_CPUID) 1442 se_cmd->se_cmd_flags |= SCF_USE_CPUID; 1443 else 1444 se_cmd->cpuid = WORK_CPU_UNBOUND; 1445 1446 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1447 se_cmd->unknown_data_length = 1; 1448 /* 1449 * Obtain struct se_cmd->cmd_kref reference and add new cmd to 1450 * se_sess->sess_cmd_list. A second kref_get here is necessary 1451 * for fabrics using TARGET_SCF_ACK_KREF that expect a second 1452 * kref_put() to happen during fabric packet acknowledgement. 1453 */ 1454 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1455 if (ret) 1456 return ret; 1457 /* 1458 * Signal bidirectional data payloads to target-core 1459 */ 1460 if (flags & TARGET_SCF_BIDI_OP) 1461 se_cmd->se_cmd_flags |= SCF_BIDI; 1462 /* 1463 * Locate se_lun pointer and attach it to struct se_cmd 1464 */ 1465 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun); 1466 if (rc) { 1467 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1468 target_put_sess_cmd(se_cmd); 1469 return 0; 1470 } 1471 1472 rc = target_setup_cmd_from_cdb(se_cmd, cdb); 1473 if (rc != 0) { 1474 transport_generic_request_failure(se_cmd, rc); 1475 return 0; 1476 } 1477 1478 /* 1479 * Save pointers for SGLs containing protection information, 1480 * if present. 1481 */ 1482 if (sgl_prot_count) { 1483 se_cmd->t_prot_sg = sgl_prot; 1484 se_cmd->t_prot_nents = sgl_prot_count; 1485 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC; 1486 } 1487 1488 /* 1489 * When a non zero sgl_count has been passed perform SGL passthrough 1490 * mapping for pre-allocated fabric memory instead of having target 1491 * core perform an internal SGL allocation.. 1492 */ 1493 if (sgl_count != 0) { 1494 BUG_ON(!sgl); 1495 1496 /* 1497 * A work-around for tcm_loop as some userspace code via 1498 * scsi-generic do not memset their associated read buffers, 1499 * so go ahead and do that here for type non-data CDBs. Also 1500 * note that this is currently guaranteed to be a single SGL 1501 * for this case by target core in target_setup_cmd_from_cdb() 1502 * -> transport_generic_cmd_sequencer(). 1503 */ 1504 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1505 se_cmd->data_direction == DMA_FROM_DEVICE) { 1506 unsigned char *buf = NULL; 1507 1508 if (sgl) 1509 buf = kmap(sg_page(sgl)) + sgl->offset; 1510 1511 if (buf) { 1512 memset(buf, 0, sgl->length); 1513 kunmap(sg_page(sgl)); 1514 } 1515 } 1516 1517 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1518 sgl_bidi, sgl_bidi_count); 1519 if (rc != 0) { 1520 transport_generic_request_failure(se_cmd, rc); 1521 return 0; 1522 } 1523 } 1524 1525 /* 1526 * Check if we need to delay processing because of ALUA 1527 * Active/NonOptimized primary access state.. 1528 */ 1529 core_alua_check_nonop_delay(se_cmd); 1530 1531 transport_handle_cdb_direct(se_cmd); 1532 return 0; 1533 } 1534 EXPORT_SYMBOL(target_submit_cmd_map_sgls); 1535 1536 /* 1537 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1538 * 1539 * @se_cmd: command descriptor to submit 1540 * @se_sess: associated se_sess for endpoint 1541 * @cdb: pointer to SCSI CDB 1542 * @sense: pointer to SCSI sense buffer 1543 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1544 * @data_length: fabric expected data transfer length 1545 * @task_addr: SAM task attribute 1546 * @data_dir: DMA data direction 1547 * @flags: flags for command submission from target_sc_flags_tables 1548 * 1549 * Task tags are supported if the caller has set @se_cmd->tag. 1550 * 1551 * Returns non zero to signal active I/O shutdown failure. All other 1552 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1553 * but still return zero here. 1554 * 1555 * This may only be called from process context, and also currently 1556 * assumes internal allocation of fabric payload buffer by target-core. 1557 * 1558 * It also assumes interal target core SGL memory allocation. 1559 */ 1560 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1561 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1562 u32 data_length, int task_attr, int data_dir, int flags) 1563 { 1564 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, 1565 unpacked_lun, data_length, task_attr, data_dir, 1566 flags, NULL, 0, NULL, 0, NULL, 0); 1567 } 1568 EXPORT_SYMBOL(target_submit_cmd); 1569 1570 static void target_complete_tmr_failure(struct work_struct *work) 1571 { 1572 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1573 1574 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1575 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1576 1577 transport_cmd_check_stop_to_fabric(se_cmd); 1578 } 1579 1580 /** 1581 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1582 * for TMR CDBs 1583 * 1584 * @se_cmd: command descriptor to submit 1585 * @se_sess: associated se_sess for endpoint 1586 * @sense: pointer to SCSI sense buffer 1587 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1588 * @fabric_context: fabric context for TMR req 1589 * @tm_type: Type of TM request 1590 * @gfp: gfp type for caller 1591 * @tag: referenced task tag for TMR_ABORT_TASK 1592 * @flags: submit cmd flags 1593 * 1594 * Callable from all contexts. 1595 **/ 1596 1597 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1598 unsigned char *sense, u64 unpacked_lun, 1599 void *fabric_tmr_ptr, unsigned char tm_type, 1600 gfp_t gfp, u64 tag, int flags) 1601 { 1602 struct se_portal_group *se_tpg; 1603 int ret; 1604 1605 se_tpg = se_sess->se_tpg; 1606 BUG_ON(!se_tpg); 1607 1608 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1609 0, DMA_NONE, TCM_SIMPLE_TAG, sense); 1610 /* 1611 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1612 * allocation failure. 1613 */ 1614 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1615 if (ret < 0) 1616 return -ENOMEM; 1617 1618 if (tm_type == TMR_ABORT_TASK) 1619 se_cmd->se_tmr_req->ref_task_tag = tag; 1620 1621 /* See target_submit_cmd for commentary */ 1622 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1623 if (ret) { 1624 core_tmr_release_req(se_cmd->se_tmr_req); 1625 return ret; 1626 } 1627 1628 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun); 1629 if (ret) { 1630 /* 1631 * For callback during failure handling, push this work off 1632 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1633 */ 1634 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1635 schedule_work(&se_cmd->work); 1636 return 0; 1637 } 1638 transport_generic_handle_tmr(se_cmd); 1639 return 0; 1640 } 1641 EXPORT_SYMBOL(target_submit_tmr); 1642 1643 /* 1644 * Handle SAM-esque emulation for generic transport request failures. 1645 */ 1646 void transport_generic_request_failure(struct se_cmd *cmd, 1647 sense_reason_t sense_reason) 1648 { 1649 int ret = 0, post_ret = 0; 1650 1651 if (transport_check_aborted_status(cmd, 1)) 1652 return; 1653 1654 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx" 1655 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]); 1656 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n", 1657 cmd->se_tfo->get_cmd_state(cmd), 1658 cmd->t_state, sense_reason); 1659 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n", 1660 (cmd->transport_state & CMD_T_ACTIVE) != 0, 1661 (cmd->transport_state & CMD_T_STOP) != 0, 1662 (cmd->transport_state & CMD_T_SENT) != 0); 1663 1664 /* 1665 * For SAM Task Attribute emulation for failed struct se_cmd 1666 */ 1667 transport_complete_task_attr(cmd); 1668 /* 1669 * Handle special case for COMPARE_AND_WRITE failure, where the 1670 * callback is expected to drop the per device ->caw_sem. 1671 */ 1672 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 1673 cmd->transport_complete_callback) 1674 cmd->transport_complete_callback(cmd, false, &post_ret); 1675 1676 switch (sense_reason) { 1677 case TCM_NON_EXISTENT_LUN: 1678 case TCM_UNSUPPORTED_SCSI_OPCODE: 1679 case TCM_INVALID_CDB_FIELD: 1680 case TCM_INVALID_PARAMETER_LIST: 1681 case TCM_PARAMETER_LIST_LENGTH_ERROR: 1682 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1683 case TCM_UNKNOWN_MODE_PAGE: 1684 case TCM_WRITE_PROTECTED: 1685 case TCM_ADDRESS_OUT_OF_RANGE: 1686 case TCM_CHECK_CONDITION_ABORT_CMD: 1687 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1688 case TCM_CHECK_CONDITION_NOT_READY: 1689 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 1690 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 1691 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 1692 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE: 1693 case TCM_TOO_MANY_TARGET_DESCS: 1694 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE: 1695 case TCM_TOO_MANY_SEGMENT_DESCS: 1696 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE: 1697 break; 1698 case TCM_OUT_OF_RESOURCES: 1699 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1700 break; 1701 case TCM_RESERVATION_CONFLICT: 1702 /* 1703 * No SENSE Data payload for this case, set SCSI Status 1704 * and queue the response to $FABRIC_MOD. 1705 * 1706 * Uses linux/include/scsi/scsi.h SAM status codes defs 1707 */ 1708 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1709 /* 1710 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1711 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1712 * CONFLICT STATUS. 1713 * 1714 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1715 */ 1716 if (cmd->se_sess && 1717 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) { 1718 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 1719 cmd->orig_fe_lun, 0x2C, 1720 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1721 } 1722 trace_target_cmd_complete(cmd); 1723 ret = cmd->se_tfo->queue_status(cmd); 1724 if (ret) 1725 goto queue_full; 1726 goto check_stop; 1727 default: 1728 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1729 cmd->t_task_cdb[0], sense_reason); 1730 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1731 break; 1732 } 1733 1734 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 1735 if (ret) 1736 goto queue_full; 1737 1738 check_stop: 1739 transport_lun_remove_cmd(cmd); 1740 transport_cmd_check_stop_to_fabric(cmd); 1741 return; 1742 1743 queue_full: 1744 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 1745 } 1746 EXPORT_SYMBOL(transport_generic_request_failure); 1747 1748 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks) 1749 { 1750 sense_reason_t ret; 1751 1752 if (!cmd->execute_cmd) { 1753 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1754 goto err; 1755 } 1756 if (do_checks) { 1757 /* 1758 * Check for an existing UNIT ATTENTION condition after 1759 * target_handle_task_attr() has done SAM task attr 1760 * checking, and possibly have already defered execution 1761 * out to target_restart_delayed_cmds() context. 1762 */ 1763 ret = target_scsi3_ua_check(cmd); 1764 if (ret) 1765 goto err; 1766 1767 ret = target_alua_state_check(cmd); 1768 if (ret) 1769 goto err; 1770 1771 ret = target_check_reservation(cmd); 1772 if (ret) { 1773 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1774 goto err; 1775 } 1776 } 1777 1778 ret = cmd->execute_cmd(cmd); 1779 if (!ret) 1780 return; 1781 err: 1782 spin_lock_irq(&cmd->t_state_lock); 1783 cmd->transport_state &= ~CMD_T_SENT; 1784 spin_unlock_irq(&cmd->t_state_lock); 1785 1786 transport_generic_request_failure(cmd, ret); 1787 } 1788 1789 static int target_write_prot_action(struct se_cmd *cmd) 1790 { 1791 u32 sectors; 1792 /* 1793 * Perform WRITE_INSERT of PI using software emulation when backend 1794 * device has PI enabled, if the transport has not already generated 1795 * PI using hardware WRITE_INSERT offload. 1796 */ 1797 switch (cmd->prot_op) { 1798 case TARGET_PROT_DOUT_INSERT: 1799 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT)) 1800 sbc_dif_generate(cmd); 1801 break; 1802 case TARGET_PROT_DOUT_STRIP: 1803 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP) 1804 break; 1805 1806 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size); 1807 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 1808 sectors, 0, cmd->t_prot_sg, 0); 1809 if (unlikely(cmd->pi_err)) { 1810 spin_lock_irq(&cmd->t_state_lock); 1811 cmd->transport_state &= ~CMD_T_SENT; 1812 spin_unlock_irq(&cmd->t_state_lock); 1813 transport_generic_request_failure(cmd, cmd->pi_err); 1814 return -1; 1815 } 1816 break; 1817 default: 1818 break; 1819 } 1820 1821 return 0; 1822 } 1823 1824 static bool target_handle_task_attr(struct se_cmd *cmd) 1825 { 1826 struct se_device *dev = cmd->se_dev; 1827 1828 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1829 return false; 1830 1831 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET; 1832 1833 /* 1834 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 1835 * to allow the passed struct se_cmd list of tasks to the front of the list. 1836 */ 1837 switch (cmd->sam_task_attr) { 1838 case TCM_HEAD_TAG: 1839 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n", 1840 cmd->t_task_cdb[0]); 1841 return false; 1842 case TCM_ORDERED_TAG: 1843 atomic_inc_mb(&dev->dev_ordered_sync); 1844 1845 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n", 1846 cmd->t_task_cdb[0]); 1847 1848 /* 1849 * Execute an ORDERED command if no other older commands 1850 * exist that need to be completed first. 1851 */ 1852 if (!atomic_read(&dev->simple_cmds)) 1853 return false; 1854 break; 1855 default: 1856 /* 1857 * For SIMPLE and UNTAGGED Task Attribute commands 1858 */ 1859 atomic_inc_mb(&dev->simple_cmds); 1860 break; 1861 } 1862 1863 if (atomic_read(&dev->dev_ordered_sync) == 0) 1864 return false; 1865 1866 spin_lock(&dev->delayed_cmd_lock); 1867 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 1868 spin_unlock(&dev->delayed_cmd_lock); 1869 1870 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn", 1871 cmd->t_task_cdb[0], cmd->sam_task_attr); 1872 return true; 1873 } 1874 1875 static int __transport_check_aborted_status(struct se_cmd *, int); 1876 1877 void target_execute_cmd(struct se_cmd *cmd) 1878 { 1879 /* 1880 * Determine if frontend context caller is requesting the stopping of 1881 * this command for frontend exceptions. 1882 * 1883 * If the received CDB has aleady been aborted stop processing it here. 1884 */ 1885 spin_lock_irq(&cmd->t_state_lock); 1886 if (__transport_check_aborted_status(cmd, 1)) { 1887 spin_unlock_irq(&cmd->t_state_lock); 1888 return; 1889 } 1890 if (cmd->transport_state & CMD_T_STOP) { 1891 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 1892 __func__, __LINE__, cmd->tag); 1893 1894 spin_unlock_irq(&cmd->t_state_lock); 1895 complete_all(&cmd->t_transport_stop_comp); 1896 return; 1897 } 1898 1899 cmd->t_state = TRANSPORT_PROCESSING; 1900 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT; 1901 spin_unlock_irq(&cmd->t_state_lock); 1902 1903 if (target_write_prot_action(cmd)) 1904 return; 1905 1906 if (target_handle_task_attr(cmd)) { 1907 spin_lock_irq(&cmd->t_state_lock); 1908 cmd->transport_state &= ~CMD_T_SENT; 1909 spin_unlock_irq(&cmd->t_state_lock); 1910 return; 1911 } 1912 1913 __target_execute_cmd(cmd, true); 1914 } 1915 EXPORT_SYMBOL(target_execute_cmd); 1916 1917 /* 1918 * Process all commands up to the last received ORDERED task attribute which 1919 * requires another blocking boundary 1920 */ 1921 static void target_restart_delayed_cmds(struct se_device *dev) 1922 { 1923 for (;;) { 1924 struct se_cmd *cmd; 1925 1926 spin_lock(&dev->delayed_cmd_lock); 1927 if (list_empty(&dev->delayed_cmd_list)) { 1928 spin_unlock(&dev->delayed_cmd_lock); 1929 break; 1930 } 1931 1932 cmd = list_entry(dev->delayed_cmd_list.next, 1933 struct se_cmd, se_delayed_node); 1934 list_del(&cmd->se_delayed_node); 1935 spin_unlock(&dev->delayed_cmd_lock); 1936 1937 __target_execute_cmd(cmd, true); 1938 1939 if (cmd->sam_task_attr == TCM_ORDERED_TAG) 1940 break; 1941 } 1942 } 1943 1944 /* 1945 * Called from I/O completion to determine which dormant/delayed 1946 * and ordered cmds need to have their tasks added to the execution queue. 1947 */ 1948 static void transport_complete_task_attr(struct se_cmd *cmd) 1949 { 1950 struct se_device *dev = cmd->se_dev; 1951 1952 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1953 return; 1954 1955 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET)) 1956 goto restart; 1957 1958 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) { 1959 atomic_dec_mb(&dev->simple_cmds); 1960 dev->dev_cur_ordered_id++; 1961 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) { 1962 dev->dev_cur_ordered_id++; 1963 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n", 1964 dev->dev_cur_ordered_id); 1965 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) { 1966 atomic_dec_mb(&dev->dev_ordered_sync); 1967 1968 dev->dev_cur_ordered_id++; 1969 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n", 1970 dev->dev_cur_ordered_id); 1971 } 1972 restart: 1973 target_restart_delayed_cmds(dev); 1974 } 1975 1976 static void transport_complete_qf(struct se_cmd *cmd) 1977 { 1978 int ret = 0; 1979 1980 transport_complete_task_attr(cmd); 1981 /* 1982 * If a fabric driver ->write_pending() or ->queue_data_in() callback 1983 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and 1984 * the same callbacks should not be retried. Return CHECK_CONDITION 1985 * if a scsi_status is not already set. 1986 * 1987 * If a fabric driver ->queue_status() has returned non zero, always 1988 * keep retrying no matter what.. 1989 */ 1990 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) { 1991 if (cmd->scsi_status) 1992 goto queue_status; 1993 1994 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 1995 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 1996 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 1997 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 1998 goto queue_status; 1999 } 2000 2001 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 2002 goto queue_status; 2003 2004 switch (cmd->data_direction) { 2005 case DMA_FROM_DEVICE: 2006 if (cmd->scsi_status) 2007 goto queue_status; 2008 2009 trace_target_cmd_complete(cmd); 2010 ret = cmd->se_tfo->queue_data_in(cmd); 2011 break; 2012 case DMA_TO_DEVICE: 2013 if (cmd->se_cmd_flags & SCF_BIDI) { 2014 ret = cmd->se_tfo->queue_data_in(cmd); 2015 break; 2016 } 2017 /* Fall through for DMA_TO_DEVICE */ 2018 case DMA_NONE: 2019 queue_status: 2020 trace_target_cmd_complete(cmd); 2021 ret = cmd->se_tfo->queue_status(cmd); 2022 break; 2023 default: 2024 break; 2025 } 2026 2027 if (ret < 0) { 2028 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 2029 return; 2030 } 2031 transport_lun_remove_cmd(cmd); 2032 transport_cmd_check_stop_to_fabric(cmd); 2033 } 2034 2035 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev, 2036 int err, bool write_pending) 2037 { 2038 /* 2039 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or 2040 * ->queue_data_in() callbacks from new process context. 2041 * 2042 * Otherwise for other errors, transport_complete_qf() will send 2043 * CHECK_CONDITION via ->queue_status() instead of attempting to 2044 * retry associated fabric driver data-transfer callbacks. 2045 */ 2046 if (err == -EAGAIN || err == -ENOMEM) { 2047 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP : 2048 TRANSPORT_COMPLETE_QF_OK; 2049 } else { 2050 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err); 2051 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR; 2052 } 2053 2054 spin_lock_irq(&dev->qf_cmd_lock); 2055 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 2056 atomic_inc_mb(&dev->dev_qf_count); 2057 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 2058 2059 schedule_work(&cmd->se_dev->qf_work_queue); 2060 } 2061 2062 static bool target_read_prot_action(struct se_cmd *cmd) 2063 { 2064 switch (cmd->prot_op) { 2065 case TARGET_PROT_DIN_STRIP: 2066 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) { 2067 u32 sectors = cmd->data_length >> 2068 ilog2(cmd->se_dev->dev_attrib.block_size); 2069 2070 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 2071 sectors, 0, cmd->t_prot_sg, 2072 0); 2073 if (cmd->pi_err) 2074 return true; 2075 } 2076 break; 2077 case TARGET_PROT_DIN_INSERT: 2078 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT) 2079 break; 2080 2081 sbc_dif_generate(cmd); 2082 break; 2083 default: 2084 break; 2085 } 2086 2087 return false; 2088 } 2089 2090 static void target_complete_ok_work(struct work_struct *work) 2091 { 2092 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2093 int ret; 2094 2095 /* 2096 * Check if we need to move delayed/dormant tasks from cmds on the 2097 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 2098 * Attribute. 2099 */ 2100 transport_complete_task_attr(cmd); 2101 2102 /* 2103 * Check to schedule QUEUE_FULL work, or execute an existing 2104 * cmd->transport_qf_callback() 2105 */ 2106 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 2107 schedule_work(&cmd->se_dev->qf_work_queue); 2108 2109 /* 2110 * Check if we need to send a sense buffer from 2111 * the struct se_cmd in question. 2112 */ 2113 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 2114 WARN_ON(!cmd->scsi_status); 2115 ret = transport_send_check_condition_and_sense( 2116 cmd, 0, 1); 2117 if (ret) 2118 goto queue_full; 2119 2120 transport_lun_remove_cmd(cmd); 2121 transport_cmd_check_stop_to_fabric(cmd); 2122 return; 2123 } 2124 /* 2125 * Check for a callback, used by amongst other things 2126 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation. 2127 */ 2128 if (cmd->transport_complete_callback) { 2129 sense_reason_t rc; 2130 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE); 2131 bool zero_dl = !(cmd->data_length); 2132 int post_ret = 0; 2133 2134 rc = cmd->transport_complete_callback(cmd, true, &post_ret); 2135 if (!rc && !post_ret) { 2136 if (caw && zero_dl) 2137 goto queue_rsp; 2138 2139 return; 2140 } else if (rc) { 2141 ret = transport_send_check_condition_and_sense(cmd, 2142 rc, 0); 2143 if (ret) 2144 goto queue_full; 2145 2146 transport_lun_remove_cmd(cmd); 2147 transport_cmd_check_stop_to_fabric(cmd); 2148 return; 2149 } 2150 } 2151 2152 queue_rsp: 2153 switch (cmd->data_direction) { 2154 case DMA_FROM_DEVICE: 2155 if (cmd->scsi_status) 2156 goto queue_status; 2157 2158 atomic_long_add(cmd->data_length, 2159 &cmd->se_lun->lun_stats.tx_data_octets); 2160 /* 2161 * Perform READ_STRIP of PI using software emulation when 2162 * backend had PI enabled, if the transport will not be 2163 * performing hardware READ_STRIP offload. 2164 */ 2165 if (target_read_prot_action(cmd)) { 2166 ret = transport_send_check_condition_and_sense(cmd, 2167 cmd->pi_err, 0); 2168 if (ret) 2169 goto queue_full; 2170 2171 transport_lun_remove_cmd(cmd); 2172 transport_cmd_check_stop_to_fabric(cmd); 2173 return; 2174 } 2175 2176 trace_target_cmd_complete(cmd); 2177 ret = cmd->se_tfo->queue_data_in(cmd); 2178 if (ret) 2179 goto queue_full; 2180 break; 2181 case DMA_TO_DEVICE: 2182 atomic_long_add(cmd->data_length, 2183 &cmd->se_lun->lun_stats.rx_data_octets); 2184 /* 2185 * Check if we need to send READ payload for BIDI-COMMAND 2186 */ 2187 if (cmd->se_cmd_flags & SCF_BIDI) { 2188 atomic_long_add(cmd->data_length, 2189 &cmd->se_lun->lun_stats.tx_data_octets); 2190 ret = cmd->se_tfo->queue_data_in(cmd); 2191 if (ret) 2192 goto queue_full; 2193 break; 2194 } 2195 /* Fall through for DMA_TO_DEVICE */ 2196 case DMA_NONE: 2197 queue_status: 2198 trace_target_cmd_complete(cmd); 2199 ret = cmd->se_tfo->queue_status(cmd); 2200 if (ret) 2201 goto queue_full; 2202 break; 2203 default: 2204 break; 2205 } 2206 2207 transport_lun_remove_cmd(cmd); 2208 transport_cmd_check_stop_to_fabric(cmd); 2209 return; 2210 2211 queue_full: 2212 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 2213 " data_direction: %d\n", cmd, cmd->data_direction); 2214 2215 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 2216 } 2217 2218 void target_free_sgl(struct scatterlist *sgl, int nents) 2219 { 2220 struct scatterlist *sg; 2221 int count; 2222 2223 for_each_sg(sgl, sg, nents, count) 2224 __free_page(sg_page(sg)); 2225 2226 kfree(sgl); 2227 } 2228 EXPORT_SYMBOL(target_free_sgl); 2229 2230 static inline void transport_reset_sgl_orig(struct se_cmd *cmd) 2231 { 2232 /* 2233 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE 2234 * emulation, and free + reset pointers if necessary.. 2235 */ 2236 if (!cmd->t_data_sg_orig) 2237 return; 2238 2239 kfree(cmd->t_data_sg); 2240 cmd->t_data_sg = cmd->t_data_sg_orig; 2241 cmd->t_data_sg_orig = NULL; 2242 cmd->t_data_nents = cmd->t_data_nents_orig; 2243 cmd->t_data_nents_orig = 0; 2244 } 2245 2246 static inline void transport_free_pages(struct se_cmd *cmd) 2247 { 2248 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2249 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents); 2250 cmd->t_prot_sg = NULL; 2251 cmd->t_prot_nents = 0; 2252 } 2253 2254 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) { 2255 /* 2256 * Release special case READ buffer payload required for 2257 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE 2258 */ 2259 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) { 2260 target_free_sgl(cmd->t_bidi_data_sg, 2261 cmd->t_bidi_data_nents); 2262 cmd->t_bidi_data_sg = NULL; 2263 cmd->t_bidi_data_nents = 0; 2264 } 2265 transport_reset_sgl_orig(cmd); 2266 return; 2267 } 2268 transport_reset_sgl_orig(cmd); 2269 2270 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 2271 cmd->t_data_sg = NULL; 2272 cmd->t_data_nents = 0; 2273 2274 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 2275 cmd->t_bidi_data_sg = NULL; 2276 cmd->t_bidi_data_nents = 0; 2277 } 2278 2279 /** 2280 * transport_put_cmd - release a reference to a command 2281 * @cmd: command to release 2282 * 2283 * This routine releases our reference to the command and frees it if possible. 2284 */ 2285 static int transport_put_cmd(struct se_cmd *cmd) 2286 { 2287 BUG_ON(!cmd->se_tfo); 2288 /* 2289 * If this cmd has been setup with target_get_sess_cmd(), drop 2290 * the kref and call ->release_cmd() in kref callback. 2291 */ 2292 return target_put_sess_cmd(cmd); 2293 } 2294 2295 void *transport_kmap_data_sg(struct se_cmd *cmd) 2296 { 2297 struct scatterlist *sg = cmd->t_data_sg; 2298 struct page **pages; 2299 int i; 2300 2301 /* 2302 * We need to take into account a possible offset here for fabrics like 2303 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2304 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2305 */ 2306 if (!cmd->t_data_nents) 2307 return NULL; 2308 2309 BUG_ON(!sg); 2310 if (cmd->t_data_nents == 1) 2311 return kmap(sg_page(sg)) + sg->offset; 2312 2313 /* >1 page. use vmap */ 2314 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL); 2315 if (!pages) 2316 return NULL; 2317 2318 /* convert sg[] to pages[] */ 2319 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2320 pages[i] = sg_page(sg); 2321 } 2322 2323 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2324 kfree(pages); 2325 if (!cmd->t_data_vmap) 2326 return NULL; 2327 2328 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2329 } 2330 EXPORT_SYMBOL(transport_kmap_data_sg); 2331 2332 void transport_kunmap_data_sg(struct se_cmd *cmd) 2333 { 2334 if (!cmd->t_data_nents) { 2335 return; 2336 } else if (cmd->t_data_nents == 1) { 2337 kunmap(sg_page(cmd->t_data_sg)); 2338 return; 2339 } 2340 2341 vunmap(cmd->t_data_vmap); 2342 cmd->t_data_vmap = NULL; 2343 } 2344 EXPORT_SYMBOL(transport_kunmap_data_sg); 2345 2346 int 2347 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length, 2348 bool zero_page, bool chainable) 2349 { 2350 struct scatterlist *sg; 2351 struct page *page; 2352 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0; 2353 unsigned int nalloc, nent; 2354 int i = 0; 2355 2356 nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE); 2357 if (chainable) 2358 nalloc++; 2359 sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL); 2360 if (!sg) 2361 return -ENOMEM; 2362 2363 sg_init_table(sg, nalloc); 2364 2365 while (length) { 2366 u32 page_len = min_t(u32, length, PAGE_SIZE); 2367 page = alloc_page(GFP_KERNEL | zero_flag); 2368 if (!page) 2369 goto out; 2370 2371 sg_set_page(&sg[i], page, page_len, 0); 2372 length -= page_len; 2373 i++; 2374 } 2375 *sgl = sg; 2376 *nents = nent; 2377 return 0; 2378 2379 out: 2380 while (i > 0) { 2381 i--; 2382 __free_page(sg_page(&sg[i])); 2383 } 2384 kfree(sg); 2385 return -ENOMEM; 2386 } 2387 EXPORT_SYMBOL(target_alloc_sgl); 2388 2389 /* 2390 * Allocate any required resources to execute the command. For writes we 2391 * might not have the payload yet, so notify the fabric via a call to 2392 * ->write_pending instead. Otherwise place it on the execution queue. 2393 */ 2394 sense_reason_t 2395 transport_generic_new_cmd(struct se_cmd *cmd) 2396 { 2397 unsigned long flags; 2398 int ret = 0; 2399 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB); 2400 2401 if (cmd->prot_op != TARGET_PROT_NORMAL && 2402 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2403 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents, 2404 cmd->prot_length, true, false); 2405 if (ret < 0) 2406 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2407 } 2408 2409 /* 2410 * Determine is the TCM fabric module has already allocated physical 2411 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2412 * beforehand. 2413 */ 2414 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2415 cmd->data_length) { 2416 2417 if ((cmd->se_cmd_flags & SCF_BIDI) || 2418 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) { 2419 u32 bidi_length; 2420 2421 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) 2422 bidi_length = cmd->t_task_nolb * 2423 cmd->se_dev->dev_attrib.block_size; 2424 else 2425 bidi_length = cmd->data_length; 2426 2427 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2428 &cmd->t_bidi_data_nents, 2429 bidi_length, zero_flag, false); 2430 if (ret < 0) 2431 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2432 } 2433 2434 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents, 2435 cmd->data_length, zero_flag, false); 2436 if (ret < 0) 2437 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2438 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 2439 cmd->data_length) { 2440 /* 2441 * Special case for COMPARE_AND_WRITE with fabrics 2442 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC. 2443 */ 2444 u32 caw_length = cmd->t_task_nolb * 2445 cmd->se_dev->dev_attrib.block_size; 2446 2447 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2448 &cmd->t_bidi_data_nents, 2449 caw_length, zero_flag, false); 2450 if (ret < 0) 2451 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2452 } 2453 /* 2454 * If this command is not a write we can execute it right here, 2455 * for write buffers we need to notify the fabric driver first 2456 * and let it call back once the write buffers are ready. 2457 */ 2458 target_add_to_state_list(cmd); 2459 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) { 2460 target_execute_cmd(cmd); 2461 return 0; 2462 } 2463 2464 spin_lock_irqsave(&cmd->t_state_lock, flags); 2465 cmd->t_state = TRANSPORT_WRITE_PENDING; 2466 /* 2467 * Determine if frontend context caller is requesting the stopping of 2468 * this command for frontend exceptions. 2469 */ 2470 if (cmd->transport_state & CMD_T_STOP) { 2471 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 2472 __func__, __LINE__, cmd->tag); 2473 2474 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2475 2476 complete_all(&cmd->t_transport_stop_comp); 2477 return 0; 2478 } 2479 cmd->transport_state &= ~CMD_T_ACTIVE; 2480 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2481 2482 ret = cmd->se_tfo->write_pending(cmd); 2483 if (ret) 2484 goto queue_full; 2485 2486 return 0; 2487 2488 queue_full: 2489 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2490 transport_handle_queue_full(cmd, cmd->se_dev, ret, true); 2491 return 0; 2492 } 2493 EXPORT_SYMBOL(transport_generic_new_cmd); 2494 2495 static void transport_write_pending_qf(struct se_cmd *cmd) 2496 { 2497 int ret; 2498 2499 ret = cmd->se_tfo->write_pending(cmd); 2500 if (ret) { 2501 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2502 cmd); 2503 transport_handle_queue_full(cmd, cmd->se_dev, ret, true); 2504 } 2505 } 2506 2507 static bool 2508 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *, 2509 unsigned long *flags); 2510 2511 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas) 2512 { 2513 unsigned long flags; 2514 2515 spin_lock_irqsave(&cmd->t_state_lock, flags); 2516 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags); 2517 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2518 } 2519 2520 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2521 { 2522 int ret = 0; 2523 bool aborted = false, tas = false; 2524 2525 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) { 2526 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2527 target_wait_free_cmd(cmd, &aborted, &tas); 2528 2529 if (!aborted || tas) 2530 ret = transport_put_cmd(cmd); 2531 } else { 2532 if (wait_for_tasks) 2533 target_wait_free_cmd(cmd, &aborted, &tas); 2534 /* 2535 * Handle WRITE failure case where transport_generic_new_cmd() 2536 * has already added se_cmd to state_list, but fabric has 2537 * failed command before I/O submission. 2538 */ 2539 if (cmd->state_active) 2540 target_remove_from_state_list(cmd); 2541 2542 if (cmd->se_lun) 2543 transport_lun_remove_cmd(cmd); 2544 2545 if (!aborted || tas) 2546 ret = transport_put_cmd(cmd); 2547 } 2548 /* 2549 * If the task has been internally aborted due to TMR ABORT_TASK 2550 * or LUN_RESET, target_core_tmr.c is responsible for performing 2551 * the remaining calls to target_put_sess_cmd(), and not the 2552 * callers of this function. 2553 */ 2554 if (aborted) { 2555 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag); 2556 wait_for_completion(&cmd->cmd_wait_comp); 2557 cmd->se_tfo->release_cmd(cmd); 2558 ret = 1; 2559 } 2560 return ret; 2561 } 2562 EXPORT_SYMBOL(transport_generic_free_cmd); 2563 2564 /* target_get_sess_cmd - Add command to active ->sess_cmd_list 2565 * @se_cmd: command descriptor to add 2566 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2567 */ 2568 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref) 2569 { 2570 struct se_session *se_sess = se_cmd->se_sess; 2571 unsigned long flags; 2572 int ret = 0; 2573 2574 /* 2575 * Add a second kref if the fabric caller is expecting to handle 2576 * fabric acknowledgement that requires two target_put_sess_cmd() 2577 * invocations before se_cmd descriptor release. 2578 */ 2579 if (ack_kref) { 2580 if (!kref_get_unless_zero(&se_cmd->cmd_kref)) 2581 return -EINVAL; 2582 2583 se_cmd->se_cmd_flags |= SCF_ACK_KREF; 2584 } 2585 2586 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2587 if (se_sess->sess_tearing_down) { 2588 ret = -ESHUTDOWN; 2589 goto out; 2590 } 2591 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); 2592 out: 2593 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2594 2595 if (ret && ack_kref) 2596 target_put_sess_cmd(se_cmd); 2597 2598 return ret; 2599 } 2600 EXPORT_SYMBOL(target_get_sess_cmd); 2601 2602 static void target_free_cmd_mem(struct se_cmd *cmd) 2603 { 2604 transport_free_pages(cmd); 2605 2606 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 2607 core_tmr_release_req(cmd->se_tmr_req); 2608 if (cmd->t_task_cdb != cmd->__t_task_cdb) 2609 kfree(cmd->t_task_cdb); 2610 } 2611 2612 static void target_release_cmd_kref(struct kref *kref) 2613 { 2614 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2615 struct se_session *se_sess = se_cmd->se_sess; 2616 unsigned long flags; 2617 bool fabric_stop; 2618 2619 if (se_sess) { 2620 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2621 2622 spin_lock(&se_cmd->t_state_lock); 2623 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) && 2624 (se_cmd->transport_state & CMD_T_ABORTED); 2625 spin_unlock(&se_cmd->t_state_lock); 2626 2627 if (se_cmd->cmd_wait_set || fabric_stop) { 2628 list_del_init(&se_cmd->se_cmd_list); 2629 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2630 target_free_cmd_mem(se_cmd); 2631 complete(&se_cmd->cmd_wait_comp); 2632 return; 2633 } 2634 list_del_init(&se_cmd->se_cmd_list); 2635 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2636 } 2637 2638 target_free_cmd_mem(se_cmd); 2639 se_cmd->se_tfo->release_cmd(se_cmd); 2640 } 2641 2642 /** 2643 * target_put_sess_cmd - decrease the command reference count 2644 * @se_cmd: command to drop a reference from 2645 * 2646 * Returns 1 if and only if this target_put_sess_cmd() call caused the 2647 * refcount to drop to zero. Returns zero otherwise. 2648 */ 2649 int target_put_sess_cmd(struct se_cmd *se_cmd) 2650 { 2651 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref); 2652 } 2653 EXPORT_SYMBOL(target_put_sess_cmd); 2654 2655 /* target_sess_cmd_list_set_waiting - Flag all commands in 2656 * sess_cmd_list to complete cmd_wait_comp. Set 2657 * sess_tearing_down so no more commands are queued. 2658 * @se_sess: session to flag 2659 */ 2660 void target_sess_cmd_list_set_waiting(struct se_session *se_sess) 2661 { 2662 struct se_cmd *se_cmd, *tmp_cmd; 2663 unsigned long flags; 2664 int rc; 2665 2666 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2667 if (se_sess->sess_tearing_down) { 2668 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2669 return; 2670 } 2671 se_sess->sess_tearing_down = 1; 2672 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list); 2673 2674 list_for_each_entry_safe(se_cmd, tmp_cmd, 2675 &se_sess->sess_wait_list, se_cmd_list) { 2676 rc = kref_get_unless_zero(&se_cmd->cmd_kref); 2677 if (rc) { 2678 se_cmd->cmd_wait_set = 1; 2679 spin_lock(&se_cmd->t_state_lock); 2680 se_cmd->transport_state |= CMD_T_FABRIC_STOP; 2681 spin_unlock(&se_cmd->t_state_lock); 2682 } else 2683 list_del_init(&se_cmd->se_cmd_list); 2684 } 2685 2686 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2687 } 2688 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting); 2689 2690 /* target_wait_for_sess_cmds - Wait for outstanding descriptors 2691 * @se_sess: session to wait for active I/O 2692 */ 2693 void target_wait_for_sess_cmds(struct se_session *se_sess) 2694 { 2695 struct se_cmd *se_cmd, *tmp_cmd; 2696 unsigned long flags; 2697 bool tas; 2698 2699 list_for_each_entry_safe(se_cmd, tmp_cmd, 2700 &se_sess->sess_wait_list, se_cmd_list) { 2701 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:" 2702 " %d\n", se_cmd, se_cmd->t_state, 2703 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2704 2705 spin_lock_irqsave(&se_cmd->t_state_lock, flags); 2706 tas = (se_cmd->transport_state & CMD_T_TAS); 2707 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags); 2708 2709 if (!target_put_sess_cmd(se_cmd)) { 2710 if (tas) 2711 target_put_sess_cmd(se_cmd); 2712 } 2713 2714 wait_for_completion(&se_cmd->cmd_wait_comp); 2715 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d" 2716 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2717 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2718 2719 se_cmd->se_tfo->release_cmd(se_cmd); 2720 } 2721 2722 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2723 WARN_ON(!list_empty(&se_sess->sess_cmd_list)); 2724 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2725 2726 } 2727 EXPORT_SYMBOL(target_wait_for_sess_cmds); 2728 2729 static void target_lun_confirm(struct percpu_ref *ref) 2730 { 2731 struct se_lun *lun = container_of(ref, struct se_lun, lun_ref); 2732 2733 complete(&lun->lun_ref_comp); 2734 } 2735 2736 void transport_clear_lun_ref(struct se_lun *lun) 2737 { 2738 /* 2739 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop 2740 * the initial reference and schedule confirm kill to be 2741 * executed after one full RCU grace period has completed. 2742 */ 2743 percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm); 2744 /* 2745 * The first completion waits for percpu_ref_switch_to_atomic_rcu() 2746 * to call target_lun_confirm after lun->lun_ref has been marked 2747 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t 2748 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref 2749 * fails for all new incoming I/O. 2750 */ 2751 wait_for_completion(&lun->lun_ref_comp); 2752 /* 2753 * The second completion waits for percpu_ref_put_many() to 2754 * invoke ->release() after lun->lun_ref has switched to 2755 * atomic_t mode, and lun->lun_ref.count has reached zero. 2756 * 2757 * At this point all target-core lun->lun_ref references have 2758 * been dropped via transport_lun_remove_cmd(), and it's safe 2759 * to proceed with the remaining LUN shutdown. 2760 */ 2761 wait_for_completion(&lun->lun_shutdown_comp); 2762 } 2763 2764 static bool 2765 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop, 2766 bool *aborted, bool *tas, unsigned long *flags) 2767 __releases(&cmd->t_state_lock) 2768 __acquires(&cmd->t_state_lock) 2769 { 2770 2771 assert_spin_locked(&cmd->t_state_lock); 2772 WARN_ON_ONCE(!irqs_disabled()); 2773 2774 if (fabric_stop) 2775 cmd->transport_state |= CMD_T_FABRIC_STOP; 2776 2777 if (cmd->transport_state & CMD_T_ABORTED) 2778 *aborted = true; 2779 2780 if (cmd->transport_state & CMD_T_TAS) 2781 *tas = true; 2782 2783 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 2784 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2785 return false; 2786 2787 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 2788 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2789 return false; 2790 2791 if (!(cmd->transport_state & CMD_T_ACTIVE)) 2792 return false; 2793 2794 if (fabric_stop && *aborted) 2795 return false; 2796 2797 cmd->transport_state |= CMD_T_STOP; 2798 2799 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d," 2800 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag, 2801 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2802 2803 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 2804 2805 wait_for_completion(&cmd->t_transport_stop_comp); 2806 2807 spin_lock_irqsave(&cmd->t_state_lock, *flags); 2808 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 2809 2810 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->" 2811 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag); 2812 2813 return true; 2814 } 2815 2816 /** 2817 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp 2818 * @cmd: command to wait on 2819 */ 2820 bool transport_wait_for_tasks(struct se_cmd *cmd) 2821 { 2822 unsigned long flags; 2823 bool ret, aborted = false, tas = false; 2824 2825 spin_lock_irqsave(&cmd->t_state_lock, flags); 2826 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags); 2827 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2828 2829 return ret; 2830 } 2831 EXPORT_SYMBOL(transport_wait_for_tasks); 2832 2833 struct sense_info { 2834 u8 key; 2835 u8 asc; 2836 u8 ascq; 2837 bool add_sector_info; 2838 }; 2839 2840 static const struct sense_info sense_info_table[] = { 2841 [TCM_NO_SENSE] = { 2842 .key = NOT_READY 2843 }, 2844 [TCM_NON_EXISTENT_LUN] = { 2845 .key = ILLEGAL_REQUEST, 2846 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */ 2847 }, 2848 [TCM_UNSUPPORTED_SCSI_OPCODE] = { 2849 .key = ILLEGAL_REQUEST, 2850 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 2851 }, 2852 [TCM_SECTOR_COUNT_TOO_MANY] = { 2853 .key = ILLEGAL_REQUEST, 2854 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 2855 }, 2856 [TCM_UNKNOWN_MODE_PAGE] = { 2857 .key = ILLEGAL_REQUEST, 2858 .asc = 0x24, /* INVALID FIELD IN CDB */ 2859 }, 2860 [TCM_CHECK_CONDITION_ABORT_CMD] = { 2861 .key = ABORTED_COMMAND, 2862 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */ 2863 .ascq = 0x03, 2864 }, 2865 [TCM_INCORRECT_AMOUNT_OF_DATA] = { 2866 .key = ABORTED_COMMAND, 2867 .asc = 0x0c, /* WRITE ERROR */ 2868 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */ 2869 }, 2870 [TCM_INVALID_CDB_FIELD] = { 2871 .key = ILLEGAL_REQUEST, 2872 .asc = 0x24, /* INVALID FIELD IN CDB */ 2873 }, 2874 [TCM_INVALID_PARAMETER_LIST] = { 2875 .key = ILLEGAL_REQUEST, 2876 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */ 2877 }, 2878 [TCM_TOO_MANY_TARGET_DESCS] = { 2879 .key = ILLEGAL_REQUEST, 2880 .asc = 0x26, 2881 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */ 2882 }, 2883 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = { 2884 .key = ILLEGAL_REQUEST, 2885 .asc = 0x26, 2886 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */ 2887 }, 2888 [TCM_TOO_MANY_SEGMENT_DESCS] = { 2889 .key = ILLEGAL_REQUEST, 2890 .asc = 0x26, 2891 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */ 2892 }, 2893 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = { 2894 .key = ILLEGAL_REQUEST, 2895 .asc = 0x26, 2896 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */ 2897 }, 2898 [TCM_PARAMETER_LIST_LENGTH_ERROR] = { 2899 .key = ILLEGAL_REQUEST, 2900 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */ 2901 }, 2902 [TCM_UNEXPECTED_UNSOLICITED_DATA] = { 2903 .key = ILLEGAL_REQUEST, 2904 .asc = 0x0c, /* WRITE ERROR */ 2905 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */ 2906 }, 2907 [TCM_SERVICE_CRC_ERROR] = { 2908 .key = ABORTED_COMMAND, 2909 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */ 2910 .ascq = 0x05, /* N/A */ 2911 }, 2912 [TCM_SNACK_REJECTED] = { 2913 .key = ABORTED_COMMAND, 2914 .asc = 0x11, /* READ ERROR */ 2915 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */ 2916 }, 2917 [TCM_WRITE_PROTECTED] = { 2918 .key = DATA_PROTECT, 2919 .asc = 0x27, /* WRITE PROTECTED */ 2920 }, 2921 [TCM_ADDRESS_OUT_OF_RANGE] = { 2922 .key = ILLEGAL_REQUEST, 2923 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 2924 }, 2925 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = { 2926 .key = UNIT_ATTENTION, 2927 }, 2928 [TCM_CHECK_CONDITION_NOT_READY] = { 2929 .key = NOT_READY, 2930 }, 2931 [TCM_MISCOMPARE_VERIFY] = { 2932 .key = MISCOMPARE, 2933 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */ 2934 .ascq = 0x00, 2935 }, 2936 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = { 2937 .key = ABORTED_COMMAND, 2938 .asc = 0x10, 2939 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */ 2940 .add_sector_info = true, 2941 }, 2942 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = { 2943 .key = ABORTED_COMMAND, 2944 .asc = 0x10, 2945 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */ 2946 .add_sector_info = true, 2947 }, 2948 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = { 2949 .key = ABORTED_COMMAND, 2950 .asc = 0x10, 2951 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */ 2952 .add_sector_info = true, 2953 }, 2954 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = { 2955 .key = COPY_ABORTED, 2956 .asc = 0x0d, 2957 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */ 2958 2959 }, 2960 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = { 2961 /* 2962 * Returning ILLEGAL REQUEST would cause immediate IO errors on 2963 * Solaris initiators. Returning NOT READY instead means the 2964 * operations will be retried a finite number of times and we 2965 * can survive intermittent errors. 2966 */ 2967 .key = NOT_READY, 2968 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */ 2969 }, 2970 }; 2971 2972 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason) 2973 { 2974 const struct sense_info *si; 2975 u8 *buffer = cmd->sense_buffer; 2976 int r = (__force int)reason; 2977 u8 asc, ascq; 2978 bool desc_format = target_sense_desc_format(cmd->se_dev); 2979 2980 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key) 2981 si = &sense_info_table[r]; 2982 else 2983 si = &sense_info_table[(__force int) 2984 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE]; 2985 2986 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) { 2987 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); 2988 WARN_ON_ONCE(asc == 0); 2989 } else if (si->asc == 0) { 2990 WARN_ON_ONCE(cmd->scsi_asc == 0); 2991 asc = cmd->scsi_asc; 2992 ascq = cmd->scsi_ascq; 2993 } else { 2994 asc = si->asc; 2995 ascq = si->ascq; 2996 } 2997 2998 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq); 2999 if (si->add_sector_info) 3000 return scsi_set_sense_information(buffer, 3001 cmd->scsi_sense_length, 3002 cmd->bad_sector); 3003 3004 return 0; 3005 } 3006 3007 int 3008 transport_send_check_condition_and_sense(struct se_cmd *cmd, 3009 sense_reason_t reason, int from_transport) 3010 { 3011 unsigned long flags; 3012 3013 spin_lock_irqsave(&cmd->t_state_lock, flags); 3014 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 3015 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3016 return 0; 3017 } 3018 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 3019 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3020 3021 if (!from_transport) { 3022 int rc; 3023 3024 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 3025 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 3026 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 3027 rc = translate_sense_reason(cmd, reason); 3028 if (rc) 3029 return rc; 3030 } 3031 3032 trace_target_cmd_complete(cmd); 3033 return cmd->se_tfo->queue_status(cmd); 3034 } 3035 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 3036 3037 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status) 3038 __releases(&cmd->t_state_lock) 3039 __acquires(&cmd->t_state_lock) 3040 { 3041 int ret; 3042 3043 assert_spin_locked(&cmd->t_state_lock); 3044 WARN_ON_ONCE(!irqs_disabled()); 3045 3046 if (!(cmd->transport_state & CMD_T_ABORTED)) 3047 return 0; 3048 /* 3049 * If cmd has been aborted but either no status is to be sent or it has 3050 * already been sent, just return 3051 */ 3052 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) { 3053 if (send_status) 3054 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS; 3055 return 1; 3056 } 3057 3058 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:" 3059 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag); 3060 3061 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS; 3062 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 3063 trace_target_cmd_complete(cmd); 3064 3065 spin_unlock_irq(&cmd->t_state_lock); 3066 ret = cmd->se_tfo->queue_status(cmd); 3067 if (ret) 3068 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 3069 spin_lock_irq(&cmd->t_state_lock); 3070 3071 return 1; 3072 } 3073 3074 int transport_check_aborted_status(struct se_cmd *cmd, int send_status) 3075 { 3076 int ret; 3077 3078 spin_lock_irq(&cmd->t_state_lock); 3079 ret = __transport_check_aborted_status(cmd, send_status); 3080 spin_unlock_irq(&cmd->t_state_lock); 3081 3082 return ret; 3083 } 3084 EXPORT_SYMBOL(transport_check_aborted_status); 3085 3086 void transport_send_task_abort(struct se_cmd *cmd) 3087 { 3088 unsigned long flags; 3089 int ret; 3090 3091 spin_lock_irqsave(&cmd->t_state_lock, flags); 3092 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) { 3093 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3094 return; 3095 } 3096 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3097 3098 /* 3099 * If there are still expected incoming fabric WRITEs, we wait 3100 * until until they have completed before sending a TASK_ABORTED 3101 * response. This response with TASK_ABORTED status will be 3102 * queued back to fabric module by transport_check_aborted_status(). 3103 */ 3104 if (cmd->data_direction == DMA_TO_DEVICE) { 3105 if (cmd->se_tfo->write_pending_status(cmd) != 0) { 3106 spin_lock_irqsave(&cmd->t_state_lock, flags); 3107 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) { 3108 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3109 goto send_abort; 3110 } 3111 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS; 3112 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3113 return; 3114 } 3115 } 3116 send_abort: 3117 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 3118 3119 transport_lun_remove_cmd(cmd); 3120 3121 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n", 3122 cmd->t_task_cdb[0], cmd->tag); 3123 3124 trace_target_cmd_complete(cmd); 3125 ret = cmd->se_tfo->queue_status(cmd); 3126 if (ret) 3127 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 3128 } 3129 3130 static void target_tmr_work(struct work_struct *work) 3131 { 3132 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 3133 struct se_device *dev = cmd->se_dev; 3134 struct se_tmr_req *tmr = cmd->se_tmr_req; 3135 unsigned long flags; 3136 int ret; 3137 3138 spin_lock_irqsave(&cmd->t_state_lock, flags); 3139 if (cmd->transport_state & CMD_T_ABORTED) { 3140 tmr->response = TMR_FUNCTION_REJECTED; 3141 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3142 goto check_stop; 3143 } 3144 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3145 3146 switch (tmr->function) { 3147 case TMR_ABORT_TASK: 3148 core_tmr_abort_task(dev, tmr, cmd->se_sess); 3149 break; 3150 case TMR_ABORT_TASK_SET: 3151 case TMR_CLEAR_ACA: 3152 case TMR_CLEAR_TASK_SET: 3153 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 3154 break; 3155 case TMR_LUN_RESET: 3156 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 3157 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 3158 TMR_FUNCTION_REJECTED; 3159 if (tmr->response == TMR_FUNCTION_COMPLETE) { 3160 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 3161 cmd->orig_fe_lun, 0x29, 3162 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED); 3163 } 3164 break; 3165 case TMR_TARGET_WARM_RESET: 3166 tmr->response = TMR_FUNCTION_REJECTED; 3167 break; 3168 case TMR_TARGET_COLD_RESET: 3169 tmr->response = TMR_FUNCTION_REJECTED; 3170 break; 3171 default: 3172 pr_err("Uknown TMR function: 0x%02x.\n", 3173 tmr->function); 3174 tmr->response = TMR_FUNCTION_REJECTED; 3175 break; 3176 } 3177 3178 spin_lock_irqsave(&cmd->t_state_lock, flags); 3179 if (cmd->transport_state & CMD_T_ABORTED) { 3180 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3181 goto check_stop; 3182 } 3183 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3184 3185 cmd->se_tfo->queue_tm_rsp(cmd); 3186 3187 check_stop: 3188 transport_cmd_check_stop_to_fabric(cmd); 3189 } 3190 3191 int transport_generic_handle_tmr( 3192 struct se_cmd *cmd) 3193 { 3194 unsigned long flags; 3195 bool aborted = false; 3196 3197 spin_lock_irqsave(&cmd->t_state_lock, flags); 3198 if (cmd->transport_state & CMD_T_ABORTED) { 3199 aborted = true; 3200 } else { 3201 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 3202 cmd->transport_state |= CMD_T_ACTIVE; 3203 } 3204 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3205 3206 if (aborted) { 3207 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d" 3208 "ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function, 3209 cmd->se_tmr_req->ref_task_tag, cmd->tag); 3210 transport_cmd_check_stop_to_fabric(cmd); 3211 return 0; 3212 } 3213 3214 INIT_WORK(&cmd->work, target_tmr_work); 3215 queue_work(cmd->se_dev->tmr_wq, &cmd->work); 3216 return 0; 3217 } 3218 EXPORT_SYMBOL(transport_generic_handle_tmr); 3219 3220 bool 3221 target_check_wce(struct se_device *dev) 3222 { 3223 bool wce = false; 3224 3225 if (dev->transport->get_write_cache) 3226 wce = dev->transport->get_write_cache(dev); 3227 else if (dev->dev_attrib.emulate_write_cache > 0) 3228 wce = true; 3229 3230 return wce; 3231 } 3232 3233 bool 3234 target_check_fua(struct se_device *dev) 3235 { 3236 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0; 3237 } 3238