1 /******************************************************************************* 2 * Filename: target_core_transport.c 3 * 4 * This file contains the Generic Target Engine Core. 5 * 6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc. 7 * Copyright (c) 2005, 2006, 2007 SBE, Inc. 8 * Copyright (c) 2007-2010 Rising Tide Systems 9 * Copyright (c) 2008-2010 Linux-iSCSI.org 10 * 11 * Nicholas A. Bellinger <nab@kernel.org> 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or 16 * (at your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 26 * 27 ******************************************************************************/ 28 29 #include <linux/version.h> 30 #include <linux/net.h> 31 #include <linux/delay.h> 32 #include <linux/string.h> 33 #include <linux/timer.h> 34 #include <linux/slab.h> 35 #include <linux/blkdev.h> 36 #include <linux/spinlock.h> 37 #include <linux/kthread.h> 38 #include <linux/in.h> 39 #include <linux/cdrom.h> 40 #include <asm/unaligned.h> 41 #include <net/sock.h> 42 #include <net/tcp.h> 43 #include <scsi/scsi.h> 44 #include <scsi/scsi_cmnd.h> 45 #include <scsi/scsi_tcq.h> 46 47 #include <target/target_core_base.h> 48 #include <target/target_core_device.h> 49 #include <target/target_core_tmr.h> 50 #include <target/target_core_tpg.h> 51 #include <target/target_core_transport.h> 52 #include <target/target_core_fabric_ops.h> 53 #include <target/target_core_configfs.h> 54 55 #include "target_core_alua.h" 56 #include "target_core_hba.h" 57 #include "target_core_pr.h" 58 #include "target_core_scdb.h" 59 #include "target_core_ua.h" 60 61 static int sub_api_initialized; 62 63 static struct kmem_cache *se_cmd_cache; 64 static struct kmem_cache *se_sess_cache; 65 struct kmem_cache *se_tmr_req_cache; 66 struct kmem_cache *se_ua_cache; 67 struct kmem_cache *t10_pr_reg_cache; 68 struct kmem_cache *t10_alua_lu_gp_cache; 69 struct kmem_cache *t10_alua_lu_gp_mem_cache; 70 struct kmem_cache *t10_alua_tg_pt_gp_cache; 71 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache; 72 73 /* Used for transport_dev_get_map_*() */ 74 typedef int (*map_func_t)(struct se_task *, u32); 75 76 static int transport_generic_write_pending(struct se_cmd *); 77 static int transport_processing_thread(void *param); 78 static int __transport_execute_tasks(struct se_device *dev); 79 static void transport_complete_task_attr(struct se_cmd *cmd); 80 static int transport_complete_qf(struct se_cmd *cmd); 81 static void transport_handle_queue_full(struct se_cmd *cmd, 82 struct se_device *dev, int (*qf_callback)(struct se_cmd *)); 83 static void transport_direct_request_timeout(struct se_cmd *cmd); 84 static void transport_free_dev_tasks(struct se_cmd *cmd); 85 static u32 transport_allocate_tasks(struct se_cmd *cmd, 86 unsigned long long starting_lba, 87 enum dma_data_direction data_direction, 88 struct scatterlist *sgl, unsigned int nents); 89 static int transport_generic_get_mem(struct se_cmd *cmd); 90 static int transport_generic_remove(struct se_cmd *cmd, 91 int session_reinstatement); 92 static void transport_release_fe_cmd(struct se_cmd *cmd); 93 static void transport_remove_cmd_from_queue(struct se_cmd *cmd, 94 struct se_queue_obj *qobj); 95 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq); 96 static void transport_stop_all_task_timers(struct se_cmd *cmd); 97 98 int init_se_kmem_caches(void) 99 { 100 se_cmd_cache = kmem_cache_create("se_cmd_cache", 101 sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL); 102 if (!se_cmd_cache) { 103 pr_err("kmem_cache_create for struct se_cmd failed\n"); 104 goto out; 105 } 106 se_tmr_req_cache = kmem_cache_create("se_tmr_cache", 107 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req), 108 0, NULL); 109 if (!se_tmr_req_cache) { 110 pr_err("kmem_cache_create() for struct se_tmr_req" 111 " failed\n"); 112 goto out; 113 } 114 se_sess_cache = kmem_cache_create("se_sess_cache", 115 sizeof(struct se_session), __alignof__(struct se_session), 116 0, NULL); 117 if (!se_sess_cache) { 118 pr_err("kmem_cache_create() for struct se_session" 119 " failed\n"); 120 goto out; 121 } 122 se_ua_cache = kmem_cache_create("se_ua_cache", 123 sizeof(struct se_ua), __alignof__(struct se_ua), 124 0, NULL); 125 if (!se_ua_cache) { 126 pr_err("kmem_cache_create() for struct se_ua failed\n"); 127 goto out; 128 } 129 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 130 sizeof(struct t10_pr_registration), 131 __alignof__(struct t10_pr_registration), 0, NULL); 132 if (!t10_pr_reg_cache) { 133 pr_err("kmem_cache_create() for struct t10_pr_registration" 134 " failed\n"); 135 goto out; 136 } 137 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 138 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 139 0, NULL); 140 if (!t10_alua_lu_gp_cache) { 141 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 142 " failed\n"); 143 goto out; 144 } 145 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 146 sizeof(struct t10_alua_lu_gp_member), 147 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 148 if (!t10_alua_lu_gp_mem_cache) { 149 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 150 "cache failed\n"); 151 goto out; 152 } 153 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 154 sizeof(struct t10_alua_tg_pt_gp), 155 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 156 if (!t10_alua_tg_pt_gp_cache) { 157 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 158 "cache failed\n"); 159 goto out; 160 } 161 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create( 162 "t10_alua_tg_pt_gp_mem_cache", 163 sizeof(struct t10_alua_tg_pt_gp_member), 164 __alignof__(struct t10_alua_tg_pt_gp_member), 165 0, NULL); 166 if (!t10_alua_tg_pt_gp_mem_cache) { 167 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 168 "mem_t failed\n"); 169 goto out; 170 } 171 172 return 0; 173 out: 174 if (se_cmd_cache) 175 kmem_cache_destroy(se_cmd_cache); 176 if (se_tmr_req_cache) 177 kmem_cache_destroy(se_tmr_req_cache); 178 if (se_sess_cache) 179 kmem_cache_destroy(se_sess_cache); 180 if (se_ua_cache) 181 kmem_cache_destroy(se_ua_cache); 182 if (t10_pr_reg_cache) 183 kmem_cache_destroy(t10_pr_reg_cache); 184 if (t10_alua_lu_gp_cache) 185 kmem_cache_destroy(t10_alua_lu_gp_cache); 186 if (t10_alua_lu_gp_mem_cache) 187 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 188 if (t10_alua_tg_pt_gp_cache) 189 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 190 if (t10_alua_tg_pt_gp_mem_cache) 191 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 192 return -ENOMEM; 193 } 194 195 void release_se_kmem_caches(void) 196 { 197 kmem_cache_destroy(se_cmd_cache); 198 kmem_cache_destroy(se_tmr_req_cache); 199 kmem_cache_destroy(se_sess_cache); 200 kmem_cache_destroy(se_ua_cache); 201 kmem_cache_destroy(t10_pr_reg_cache); 202 kmem_cache_destroy(t10_alua_lu_gp_cache); 203 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 204 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 205 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 206 } 207 208 /* This code ensures unique mib indexes are handed out. */ 209 static DEFINE_SPINLOCK(scsi_mib_index_lock); 210 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 211 212 /* 213 * Allocate a new row index for the entry type specified 214 */ 215 u32 scsi_get_new_index(scsi_index_t type) 216 { 217 u32 new_index; 218 219 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 220 221 spin_lock(&scsi_mib_index_lock); 222 new_index = ++scsi_mib_index[type]; 223 spin_unlock(&scsi_mib_index_lock); 224 225 return new_index; 226 } 227 228 void transport_init_queue_obj(struct se_queue_obj *qobj) 229 { 230 atomic_set(&qobj->queue_cnt, 0); 231 INIT_LIST_HEAD(&qobj->qobj_list); 232 init_waitqueue_head(&qobj->thread_wq); 233 spin_lock_init(&qobj->cmd_queue_lock); 234 } 235 EXPORT_SYMBOL(transport_init_queue_obj); 236 237 static int transport_subsystem_reqmods(void) 238 { 239 int ret; 240 241 ret = request_module("target_core_iblock"); 242 if (ret != 0) 243 pr_err("Unable to load target_core_iblock\n"); 244 245 ret = request_module("target_core_file"); 246 if (ret != 0) 247 pr_err("Unable to load target_core_file\n"); 248 249 ret = request_module("target_core_pscsi"); 250 if (ret != 0) 251 pr_err("Unable to load target_core_pscsi\n"); 252 253 ret = request_module("target_core_stgt"); 254 if (ret != 0) 255 pr_err("Unable to load target_core_stgt\n"); 256 257 return 0; 258 } 259 260 int transport_subsystem_check_init(void) 261 { 262 int ret; 263 264 if (sub_api_initialized) 265 return 0; 266 /* 267 * Request the loading of known TCM subsystem plugins.. 268 */ 269 ret = transport_subsystem_reqmods(); 270 if (ret < 0) 271 return ret; 272 273 sub_api_initialized = 1; 274 return 0; 275 } 276 277 struct se_session *transport_init_session(void) 278 { 279 struct se_session *se_sess; 280 281 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 282 if (!se_sess) { 283 pr_err("Unable to allocate struct se_session from" 284 " se_sess_cache\n"); 285 return ERR_PTR(-ENOMEM); 286 } 287 INIT_LIST_HEAD(&se_sess->sess_list); 288 INIT_LIST_HEAD(&se_sess->sess_acl_list); 289 290 return se_sess; 291 } 292 EXPORT_SYMBOL(transport_init_session); 293 294 /* 295 * Called with spin_lock_bh(&struct se_portal_group->session_lock called. 296 */ 297 void __transport_register_session( 298 struct se_portal_group *se_tpg, 299 struct se_node_acl *se_nacl, 300 struct se_session *se_sess, 301 void *fabric_sess_ptr) 302 { 303 unsigned char buf[PR_REG_ISID_LEN]; 304 305 se_sess->se_tpg = se_tpg; 306 se_sess->fabric_sess_ptr = fabric_sess_ptr; 307 /* 308 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 309 * 310 * Only set for struct se_session's that will actually be moving I/O. 311 * eg: *NOT* discovery sessions. 312 */ 313 if (se_nacl) { 314 /* 315 * If the fabric module supports an ISID based TransportID, 316 * save this value in binary from the fabric I_T Nexus now. 317 */ 318 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 319 memset(&buf[0], 0, PR_REG_ISID_LEN); 320 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 321 &buf[0], PR_REG_ISID_LEN); 322 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 323 } 324 spin_lock_irq(&se_nacl->nacl_sess_lock); 325 /* 326 * The se_nacl->nacl_sess pointer will be set to the 327 * last active I_T Nexus for each struct se_node_acl. 328 */ 329 se_nacl->nacl_sess = se_sess; 330 331 list_add_tail(&se_sess->sess_acl_list, 332 &se_nacl->acl_sess_list); 333 spin_unlock_irq(&se_nacl->nacl_sess_lock); 334 } 335 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 336 337 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 338 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr); 339 } 340 EXPORT_SYMBOL(__transport_register_session); 341 342 void transport_register_session( 343 struct se_portal_group *se_tpg, 344 struct se_node_acl *se_nacl, 345 struct se_session *se_sess, 346 void *fabric_sess_ptr) 347 { 348 spin_lock_bh(&se_tpg->session_lock); 349 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 350 spin_unlock_bh(&se_tpg->session_lock); 351 } 352 EXPORT_SYMBOL(transport_register_session); 353 354 void transport_deregister_session_configfs(struct se_session *se_sess) 355 { 356 struct se_node_acl *se_nacl; 357 unsigned long flags; 358 /* 359 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 360 */ 361 se_nacl = se_sess->se_node_acl; 362 if (se_nacl) { 363 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 364 list_del(&se_sess->sess_acl_list); 365 /* 366 * If the session list is empty, then clear the pointer. 367 * Otherwise, set the struct se_session pointer from the tail 368 * element of the per struct se_node_acl active session list. 369 */ 370 if (list_empty(&se_nacl->acl_sess_list)) 371 se_nacl->nacl_sess = NULL; 372 else { 373 se_nacl->nacl_sess = container_of( 374 se_nacl->acl_sess_list.prev, 375 struct se_session, sess_acl_list); 376 } 377 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 378 } 379 } 380 EXPORT_SYMBOL(transport_deregister_session_configfs); 381 382 void transport_free_session(struct se_session *se_sess) 383 { 384 kmem_cache_free(se_sess_cache, se_sess); 385 } 386 EXPORT_SYMBOL(transport_free_session); 387 388 void transport_deregister_session(struct se_session *se_sess) 389 { 390 struct se_portal_group *se_tpg = se_sess->se_tpg; 391 struct se_node_acl *se_nacl; 392 unsigned long flags; 393 394 if (!se_tpg) { 395 transport_free_session(se_sess); 396 return; 397 } 398 399 spin_lock_irqsave(&se_tpg->session_lock, flags); 400 list_del(&se_sess->sess_list); 401 se_sess->se_tpg = NULL; 402 se_sess->fabric_sess_ptr = NULL; 403 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 404 405 /* 406 * Determine if we need to do extra work for this initiator node's 407 * struct se_node_acl if it had been previously dynamically generated. 408 */ 409 se_nacl = se_sess->se_node_acl; 410 if (se_nacl) { 411 spin_lock_irqsave(&se_tpg->acl_node_lock, flags); 412 if (se_nacl->dynamic_node_acl) { 413 if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache( 414 se_tpg)) { 415 list_del(&se_nacl->acl_list); 416 se_tpg->num_node_acls--; 417 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); 418 419 core_tpg_wait_for_nacl_pr_ref(se_nacl); 420 core_free_device_list_for_node(se_nacl, se_tpg); 421 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg, 422 se_nacl); 423 spin_lock_irqsave(&se_tpg->acl_node_lock, flags); 424 } 425 } 426 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); 427 } 428 429 transport_free_session(se_sess); 430 431 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 432 se_tpg->se_tpg_tfo->get_fabric_name()); 433 } 434 EXPORT_SYMBOL(transport_deregister_session); 435 436 /* 437 * Called with cmd->t_state_lock held. 438 */ 439 static void transport_all_task_dev_remove_state(struct se_cmd *cmd) 440 { 441 struct se_device *dev; 442 struct se_task *task; 443 unsigned long flags; 444 445 list_for_each_entry(task, &cmd->t_task_list, t_list) { 446 dev = task->se_dev; 447 if (!dev) 448 continue; 449 450 if (atomic_read(&task->task_active)) 451 continue; 452 453 if (!atomic_read(&task->task_state_active)) 454 continue; 455 456 spin_lock_irqsave(&dev->execute_task_lock, flags); 457 list_del(&task->t_state_list); 458 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n", 459 cmd->se_tfo->get_task_tag(cmd), dev, task); 460 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 461 462 atomic_set(&task->task_state_active, 0); 463 atomic_dec(&cmd->t_task_cdbs_ex_left); 464 } 465 } 466 467 /* transport_cmd_check_stop(): 468 * 469 * 'transport_off = 1' determines if t_transport_active should be cleared. 470 * 'transport_off = 2' determines if task_dev_state should be removed. 471 * 472 * A non-zero u8 t_state sets cmd->t_state. 473 * Returns 1 when command is stopped, else 0. 474 */ 475 static int transport_cmd_check_stop( 476 struct se_cmd *cmd, 477 int transport_off, 478 u8 t_state) 479 { 480 unsigned long flags; 481 482 spin_lock_irqsave(&cmd->t_state_lock, flags); 483 /* 484 * Determine if IOCTL context caller in requesting the stopping of this 485 * command for LUN shutdown purposes. 486 */ 487 if (atomic_read(&cmd->transport_lun_stop)) { 488 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)" 489 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__, 490 cmd->se_tfo->get_task_tag(cmd)); 491 492 cmd->deferred_t_state = cmd->t_state; 493 cmd->t_state = TRANSPORT_DEFERRED_CMD; 494 atomic_set(&cmd->t_transport_active, 0); 495 if (transport_off == 2) 496 transport_all_task_dev_remove_state(cmd); 497 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 498 499 complete(&cmd->transport_lun_stop_comp); 500 return 1; 501 } 502 /* 503 * Determine if frontend context caller is requesting the stopping of 504 * this command for frontend exceptions. 505 */ 506 if (atomic_read(&cmd->t_transport_stop)) { 507 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) ==" 508 " TRUE for ITT: 0x%08x\n", __func__, __LINE__, 509 cmd->se_tfo->get_task_tag(cmd)); 510 511 cmd->deferred_t_state = cmd->t_state; 512 cmd->t_state = TRANSPORT_DEFERRED_CMD; 513 if (transport_off == 2) 514 transport_all_task_dev_remove_state(cmd); 515 516 /* 517 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff 518 * to FE. 519 */ 520 if (transport_off == 2) 521 cmd->se_lun = NULL; 522 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 523 524 complete(&cmd->t_transport_stop_comp); 525 return 1; 526 } 527 if (transport_off) { 528 atomic_set(&cmd->t_transport_active, 0); 529 if (transport_off == 2) { 530 transport_all_task_dev_remove_state(cmd); 531 /* 532 * Clear struct se_cmd->se_lun before the transport_off == 2 533 * handoff to fabric module. 534 */ 535 cmd->se_lun = NULL; 536 /* 537 * Some fabric modules like tcm_loop can release 538 * their internally allocated I/O reference now and 539 * struct se_cmd now. 540 */ 541 if (cmd->se_tfo->check_stop_free != NULL) { 542 spin_unlock_irqrestore( 543 &cmd->t_state_lock, flags); 544 545 cmd->se_tfo->check_stop_free(cmd); 546 return 1; 547 } 548 } 549 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 550 551 return 0; 552 } else if (t_state) 553 cmd->t_state = t_state; 554 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 555 556 return 0; 557 } 558 559 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 560 { 561 return transport_cmd_check_stop(cmd, 2, 0); 562 } 563 564 static void transport_lun_remove_cmd(struct se_cmd *cmd) 565 { 566 struct se_lun *lun = cmd->se_lun; 567 unsigned long flags; 568 569 if (!lun) 570 return; 571 572 spin_lock_irqsave(&cmd->t_state_lock, flags); 573 if (!atomic_read(&cmd->transport_dev_active)) { 574 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 575 goto check_lun; 576 } 577 atomic_set(&cmd->transport_dev_active, 0); 578 transport_all_task_dev_remove_state(cmd); 579 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 580 581 582 check_lun: 583 spin_lock_irqsave(&lun->lun_cmd_lock, flags); 584 if (atomic_read(&cmd->transport_lun_active)) { 585 list_del(&cmd->se_lun_node); 586 atomic_set(&cmd->transport_lun_active, 0); 587 #if 0 588 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n" 589 cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun); 590 #endif 591 } 592 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags); 593 } 594 595 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove) 596 { 597 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj); 598 transport_lun_remove_cmd(cmd); 599 600 if (transport_cmd_check_stop_to_fabric(cmd)) 601 return; 602 if (remove) 603 transport_generic_remove(cmd, 0); 604 } 605 606 void transport_cmd_finish_abort_tmr(struct se_cmd *cmd) 607 { 608 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj); 609 610 if (transport_cmd_check_stop_to_fabric(cmd)) 611 return; 612 613 transport_generic_remove(cmd, 0); 614 } 615 616 static void transport_add_cmd_to_queue( 617 struct se_cmd *cmd, 618 int t_state) 619 { 620 struct se_device *dev = cmd->se_dev; 621 struct se_queue_obj *qobj = &dev->dev_queue_obj; 622 unsigned long flags; 623 624 INIT_LIST_HEAD(&cmd->se_queue_node); 625 626 if (t_state) { 627 spin_lock_irqsave(&cmd->t_state_lock, flags); 628 cmd->t_state = t_state; 629 atomic_set(&cmd->t_transport_active, 1); 630 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 631 } 632 633 spin_lock_irqsave(&qobj->cmd_queue_lock, flags); 634 if (cmd->se_cmd_flags & SCF_EMULATE_QUEUE_FULL) { 635 cmd->se_cmd_flags &= ~SCF_EMULATE_QUEUE_FULL; 636 list_add(&cmd->se_queue_node, &qobj->qobj_list); 637 } else 638 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list); 639 atomic_inc(&cmd->t_transport_queue_active); 640 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags); 641 642 atomic_inc(&qobj->queue_cnt); 643 wake_up_interruptible(&qobj->thread_wq); 644 } 645 646 static struct se_cmd * 647 transport_get_cmd_from_queue(struct se_queue_obj *qobj) 648 { 649 struct se_cmd *cmd; 650 unsigned long flags; 651 652 spin_lock_irqsave(&qobj->cmd_queue_lock, flags); 653 if (list_empty(&qobj->qobj_list)) { 654 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags); 655 return NULL; 656 } 657 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node); 658 659 atomic_dec(&cmd->t_transport_queue_active); 660 661 list_del(&cmd->se_queue_node); 662 atomic_dec(&qobj->queue_cnt); 663 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags); 664 665 return cmd; 666 } 667 668 static void transport_remove_cmd_from_queue(struct se_cmd *cmd, 669 struct se_queue_obj *qobj) 670 { 671 struct se_cmd *t; 672 unsigned long flags; 673 674 spin_lock_irqsave(&qobj->cmd_queue_lock, flags); 675 if (!atomic_read(&cmd->t_transport_queue_active)) { 676 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags); 677 return; 678 } 679 680 list_for_each_entry(t, &qobj->qobj_list, se_queue_node) 681 if (t == cmd) { 682 atomic_dec(&cmd->t_transport_queue_active); 683 atomic_dec(&qobj->queue_cnt); 684 list_del(&cmd->se_queue_node); 685 break; 686 } 687 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags); 688 689 if (atomic_read(&cmd->t_transport_queue_active)) { 690 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n", 691 cmd->se_tfo->get_task_tag(cmd), 692 atomic_read(&cmd->t_transport_queue_active)); 693 } 694 } 695 696 /* 697 * Completion function used by TCM subsystem plugins (such as FILEIO) 698 * for queueing up response from struct se_subsystem_api->do_task() 699 */ 700 void transport_complete_sync_cache(struct se_cmd *cmd, int good) 701 { 702 struct se_task *task = list_entry(cmd->t_task_list.next, 703 struct se_task, t_list); 704 705 if (good) { 706 cmd->scsi_status = SAM_STAT_GOOD; 707 task->task_scsi_status = GOOD; 708 } else { 709 task->task_scsi_status = SAM_STAT_CHECK_CONDITION; 710 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST; 711 task->task_se_cmd->transport_error_status = 712 PYX_TRANSPORT_ILLEGAL_REQUEST; 713 } 714 715 transport_complete_task(task, good); 716 } 717 EXPORT_SYMBOL(transport_complete_sync_cache); 718 719 /* transport_complete_task(): 720 * 721 * Called from interrupt and non interrupt context depending 722 * on the transport plugin. 723 */ 724 void transport_complete_task(struct se_task *task, int success) 725 { 726 struct se_cmd *cmd = task->task_se_cmd; 727 struct se_device *dev = task->se_dev; 728 int t_state; 729 unsigned long flags; 730 #if 0 731 pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task, 732 cmd->t_task_cdb[0], dev); 733 #endif 734 if (dev) 735 atomic_inc(&dev->depth_left); 736 737 spin_lock_irqsave(&cmd->t_state_lock, flags); 738 atomic_set(&task->task_active, 0); 739 740 /* 741 * See if any sense data exists, if so set the TASK_SENSE flag. 742 * Also check for any other post completion work that needs to be 743 * done by the plugins. 744 */ 745 if (dev && dev->transport->transport_complete) { 746 if (dev->transport->transport_complete(task) != 0) { 747 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE; 748 task->task_sense = 1; 749 success = 1; 750 } 751 } 752 753 /* 754 * See if we are waiting for outstanding struct se_task 755 * to complete for an exception condition 756 */ 757 if (atomic_read(&task->task_stop)) { 758 /* 759 * Decrement cmd->t_se_count if this task had 760 * previously thrown its timeout exception handler. 761 */ 762 if (atomic_read(&task->task_timeout)) { 763 atomic_dec(&cmd->t_se_count); 764 atomic_set(&task->task_timeout, 0); 765 } 766 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 767 768 complete(&task->task_stop_comp); 769 return; 770 } 771 /* 772 * If the task's timeout handler has fired, use the t_task_cdbs_timeout 773 * left counter to determine when the struct se_cmd is ready to be queued to 774 * the processing thread. 775 */ 776 if (atomic_read(&task->task_timeout)) { 777 if (!atomic_dec_and_test( 778 &cmd->t_task_cdbs_timeout_left)) { 779 spin_unlock_irqrestore(&cmd->t_state_lock, 780 flags); 781 return; 782 } 783 t_state = TRANSPORT_COMPLETE_TIMEOUT; 784 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 785 786 transport_add_cmd_to_queue(cmd, t_state); 787 return; 788 } 789 atomic_dec(&cmd->t_task_cdbs_timeout_left); 790 791 /* 792 * Decrement the outstanding t_task_cdbs_left count. The last 793 * struct se_task from struct se_cmd will complete itself into the 794 * device queue depending upon int success. 795 */ 796 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) { 797 if (!success) 798 cmd->t_tasks_failed = 1; 799 800 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 801 return; 802 } 803 804 if (!success || cmd->t_tasks_failed) { 805 t_state = TRANSPORT_COMPLETE_FAILURE; 806 if (!task->task_error_status) { 807 task->task_error_status = 808 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE; 809 cmd->transport_error_status = 810 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE; 811 } 812 } else { 813 atomic_set(&cmd->t_transport_complete, 1); 814 t_state = TRANSPORT_COMPLETE_OK; 815 } 816 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 817 818 transport_add_cmd_to_queue(cmd, t_state); 819 } 820 EXPORT_SYMBOL(transport_complete_task); 821 822 /* 823 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's 824 * struct se_task list are ready to be added to the active execution list 825 * struct se_device 826 827 * Called with se_dev_t->execute_task_lock called. 828 */ 829 static inline int transport_add_task_check_sam_attr( 830 struct se_task *task, 831 struct se_task *task_prev, 832 struct se_device *dev) 833 { 834 /* 835 * No SAM Task attribute emulation enabled, add to tail of 836 * execution queue 837 */ 838 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) { 839 list_add_tail(&task->t_execute_list, &dev->execute_task_list); 840 return 0; 841 } 842 /* 843 * HEAD_OF_QUEUE attribute for received CDB, which means 844 * the first task that is associated with a struct se_cmd goes to 845 * head of the struct se_device->execute_task_list, and task_prev 846 * after that for each subsequent task 847 */ 848 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) { 849 list_add(&task->t_execute_list, 850 (task_prev != NULL) ? 851 &task_prev->t_execute_list : 852 &dev->execute_task_list); 853 854 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x" 855 " in execution queue\n", 856 task->task_se_cmd->t_task_cdb[0]); 857 return 1; 858 } 859 /* 860 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been 861 * transitioned from Dermant -> Active state, and are added to the end 862 * of the struct se_device->execute_task_list 863 */ 864 list_add_tail(&task->t_execute_list, &dev->execute_task_list); 865 return 0; 866 } 867 868 /* __transport_add_task_to_execute_queue(): 869 * 870 * Called with se_dev_t->execute_task_lock called. 871 */ 872 static void __transport_add_task_to_execute_queue( 873 struct se_task *task, 874 struct se_task *task_prev, 875 struct se_device *dev) 876 { 877 int head_of_queue; 878 879 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev); 880 atomic_inc(&dev->execute_tasks); 881 882 if (atomic_read(&task->task_state_active)) 883 return; 884 /* 885 * Determine if this task needs to go to HEAD_OF_QUEUE for the 886 * state list as well. Running with SAM Task Attribute emulation 887 * will always return head_of_queue == 0 here 888 */ 889 if (head_of_queue) 890 list_add(&task->t_state_list, (task_prev) ? 891 &task_prev->t_state_list : 892 &dev->state_task_list); 893 else 894 list_add_tail(&task->t_state_list, &dev->state_task_list); 895 896 atomic_set(&task->task_state_active, 1); 897 898 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n", 899 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd), 900 task, dev); 901 } 902 903 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd) 904 { 905 struct se_device *dev; 906 struct se_task *task; 907 unsigned long flags; 908 909 spin_lock_irqsave(&cmd->t_state_lock, flags); 910 list_for_each_entry(task, &cmd->t_task_list, t_list) { 911 dev = task->se_dev; 912 913 if (atomic_read(&task->task_state_active)) 914 continue; 915 916 spin_lock(&dev->execute_task_lock); 917 list_add_tail(&task->t_state_list, &dev->state_task_list); 918 atomic_set(&task->task_state_active, 1); 919 920 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n", 921 task->task_se_cmd->se_tfo->get_task_tag( 922 task->task_se_cmd), task, dev); 923 924 spin_unlock(&dev->execute_task_lock); 925 } 926 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 927 } 928 929 static void transport_add_tasks_from_cmd(struct se_cmd *cmd) 930 { 931 struct se_device *dev = cmd->se_dev; 932 struct se_task *task, *task_prev = NULL; 933 unsigned long flags; 934 935 spin_lock_irqsave(&dev->execute_task_lock, flags); 936 list_for_each_entry(task, &cmd->t_task_list, t_list) { 937 if (atomic_read(&task->task_execute_queue)) 938 continue; 939 /* 940 * __transport_add_task_to_execute_queue() handles the 941 * SAM Task Attribute emulation if enabled 942 */ 943 __transport_add_task_to_execute_queue(task, task_prev, dev); 944 atomic_set(&task->task_execute_queue, 1); 945 task_prev = task; 946 } 947 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 948 } 949 950 /* transport_remove_task_from_execute_queue(): 951 * 952 * 953 */ 954 void transport_remove_task_from_execute_queue( 955 struct se_task *task, 956 struct se_device *dev) 957 { 958 unsigned long flags; 959 960 if (atomic_read(&task->task_execute_queue) == 0) { 961 dump_stack(); 962 return; 963 } 964 965 spin_lock_irqsave(&dev->execute_task_lock, flags); 966 list_del(&task->t_execute_list); 967 atomic_set(&task->task_execute_queue, 0); 968 atomic_dec(&dev->execute_tasks); 969 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 970 } 971 972 /* 973 * Handle QUEUE_FULL / -EAGAIN status 974 */ 975 976 static void target_qf_do_work(struct work_struct *work) 977 { 978 struct se_device *dev = container_of(work, struct se_device, 979 qf_work_queue); 980 struct se_cmd *cmd, *cmd_tmp; 981 982 spin_lock_irq(&dev->qf_cmd_lock); 983 list_for_each_entry_safe(cmd, cmd_tmp, &dev->qf_cmd_list, se_qf_node) { 984 985 list_del(&cmd->se_qf_node); 986 atomic_dec(&dev->dev_qf_count); 987 smp_mb__after_atomic_dec(); 988 spin_unlock_irq(&dev->qf_cmd_lock); 989 990 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 991 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd, 992 (cmd->t_state == TRANSPORT_COMPLETE_OK) ? "COMPLETE_OK" : 993 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 994 : "UNKNOWN"); 995 /* 996 * The SCF_EMULATE_QUEUE_FULL flag will be cleared once se_cmd 997 * has been added to head of queue 998 */ 999 transport_add_cmd_to_queue(cmd, cmd->t_state); 1000 1001 spin_lock_irq(&dev->qf_cmd_lock); 1002 } 1003 spin_unlock_irq(&dev->qf_cmd_lock); 1004 } 1005 1006 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 1007 { 1008 switch (cmd->data_direction) { 1009 case DMA_NONE: 1010 return "NONE"; 1011 case DMA_FROM_DEVICE: 1012 return "READ"; 1013 case DMA_TO_DEVICE: 1014 return "WRITE"; 1015 case DMA_BIDIRECTIONAL: 1016 return "BIDI"; 1017 default: 1018 break; 1019 } 1020 1021 return "UNKNOWN"; 1022 } 1023 1024 void transport_dump_dev_state( 1025 struct se_device *dev, 1026 char *b, 1027 int *bl) 1028 { 1029 *bl += sprintf(b + *bl, "Status: "); 1030 switch (dev->dev_status) { 1031 case TRANSPORT_DEVICE_ACTIVATED: 1032 *bl += sprintf(b + *bl, "ACTIVATED"); 1033 break; 1034 case TRANSPORT_DEVICE_DEACTIVATED: 1035 *bl += sprintf(b + *bl, "DEACTIVATED"); 1036 break; 1037 case TRANSPORT_DEVICE_SHUTDOWN: 1038 *bl += sprintf(b + *bl, "SHUTDOWN"); 1039 break; 1040 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED: 1041 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED: 1042 *bl += sprintf(b + *bl, "OFFLINE"); 1043 break; 1044 default: 1045 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status); 1046 break; 1047 } 1048 1049 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d", 1050 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left), 1051 dev->queue_depth); 1052 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n", 1053 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors); 1054 *bl += sprintf(b + *bl, " "); 1055 } 1056 1057 /* transport_release_all_cmds(): 1058 * 1059 * 1060 */ 1061 static void transport_release_all_cmds(struct se_device *dev) 1062 { 1063 struct se_cmd *cmd, *tcmd; 1064 int bug_out = 0, t_state; 1065 unsigned long flags; 1066 1067 spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags); 1068 list_for_each_entry_safe(cmd, tcmd, &dev->dev_queue_obj.qobj_list, 1069 se_queue_node) { 1070 t_state = cmd->t_state; 1071 list_del(&cmd->se_queue_node); 1072 spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock, 1073 flags); 1074 1075 pr_err("Releasing ITT: 0x%08x, i_state: %u," 1076 " t_state: %u directly\n", 1077 cmd->se_tfo->get_task_tag(cmd), 1078 cmd->se_tfo->get_cmd_state(cmd), t_state); 1079 1080 transport_release_fe_cmd(cmd); 1081 bug_out = 1; 1082 1083 spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags); 1084 } 1085 spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock, flags); 1086 #if 0 1087 if (bug_out) 1088 BUG(); 1089 #endif 1090 } 1091 1092 void transport_dump_vpd_proto_id( 1093 struct t10_vpd *vpd, 1094 unsigned char *p_buf, 1095 int p_buf_len) 1096 { 1097 unsigned char buf[VPD_TMP_BUF_SIZE]; 1098 int len; 1099 1100 memset(buf, 0, VPD_TMP_BUF_SIZE); 1101 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 1102 1103 switch (vpd->protocol_identifier) { 1104 case 0x00: 1105 sprintf(buf+len, "Fibre Channel\n"); 1106 break; 1107 case 0x10: 1108 sprintf(buf+len, "Parallel SCSI\n"); 1109 break; 1110 case 0x20: 1111 sprintf(buf+len, "SSA\n"); 1112 break; 1113 case 0x30: 1114 sprintf(buf+len, "IEEE 1394\n"); 1115 break; 1116 case 0x40: 1117 sprintf(buf+len, "SCSI Remote Direct Memory Access" 1118 " Protocol\n"); 1119 break; 1120 case 0x50: 1121 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 1122 break; 1123 case 0x60: 1124 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 1125 break; 1126 case 0x70: 1127 sprintf(buf+len, "Automation/Drive Interface Transport" 1128 " Protocol\n"); 1129 break; 1130 case 0x80: 1131 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 1132 break; 1133 default: 1134 sprintf(buf+len, "Unknown 0x%02x\n", 1135 vpd->protocol_identifier); 1136 break; 1137 } 1138 1139 if (p_buf) 1140 strncpy(p_buf, buf, p_buf_len); 1141 else 1142 pr_debug("%s", buf); 1143 } 1144 1145 void 1146 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 1147 { 1148 /* 1149 * Check if the Protocol Identifier Valid (PIV) bit is set.. 1150 * 1151 * from spc3r23.pdf section 7.5.1 1152 */ 1153 if (page_83[1] & 0x80) { 1154 vpd->protocol_identifier = (page_83[0] & 0xf0); 1155 vpd->protocol_identifier_set = 1; 1156 transport_dump_vpd_proto_id(vpd, NULL, 0); 1157 } 1158 } 1159 EXPORT_SYMBOL(transport_set_vpd_proto_id); 1160 1161 int transport_dump_vpd_assoc( 1162 struct t10_vpd *vpd, 1163 unsigned char *p_buf, 1164 int p_buf_len) 1165 { 1166 unsigned char buf[VPD_TMP_BUF_SIZE]; 1167 int ret = 0; 1168 int len; 1169 1170 memset(buf, 0, VPD_TMP_BUF_SIZE); 1171 len = sprintf(buf, "T10 VPD Identifier Association: "); 1172 1173 switch (vpd->association) { 1174 case 0x00: 1175 sprintf(buf+len, "addressed logical unit\n"); 1176 break; 1177 case 0x10: 1178 sprintf(buf+len, "target port\n"); 1179 break; 1180 case 0x20: 1181 sprintf(buf+len, "SCSI target device\n"); 1182 break; 1183 default: 1184 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 1185 ret = -EINVAL; 1186 break; 1187 } 1188 1189 if (p_buf) 1190 strncpy(p_buf, buf, p_buf_len); 1191 else 1192 pr_debug("%s", buf); 1193 1194 return ret; 1195 } 1196 1197 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 1198 { 1199 /* 1200 * The VPD identification association.. 1201 * 1202 * from spc3r23.pdf Section 7.6.3.1 Table 297 1203 */ 1204 vpd->association = (page_83[1] & 0x30); 1205 return transport_dump_vpd_assoc(vpd, NULL, 0); 1206 } 1207 EXPORT_SYMBOL(transport_set_vpd_assoc); 1208 1209 int transport_dump_vpd_ident_type( 1210 struct t10_vpd *vpd, 1211 unsigned char *p_buf, 1212 int p_buf_len) 1213 { 1214 unsigned char buf[VPD_TMP_BUF_SIZE]; 1215 int ret = 0; 1216 int len; 1217 1218 memset(buf, 0, VPD_TMP_BUF_SIZE); 1219 len = sprintf(buf, "T10 VPD Identifier Type: "); 1220 1221 switch (vpd->device_identifier_type) { 1222 case 0x00: 1223 sprintf(buf+len, "Vendor specific\n"); 1224 break; 1225 case 0x01: 1226 sprintf(buf+len, "T10 Vendor ID based\n"); 1227 break; 1228 case 0x02: 1229 sprintf(buf+len, "EUI-64 based\n"); 1230 break; 1231 case 0x03: 1232 sprintf(buf+len, "NAA\n"); 1233 break; 1234 case 0x04: 1235 sprintf(buf+len, "Relative target port identifier\n"); 1236 break; 1237 case 0x08: 1238 sprintf(buf+len, "SCSI name string\n"); 1239 break; 1240 default: 1241 sprintf(buf+len, "Unsupported: 0x%02x\n", 1242 vpd->device_identifier_type); 1243 ret = -EINVAL; 1244 break; 1245 } 1246 1247 if (p_buf) { 1248 if (p_buf_len < strlen(buf)+1) 1249 return -EINVAL; 1250 strncpy(p_buf, buf, p_buf_len); 1251 } else { 1252 pr_debug("%s", buf); 1253 } 1254 1255 return ret; 1256 } 1257 1258 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 1259 { 1260 /* 1261 * The VPD identifier type.. 1262 * 1263 * from spc3r23.pdf Section 7.6.3.1 Table 298 1264 */ 1265 vpd->device_identifier_type = (page_83[1] & 0x0f); 1266 return transport_dump_vpd_ident_type(vpd, NULL, 0); 1267 } 1268 EXPORT_SYMBOL(transport_set_vpd_ident_type); 1269 1270 int transport_dump_vpd_ident( 1271 struct t10_vpd *vpd, 1272 unsigned char *p_buf, 1273 int p_buf_len) 1274 { 1275 unsigned char buf[VPD_TMP_BUF_SIZE]; 1276 int ret = 0; 1277 1278 memset(buf, 0, VPD_TMP_BUF_SIZE); 1279 1280 switch (vpd->device_identifier_code_set) { 1281 case 0x01: /* Binary */ 1282 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n", 1283 &vpd->device_identifier[0]); 1284 break; 1285 case 0x02: /* ASCII */ 1286 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n", 1287 &vpd->device_identifier[0]); 1288 break; 1289 case 0x03: /* UTF-8 */ 1290 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n", 1291 &vpd->device_identifier[0]); 1292 break; 1293 default: 1294 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 1295 " 0x%02x", vpd->device_identifier_code_set); 1296 ret = -EINVAL; 1297 break; 1298 } 1299 1300 if (p_buf) 1301 strncpy(p_buf, buf, p_buf_len); 1302 else 1303 pr_debug("%s", buf); 1304 1305 return ret; 1306 } 1307 1308 int 1309 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 1310 { 1311 static const char hex_str[] = "0123456789abcdef"; 1312 int j = 0, i = 4; /* offset to start of the identifer */ 1313 1314 /* 1315 * The VPD Code Set (encoding) 1316 * 1317 * from spc3r23.pdf Section 7.6.3.1 Table 296 1318 */ 1319 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 1320 switch (vpd->device_identifier_code_set) { 1321 case 0x01: /* Binary */ 1322 vpd->device_identifier[j++] = 1323 hex_str[vpd->device_identifier_type]; 1324 while (i < (4 + page_83[3])) { 1325 vpd->device_identifier[j++] = 1326 hex_str[(page_83[i] & 0xf0) >> 4]; 1327 vpd->device_identifier[j++] = 1328 hex_str[page_83[i] & 0x0f]; 1329 i++; 1330 } 1331 break; 1332 case 0x02: /* ASCII */ 1333 case 0x03: /* UTF-8 */ 1334 while (i < (4 + page_83[3])) 1335 vpd->device_identifier[j++] = page_83[i++]; 1336 break; 1337 default: 1338 break; 1339 } 1340 1341 return transport_dump_vpd_ident(vpd, NULL, 0); 1342 } 1343 EXPORT_SYMBOL(transport_set_vpd_ident); 1344 1345 static void core_setup_task_attr_emulation(struct se_device *dev) 1346 { 1347 /* 1348 * If this device is from Target_Core_Mod/pSCSI, disable the 1349 * SAM Task Attribute emulation. 1350 * 1351 * This is currently not available in upsream Linux/SCSI Target 1352 * mode code, and is assumed to be disabled while using TCM/pSCSI. 1353 */ 1354 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) { 1355 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH; 1356 return; 1357 } 1358 1359 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED; 1360 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x" 1361 " device\n", dev->transport->name, 1362 dev->transport->get_device_rev(dev)); 1363 } 1364 1365 static void scsi_dump_inquiry(struct se_device *dev) 1366 { 1367 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn; 1368 int i, device_type; 1369 /* 1370 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer 1371 */ 1372 pr_debug(" Vendor: "); 1373 for (i = 0; i < 8; i++) 1374 if (wwn->vendor[i] >= 0x20) 1375 pr_debug("%c", wwn->vendor[i]); 1376 else 1377 pr_debug(" "); 1378 1379 pr_debug(" Model: "); 1380 for (i = 0; i < 16; i++) 1381 if (wwn->model[i] >= 0x20) 1382 pr_debug("%c", wwn->model[i]); 1383 else 1384 pr_debug(" "); 1385 1386 pr_debug(" Revision: "); 1387 for (i = 0; i < 4; i++) 1388 if (wwn->revision[i] >= 0x20) 1389 pr_debug("%c", wwn->revision[i]); 1390 else 1391 pr_debug(" "); 1392 1393 pr_debug("\n"); 1394 1395 device_type = dev->transport->get_device_type(dev); 1396 pr_debug(" Type: %s ", scsi_device_type(device_type)); 1397 pr_debug(" ANSI SCSI revision: %02x\n", 1398 dev->transport->get_device_rev(dev)); 1399 } 1400 1401 struct se_device *transport_add_device_to_core_hba( 1402 struct se_hba *hba, 1403 struct se_subsystem_api *transport, 1404 struct se_subsystem_dev *se_dev, 1405 u32 device_flags, 1406 void *transport_dev, 1407 struct se_dev_limits *dev_limits, 1408 const char *inquiry_prod, 1409 const char *inquiry_rev) 1410 { 1411 int force_pt; 1412 struct se_device *dev; 1413 1414 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL); 1415 if (!dev) { 1416 pr_err("Unable to allocate memory for se_dev_t\n"); 1417 return NULL; 1418 } 1419 1420 transport_init_queue_obj(&dev->dev_queue_obj); 1421 dev->dev_flags = device_flags; 1422 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED; 1423 dev->dev_ptr = transport_dev; 1424 dev->se_hba = hba; 1425 dev->se_sub_dev = se_dev; 1426 dev->transport = transport; 1427 atomic_set(&dev->active_cmds, 0); 1428 INIT_LIST_HEAD(&dev->dev_list); 1429 INIT_LIST_HEAD(&dev->dev_sep_list); 1430 INIT_LIST_HEAD(&dev->dev_tmr_list); 1431 INIT_LIST_HEAD(&dev->execute_task_list); 1432 INIT_LIST_HEAD(&dev->delayed_cmd_list); 1433 INIT_LIST_HEAD(&dev->ordered_cmd_list); 1434 INIT_LIST_HEAD(&dev->state_task_list); 1435 INIT_LIST_HEAD(&dev->qf_cmd_list); 1436 spin_lock_init(&dev->execute_task_lock); 1437 spin_lock_init(&dev->delayed_cmd_lock); 1438 spin_lock_init(&dev->ordered_cmd_lock); 1439 spin_lock_init(&dev->state_task_lock); 1440 spin_lock_init(&dev->dev_alua_lock); 1441 spin_lock_init(&dev->dev_reservation_lock); 1442 spin_lock_init(&dev->dev_status_lock); 1443 spin_lock_init(&dev->dev_status_thr_lock); 1444 spin_lock_init(&dev->se_port_lock); 1445 spin_lock_init(&dev->se_tmr_lock); 1446 spin_lock_init(&dev->qf_cmd_lock); 1447 1448 dev->queue_depth = dev_limits->queue_depth; 1449 atomic_set(&dev->depth_left, dev->queue_depth); 1450 atomic_set(&dev->dev_ordered_id, 0); 1451 1452 se_dev_set_default_attribs(dev, dev_limits); 1453 1454 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX); 1455 dev->creation_time = get_jiffies_64(); 1456 spin_lock_init(&dev->stats_lock); 1457 1458 spin_lock(&hba->device_lock); 1459 list_add_tail(&dev->dev_list, &hba->hba_dev_list); 1460 hba->dev_count++; 1461 spin_unlock(&hba->device_lock); 1462 /* 1463 * Setup the SAM Task Attribute emulation for struct se_device 1464 */ 1465 core_setup_task_attr_emulation(dev); 1466 /* 1467 * Force PR and ALUA passthrough emulation with internal object use. 1468 */ 1469 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE); 1470 /* 1471 * Setup the Reservations infrastructure for struct se_device 1472 */ 1473 core_setup_reservations(dev, force_pt); 1474 /* 1475 * Setup the Asymmetric Logical Unit Assignment for struct se_device 1476 */ 1477 if (core_setup_alua(dev, force_pt) < 0) 1478 goto out; 1479 1480 /* 1481 * Startup the struct se_device processing thread 1482 */ 1483 dev->process_thread = kthread_run(transport_processing_thread, dev, 1484 "LIO_%s", dev->transport->name); 1485 if (IS_ERR(dev->process_thread)) { 1486 pr_err("Unable to create kthread: LIO_%s\n", 1487 dev->transport->name); 1488 goto out; 1489 } 1490 /* 1491 * Setup work_queue for QUEUE_FULL 1492 */ 1493 INIT_WORK(&dev->qf_work_queue, target_qf_do_work); 1494 /* 1495 * Preload the initial INQUIRY const values if we are doing 1496 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI 1497 * passthrough because this is being provided by the backend LLD. 1498 * This is required so that transport_get_inquiry() copies these 1499 * originals once back into DEV_T10_WWN(dev) for the virtual device 1500 * setup. 1501 */ 1502 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) { 1503 if (!inquiry_prod || !inquiry_rev) { 1504 pr_err("All non TCM/pSCSI plugins require" 1505 " INQUIRY consts\n"); 1506 goto out; 1507 } 1508 1509 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8); 1510 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16); 1511 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4); 1512 } 1513 scsi_dump_inquiry(dev); 1514 1515 return dev; 1516 out: 1517 kthread_stop(dev->process_thread); 1518 1519 spin_lock(&hba->device_lock); 1520 list_del(&dev->dev_list); 1521 hba->dev_count--; 1522 spin_unlock(&hba->device_lock); 1523 1524 se_release_vpd_for_dev(dev); 1525 1526 kfree(dev); 1527 1528 return NULL; 1529 } 1530 EXPORT_SYMBOL(transport_add_device_to_core_hba); 1531 1532 /* transport_generic_prepare_cdb(): 1533 * 1534 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will 1535 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2. 1536 * The point of this is since we are mapping iSCSI LUNs to 1537 * SCSI Target IDs having a non-zero LUN in the CDB will throw the 1538 * devices and HBAs for a loop. 1539 */ 1540 static inline void transport_generic_prepare_cdb( 1541 unsigned char *cdb) 1542 { 1543 switch (cdb[0]) { 1544 case READ_10: /* SBC - RDProtect */ 1545 case READ_12: /* SBC - RDProtect */ 1546 case READ_16: /* SBC - RDProtect */ 1547 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */ 1548 case VERIFY: /* SBC - VRProtect */ 1549 case VERIFY_16: /* SBC - VRProtect */ 1550 case WRITE_VERIFY: /* SBC - VRProtect */ 1551 case WRITE_VERIFY_12: /* SBC - VRProtect */ 1552 break; 1553 default: 1554 cdb[1] &= 0x1f; /* clear logical unit number */ 1555 break; 1556 } 1557 } 1558 1559 static struct se_task * 1560 transport_generic_get_task(struct se_cmd *cmd, 1561 enum dma_data_direction data_direction) 1562 { 1563 struct se_task *task; 1564 struct se_device *dev = cmd->se_dev; 1565 1566 task = dev->transport->alloc_task(cmd->t_task_cdb); 1567 if (!task) { 1568 pr_err("Unable to allocate struct se_task\n"); 1569 return NULL; 1570 } 1571 1572 INIT_LIST_HEAD(&task->t_list); 1573 INIT_LIST_HEAD(&task->t_execute_list); 1574 INIT_LIST_HEAD(&task->t_state_list); 1575 init_completion(&task->task_stop_comp); 1576 task->task_se_cmd = cmd; 1577 task->se_dev = dev; 1578 task->task_data_direction = data_direction; 1579 1580 return task; 1581 } 1582 1583 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *); 1584 1585 /* 1586 * Used by fabric modules containing a local struct se_cmd within their 1587 * fabric dependent per I/O descriptor. 1588 */ 1589 void transport_init_se_cmd( 1590 struct se_cmd *cmd, 1591 struct target_core_fabric_ops *tfo, 1592 struct se_session *se_sess, 1593 u32 data_length, 1594 int data_direction, 1595 int task_attr, 1596 unsigned char *sense_buffer) 1597 { 1598 INIT_LIST_HEAD(&cmd->se_lun_node); 1599 INIT_LIST_HEAD(&cmd->se_delayed_node); 1600 INIT_LIST_HEAD(&cmd->se_ordered_node); 1601 INIT_LIST_HEAD(&cmd->se_qf_node); 1602 1603 INIT_LIST_HEAD(&cmd->t_task_list); 1604 init_completion(&cmd->transport_lun_fe_stop_comp); 1605 init_completion(&cmd->transport_lun_stop_comp); 1606 init_completion(&cmd->t_transport_stop_comp); 1607 spin_lock_init(&cmd->t_state_lock); 1608 atomic_set(&cmd->transport_dev_active, 1); 1609 1610 cmd->se_tfo = tfo; 1611 cmd->se_sess = se_sess; 1612 cmd->data_length = data_length; 1613 cmd->data_direction = data_direction; 1614 cmd->sam_task_attr = task_attr; 1615 cmd->sense_buffer = sense_buffer; 1616 } 1617 EXPORT_SYMBOL(transport_init_se_cmd); 1618 1619 static int transport_check_alloc_task_attr(struct se_cmd *cmd) 1620 { 1621 /* 1622 * Check if SAM Task Attribute emulation is enabled for this 1623 * struct se_device storage object 1624 */ 1625 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) 1626 return 0; 1627 1628 if (cmd->sam_task_attr == MSG_ACA_TAG) { 1629 pr_debug("SAM Task Attribute ACA" 1630 " emulation is not supported\n"); 1631 return -EINVAL; 1632 } 1633 /* 1634 * Used to determine when ORDERED commands should go from 1635 * Dormant to Active status. 1636 */ 1637 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id); 1638 smp_mb__after_atomic_inc(); 1639 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n", 1640 cmd->se_ordered_id, cmd->sam_task_attr, 1641 cmd->se_dev->transport->name); 1642 return 0; 1643 } 1644 1645 void transport_free_se_cmd( 1646 struct se_cmd *se_cmd) 1647 { 1648 if (se_cmd->se_tmr_req) 1649 core_tmr_release_req(se_cmd->se_tmr_req); 1650 /* 1651 * Check and free any extended CDB buffer that was allocated 1652 */ 1653 if (se_cmd->t_task_cdb != se_cmd->__t_task_cdb) 1654 kfree(se_cmd->t_task_cdb); 1655 } 1656 EXPORT_SYMBOL(transport_free_se_cmd); 1657 1658 static void transport_generic_wait_for_tasks(struct se_cmd *, int, int); 1659 1660 /* transport_generic_allocate_tasks(): 1661 * 1662 * Called from fabric RX Thread. 1663 */ 1664 int transport_generic_allocate_tasks( 1665 struct se_cmd *cmd, 1666 unsigned char *cdb) 1667 { 1668 int ret; 1669 1670 transport_generic_prepare_cdb(cdb); 1671 1672 /* 1673 * This is needed for early exceptions. 1674 */ 1675 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks; 1676 1677 /* 1678 * Ensure that the received CDB is less than the max (252 + 8) bytes 1679 * for VARIABLE_LENGTH_CMD 1680 */ 1681 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1682 pr_err("Received SCSI CDB with command_size: %d that" 1683 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1684 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1685 return -EINVAL; 1686 } 1687 /* 1688 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1689 * allocate the additional extended CDB buffer now.. Otherwise 1690 * setup the pointer from __t_task_cdb to t_task_cdb. 1691 */ 1692 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1693 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1694 GFP_KERNEL); 1695 if (!cmd->t_task_cdb) { 1696 pr_err("Unable to allocate cmd->t_task_cdb" 1697 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1698 scsi_command_size(cdb), 1699 (unsigned long)sizeof(cmd->__t_task_cdb)); 1700 return -ENOMEM; 1701 } 1702 } else 1703 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1704 /* 1705 * Copy the original CDB into cmd-> 1706 */ 1707 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1708 /* 1709 * Setup the received CDB based on SCSI defined opcodes and 1710 * perform unit attention, persistent reservations and ALUA 1711 * checks for virtual device backends. The cmd->t_task_cdb 1712 * pointer is expected to be setup before we reach this point. 1713 */ 1714 ret = transport_generic_cmd_sequencer(cmd, cdb); 1715 if (ret < 0) 1716 return ret; 1717 /* 1718 * Check for SAM Task Attribute Emulation 1719 */ 1720 if (transport_check_alloc_task_attr(cmd) < 0) { 1721 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 1722 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD; 1723 return -EINVAL; 1724 } 1725 spin_lock(&cmd->se_lun->lun_sep_lock); 1726 if (cmd->se_lun->lun_sep) 1727 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++; 1728 spin_unlock(&cmd->se_lun->lun_sep_lock); 1729 return 0; 1730 } 1731 EXPORT_SYMBOL(transport_generic_allocate_tasks); 1732 1733 /* 1734 * Used by fabric module frontends not defining a TFO->new_cmd_map() 1735 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis 1736 */ 1737 int transport_generic_handle_cdb( 1738 struct se_cmd *cmd) 1739 { 1740 if (!cmd->se_lun) { 1741 dump_stack(); 1742 pr_err("cmd->se_lun is NULL\n"); 1743 return -EINVAL; 1744 } 1745 1746 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD); 1747 return 0; 1748 } 1749 EXPORT_SYMBOL(transport_generic_handle_cdb); 1750 1751 static void transport_generic_request_failure(struct se_cmd *, 1752 struct se_device *, int, int); 1753 /* 1754 * Used by fabric module frontends to queue tasks directly. 1755 * Many only be used from process context only 1756 */ 1757 int transport_handle_cdb_direct( 1758 struct se_cmd *cmd) 1759 { 1760 int ret; 1761 1762 if (!cmd->se_lun) { 1763 dump_stack(); 1764 pr_err("cmd->se_lun is NULL\n"); 1765 return -EINVAL; 1766 } 1767 if (in_interrupt()) { 1768 dump_stack(); 1769 pr_err("transport_generic_handle_cdb cannot be called" 1770 " from interrupt context\n"); 1771 return -EINVAL; 1772 } 1773 /* 1774 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following 1775 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue() 1776 * in existing usage to ensure that outstanding descriptors are handled 1777 * correctly during shutdown via transport_generic_wait_for_tasks() 1778 * 1779 * Also, we don't take cmd->t_state_lock here as we only expect 1780 * this to be called for initial descriptor submission. 1781 */ 1782 cmd->t_state = TRANSPORT_NEW_CMD; 1783 atomic_set(&cmd->t_transport_active, 1); 1784 /* 1785 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1786 * so follow TRANSPORT_NEW_CMD processing thread context usage 1787 * and call transport_generic_request_failure() if necessary.. 1788 */ 1789 ret = transport_generic_new_cmd(cmd); 1790 if (ret == -EAGAIN) 1791 return 0; 1792 else if (ret < 0) { 1793 cmd->transport_error_status = ret; 1794 transport_generic_request_failure(cmd, NULL, 0, 1795 (cmd->data_direction != DMA_TO_DEVICE)); 1796 } 1797 return 0; 1798 } 1799 EXPORT_SYMBOL(transport_handle_cdb_direct); 1800 1801 /* 1802 * Used by fabric module frontends defining a TFO->new_cmd_map() caller 1803 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to 1804 * complete setup in TCM process context w/ TFO->new_cmd_map(). 1805 */ 1806 int transport_generic_handle_cdb_map( 1807 struct se_cmd *cmd) 1808 { 1809 if (!cmd->se_lun) { 1810 dump_stack(); 1811 pr_err("cmd->se_lun is NULL\n"); 1812 return -EINVAL; 1813 } 1814 1815 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP); 1816 return 0; 1817 } 1818 EXPORT_SYMBOL(transport_generic_handle_cdb_map); 1819 1820 /* transport_generic_handle_data(): 1821 * 1822 * 1823 */ 1824 int transport_generic_handle_data( 1825 struct se_cmd *cmd) 1826 { 1827 /* 1828 * For the software fabric case, then we assume the nexus is being 1829 * failed/shutdown when signals are pending from the kthread context 1830 * caller, so we return a failure. For the HW target mode case running 1831 * in interrupt code, the signal_pending() check is skipped. 1832 */ 1833 if (!in_interrupt() && signal_pending(current)) 1834 return -EPERM; 1835 /* 1836 * If the received CDB has aleady been ABORTED by the generic 1837 * target engine, we now call transport_check_aborted_status() 1838 * to queue any delated TASK_ABORTED status for the received CDB to the 1839 * fabric module as we are expecting no further incoming DATA OUT 1840 * sequences at this point. 1841 */ 1842 if (transport_check_aborted_status(cmd, 1) != 0) 1843 return 0; 1844 1845 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE); 1846 return 0; 1847 } 1848 EXPORT_SYMBOL(transport_generic_handle_data); 1849 1850 /* transport_generic_handle_tmr(): 1851 * 1852 * 1853 */ 1854 int transport_generic_handle_tmr( 1855 struct se_cmd *cmd) 1856 { 1857 /* 1858 * This is needed for early exceptions. 1859 */ 1860 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks; 1861 1862 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR); 1863 return 0; 1864 } 1865 EXPORT_SYMBOL(transport_generic_handle_tmr); 1866 1867 void transport_generic_free_cmd_intr( 1868 struct se_cmd *cmd) 1869 { 1870 transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR); 1871 } 1872 EXPORT_SYMBOL(transport_generic_free_cmd_intr); 1873 1874 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd) 1875 { 1876 struct se_task *task, *task_tmp; 1877 unsigned long flags; 1878 int ret = 0; 1879 1880 pr_debug("ITT[0x%08x] - Stopping tasks\n", 1881 cmd->se_tfo->get_task_tag(cmd)); 1882 1883 /* 1884 * No tasks remain in the execution queue 1885 */ 1886 spin_lock_irqsave(&cmd->t_state_lock, flags); 1887 list_for_each_entry_safe(task, task_tmp, 1888 &cmd->t_task_list, t_list) { 1889 pr_debug("task_no[%d] - Processing task %p\n", 1890 task->task_no, task); 1891 /* 1892 * If the struct se_task has not been sent and is not active, 1893 * remove the struct se_task from the execution queue. 1894 */ 1895 if (!atomic_read(&task->task_sent) && 1896 !atomic_read(&task->task_active)) { 1897 spin_unlock_irqrestore(&cmd->t_state_lock, 1898 flags); 1899 transport_remove_task_from_execute_queue(task, 1900 task->se_dev); 1901 1902 pr_debug("task_no[%d] - Removed from execute queue\n", 1903 task->task_no); 1904 spin_lock_irqsave(&cmd->t_state_lock, flags); 1905 continue; 1906 } 1907 1908 /* 1909 * If the struct se_task is active, sleep until it is returned 1910 * from the plugin. 1911 */ 1912 if (atomic_read(&task->task_active)) { 1913 atomic_set(&task->task_stop, 1); 1914 spin_unlock_irqrestore(&cmd->t_state_lock, 1915 flags); 1916 1917 pr_debug("task_no[%d] - Waiting to complete\n", 1918 task->task_no); 1919 wait_for_completion(&task->task_stop_comp); 1920 pr_debug("task_no[%d] - Stopped successfully\n", 1921 task->task_no); 1922 1923 spin_lock_irqsave(&cmd->t_state_lock, flags); 1924 atomic_dec(&cmd->t_task_cdbs_left); 1925 1926 atomic_set(&task->task_active, 0); 1927 atomic_set(&task->task_stop, 0); 1928 } else { 1929 pr_debug("task_no[%d] - Did nothing\n", task->task_no); 1930 ret++; 1931 } 1932 1933 __transport_stop_task_timer(task, &flags); 1934 } 1935 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 1936 1937 return ret; 1938 } 1939 1940 /* 1941 * Handle SAM-esque emulation for generic transport request failures. 1942 */ 1943 static void transport_generic_request_failure( 1944 struct se_cmd *cmd, 1945 struct se_device *dev, 1946 int complete, 1947 int sc) 1948 { 1949 int ret = 0; 1950 1951 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x" 1952 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd), 1953 cmd->t_task_cdb[0]); 1954 pr_debug("-----[ i_state: %d t_state/def_t_state:" 1955 " %d/%d transport_error_status: %d\n", 1956 cmd->se_tfo->get_cmd_state(cmd), 1957 cmd->t_state, cmd->deferred_t_state, 1958 cmd->transport_error_status); 1959 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d" 1960 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --" 1961 " t_transport_active: %d t_transport_stop: %d" 1962 " t_transport_sent: %d\n", cmd->t_task_list_num, 1963 atomic_read(&cmd->t_task_cdbs_left), 1964 atomic_read(&cmd->t_task_cdbs_sent), 1965 atomic_read(&cmd->t_task_cdbs_ex_left), 1966 atomic_read(&cmd->t_transport_active), 1967 atomic_read(&cmd->t_transport_stop), 1968 atomic_read(&cmd->t_transport_sent)); 1969 1970 transport_stop_all_task_timers(cmd); 1971 1972 if (dev) 1973 atomic_inc(&dev->depth_left); 1974 /* 1975 * For SAM Task Attribute emulation for failed struct se_cmd 1976 */ 1977 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED) 1978 transport_complete_task_attr(cmd); 1979 1980 if (complete) { 1981 transport_direct_request_timeout(cmd); 1982 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE; 1983 } 1984 1985 switch (cmd->transport_error_status) { 1986 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE: 1987 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1988 break; 1989 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS: 1990 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY; 1991 break; 1992 case PYX_TRANSPORT_INVALID_CDB_FIELD: 1993 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD; 1994 break; 1995 case PYX_TRANSPORT_INVALID_PARAMETER_LIST: 1996 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST; 1997 break; 1998 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES: 1999 if (!sc) 2000 transport_new_cmd_failure(cmd); 2001 /* 2002 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES, 2003 * we force this session to fall back to session 2004 * recovery. 2005 */ 2006 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess); 2007 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0); 2008 2009 goto check_stop; 2010 case PYX_TRANSPORT_LU_COMM_FAILURE: 2011 case PYX_TRANSPORT_ILLEGAL_REQUEST: 2012 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2013 break; 2014 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE: 2015 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE; 2016 break; 2017 case PYX_TRANSPORT_WRITE_PROTECTED: 2018 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED; 2019 break; 2020 case PYX_TRANSPORT_RESERVATION_CONFLICT: 2021 /* 2022 * No SENSE Data payload for this case, set SCSI Status 2023 * and queue the response to $FABRIC_MOD. 2024 * 2025 * Uses linux/include/scsi/scsi.h SAM status codes defs 2026 */ 2027 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 2028 /* 2029 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 2030 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 2031 * CONFLICT STATUS. 2032 * 2033 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 2034 */ 2035 if (cmd->se_sess && 2036 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2) 2037 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl, 2038 cmd->orig_fe_lun, 0x2C, 2039 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 2040 2041 ret = cmd->se_tfo->queue_status(cmd); 2042 if (ret == -EAGAIN) 2043 goto queue_full; 2044 goto check_stop; 2045 case PYX_TRANSPORT_USE_SENSE_REASON: 2046 /* 2047 * struct se_cmd->scsi_sense_reason already set 2048 */ 2049 break; 2050 default: 2051 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 2052 cmd->t_task_cdb[0], 2053 cmd->transport_error_status); 2054 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 2055 break; 2056 } 2057 /* 2058 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller, 2059 * make the call to transport_send_check_condition_and_sense() 2060 * directly. Otherwise expect the fabric to make the call to 2061 * transport_send_check_condition_and_sense() after handling 2062 * possible unsoliticied write data payloads. 2063 */ 2064 if (!sc && !cmd->se_tfo->new_cmd_map) 2065 transport_new_cmd_failure(cmd); 2066 else { 2067 ret = transport_send_check_condition_and_sense(cmd, 2068 cmd->scsi_sense_reason, 0); 2069 if (ret == -EAGAIN) 2070 goto queue_full; 2071 } 2072 2073 check_stop: 2074 transport_lun_remove_cmd(cmd); 2075 if (!transport_cmd_check_stop_to_fabric(cmd)) 2076 ; 2077 return; 2078 2079 queue_full: 2080 cmd->t_state = TRANSPORT_COMPLETE_OK; 2081 transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf); 2082 } 2083 2084 static void transport_direct_request_timeout(struct se_cmd *cmd) 2085 { 2086 unsigned long flags; 2087 2088 spin_lock_irqsave(&cmd->t_state_lock, flags); 2089 if (!atomic_read(&cmd->t_transport_timeout)) { 2090 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2091 return; 2092 } 2093 if (atomic_read(&cmd->t_task_cdbs_timeout_left)) { 2094 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2095 return; 2096 } 2097 2098 atomic_sub(atomic_read(&cmd->t_transport_timeout), 2099 &cmd->t_se_count); 2100 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2101 } 2102 2103 static void transport_generic_request_timeout(struct se_cmd *cmd) 2104 { 2105 unsigned long flags; 2106 2107 /* 2108 * Reset cmd->t_se_count to allow transport_generic_remove() 2109 * to allow last call to free memory resources. 2110 */ 2111 spin_lock_irqsave(&cmd->t_state_lock, flags); 2112 if (atomic_read(&cmd->t_transport_timeout) > 1) { 2113 int tmp = (atomic_read(&cmd->t_transport_timeout) - 1); 2114 2115 atomic_sub(tmp, &cmd->t_se_count); 2116 } 2117 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2118 2119 transport_generic_remove(cmd, 0); 2120 } 2121 2122 static inline u32 transport_lba_21(unsigned char *cdb) 2123 { 2124 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3]; 2125 } 2126 2127 static inline u32 transport_lba_32(unsigned char *cdb) 2128 { 2129 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5]; 2130 } 2131 2132 static inline unsigned long long transport_lba_64(unsigned char *cdb) 2133 { 2134 unsigned int __v1, __v2; 2135 2136 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5]; 2137 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9]; 2138 2139 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32; 2140 } 2141 2142 /* 2143 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs 2144 */ 2145 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb) 2146 { 2147 unsigned int __v1, __v2; 2148 2149 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15]; 2150 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19]; 2151 2152 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32; 2153 } 2154 2155 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd) 2156 { 2157 unsigned long flags; 2158 2159 spin_lock_irqsave(&se_cmd->t_state_lock, flags); 2160 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 2161 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags); 2162 } 2163 2164 /* 2165 * Called from interrupt context. 2166 */ 2167 static void transport_task_timeout_handler(unsigned long data) 2168 { 2169 struct se_task *task = (struct se_task *)data; 2170 struct se_cmd *cmd = task->task_se_cmd; 2171 unsigned long flags; 2172 2173 pr_debug("transport task timeout fired! task: %p cmd: %p\n", task, cmd); 2174 2175 spin_lock_irqsave(&cmd->t_state_lock, flags); 2176 if (task->task_flags & TF_STOP) { 2177 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2178 return; 2179 } 2180 task->task_flags &= ~TF_RUNNING; 2181 2182 /* 2183 * Determine if transport_complete_task() has already been called. 2184 */ 2185 if (!atomic_read(&task->task_active)) { 2186 pr_debug("transport task: %p cmd: %p timeout task_active" 2187 " == 0\n", task, cmd); 2188 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2189 return; 2190 } 2191 2192 atomic_inc(&cmd->t_se_count); 2193 atomic_inc(&cmd->t_transport_timeout); 2194 cmd->t_tasks_failed = 1; 2195 2196 atomic_set(&task->task_timeout, 1); 2197 task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT; 2198 task->task_scsi_status = 1; 2199 2200 if (atomic_read(&task->task_stop)) { 2201 pr_debug("transport task: %p cmd: %p timeout task_stop" 2202 " == 1\n", task, cmd); 2203 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2204 complete(&task->task_stop_comp); 2205 return; 2206 } 2207 2208 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) { 2209 pr_debug("transport task: %p cmd: %p timeout non zero" 2210 " t_task_cdbs_left\n", task, cmd); 2211 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2212 return; 2213 } 2214 pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n", 2215 task, cmd); 2216 2217 cmd->t_state = TRANSPORT_COMPLETE_FAILURE; 2218 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2219 2220 transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE); 2221 } 2222 2223 /* 2224 * Called with cmd->t_state_lock held. 2225 */ 2226 static void transport_start_task_timer(struct se_task *task) 2227 { 2228 struct se_device *dev = task->se_dev; 2229 int timeout; 2230 2231 if (task->task_flags & TF_RUNNING) 2232 return; 2233 /* 2234 * If the task_timeout is disabled, exit now. 2235 */ 2236 timeout = dev->se_sub_dev->se_dev_attrib.task_timeout; 2237 if (!timeout) 2238 return; 2239 2240 init_timer(&task->task_timer); 2241 task->task_timer.expires = (get_jiffies_64() + timeout * HZ); 2242 task->task_timer.data = (unsigned long) task; 2243 task->task_timer.function = transport_task_timeout_handler; 2244 2245 task->task_flags |= TF_RUNNING; 2246 add_timer(&task->task_timer); 2247 #if 0 2248 pr_debug("Starting task timer for cmd: %p task: %p seconds:" 2249 " %d\n", task->task_se_cmd, task, timeout); 2250 #endif 2251 } 2252 2253 /* 2254 * Called with spin_lock_irq(&cmd->t_state_lock) held. 2255 */ 2256 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags) 2257 { 2258 struct se_cmd *cmd = task->task_se_cmd; 2259 2260 if (!task->task_flags & TF_RUNNING) 2261 return; 2262 2263 task->task_flags |= TF_STOP; 2264 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 2265 2266 del_timer_sync(&task->task_timer); 2267 2268 spin_lock_irqsave(&cmd->t_state_lock, *flags); 2269 task->task_flags &= ~TF_RUNNING; 2270 task->task_flags &= ~TF_STOP; 2271 } 2272 2273 static void transport_stop_all_task_timers(struct se_cmd *cmd) 2274 { 2275 struct se_task *task = NULL, *task_tmp; 2276 unsigned long flags; 2277 2278 spin_lock_irqsave(&cmd->t_state_lock, flags); 2279 list_for_each_entry_safe(task, task_tmp, 2280 &cmd->t_task_list, t_list) 2281 __transport_stop_task_timer(task, &flags); 2282 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2283 } 2284 2285 static inline int transport_tcq_window_closed(struct se_device *dev) 2286 { 2287 if (dev->dev_tcq_window_closed++ < 2288 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) { 2289 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT); 2290 } else 2291 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG); 2292 2293 wake_up_interruptible(&dev->dev_queue_obj.thread_wq); 2294 return 0; 2295 } 2296 2297 /* 2298 * Called from Fabric Module context from transport_execute_tasks() 2299 * 2300 * The return of this function determins if the tasks from struct se_cmd 2301 * get added to the execution queue in transport_execute_tasks(), 2302 * or are added to the delayed or ordered lists here. 2303 */ 2304 static inline int transport_execute_task_attr(struct se_cmd *cmd) 2305 { 2306 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) 2307 return 1; 2308 /* 2309 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 2310 * to allow the passed struct se_cmd list of tasks to the front of the list. 2311 */ 2312 if (cmd->sam_task_attr == MSG_HEAD_TAG) { 2313 atomic_inc(&cmd->se_dev->dev_hoq_count); 2314 smp_mb__after_atomic_inc(); 2315 pr_debug("Added HEAD_OF_QUEUE for CDB:" 2316 " 0x%02x, se_ordered_id: %u\n", 2317 cmd->t_task_cdb[0], 2318 cmd->se_ordered_id); 2319 return 1; 2320 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) { 2321 spin_lock(&cmd->se_dev->ordered_cmd_lock); 2322 list_add_tail(&cmd->se_ordered_node, 2323 &cmd->se_dev->ordered_cmd_list); 2324 spin_unlock(&cmd->se_dev->ordered_cmd_lock); 2325 2326 atomic_inc(&cmd->se_dev->dev_ordered_sync); 2327 smp_mb__after_atomic_inc(); 2328 2329 pr_debug("Added ORDERED for CDB: 0x%02x to ordered" 2330 " list, se_ordered_id: %u\n", 2331 cmd->t_task_cdb[0], 2332 cmd->se_ordered_id); 2333 /* 2334 * Add ORDERED command to tail of execution queue if 2335 * no other older commands exist that need to be 2336 * completed first. 2337 */ 2338 if (!atomic_read(&cmd->se_dev->simple_cmds)) 2339 return 1; 2340 } else { 2341 /* 2342 * For SIMPLE and UNTAGGED Task Attribute commands 2343 */ 2344 atomic_inc(&cmd->se_dev->simple_cmds); 2345 smp_mb__after_atomic_inc(); 2346 } 2347 /* 2348 * Otherwise if one or more outstanding ORDERED task attribute exist, 2349 * add the dormant task(s) built for the passed struct se_cmd to the 2350 * execution queue and become in Active state for this struct se_device. 2351 */ 2352 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) { 2353 /* 2354 * Otherwise, add cmd w/ tasks to delayed cmd queue that 2355 * will be drained upon completion of HEAD_OF_QUEUE task. 2356 */ 2357 spin_lock(&cmd->se_dev->delayed_cmd_lock); 2358 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR; 2359 list_add_tail(&cmd->se_delayed_node, 2360 &cmd->se_dev->delayed_cmd_list); 2361 spin_unlock(&cmd->se_dev->delayed_cmd_lock); 2362 2363 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to" 2364 " delayed CMD list, se_ordered_id: %u\n", 2365 cmd->t_task_cdb[0], cmd->sam_task_attr, 2366 cmd->se_ordered_id); 2367 /* 2368 * Return zero to let transport_execute_tasks() know 2369 * not to add the delayed tasks to the execution list. 2370 */ 2371 return 0; 2372 } 2373 /* 2374 * Otherwise, no ORDERED task attributes exist.. 2375 */ 2376 return 1; 2377 } 2378 2379 /* 2380 * Called from fabric module context in transport_generic_new_cmd() and 2381 * transport_generic_process_write() 2382 */ 2383 static int transport_execute_tasks(struct se_cmd *cmd) 2384 { 2385 int add_tasks; 2386 2387 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) { 2388 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE; 2389 transport_generic_request_failure(cmd, NULL, 0, 1); 2390 return 0; 2391 } 2392 2393 /* 2394 * Call transport_cmd_check_stop() to see if a fabric exception 2395 * has occurred that prevents execution. 2396 */ 2397 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) { 2398 /* 2399 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE 2400 * attribute for the tasks of the received struct se_cmd CDB 2401 */ 2402 add_tasks = transport_execute_task_attr(cmd); 2403 if (!add_tasks) 2404 goto execute_tasks; 2405 /* 2406 * This calls transport_add_tasks_from_cmd() to handle 2407 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation 2408 * (if enabled) in __transport_add_task_to_execute_queue() and 2409 * transport_add_task_check_sam_attr(). 2410 */ 2411 transport_add_tasks_from_cmd(cmd); 2412 } 2413 /* 2414 * Kick the execution queue for the cmd associated struct se_device 2415 * storage object. 2416 */ 2417 execute_tasks: 2418 __transport_execute_tasks(cmd->se_dev); 2419 return 0; 2420 } 2421 2422 /* 2423 * Called to check struct se_device tcq depth window, and once open pull struct se_task 2424 * from struct se_device->execute_task_list and 2425 * 2426 * Called from transport_processing_thread() 2427 */ 2428 static int __transport_execute_tasks(struct se_device *dev) 2429 { 2430 int error; 2431 struct se_cmd *cmd = NULL; 2432 struct se_task *task = NULL; 2433 unsigned long flags; 2434 2435 /* 2436 * Check if there is enough room in the device and HBA queue to send 2437 * struct se_tasks to the selected transport. 2438 */ 2439 check_depth: 2440 if (!atomic_read(&dev->depth_left)) 2441 return transport_tcq_window_closed(dev); 2442 2443 dev->dev_tcq_window_closed = 0; 2444 2445 spin_lock_irq(&dev->execute_task_lock); 2446 if (list_empty(&dev->execute_task_list)) { 2447 spin_unlock_irq(&dev->execute_task_lock); 2448 return 0; 2449 } 2450 task = list_first_entry(&dev->execute_task_list, 2451 struct se_task, t_execute_list); 2452 list_del(&task->t_execute_list); 2453 atomic_set(&task->task_execute_queue, 0); 2454 atomic_dec(&dev->execute_tasks); 2455 spin_unlock_irq(&dev->execute_task_lock); 2456 2457 atomic_dec(&dev->depth_left); 2458 2459 cmd = task->task_se_cmd; 2460 2461 spin_lock_irqsave(&cmd->t_state_lock, flags); 2462 atomic_set(&task->task_active, 1); 2463 atomic_set(&task->task_sent, 1); 2464 atomic_inc(&cmd->t_task_cdbs_sent); 2465 2466 if (atomic_read(&cmd->t_task_cdbs_sent) == 2467 cmd->t_task_list_num) 2468 atomic_set(&cmd->transport_sent, 1); 2469 2470 transport_start_task_timer(task); 2471 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2472 /* 2473 * The struct se_cmd->transport_emulate_cdb() function pointer is used 2474 * to grab REPORT_LUNS and other CDBs we want to handle before they hit the 2475 * struct se_subsystem_api->do_task() caller below. 2476 */ 2477 if (cmd->transport_emulate_cdb) { 2478 error = cmd->transport_emulate_cdb(cmd); 2479 if (error != 0) { 2480 cmd->transport_error_status = error; 2481 atomic_set(&task->task_active, 0); 2482 atomic_set(&cmd->transport_sent, 0); 2483 transport_stop_tasks_for_cmd(cmd); 2484 transport_generic_request_failure(cmd, dev, 0, 1); 2485 goto check_depth; 2486 } 2487 /* 2488 * Handle the successful completion for transport_emulate_cdb() 2489 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC 2490 * Otherwise the caller is expected to complete the task with 2491 * proper status. 2492 */ 2493 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) { 2494 cmd->scsi_status = SAM_STAT_GOOD; 2495 task->task_scsi_status = GOOD; 2496 transport_complete_task(task, 1); 2497 } 2498 } else { 2499 /* 2500 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and 2501 * RAMDISK we use the internal transport_emulate_control_cdb() logic 2502 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK 2503 * LUN emulation code. 2504 * 2505 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we 2506 * call ->do_task() directly and let the underlying TCM subsystem plugin 2507 * code handle the CDB emulation. 2508 */ 2509 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) && 2510 (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB))) 2511 error = transport_emulate_control_cdb(task); 2512 else 2513 error = dev->transport->do_task(task); 2514 2515 if (error != 0) { 2516 cmd->transport_error_status = error; 2517 atomic_set(&task->task_active, 0); 2518 atomic_set(&cmd->transport_sent, 0); 2519 transport_stop_tasks_for_cmd(cmd); 2520 transport_generic_request_failure(cmd, dev, 0, 1); 2521 } 2522 } 2523 2524 goto check_depth; 2525 2526 return 0; 2527 } 2528 2529 void transport_new_cmd_failure(struct se_cmd *se_cmd) 2530 { 2531 unsigned long flags; 2532 /* 2533 * Any unsolicited data will get dumped for failed command inside of 2534 * the fabric plugin 2535 */ 2536 spin_lock_irqsave(&se_cmd->t_state_lock, flags); 2537 se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED; 2538 se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 2539 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags); 2540 } 2541 2542 static void transport_nop_wait_for_tasks(struct se_cmd *, int, int); 2543 2544 static inline u32 transport_get_sectors_6( 2545 unsigned char *cdb, 2546 struct se_cmd *cmd, 2547 int *ret) 2548 { 2549 struct se_device *dev = cmd->se_dev; 2550 2551 /* 2552 * Assume TYPE_DISK for non struct se_device objects. 2553 * Use 8-bit sector value. 2554 */ 2555 if (!dev) 2556 goto type_disk; 2557 2558 /* 2559 * Use 24-bit allocation length for TYPE_TAPE. 2560 */ 2561 if (dev->transport->get_device_type(dev) == TYPE_TAPE) 2562 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4]; 2563 2564 /* 2565 * Everything else assume TYPE_DISK Sector CDB location. 2566 * Use 8-bit sector value. 2567 */ 2568 type_disk: 2569 return (u32)cdb[4]; 2570 } 2571 2572 static inline u32 transport_get_sectors_10( 2573 unsigned char *cdb, 2574 struct se_cmd *cmd, 2575 int *ret) 2576 { 2577 struct se_device *dev = cmd->se_dev; 2578 2579 /* 2580 * Assume TYPE_DISK for non struct se_device objects. 2581 * Use 16-bit sector value. 2582 */ 2583 if (!dev) 2584 goto type_disk; 2585 2586 /* 2587 * XXX_10 is not defined in SSC, throw an exception 2588 */ 2589 if (dev->transport->get_device_type(dev) == TYPE_TAPE) { 2590 *ret = -EINVAL; 2591 return 0; 2592 } 2593 2594 /* 2595 * Everything else assume TYPE_DISK Sector CDB location. 2596 * Use 16-bit sector value. 2597 */ 2598 type_disk: 2599 return (u32)(cdb[7] << 8) + cdb[8]; 2600 } 2601 2602 static inline u32 transport_get_sectors_12( 2603 unsigned char *cdb, 2604 struct se_cmd *cmd, 2605 int *ret) 2606 { 2607 struct se_device *dev = cmd->se_dev; 2608 2609 /* 2610 * Assume TYPE_DISK for non struct se_device objects. 2611 * Use 32-bit sector value. 2612 */ 2613 if (!dev) 2614 goto type_disk; 2615 2616 /* 2617 * XXX_12 is not defined in SSC, throw an exception 2618 */ 2619 if (dev->transport->get_device_type(dev) == TYPE_TAPE) { 2620 *ret = -EINVAL; 2621 return 0; 2622 } 2623 2624 /* 2625 * Everything else assume TYPE_DISK Sector CDB location. 2626 * Use 32-bit sector value. 2627 */ 2628 type_disk: 2629 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9]; 2630 } 2631 2632 static inline u32 transport_get_sectors_16( 2633 unsigned char *cdb, 2634 struct se_cmd *cmd, 2635 int *ret) 2636 { 2637 struct se_device *dev = cmd->se_dev; 2638 2639 /* 2640 * Assume TYPE_DISK for non struct se_device objects. 2641 * Use 32-bit sector value. 2642 */ 2643 if (!dev) 2644 goto type_disk; 2645 2646 /* 2647 * Use 24-bit allocation length for TYPE_TAPE. 2648 */ 2649 if (dev->transport->get_device_type(dev) == TYPE_TAPE) 2650 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14]; 2651 2652 type_disk: 2653 return (u32)(cdb[10] << 24) + (cdb[11] << 16) + 2654 (cdb[12] << 8) + cdb[13]; 2655 } 2656 2657 /* 2658 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants 2659 */ 2660 static inline u32 transport_get_sectors_32( 2661 unsigned char *cdb, 2662 struct se_cmd *cmd, 2663 int *ret) 2664 { 2665 /* 2666 * Assume TYPE_DISK for non struct se_device objects. 2667 * Use 32-bit sector value. 2668 */ 2669 return (u32)(cdb[28] << 24) + (cdb[29] << 16) + 2670 (cdb[30] << 8) + cdb[31]; 2671 2672 } 2673 2674 static inline u32 transport_get_size( 2675 u32 sectors, 2676 unsigned char *cdb, 2677 struct se_cmd *cmd) 2678 { 2679 struct se_device *dev = cmd->se_dev; 2680 2681 if (dev->transport->get_device_type(dev) == TYPE_TAPE) { 2682 if (cdb[1] & 1) { /* sectors */ 2683 return dev->se_sub_dev->se_dev_attrib.block_size * sectors; 2684 } else /* bytes */ 2685 return sectors; 2686 } 2687 #if 0 2688 pr_debug("Returning block_size: %u, sectors: %u == %u for" 2689 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors, 2690 dev->se_sub_dev->se_dev_attrib.block_size * sectors, 2691 dev->transport->name); 2692 #endif 2693 return dev->se_sub_dev->se_dev_attrib.block_size * sectors; 2694 } 2695 2696 static void transport_xor_callback(struct se_cmd *cmd) 2697 { 2698 unsigned char *buf, *addr; 2699 struct scatterlist *sg; 2700 unsigned int offset; 2701 int i; 2702 int count; 2703 /* 2704 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command 2705 * 2706 * 1) read the specified logical block(s); 2707 * 2) transfer logical blocks from the data-out buffer; 2708 * 3) XOR the logical blocks transferred from the data-out buffer with 2709 * the logical blocks read, storing the resulting XOR data in a buffer; 2710 * 4) if the DISABLE WRITE bit is set to zero, then write the logical 2711 * blocks transferred from the data-out buffer; and 2712 * 5) transfer the resulting XOR data to the data-in buffer. 2713 */ 2714 buf = kmalloc(cmd->data_length, GFP_KERNEL); 2715 if (!buf) { 2716 pr_err("Unable to allocate xor_callback buf\n"); 2717 return; 2718 } 2719 /* 2720 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg 2721 * into the locally allocated *buf 2722 */ 2723 sg_copy_to_buffer(cmd->t_data_sg, 2724 cmd->t_data_nents, 2725 buf, 2726 cmd->data_length); 2727 2728 /* 2729 * Now perform the XOR against the BIDI read memory located at 2730 * cmd->t_mem_bidi_list 2731 */ 2732 2733 offset = 0; 2734 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) { 2735 addr = kmap_atomic(sg_page(sg), KM_USER0); 2736 if (!addr) 2737 goto out; 2738 2739 for (i = 0; i < sg->length; i++) 2740 *(addr + sg->offset + i) ^= *(buf + offset + i); 2741 2742 offset += sg->length; 2743 kunmap_atomic(addr, KM_USER0); 2744 } 2745 2746 out: 2747 kfree(buf); 2748 } 2749 2750 /* 2751 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd 2752 */ 2753 static int transport_get_sense_data(struct se_cmd *cmd) 2754 { 2755 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL; 2756 struct se_device *dev; 2757 struct se_task *task = NULL, *task_tmp; 2758 unsigned long flags; 2759 u32 offset = 0; 2760 2761 WARN_ON(!cmd->se_lun); 2762 2763 spin_lock_irqsave(&cmd->t_state_lock, flags); 2764 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 2765 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2766 return 0; 2767 } 2768 2769 list_for_each_entry_safe(task, task_tmp, 2770 &cmd->t_task_list, t_list) { 2771 2772 if (!task->task_sense) 2773 continue; 2774 2775 dev = task->se_dev; 2776 if (!dev) 2777 continue; 2778 2779 if (!dev->transport->get_sense_buffer) { 2780 pr_err("dev->transport->get_sense_buffer" 2781 " is NULL\n"); 2782 continue; 2783 } 2784 2785 sense_buffer = dev->transport->get_sense_buffer(task); 2786 if (!sense_buffer) { 2787 pr_err("ITT[0x%08x]_TASK[%d]: Unable to locate" 2788 " sense buffer for task with sense\n", 2789 cmd->se_tfo->get_task_tag(cmd), task->task_no); 2790 continue; 2791 } 2792 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2793 2794 offset = cmd->se_tfo->set_fabric_sense_len(cmd, 2795 TRANSPORT_SENSE_BUFFER); 2796 2797 memcpy(&buffer[offset], sense_buffer, 2798 TRANSPORT_SENSE_BUFFER); 2799 cmd->scsi_status = task->task_scsi_status; 2800 /* Automatically padded */ 2801 cmd->scsi_sense_length = 2802 (TRANSPORT_SENSE_BUFFER + offset); 2803 2804 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x" 2805 " and sense\n", 2806 dev->se_hba->hba_id, dev->transport->name, 2807 cmd->scsi_status); 2808 return 0; 2809 } 2810 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2811 2812 return -1; 2813 } 2814 2815 static int 2816 transport_handle_reservation_conflict(struct se_cmd *cmd) 2817 { 2818 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks; 2819 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 2820 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT; 2821 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 2822 /* 2823 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 2824 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 2825 * CONFLICT STATUS. 2826 * 2827 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 2828 */ 2829 if (cmd->se_sess && 2830 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2) 2831 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl, 2832 cmd->orig_fe_lun, 0x2C, 2833 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 2834 return -EINVAL; 2835 } 2836 2837 static inline long long transport_dev_end_lba(struct se_device *dev) 2838 { 2839 return dev->transport->get_blocks(dev) + 1; 2840 } 2841 2842 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd) 2843 { 2844 struct se_device *dev = cmd->se_dev; 2845 u32 sectors; 2846 2847 if (dev->transport->get_device_type(dev) != TYPE_DISK) 2848 return 0; 2849 2850 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size); 2851 2852 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) { 2853 pr_err("LBA: %llu Sectors: %u exceeds" 2854 " transport_dev_end_lba(): %llu\n", 2855 cmd->t_task_lba, sectors, 2856 transport_dev_end_lba(dev)); 2857 return -EINVAL; 2858 } 2859 2860 return 0; 2861 } 2862 2863 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev) 2864 { 2865 /* 2866 * Determine if the received WRITE_SAME is used to for direct 2867 * passthrough into Linux/SCSI with struct request via TCM/pSCSI 2868 * or we are signaling the use of internal WRITE_SAME + UNMAP=1 2869 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code. 2870 */ 2871 int passthrough = (dev->transport->transport_type == 2872 TRANSPORT_PLUGIN_PHBA_PDEV); 2873 2874 if (!passthrough) { 2875 if ((flags[0] & 0x04) || (flags[0] & 0x02)) { 2876 pr_err("WRITE_SAME PBDATA and LBDATA" 2877 " bits not supported for Block Discard" 2878 " Emulation\n"); 2879 return -ENOSYS; 2880 } 2881 /* 2882 * Currently for the emulated case we only accept 2883 * tpws with the UNMAP=1 bit set. 2884 */ 2885 if (!(flags[0] & 0x08)) { 2886 pr_err("WRITE_SAME w/o UNMAP bit not" 2887 " supported for Block Discard Emulation\n"); 2888 return -ENOSYS; 2889 } 2890 } 2891 2892 return 0; 2893 } 2894 2895 /* transport_generic_cmd_sequencer(): 2896 * 2897 * Generic Command Sequencer that should work for most DAS transport 2898 * drivers. 2899 * 2900 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD 2901 * RX Thread. 2902 * 2903 * FIXME: Need to support other SCSI OPCODES where as well. 2904 */ 2905 static int transport_generic_cmd_sequencer( 2906 struct se_cmd *cmd, 2907 unsigned char *cdb) 2908 { 2909 struct se_device *dev = cmd->se_dev; 2910 struct se_subsystem_dev *su_dev = dev->se_sub_dev; 2911 int ret = 0, sector_ret = 0, passthrough; 2912 u32 sectors = 0, size = 0, pr_reg_type = 0; 2913 u16 service_action; 2914 u8 alua_ascq = 0; 2915 /* 2916 * Check for an existing UNIT ATTENTION condition 2917 */ 2918 if (core_scsi3_ua_check(cmd, cdb) < 0) { 2919 cmd->transport_wait_for_tasks = 2920 &transport_nop_wait_for_tasks; 2921 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 2922 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION; 2923 return -EINVAL; 2924 } 2925 /* 2926 * Check status of Asymmetric Logical Unit Assignment port 2927 */ 2928 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq); 2929 if (ret != 0) { 2930 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks; 2931 /* 2932 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible'; 2933 * The ALUA additional sense code qualifier (ASCQ) is determined 2934 * by the ALUA primary or secondary access state.. 2935 */ 2936 if (ret > 0) { 2937 #if 0 2938 pr_debug("[%s]: ALUA TG Port not available," 2939 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n", 2940 cmd->se_tfo->get_fabric_name(), alua_ascq); 2941 #endif 2942 transport_set_sense_codes(cmd, 0x04, alua_ascq); 2943 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 2944 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY; 2945 return -EINVAL; 2946 } 2947 goto out_invalid_cdb_field; 2948 } 2949 /* 2950 * Check status for SPC-3 Persistent Reservations 2951 */ 2952 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) { 2953 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder( 2954 cmd, cdb, pr_reg_type) != 0) 2955 return transport_handle_reservation_conflict(cmd); 2956 /* 2957 * This means the CDB is allowed for the SCSI Initiator port 2958 * when said port is *NOT* holding the legacy SPC-2 or 2959 * SPC-3 Persistent Reservation. 2960 */ 2961 } 2962 2963 switch (cdb[0]) { 2964 case READ_6: 2965 sectors = transport_get_sectors_6(cdb, cmd, §or_ret); 2966 if (sector_ret) 2967 goto out_unsupported_cdb; 2968 size = transport_get_size(sectors, cdb, cmd); 2969 cmd->transport_split_cdb = &split_cdb_XX_6; 2970 cmd->t_task_lba = transport_lba_21(cdb); 2971 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; 2972 break; 2973 case READ_10: 2974 sectors = transport_get_sectors_10(cdb, cmd, §or_ret); 2975 if (sector_ret) 2976 goto out_unsupported_cdb; 2977 size = transport_get_size(sectors, cdb, cmd); 2978 cmd->transport_split_cdb = &split_cdb_XX_10; 2979 cmd->t_task_lba = transport_lba_32(cdb); 2980 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; 2981 break; 2982 case READ_12: 2983 sectors = transport_get_sectors_12(cdb, cmd, §or_ret); 2984 if (sector_ret) 2985 goto out_unsupported_cdb; 2986 size = transport_get_size(sectors, cdb, cmd); 2987 cmd->transport_split_cdb = &split_cdb_XX_12; 2988 cmd->t_task_lba = transport_lba_32(cdb); 2989 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; 2990 break; 2991 case READ_16: 2992 sectors = transport_get_sectors_16(cdb, cmd, §or_ret); 2993 if (sector_ret) 2994 goto out_unsupported_cdb; 2995 size = transport_get_size(sectors, cdb, cmd); 2996 cmd->transport_split_cdb = &split_cdb_XX_16; 2997 cmd->t_task_lba = transport_lba_64(cdb); 2998 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; 2999 break; 3000 case WRITE_6: 3001 sectors = transport_get_sectors_6(cdb, cmd, §or_ret); 3002 if (sector_ret) 3003 goto out_unsupported_cdb; 3004 size = transport_get_size(sectors, cdb, cmd); 3005 cmd->transport_split_cdb = &split_cdb_XX_6; 3006 cmd->t_task_lba = transport_lba_21(cdb); 3007 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; 3008 break; 3009 case WRITE_10: 3010 sectors = transport_get_sectors_10(cdb, cmd, §or_ret); 3011 if (sector_ret) 3012 goto out_unsupported_cdb; 3013 size = transport_get_size(sectors, cdb, cmd); 3014 cmd->transport_split_cdb = &split_cdb_XX_10; 3015 cmd->t_task_lba = transport_lba_32(cdb); 3016 cmd->t_tasks_fua = (cdb[1] & 0x8); 3017 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; 3018 break; 3019 case WRITE_12: 3020 sectors = transport_get_sectors_12(cdb, cmd, §or_ret); 3021 if (sector_ret) 3022 goto out_unsupported_cdb; 3023 size = transport_get_size(sectors, cdb, cmd); 3024 cmd->transport_split_cdb = &split_cdb_XX_12; 3025 cmd->t_task_lba = transport_lba_32(cdb); 3026 cmd->t_tasks_fua = (cdb[1] & 0x8); 3027 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; 3028 break; 3029 case WRITE_16: 3030 sectors = transport_get_sectors_16(cdb, cmd, §or_ret); 3031 if (sector_ret) 3032 goto out_unsupported_cdb; 3033 size = transport_get_size(sectors, cdb, cmd); 3034 cmd->transport_split_cdb = &split_cdb_XX_16; 3035 cmd->t_task_lba = transport_lba_64(cdb); 3036 cmd->t_tasks_fua = (cdb[1] & 0x8); 3037 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; 3038 break; 3039 case XDWRITEREAD_10: 3040 if ((cmd->data_direction != DMA_TO_DEVICE) || 3041 !(cmd->t_tasks_bidi)) 3042 goto out_invalid_cdb_field; 3043 sectors = transport_get_sectors_10(cdb, cmd, §or_ret); 3044 if (sector_ret) 3045 goto out_unsupported_cdb; 3046 size = transport_get_size(sectors, cdb, cmd); 3047 cmd->transport_split_cdb = &split_cdb_XX_10; 3048 cmd->t_task_lba = transport_lba_32(cdb); 3049 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; 3050 passthrough = (dev->transport->transport_type == 3051 TRANSPORT_PLUGIN_PHBA_PDEV); 3052 /* 3053 * Skip the remaining assignments for TCM/PSCSI passthrough 3054 */ 3055 if (passthrough) 3056 break; 3057 /* 3058 * Setup BIDI XOR callback to be run during transport_generic_complete_ok() 3059 */ 3060 cmd->transport_complete_callback = &transport_xor_callback; 3061 cmd->t_tasks_fua = (cdb[1] & 0x8); 3062 break; 3063 case VARIABLE_LENGTH_CMD: 3064 service_action = get_unaligned_be16(&cdb[8]); 3065 /* 3066 * Determine if this is TCM/PSCSI device and we should disable 3067 * internal emulation for this CDB. 3068 */ 3069 passthrough = (dev->transport->transport_type == 3070 TRANSPORT_PLUGIN_PHBA_PDEV); 3071 3072 switch (service_action) { 3073 case XDWRITEREAD_32: 3074 sectors = transport_get_sectors_32(cdb, cmd, §or_ret); 3075 if (sector_ret) 3076 goto out_unsupported_cdb; 3077 size = transport_get_size(sectors, cdb, cmd); 3078 /* 3079 * Use WRITE_32 and READ_32 opcodes for the emulated 3080 * XDWRITE_READ_32 logic. 3081 */ 3082 cmd->transport_split_cdb = &split_cdb_XX_32; 3083 cmd->t_task_lba = transport_lba_64_ext(cdb); 3084 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; 3085 3086 /* 3087 * Skip the remaining assignments for TCM/PSCSI passthrough 3088 */ 3089 if (passthrough) 3090 break; 3091 3092 /* 3093 * Setup BIDI XOR callback to be run during 3094 * transport_generic_complete_ok() 3095 */ 3096 cmd->transport_complete_callback = &transport_xor_callback; 3097 cmd->t_tasks_fua = (cdb[10] & 0x8); 3098 break; 3099 case WRITE_SAME_32: 3100 sectors = transport_get_sectors_32(cdb, cmd, §or_ret); 3101 if (sector_ret) 3102 goto out_unsupported_cdb; 3103 3104 if (sectors) 3105 size = transport_get_size(1, cdb, cmd); 3106 else { 3107 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not" 3108 " supported\n"); 3109 goto out_invalid_cdb_field; 3110 } 3111 3112 cmd->t_task_lba = get_unaligned_be64(&cdb[12]); 3113 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3114 3115 if (target_check_write_same_discard(&cdb[10], dev) < 0) 3116 goto out_invalid_cdb_field; 3117 3118 break; 3119 default: 3120 pr_err("VARIABLE_LENGTH_CMD service action" 3121 " 0x%04x not supported\n", service_action); 3122 goto out_unsupported_cdb; 3123 } 3124 break; 3125 case MAINTENANCE_IN: 3126 if (dev->transport->get_device_type(dev) != TYPE_ROM) { 3127 /* MAINTENANCE_IN from SCC-2 */ 3128 /* 3129 * Check for emulated MI_REPORT_TARGET_PGS. 3130 */ 3131 if (cdb[1] == MI_REPORT_TARGET_PGS) { 3132 cmd->transport_emulate_cdb = 3133 (su_dev->t10_alua.alua_type == 3134 SPC3_ALUA_EMULATED) ? 3135 core_emulate_report_target_port_groups : 3136 NULL; 3137 } 3138 size = (cdb[6] << 24) | (cdb[7] << 16) | 3139 (cdb[8] << 8) | cdb[9]; 3140 } else { 3141 /* GPCMD_SEND_KEY from multi media commands */ 3142 size = (cdb[8] << 8) + cdb[9]; 3143 } 3144 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3145 break; 3146 case MODE_SELECT: 3147 size = cdb[4]; 3148 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3149 break; 3150 case MODE_SELECT_10: 3151 size = (cdb[7] << 8) + cdb[8]; 3152 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3153 break; 3154 case MODE_SENSE: 3155 size = cdb[4]; 3156 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3157 break; 3158 case MODE_SENSE_10: 3159 case GPCMD_READ_BUFFER_CAPACITY: 3160 case GPCMD_SEND_OPC: 3161 case LOG_SELECT: 3162 case LOG_SENSE: 3163 size = (cdb[7] << 8) + cdb[8]; 3164 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3165 break; 3166 case READ_BLOCK_LIMITS: 3167 size = READ_BLOCK_LEN; 3168 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3169 break; 3170 case GPCMD_GET_CONFIGURATION: 3171 case GPCMD_READ_FORMAT_CAPACITIES: 3172 case GPCMD_READ_DISC_INFO: 3173 case GPCMD_READ_TRACK_RZONE_INFO: 3174 size = (cdb[7] << 8) + cdb[8]; 3175 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3176 break; 3177 case PERSISTENT_RESERVE_IN: 3178 case PERSISTENT_RESERVE_OUT: 3179 cmd->transport_emulate_cdb = 3180 (su_dev->t10_pr.res_type == 3181 SPC3_PERSISTENT_RESERVATIONS) ? 3182 core_scsi3_emulate_pr : NULL; 3183 size = (cdb[7] << 8) + cdb[8]; 3184 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3185 break; 3186 case GPCMD_MECHANISM_STATUS: 3187 case GPCMD_READ_DVD_STRUCTURE: 3188 size = (cdb[8] << 8) + cdb[9]; 3189 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3190 break; 3191 case READ_POSITION: 3192 size = READ_POSITION_LEN; 3193 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3194 break; 3195 case MAINTENANCE_OUT: 3196 if (dev->transport->get_device_type(dev) != TYPE_ROM) { 3197 /* MAINTENANCE_OUT from SCC-2 3198 * 3199 * Check for emulated MO_SET_TARGET_PGS. 3200 */ 3201 if (cdb[1] == MO_SET_TARGET_PGS) { 3202 cmd->transport_emulate_cdb = 3203 (su_dev->t10_alua.alua_type == 3204 SPC3_ALUA_EMULATED) ? 3205 core_emulate_set_target_port_groups : 3206 NULL; 3207 } 3208 3209 size = (cdb[6] << 24) | (cdb[7] << 16) | 3210 (cdb[8] << 8) | cdb[9]; 3211 } else { 3212 /* GPCMD_REPORT_KEY from multi media commands */ 3213 size = (cdb[8] << 8) + cdb[9]; 3214 } 3215 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3216 break; 3217 case INQUIRY: 3218 size = (cdb[3] << 8) + cdb[4]; 3219 /* 3220 * Do implict HEAD_OF_QUEUE processing for INQUIRY. 3221 * See spc4r17 section 5.3 3222 */ 3223 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED) 3224 cmd->sam_task_attr = MSG_HEAD_TAG; 3225 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3226 break; 3227 case READ_BUFFER: 3228 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8]; 3229 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3230 break; 3231 case READ_CAPACITY: 3232 size = READ_CAP_LEN; 3233 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3234 break; 3235 case READ_MEDIA_SERIAL_NUMBER: 3236 case SECURITY_PROTOCOL_IN: 3237 case SECURITY_PROTOCOL_OUT: 3238 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9]; 3239 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3240 break; 3241 case SERVICE_ACTION_IN: 3242 case ACCESS_CONTROL_IN: 3243 case ACCESS_CONTROL_OUT: 3244 case EXTENDED_COPY: 3245 case READ_ATTRIBUTE: 3246 case RECEIVE_COPY_RESULTS: 3247 case WRITE_ATTRIBUTE: 3248 size = (cdb[10] << 24) | (cdb[11] << 16) | 3249 (cdb[12] << 8) | cdb[13]; 3250 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3251 break; 3252 case RECEIVE_DIAGNOSTIC: 3253 case SEND_DIAGNOSTIC: 3254 size = (cdb[3] << 8) | cdb[4]; 3255 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3256 break; 3257 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */ 3258 #if 0 3259 case GPCMD_READ_CD: 3260 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8]; 3261 size = (2336 * sectors); 3262 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3263 break; 3264 #endif 3265 case READ_TOC: 3266 size = cdb[8]; 3267 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3268 break; 3269 case REQUEST_SENSE: 3270 size = cdb[4]; 3271 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3272 break; 3273 case READ_ELEMENT_STATUS: 3274 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9]; 3275 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3276 break; 3277 case WRITE_BUFFER: 3278 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8]; 3279 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3280 break; 3281 case RESERVE: 3282 case RESERVE_10: 3283 /* 3284 * The SPC-2 RESERVE does not contain a size in the SCSI CDB. 3285 * Assume the passthrough or $FABRIC_MOD will tell us about it. 3286 */ 3287 if (cdb[0] == RESERVE_10) 3288 size = (cdb[7] << 8) | cdb[8]; 3289 else 3290 size = cmd->data_length; 3291 3292 /* 3293 * Setup the legacy emulated handler for SPC-2 and 3294 * >= SPC-3 compatible reservation handling (CRH=1) 3295 * Otherwise, we assume the underlying SCSI logic is 3296 * is running in SPC_PASSTHROUGH, and wants reservations 3297 * emulation disabled. 3298 */ 3299 cmd->transport_emulate_cdb = 3300 (su_dev->t10_pr.res_type != 3301 SPC_PASSTHROUGH) ? 3302 core_scsi2_emulate_crh : NULL; 3303 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB; 3304 break; 3305 case RELEASE: 3306 case RELEASE_10: 3307 /* 3308 * The SPC-2 RELEASE does not contain a size in the SCSI CDB. 3309 * Assume the passthrough or $FABRIC_MOD will tell us about it. 3310 */ 3311 if (cdb[0] == RELEASE_10) 3312 size = (cdb[7] << 8) | cdb[8]; 3313 else 3314 size = cmd->data_length; 3315 3316 cmd->transport_emulate_cdb = 3317 (su_dev->t10_pr.res_type != 3318 SPC_PASSTHROUGH) ? 3319 core_scsi2_emulate_crh : NULL; 3320 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB; 3321 break; 3322 case SYNCHRONIZE_CACHE: 3323 case 0x91: /* SYNCHRONIZE_CACHE_16: */ 3324 /* 3325 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE 3326 */ 3327 if (cdb[0] == SYNCHRONIZE_CACHE) { 3328 sectors = transport_get_sectors_10(cdb, cmd, §or_ret); 3329 cmd->t_task_lba = transport_lba_32(cdb); 3330 } else { 3331 sectors = transport_get_sectors_16(cdb, cmd, §or_ret); 3332 cmd->t_task_lba = transport_lba_64(cdb); 3333 } 3334 if (sector_ret) 3335 goto out_unsupported_cdb; 3336 3337 size = transport_get_size(sectors, cdb, cmd); 3338 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB; 3339 3340 /* 3341 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb() 3342 */ 3343 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 3344 break; 3345 /* 3346 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation 3347 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks() 3348 */ 3349 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC; 3350 /* 3351 * Check to ensure that LBA + Range does not exceed past end of 3352 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls 3353 */ 3354 if ((cmd->t_task_lba != 0) || (sectors != 0)) { 3355 if (transport_cmd_get_valid_sectors(cmd) < 0) 3356 goto out_invalid_cdb_field; 3357 } 3358 break; 3359 case UNMAP: 3360 size = get_unaligned_be16(&cdb[7]); 3361 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3362 break; 3363 case WRITE_SAME_16: 3364 sectors = transport_get_sectors_16(cdb, cmd, §or_ret); 3365 if (sector_ret) 3366 goto out_unsupported_cdb; 3367 3368 if (sectors) 3369 size = transport_get_size(1, cdb, cmd); 3370 else { 3371 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n"); 3372 goto out_invalid_cdb_field; 3373 } 3374 3375 cmd->t_task_lba = get_unaligned_be64(&cdb[2]); 3376 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3377 3378 if (target_check_write_same_discard(&cdb[1], dev) < 0) 3379 goto out_invalid_cdb_field; 3380 break; 3381 case WRITE_SAME: 3382 sectors = transport_get_sectors_10(cdb, cmd, §or_ret); 3383 if (sector_ret) 3384 goto out_unsupported_cdb; 3385 3386 if (sectors) 3387 size = transport_get_size(1, cdb, cmd); 3388 else { 3389 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n"); 3390 goto out_invalid_cdb_field; 3391 } 3392 3393 cmd->t_task_lba = get_unaligned_be32(&cdb[2]); 3394 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3395 /* 3396 * Follow sbcr26 with WRITE_SAME (10) and check for the existence 3397 * of byte 1 bit 3 UNMAP instead of original reserved field 3398 */ 3399 if (target_check_write_same_discard(&cdb[1], dev) < 0) 3400 goto out_invalid_cdb_field; 3401 break; 3402 case ALLOW_MEDIUM_REMOVAL: 3403 case GPCMD_CLOSE_TRACK: 3404 case ERASE: 3405 case INITIALIZE_ELEMENT_STATUS: 3406 case GPCMD_LOAD_UNLOAD: 3407 case REZERO_UNIT: 3408 case SEEK_10: 3409 case GPCMD_SET_SPEED: 3410 case SPACE: 3411 case START_STOP: 3412 case TEST_UNIT_READY: 3413 case VERIFY: 3414 case WRITE_FILEMARKS: 3415 case MOVE_MEDIUM: 3416 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB; 3417 break; 3418 case REPORT_LUNS: 3419 cmd->transport_emulate_cdb = 3420 transport_core_report_lun_response; 3421 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9]; 3422 /* 3423 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS 3424 * See spc4r17 section 5.3 3425 */ 3426 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED) 3427 cmd->sam_task_attr = MSG_HEAD_TAG; 3428 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3429 break; 3430 default: 3431 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode" 3432 " 0x%02x, sending CHECK_CONDITION.\n", 3433 cmd->se_tfo->get_fabric_name(), cdb[0]); 3434 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks; 3435 goto out_unsupported_cdb; 3436 } 3437 3438 if (size != cmd->data_length) { 3439 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:" 3440 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 3441 " 0x%02x\n", cmd->se_tfo->get_fabric_name(), 3442 cmd->data_length, size, cdb[0]); 3443 3444 cmd->cmd_spdtl = size; 3445 3446 if (cmd->data_direction == DMA_TO_DEVICE) { 3447 pr_err("Rejecting underflow/overflow" 3448 " WRITE data\n"); 3449 goto out_invalid_cdb_field; 3450 } 3451 /* 3452 * Reject READ_* or WRITE_* with overflow/underflow for 3453 * type SCF_SCSI_DATA_SG_IO_CDB. 3454 */ 3455 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) { 3456 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 3457 " CDB on non 512-byte sector setup subsystem" 3458 " plugin: %s\n", dev->transport->name); 3459 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 3460 goto out_invalid_cdb_field; 3461 } 3462 3463 if (size > cmd->data_length) { 3464 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 3465 cmd->residual_count = (size - cmd->data_length); 3466 } else { 3467 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 3468 cmd->residual_count = (cmd->data_length - size); 3469 } 3470 cmd->data_length = size; 3471 } 3472 3473 /* Let's limit control cdbs to a page, for simplicity's sake. */ 3474 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) && 3475 size > PAGE_SIZE) 3476 goto out_invalid_cdb_field; 3477 3478 transport_set_supported_SAM_opcode(cmd); 3479 return ret; 3480 3481 out_unsupported_cdb: 3482 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 3483 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 3484 return -EINVAL; 3485 out_invalid_cdb_field: 3486 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 3487 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD; 3488 return -EINVAL; 3489 } 3490 3491 /* 3492 * Called from transport_generic_complete_ok() and 3493 * transport_generic_request_failure() to determine which dormant/delayed 3494 * and ordered cmds need to have their tasks added to the execution queue. 3495 */ 3496 static void transport_complete_task_attr(struct se_cmd *cmd) 3497 { 3498 struct se_device *dev = cmd->se_dev; 3499 struct se_cmd *cmd_p, *cmd_tmp; 3500 int new_active_tasks = 0; 3501 3502 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) { 3503 atomic_dec(&dev->simple_cmds); 3504 smp_mb__after_atomic_dec(); 3505 dev->dev_cur_ordered_id++; 3506 pr_debug("Incremented dev->dev_cur_ordered_id: %u for" 3507 " SIMPLE: %u\n", dev->dev_cur_ordered_id, 3508 cmd->se_ordered_id); 3509 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) { 3510 atomic_dec(&dev->dev_hoq_count); 3511 smp_mb__after_atomic_dec(); 3512 dev->dev_cur_ordered_id++; 3513 pr_debug("Incremented dev_cur_ordered_id: %u for" 3514 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id, 3515 cmd->se_ordered_id); 3516 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) { 3517 spin_lock(&dev->ordered_cmd_lock); 3518 list_del(&cmd->se_ordered_node); 3519 atomic_dec(&dev->dev_ordered_sync); 3520 smp_mb__after_atomic_dec(); 3521 spin_unlock(&dev->ordered_cmd_lock); 3522 3523 dev->dev_cur_ordered_id++; 3524 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:" 3525 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id); 3526 } 3527 /* 3528 * Process all commands up to the last received 3529 * ORDERED task attribute which requires another blocking 3530 * boundary 3531 */ 3532 spin_lock(&dev->delayed_cmd_lock); 3533 list_for_each_entry_safe(cmd_p, cmd_tmp, 3534 &dev->delayed_cmd_list, se_delayed_node) { 3535 3536 list_del(&cmd_p->se_delayed_node); 3537 spin_unlock(&dev->delayed_cmd_lock); 3538 3539 pr_debug("Calling add_tasks() for" 3540 " cmd_p: 0x%02x Task Attr: 0x%02x" 3541 " Dormant -> Active, se_ordered_id: %u\n", 3542 cmd_p->t_task_cdb[0], 3543 cmd_p->sam_task_attr, cmd_p->se_ordered_id); 3544 3545 transport_add_tasks_from_cmd(cmd_p); 3546 new_active_tasks++; 3547 3548 spin_lock(&dev->delayed_cmd_lock); 3549 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG) 3550 break; 3551 } 3552 spin_unlock(&dev->delayed_cmd_lock); 3553 /* 3554 * If new tasks have become active, wake up the transport thread 3555 * to do the processing of the Active tasks. 3556 */ 3557 if (new_active_tasks != 0) 3558 wake_up_interruptible(&dev->dev_queue_obj.thread_wq); 3559 } 3560 3561 static int transport_complete_qf(struct se_cmd *cmd) 3562 { 3563 int ret = 0; 3564 3565 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 3566 return cmd->se_tfo->queue_status(cmd); 3567 3568 switch (cmd->data_direction) { 3569 case DMA_FROM_DEVICE: 3570 ret = cmd->se_tfo->queue_data_in(cmd); 3571 break; 3572 case DMA_TO_DEVICE: 3573 if (cmd->t_bidi_data_sg) { 3574 ret = cmd->se_tfo->queue_data_in(cmd); 3575 if (ret < 0) 3576 return ret; 3577 } 3578 /* Fall through for DMA_TO_DEVICE */ 3579 case DMA_NONE: 3580 ret = cmd->se_tfo->queue_status(cmd); 3581 break; 3582 default: 3583 break; 3584 } 3585 3586 return ret; 3587 } 3588 3589 static void transport_handle_queue_full( 3590 struct se_cmd *cmd, 3591 struct se_device *dev, 3592 int (*qf_callback)(struct se_cmd *)) 3593 { 3594 spin_lock_irq(&dev->qf_cmd_lock); 3595 cmd->se_cmd_flags |= SCF_EMULATE_QUEUE_FULL; 3596 cmd->transport_qf_callback = qf_callback; 3597 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 3598 atomic_inc(&dev->dev_qf_count); 3599 smp_mb__after_atomic_inc(); 3600 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 3601 3602 schedule_work(&cmd->se_dev->qf_work_queue); 3603 } 3604 3605 static void transport_generic_complete_ok(struct se_cmd *cmd) 3606 { 3607 int reason = 0, ret; 3608 /* 3609 * Check if we need to move delayed/dormant tasks from cmds on the 3610 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 3611 * Attribute. 3612 */ 3613 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED) 3614 transport_complete_task_attr(cmd); 3615 /* 3616 * Check to schedule QUEUE_FULL work, or execute an existing 3617 * cmd->transport_qf_callback() 3618 */ 3619 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 3620 schedule_work(&cmd->se_dev->qf_work_queue); 3621 3622 if (cmd->transport_qf_callback) { 3623 ret = cmd->transport_qf_callback(cmd); 3624 if (ret < 0) 3625 goto queue_full; 3626 3627 cmd->transport_qf_callback = NULL; 3628 goto done; 3629 } 3630 /* 3631 * Check if we need to retrieve a sense buffer from 3632 * the struct se_cmd in question. 3633 */ 3634 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 3635 if (transport_get_sense_data(cmd) < 0) 3636 reason = TCM_NON_EXISTENT_LUN; 3637 3638 /* 3639 * Only set when an struct se_task->task_scsi_status returned 3640 * a non GOOD status. 3641 */ 3642 if (cmd->scsi_status) { 3643 ret = transport_send_check_condition_and_sense( 3644 cmd, reason, 1); 3645 if (ret == -EAGAIN) 3646 goto queue_full; 3647 3648 transport_lun_remove_cmd(cmd); 3649 transport_cmd_check_stop_to_fabric(cmd); 3650 return; 3651 } 3652 } 3653 /* 3654 * Check for a callback, used by amongst other things 3655 * XDWRITE_READ_10 emulation. 3656 */ 3657 if (cmd->transport_complete_callback) 3658 cmd->transport_complete_callback(cmd); 3659 3660 switch (cmd->data_direction) { 3661 case DMA_FROM_DEVICE: 3662 spin_lock(&cmd->se_lun->lun_sep_lock); 3663 if (cmd->se_lun->lun_sep) { 3664 cmd->se_lun->lun_sep->sep_stats.tx_data_octets += 3665 cmd->data_length; 3666 } 3667 spin_unlock(&cmd->se_lun->lun_sep_lock); 3668 3669 ret = cmd->se_tfo->queue_data_in(cmd); 3670 if (ret == -EAGAIN) 3671 goto queue_full; 3672 break; 3673 case DMA_TO_DEVICE: 3674 spin_lock(&cmd->se_lun->lun_sep_lock); 3675 if (cmd->se_lun->lun_sep) { 3676 cmd->se_lun->lun_sep->sep_stats.rx_data_octets += 3677 cmd->data_length; 3678 } 3679 spin_unlock(&cmd->se_lun->lun_sep_lock); 3680 /* 3681 * Check if we need to send READ payload for BIDI-COMMAND 3682 */ 3683 if (cmd->t_bidi_data_sg) { 3684 spin_lock(&cmd->se_lun->lun_sep_lock); 3685 if (cmd->se_lun->lun_sep) { 3686 cmd->se_lun->lun_sep->sep_stats.tx_data_octets += 3687 cmd->data_length; 3688 } 3689 spin_unlock(&cmd->se_lun->lun_sep_lock); 3690 ret = cmd->se_tfo->queue_data_in(cmd); 3691 if (ret == -EAGAIN) 3692 goto queue_full; 3693 break; 3694 } 3695 /* Fall through for DMA_TO_DEVICE */ 3696 case DMA_NONE: 3697 ret = cmd->se_tfo->queue_status(cmd); 3698 if (ret == -EAGAIN) 3699 goto queue_full; 3700 break; 3701 default: 3702 break; 3703 } 3704 3705 done: 3706 transport_lun_remove_cmd(cmd); 3707 transport_cmd_check_stop_to_fabric(cmd); 3708 return; 3709 3710 queue_full: 3711 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 3712 " data_direction: %d\n", cmd, cmd->data_direction); 3713 transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf); 3714 } 3715 3716 static void transport_free_dev_tasks(struct se_cmd *cmd) 3717 { 3718 struct se_task *task, *task_tmp; 3719 unsigned long flags; 3720 3721 spin_lock_irqsave(&cmd->t_state_lock, flags); 3722 list_for_each_entry_safe(task, task_tmp, 3723 &cmd->t_task_list, t_list) { 3724 if (atomic_read(&task->task_active)) 3725 continue; 3726 3727 kfree(task->task_sg_bidi); 3728 kfree(task->task_sg); 3729 3730 list_del(&task->t_list); 3731 3732 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3733 if (task->se_dev) 3734 task->se_dev->transport->free_task(task); 3735 else 3736 pr_err("task[%u] - task->se_dev is NULL\n", 3737 task->task_no); 3738 spin_lock_irqsave(&cmd->t_state_lock, flags); 3739 } 3740 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3741 } 3742 3743 static inline void transport_free_sgl(struct scatterlist *sgl, int nents) 3744 { 3745 struct scatterlist *sg; 3746 int count; 3747 3748 for_each_sg(sgl, sg, nents, count) 3749 __free_page(sg_page(sg)); 3750 3751 kfree(sgl); 3752 } 3753 3754 static inline void transport_free_pages(struct se_cmd *cmd) 3755 { 3756 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) 3757 return; 3758 3759 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 3760 cmd->t_data_sg = NULL; 3761 cmd->t_data_nents = 0; 3762 3763 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 3764 cmd->t_bidi_data_sg = NULL; 3765 cmd->t_bidi_data_nents = 0; 3766 } 3767 3768 static inline void transport_release_tasks(struct se_cmd *cmd) 3769 { 3770 transport_free_dev_tasks(cmd); 3771 } 3772 3773 static inline int transport_dec_and_check(struct se_cmd *cmd) 3774 { 3775 unsigned long flags; 3776 3777 spin_lock_irqsave(&cmd->t_state_lock, flags); 3778 if (atomic_read(&cmd->t_fe_count)) { 3779 if (!atomic_dec_and_test(&cmd->t_fe_count)) { 3780 spin_unlock_irqrestore(&cmd->t_state_lock, 3781 flags); 3782 return 1; 3783 } 3784 } 3785 3786 if (atomic_read(&cmd->t_se_count)) { 3787 if (!atomic_dec_and_test(&cmd->t_se_count)) { 3788 spin_unlock_irqrestore(&cmd->t_state_lock, 3789 flags); 3790 return 1; 3791 } 3792 } 3793 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3794 3795 return 0; 3796 } 3797 3798 static void transport_release_fe_cmd(struct se_cmd *cmd) 3799 { 3800 unsigned long flags; 3801 3802 if (transport_dec_and_check(cmd)) 3803 return; 3804 3805 spin_lock_irqsave(&cmd->t_state_lock, flags); 3806 if (!atomic_read(&cmd->transport_dev_active)) { 3807 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3808 goto free_pages; 3809 } 3810 atomic_set(&cmd->transport_dev_active, 0); 3811 transport_all_task_dev_remove_state(cmd); 3812 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3813 3814 transport_release_tasks(cmd); 3815 free_pages: 3816 transport_free_pages(cmd); 3817 transport_free_se_cmd(cmd); 3818 cmd->se_tfo->release_cmd(cmd); 3819 } 3820 3821 static int 3822 transport_generic_remove(struct se_cmd *cmd, int session_reinstatement) 3823 { 3824 unsigned long flags; 3825 3826 if (transport_dec_and_check(cmd)) { 3827 if (session_reinstatement) { 3828 spin_lock_irqsave(&cmd->t_state_lock, flags); 3829 transport_all_task_dev_remove_state(cmd); 3830 spin_unlock_irqrestore(&cmd->t_state_lock, 3831 flags); 3832 } 3833 return 1; 3834 } 3835 3836 spin_lock_irqsave(&cmd->t_state_lock, flags); 3837 if (!atomic_read(&cmd->transport_dev_active)) { 3838 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3839 goto free_pages; 3840 } 3841 atomic_set(&cmd->transport_dev_active, 0); 3842 transport_all_task_dev_remove_state(cmd); 3843 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3844 3845 transport_release_tasks(cmd); 3846 3847 free_pages: 3848 transport_free_pages(cmd); 3849 transport_release_cmd(cmd); 3850 return 0; 3851 } 3852 3853 /* 3854 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of 3855 * allocating in the core. 3856 * @cmd: Associated se_cmd descriptor 3857 * @mem: SGL style memory for TCM WRITE / READ 3858 * @sg_mem_num: Number of SGL elements 3859 * @mem_bidi_in: SGL style memory for TCM BIDI READ 3860 * @sg_mem_bidi_num: Number of BIDI READ SGL elements 3861 * 3862 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage 3863 * of parameters. 3864 */ 3865 int transport_generic_map_mem_to_cmd( 3866 struct se_cmd *cmd, 3867 struct scatterlist *sgl, 3868 u32 sgl_count, 3869 struct scatterlist *sgl_bidi, 3870 u32 sgl_bidi_count) 3871 { 3872 if (!sgl || !sgl_count) 3873 return 0; 3874 3875 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) || 3876 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) { 3877 3878 cmd->t_data_sg = sgl; 3879 cmd->t_data_nents = sgl_count; 3880 3881 if (sgl_bidi && sgl_bidi_count) { 3882 cmd->t_bidi_data_sg = sgl_bidi; 3883 cmd->t_bidi_data_nents = sgl_bidi_count; 3884 } 3885 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 3886 } 3887 3888 return 0; 3889 } 3890 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd); 3891 3892 static int transport_new_cmd_obj(struct se_cmd *cmd) 3893 { 3894 struct se_device *dev = cmd->se_dev; 3895 int set_counts = 1, rc, task_cdbs; 3896 3897 /* 3898 * Setup any BIDI READ tasks and memory from 3899 * cmd->t_mem_bidi_list so the READ struct se_tasks 3900 * are queued first for the non pSCSI passthrough case. 3901 */ 3902 if (cmd->t_bidi_data_sg && 3903 (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) { 3904 rc = transport_allocate_tasks(cmd, 3905 cmd->t_task_lba, 3906 DMA_FROM_DEVICE, 3907 cmd->t_bidi_data_sg, 3908 cmd->t_bidi_data_nents); 3909 if (rc <= 0) { 3910 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 3911 cmd->scsi_sense_reason = 3912 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 3913 return -EINVAL; 3914 } 3915 atomic_inc(&cmd->t_fe_count); 3916 atomic_inc(&cmd->t_se_count); 3917 set_counts = 0; 3918 } 3919 /* 3920 * Setup the tasks and memory from cmd->t_mem_list 3921 * Note for BIDI transfers this will contain the WRITE payload 3922 */ 3923 task_cdbs = transport_allocate_tasks(cmd, 3924 cmd->t_task_lba, 3925 cmd->data_direction, 3926 cmd->t_data_sg, 3927 cmd->t_data_nents); 3928 if (task_cdbs <= 0) { 3929 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 3930 cmd->scsi_sense_reason = 3931 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 3932 return -EINVAL; 3933 } 3934 3935 if (set_counts) { 3936 atomic_inc(&cmd->t_fe_count); 3937 atomic_inc(&cmd->t_se_count); 3938 } 3939 3940 cmd->t_task_list_num = task_cdbs; 3941 3942 atomic_set(&cmd->t_task_cdbs_left, task_cdbs); 3943 atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs); 3944 atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs); 3945 return 0; 3946 } 3947 3948 void *transport_kmap_first_data_page(struct se_cmd *cmd) 3949 { 3950 struct scatterlist *sg = cmd->t_data_sg; 3951 3952 BUG_ON(!sg); 3953 /* 3954 * We need to take into account a possible offset here for fabrics like 3955 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 3956 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 3957 */ 3958 return kmap(sg_page(sg)) + sg->offset; 3959 } 3960 EXPORT_SYMBOL(transport_kmap_first_data_page); 3961 3962 void transport_kunmap_first_data_page(struct se_cmd *cmd) 3963 { 3964 kunmap(sg_page(cmd->t_data_sg)); 3965 } 3966 EXPORT_SYMBOL(transport_kunmap_first_data_page); 3967 3968 static int 3969 transport_generic_get_mem(struct se_cmd *cmd) 3970 { 3971 u32 length = cmd->data_length; 3972 unsigned int nents; 3973 struct page *page; 3974 int i = 0; 3975 3976 nents = DIV_ROUND_UP(length, PAGE_SIZE); 3977 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL); 3978 if (!cmd->t_data_sg) 3979 return -ENOMEM; 3980 3981 cmd->t_data_nents = nents; 3982 sg_init_table(cmd->t_data_sg, nents); 3983 3984 while (length) { 3985 u32 page_len = min_t(u32, length, PAGE_SIZE); 3986 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 3987 if (!page) 3988 goto out; 3989 3990 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0); 3991 length -= page_len; 3992 i++; 3993 } 3994 return 0; 3995 3996 out: 3997 while (i >= 0) { 3998 __free_page(sg_page(&cmd->t_data_sg[i])); 3999 i--; 4000 } 4001 kfree(cmd->t_data_sg); 4002 cmd->t_data_sg = NULL; 4003 return -ENOMEM; 4004 } 4005 4006 /* Reduce sectors if they are too long for the device */ 4007 static inline sector_t transport_limit_task_sectors( 4008 struct se_device *dev, 4009 unsigned long long lba, 4010 sector_t sectors) 4011 { 4012 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors); 4013 4014 if (dev->transport->get_device_type(dev) == TYPE_DISK) 4015 if ((lba + sectors) > transport_dev_end_lba(dev)) 4016 sectors = ((transport_dev_end_lba(dev) - lba) + 1); 4017 4018 return sectors; 4019 } 4020 4021 4022 /* 4023 * This function can be used by HW target mode drivers to create a linked 4024 * scatterlist from all contiguously allocated struct se_task->task_sg[]. 4025 * This is intended to be called during the completion path by TCM Core 4026 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled. 4027 */ 4028 void transport_do_task_sg_chain(struct se_cmd *cmd) 4029 { 4030 struct scatterlist *sg_first = NULL; 4031 struct scatterlist *sg_prev = NULL; 4032 int sg_prev_nents = 0; 4033 struct scatterlist *sg; 4034 struct se_task *task; 4035 u32 chained_nents = 0; 4036 int i; 4037 4038 BUG_ON(!cmd->se_tfo->task_sg_chaining); 4039 4040 /* 4041 * Walk the struct se_task list and setup scatterlist chains 4042 * for each contiguously allocated struct se_task->task_sg[]. 4043 */ 4044 list_for_each_entry(task, &cmd->t_task_list, t_list) { 4045 if (!task->task_sg) 4046 continue; 4047 4048 if (!sg_first) { 4049 sg_first = task->task_sg; 4050 chained_nents = task->task_sg_nents; 4051 } else { 4052 sg_chain(sg_prev, sg_prev_nents, task->task_sg); 4053 chained_nents += task->task_sg_nents; 4054 } 4055 /* 4056 * For the padded tasks, use the extra SGL vector allocated 4057 * in transport_allocate_data_tasks() for the sg_prev_nents 4058 * offset into sg_chain() above.. The last task of a 4059 * multi-task list, or a single task will not have 4060 * task->task_sg_padded set.. 4061 */ 4062 if (task->task_padded_sg) 4063 sg_prev_nents = (task->task_sg_nents + 1); 4064 else 4065 sg_prev_nents = task->task_sg_nents; 4066 4067 sg_prev = task->task_sg; 4068 } 4069 /* 4070 * Setup the starting pointer and total t_tasks_sg_linked_no including 4071 * padding SGs for linking and to mark the end. 4072 */ 4073 cmd->t_tasks_sg_chained = sg_first; 4074 cmd->t_tasks_sg_chained_no = chained_nents; 4075 4076 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and" 4077 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained, 4078 cmd->t_tasks_sg_chained_no); 4079 4080 for_each_sg(cmd->t_tasks_sg_chained, sg, 4081 cmd->t_tasks_sg_chained_no, i) { 4082 4083 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n", 4084 i, sg, sg_page(sg), sg->length, sg->offset); 4085 if (sg_is_chain(sg)) 4086 pr_debug("SG: %p sg_is_chain=1\n", sg); 4087 if (sg_is_last(sg)) 4088 pr_debug("SG: %p sg_is_last=1\n", sg); 4089 } 4090 } 4091 EXPORT_SYMBOL(transport_do_task_sg_chain); 4092 4093 /* 4094 * Break up cmd into chunks transport can handle 4095 */ 4096 static int transport_allocate_data_tasks( 4097 struct se_cmd *cmd, 4098 unsigned long long lba, 4099 enum dma_data_direction data_direction, 4100 struct scatterlist *sgl, 4101 unsigned int sgl_nents) 4102 { 4103 unsigned char *cdb = NULL; 4104 struct se_task *task; 4105 struct se_device *dev = cmd->se_dev; 4106 unsigned long flags; 4107 int task_count, i, ret; 4108 sector_t sectors, dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors; 4109 u32 sector_size = dev->se_sub_dev->se_dev_attrib.block_size; 4110 struct scatterlist *sg; 4111 struct scatterlist *cmd_sg; 4112 4113 WARN_ON(cmd->data_length % sector_size); 4114 sectors = DIV_ROUND_UP(cmd->data_length, sector_size); 4115 task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors); 4116 4117 cmd_sg = sgl; 4118 for (i = 0; i < task_count; i++) { 4119 unsigned int task_size, task_sg_nents_padded; 4120 int count; 4121 4122 task = transport_generic_get_task(cmd, data_direction); 4123 if (!task) 4124 return -ENOMEM; 4125 4126 task->task_lba = lba; 4127 task->task_sectors = min(sectors, dev_max_sectors); 4128 task->task_size = task->task_sectors * sector_size; 4129 4130 cdb = dev->transport->get_cdb(task); 4131 BUG_ON(!cdb); 4132 4133 memcpy(cdb, cmd->t_task_cdb, 4134 scsi_command_size(cmd->t_task_cdb)); 4135 4136 /* Update new cdb with updated lba/sectors */ 4137 cmd->transport_split_cdb(task->task_lba, task->task_sectors, cdb); 4138 /* 4139 * This now assumes that passed sg_ents are in PAGE_SIZE chunks 4140 * in order to calculate the number per task SGL entries 4141 */ 4142 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE); 4143 /* 4144 * Check if the fabric module driver is requesting that all 4145 * struct se_task->task_sg[] be chained together.. If so, 4146 * then allocate an extra padding SG entry for linking and 4147 * marking the end of the chained SGL for every task except 4148 * the last one for (task_count > 1) operation, or skipping 4149 * the extra padding for the (task_count == 1) case. 4150 */ 4151 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) { 4152 task_sg_nents_padded = (task->task_sg_nents + 1); 4153 task->task_padded_sg = 1; 4154 } else 4155 task_sg_nents_padded = task->task_sg_nents; 4156 4157 task->task_sg = kmalloc(sizeof(struct scatterlist) * 4158 task_sg_nents_padded, GFP_KERNEL); 4159 if (!task->task_sg) { 4160 cmd->se_dev->transport->free_task(task); 4161 return -ENOMEM; 4162 } 4163 4164 sg_init_table(task->task_sg, task_sg_nents_padded); 4165 4166 task_size = task->task_size; 4167 4168 /* Build new sgl, only up to task_size */ 4169 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) { 4170 if (cmd_sg->length > task_size) 4171 break; 4172 4173 *sg = *cmd_sg; 4174 task_size -= cmd_sg->length; 4175 cmd_sg = sg_next(cmd_sg); 4176 } 4177 4178 lba += task->task_sectors; 4179 sectors -= task->task_sectors; 4180 4181 spin_lock_irqsave(&cmd->t_state_lock, flags); 4182 list_add_tail(&task->t_list, &cmd->t_task_list); 4183 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 4184 } 4185 /* 4186 * Now perform the memory map of task->task_sg[] into backend 4187 * subsystem memory.. 4188 */ 4189 list_for_each_entry(task, &cmd->t_task_list, t_list) { 4190 if (atomic_read(&task->task_sent)) 4191 continue; 4192 if (!dev->transport->map_data_SG) 4193 continue; 4194 4195 ret = dev->transport->map_data_SG(task); 4196 if (ret < 0) 4197 return 0; 4198 } 4199 4200 return task_count; 4201 } 4202 4203 static int 4204 transport_allocate_control_task(struct se_cmd *cmd) 4205 { 4206 struct se_device *dev = cmd->se_dev; 4207 unsigned char *cdb; 4208 struct se_task *task; 4209 unsigned long flags; 4210 int ret = 0; 4211 4212 task = transport_generic_get_task(cmd, cmd->data_direction); 4213 if (!task) 4214 return -ENOMEM; 4215 4216 cdb = dev->transport->get_cdb(task); 4217 BUG_ON(!cdb); 4218 memcpy(cdb, cmd->t_task_cdb, 4219 scsi_command_size(cmd->t_task_cdb)); 4220 4221 task->task_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents, 4222 GFP_KERNEL); 4223 if (!task->task_sg) { 4224 cmd->se_dev->transport->free_task(task); 4225 return -ENOMEM; 4226 } 4227 4228 memcpy(task->task_sg, cmd->t_data_sg, 4229 sizeof(struct scatterlist) * cmd->t_data_nents); 4230 task->task_size = cmd->data_length; 4231 task->task_sg_nents = cmd->t_data_nents; 4232 4233 spin_lock_irqsave(&cmd->t_state_lock, flags); 4234 list_add_tail(&task->t_list, &cmd->t_task_list); 4235 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 4236 4237 if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) { 4238 if (dev->transport->map_control_SG) 4239 ret = dev->transport->map_control_SG(task); 4240 } else if (cmd->se_cmd_flags & SCF_SCSI_NON_DATA_CDB) { 4241 if (dev->transport->cdb_none) 4242 ret = dev->transport->cdb_none(task); 4243 } else { 4244 pr_err("target: Unknown control cmd type!\n"); 4245 BUG(); 4246 } 4247 4248 /* Success! Return number of tasks allocated */ 4249 if (ret == 0) 4250 return 1; 4251 return ret; 4252 } 4253 4254 static u32 transport_allocate_tasks( 4255 struct se_cmd *cmd, 4256 unsigned long long lba, 4257 enum dma_data_direction data_direction, 4258 struct scatterlist *sgl, 4259 unsigned int sgl_nents) 4260 { 4261 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) { 4262 if (transport_cmd_get_valid_sectors(cmd) < 0) 4263 return -EINVAL; 4264 4265 return transport_allocate_data_tasks(cmd, lba, data_direction, 4266 sgl, sgl_nents); 4267 } else 4268 return transport_allocate_control_task(cmd); 4269 4270 } 4271 4272 4273 /* transport_generic_new_cmd(): Called from transport_processing_thread() 4274 * 4275 * Allocate storage transport resources from a set of values predefined 4276 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process. 4277 * Any non zero return here is treated as an "out of resource' op here. 4278 */ 4279 /* 4280 * Generate struct se_task(s) and/or their payloads for this CDB. 4281 */ 4282 int transport_generic_new_cmd(struct se_cmd *cmd) 4283 { 4284 int ret = 0; 4285 4286 /* 4287 * Determine is the TCM fabric module has already allocated physical 4288 * memory, and is directly calling transport_generic_map_mem_to_cmd() 4289 * beforehand. 4290 */ 4291 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 4292 cmd->data_length) { 4293 ret = transport_generic_get_mem(cmd); 4294 if (ret < 0) 4295 return ret; 4296 } 4297 /* 4298 * Call transport_new_cmd_obj() to invoke transport_allocate_tasks() for 4299 * control or data CDB types, and perform the map to backend subsystem 4300 * code from SGL memory allocated here by transport_generic_get_mem(), or 4301 * via pre-existing SGL memory setup explictly by fabric module code with 4302 * transport_generic_map_mem_to_cmd(). 4303 */ 4304 ret = transport_new_cmd_obj(cmd); 4305 if (ret < 0) 4306 return ret; 4307 /* 4308 * For WRITEs, let the fabric know its buffer is ready.. 4309 * This WRITE struct se_cmd (and all of its associated struct se_task's) 4310 * will be added to the struct se_device execution queue after its WRITE 4311 * data has arrived. (ie: It gets handled by the transport processing 4312 * thread a second time) 4313 */ 4314 if (cmd->data_direction == DMA_TO_DEVICE) { 4315 transport_add_tasks_to_state_queue(cmd); 4316 return transport_generic_write_pending(cmd); 4317 } 4318 /* 4319 * Everything else but a WRITE, add the struct se_cmd's struct se_task's 4320 * to the execution queue. 4321 */ 4322 transport_execute_tasks(cmd); 4323 return 0; 4324 } 4325 EXPORT_SYMBOL(transport_generic_new_cmd); 4326 4327 /* transport_generic_process_write(): 4328 * 4329 * 4330 */ 4331 void transport_generic_process_write(struct se_cmd *cmd) 4332 { 4333 transport_execute_tasks(cmd); 4334 } 4335 EXPORT_SYMBOL(transport_generic_process_write); 4336 4337 static int transport_write_pending_qf(struct se_cmd *cmd) 4338 { 4339 return cmd->se_tfo->write_pending(cmd); 4340 } 4341 4342 /* transport_generic_write_pending(): 4343 * 4344 * 4345 */ 4346 static int transport_generic_write_pending(struct se_cmd *cmd) 4347 { 4348 unsigned long flags; 4349 int ret; 4350 4351 spin_lock_irqsave(&cmd->t_state_lock, flags); 4352 cmd->t_state = TRANSPORT_WRITE_PENDING; 4353 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 4354 4355 if (cmd->transport_qf_callback) { 4356 ret = cmd->transport_qf_callback(cmd); 4357 if (ret == -EAGAIN) 4358 goto queue_full; 4359 else if (ret < 0) 4360 return ret; 4361 4362 cmd->transport_qf_callback = NULL; 4363 return 0; 4364 } 4365 4366 /* 4367 * Clear the se_cmd for WRITE_PENDING status in order to set 4368 * cmd->t_transport_active=0 so that transport_generic_handle_data 4369 * can be called from HW target mode interrupt code. This is safe 4370 * to be called with transport_off=1 before the cmd->se_tfo->write_pending 4371 * because the se_cmd->se_lun pointer is not being cleared. 4372 */ 4373 transport_cmd_check_stop(cmd, 1, 0); 4374 4375 /* 4376 * Call the fabric write_pending function here to let the 4377 * frontend know that WRITE buffers are ready. 4378 */ 4379 ret = cmd->se_tfo->write_pending(cmd); 4380 if (ret == -EAGAIN) 4381 goto queue_full; 4382 else if (ret < 0) 4383 return ret; 4384 4385 return PYX_TRANSPORT_WRITE_PENDING; 4386 4387 queue_full: 4388 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 4389 cmd->t_state = TRANSPORT_COMPLETE_QF_WP; 4390 transport_handle_queue_full(cmd, cmd->se_dev, 4391 transport_write_pending_qf); 4392 return ret; 4393 } 4394 4395 void transport_release_cmd(struct se_cmd *cmd) 4396 { 4397 BUG_ON(!cmd->se_tfo); 4398 4399 transport_free_se_cmd(cmd); 4400 cmd->se_tfo->release_cmd(cmd); 4401 } 4402 EXPORT_SYMBOL(transport_release_cmd); 4403 4404 /* transport_generic_free_cmd(): 4405 * 4406 * Called from processing frontend to release storage engine resources 4407 */ 4408 void transport_generic_free_cmd( 4409 struct se_cmd *cmd, 4410 int wait_for_tasks, 4411 int session_reinstatement) 4412 { 4413 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) 4414 transport_release_cmd(cmd); 4415 else { 4416 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd); 4417 4418 if (cmd->se_lun) { 4419 #if 0 4420 pr_debug("cmd: %p ITT: 0x%08x contains" 4421 " cmd->se_lun\n", cmd, 4422 cmd->se_tfo->get_task_tag(cmd)); 4423 #endif 4424 transport_lun_remove_cmd(cmd); 4425 } 4426 4427 if (wait_for_tasks && cmd->transport_wait_for_tasks) 4428 cmd->transport_wait_for_tasks(cmd, 0, 0); 4429 4430 transport_free_dev_tasks(cmd); 4431 4432 transport_generic_remove(cmd, session_reinstatement); 4433 } 4434 } 4435 EXPORT_SYMBOL(transport_generic_free_cmd); 4436 4437 static void transport_nop_wait_for_tasks( 4438 struct se_cmd *cmd, 4439 int remove_cmd, 4440 int session_reinstatement) 4441 { 4442 return; 4443 } 4444 4445 /* transport_lun_wait_for_tasks(): 4446 * 4447 * Called from ConfigFS context to stop the passed struct se_cmd to allow 4448 * an struct se_lun to be successfully shutdown. 4449 */ 4450 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun) 4451 { 4452 unsigned long flags; 4453 int ret; 4454 /* 4455 * If the frontend has already requested this struct se_cmd to 4456 * be stopped, we can safely ignore this struct se_cmd. 4457 */ 4458 spin_lock_irqsave(&cmd->t_state_lock, flags); 4459 if (atomic_read(&cmd->t_transport_stop)) { 4460 atomic_set(&cmd->transport_lun_stop, 0); 4461 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop ==" 4462 " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd)); 4463 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 4464 transport_cmd_check_stop(cmd, 1, 0); 4465 return -EPERM; 4466 } 4467 atomic_set(&cmd->transport_lun_fe_stop, 1); 4468 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 4469 4470 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq); 4471 4472 ret = transport_stop_tasks_for_cmd(cmd); 4473 4474 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:" 4475 " %d\n", cmd, cmd->t_task_list_num, ret); 4476 if (!ret) { 4477 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n", 4478 cmd->se_tfo->get_task_tag(cmd)); 4479 wait_for_completion(&cmd->transport_lun_stop_comp); 4480 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n", 4481 cmd->se_tfo->get_task_tag(cmd)); 4482 } 4483 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj); 4484 4485 return 0; 4486 } 4487 4488 static void __transport_clear_lun_from_sessions(struct se_lun *lun) 4489 { 4490 struct se_cmd *cmd = NULL; 4491 unsigned long lun_flags, cmd_flags; 4492 /* 4493 * Do exception processing and return CHECK_CONDITION status to the 4494 * Initiator Port. 4495 */ 4496 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 4497 while (!list_empty(&lun->lun_cmd_list)) { 4498 cmd = list_first_entry(&lun->lun_cmd_list, 4499 struct se_cmd, se_lun_node); 4500 list_del(&cmd->se_lun_node); 4501 4502 atomic_set(&cmd->transport_lun_active, 0); 4503 /* 4504 * This will notify iscsi_target_transport.c: 4505 * transport_cmd_check_stop() that a LUN shutdown is in 4506 * progress for the iscsi_cmd_t. 4507 */ 4508 spin_lock(&cmd->t_state_lock); 4509 pr_debug("SE_LUN[%d] - Setting cmd->transport" 4510 "_lun_stop for ITT: 0x%08x\n", 4511 cmd->se_lun->unpacked_lun, 4512 cmd->se_tfo->get_task_tag(cmd)); 4513 atomic_set(&cmd->transport_lun_stop, 1); 4514 spin_unlock(&cmd->t_state_lock); 4515 4516 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags); 4517 4518 if (!cmd->se_lun) { 4519 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n", 4520 cmd->se_tfo->get_task_tag(cmd), 4521 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 4522 BUG(); 4523 } 4524 /* 4525 * If the Storage engine still owns the iscsi_cmd_t, determine 4526 * and/or stop its context. 4527 */ 4528 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport" 4529 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun, 4530 cmd->se_tfo->get_task_tag(cmd)); 4531 4532 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) { 4533 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 4534 continue; 4535 } 4536 4537 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun" 4538 "_wait_for_tasks(): SUCCESS\n", 4539 cmd->se_lun->unpacked_lun, 4540 cmd->se_tfo->get_task_tag(cmd)); 4541 4542 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags); 4543 if (!atomic_read(&cmd->transport_dev_active)) { 4544 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags); 4545 goto check_cond; 4546 } 4547 atomic_set(&cmd->transport_dev_active, 0); 4548 transport_all_task_dev_remove_state(cmd); 4549 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags); 4550 4551 transport_free_dev_tasks(cmd); 4552 /* 4553 * The Storage engine stopped this struct se_cmd before it was 4554 * send to the fabric frontend for delivery back to the 4555 * Initiator Node. Return this SCSI CDB back with an 4556 * CHECK_CONDITION status. 4557 */ 4558 check_cond: 4559 transport_send_check_condition_and_sense(cmd, 4560 TCM_NON_EXISTENT_LUN, 0); 4561 /* 4562 * If the fabric frontend is waiting for this iscsi_cmd_t to 4563 * be released, notify the waiting thread now that LU has 4564 * finished accessing it. 4565 */ 4566 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags); 4567 if (atomic_read(&cmd->transport_lun_fe_stop)) { 4568 pr_debug("SE_LUN[%d] - Detected FE stop for" 4569 " struct se_cmd: %p ITT: 0x%08x\n", 4570 lun->unpacked_lun, 4571 cmd, cmd->se_tfo->get_task_tag(cmd)); 4572 4573 spin_unlock_irqrestore(&cmd->t_state_lock, 4574 cmd_flags); 4575 transport_cmd_check_stop(cmd, 1, 0); 4576 complete(&cmd->transport_lun_fe_stop_comp); 4577 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 4578 continue; 4579 } 4580 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n", 4581 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd)); 4582 4583 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags); 4584 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 4585 } 4586 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags); 4587 } 4588 4589 static int transport_clear_lun_thread(void *p) 4590 { 4591 struct se_lun *lun = (struct se_lun *)p; 4592 4593 __transport_clear_lun_from_sessions(lun); 4594 complete(&lun->lun_shutdown_comp); 4595 4596 return 0; 4597 } 4598 4599 int transport_clear_lun_from_sessions(struct se_lun *lun) 4600 { 4601 struct task_struct *kt; 4602 4603 kt = kthread_run(transport_clear_lun_thread, lun, 4604 "tcm_cl_%u", lun->unpacked_lun); 4605 if (IS_ERR(kt)) { 4606 pr_err("Unable to start clear_lun thread\n"); 4607 return PTR_ERR(kt); 4608 } 4609 wait_for_completion(&lun->lun_shutdown_comp); 4610 4611 return 0; 4612 } 4613 4614 /* transport_generic_wait_for_tasks(): 4615 * 4616 * Called from frontend or passthrough context to wait for storage engine 4617 * to pause and/or release frontend generated struct se_cmd. 4618 */ 4619 static void transport_generic_wait_for_tasks( 4620 struct se_cmd *cmd, 4621 int remove_cmd, 4622 int session_reinstatement) 4623 { 4624 unsigned long flags; 4625 4626 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) 4627 return; 4628 4629 spin_lock_irqsave(&cmd->t_state_lock, flags); 4630 /* 4631 * If we are already stopped due to an external event (ie: LUN shutdown) 4632 * sleep until the connection can have the passed struct se_cmd back. 4633 * The cmd->transport_lun_stopped_sem will be upped by 4634 * transport_clear_lun_from_sessions() once the ConfigFS context caller 4635 * has completed its operation on the struct se_cmd. 4636 */ 4637 if (atomic_read(&cmd->transport_lun_stop)) { 4638 4639 pr_debug("wait_for_tasks: Stopping" 4640 " wait_for_completion(&cmd->t_tasktransport_lun_fe" 4641 "_stop_comp); for ITT: 0x%08x\n", 4642 cmd->se_tfo->get_task_tag(cmd)); 4643 /* 4644 * There is a special case for WRITES where a FE exception + 4645 * LUN shutdown means ConfigFS context is still sleeping on 4646 * transport_lun_stop_comp in transport_lun_wait_for_tasks(). 4647 * We go ahead and up transport_lun_stop_comp just to be sure 4648 * here. 4649 */ 4650 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 4651 complete(&cmd->transport_lun_stop_comp); 4652 wait_for_completion(&cmd->transport_lun_fe_stop_comp); 4653 spin_lock_irqsave(&cmd->t_state_lock, flags); 4654 4655 transport_all_task_dev_remove_state(cmd); 4656 /* 4657 * At this point, the frontend who was the originator of this 4658 * struct se_cmd, now owns the structure and can be released through 4659 * normal means below. 4660 */ 4661 pr_debug("wait_for_tasks: Stopped" 4662 " wait_for_completion(&cmd->t_tasktransport_lun_fe_" 4663 "stop_comp); for ITT: 0x%08x\n", 4664 cmd->se_tfo->get_task_tag(cmd)); 4665 4666 atomic_set(&cmd->transport_lun_stop, 0); 4667 } 4668 if (!atomic_read(&cmd->t_transport_active) || 4669 atomic_read(&cmd->t_transport_aborted)) 4670 goto remove; 4671 4672 atomic_set(&cmd->t_transport_stop, 1); 4673 4674 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x" 4675 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop" 4676 " = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd), 4677 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state, 4678 cmd->deferred_t_state); 4679 4680 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 4681 4682 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq); 4683 4684 wait_for_completion(&cmd->t_transport_stop_comp); 4685 4686 spin_lock_irqsave(&cmd->t_state_lock, flags); 4687 atomic_set(&cmd->t_transport_active, 0); 4688 atomic_set(&cmd->t_transport_stop, 0); 4689 4690 pr_debug("wait_for_tasks: Stopped wait_for_compltion(" 4691 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n", 4692 cmd->se_tfo->get_task_tag(cmd)); 4693 remove: 4694 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 4695 if (!remove_cmd) 4696 return; 4697 4698 transport_generic_free_cmd(cmd, 0, session_reinstatement); 4699 } 4700 4701 static int transport_get_sense_codes( 4702 struct se_cmd *cmd, 4703 u8 *asc, 4704 u8 *ascq) 4705 { 4706 *asc = cmd->scsi_asc; 4707 *ascq = cmd->scsi_ascq; 4708 4709 return 0; 4710 } 4711 4712 static int transport_set_sense_codes( 4713 struct se_cmd *cmd, 4714 u8 asc, 4715 u8 ascq) 4716 { 4717 cmd->scsi_asc = asc; 4718 cmd->scsi_ascq = ascq; 4719 4720 return 0; 4721 } 4722 4723 int transport_send_check_condition_and_sense( 4724 struct se_cmd *cmd, 4725 u8 reason, 4726 int from_transport) 4727 { 4728 unsigned char *buffer = cmd->sense_buffer; 4729 unsigned long flags; 4730 int offset; 4731 u8 asc = 0, ascq = 0; 4732 4733 spin_lock_irqsave(&cmd->t_state_lock, flags); 4734 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 4735 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 4736 return 0; 4737 } 4738 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 4739 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 4740 4741 if (!reason && from_transport) 4742 goto after_reason; 4743 4744 if (!from_transport) 4745 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 4746 /* 4747 * Data Segment and SenseLength of the fabric response PDU. 4748 * 4749 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE 4750 * from include/scsi/scsi_cmnd.h 4751 */ 4752 offset = cmd->se_tfo->set_fabric_sense_len(cmd, 4753 TRANSPORT_SENSE_BUFFER); 4754 /* 4755 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses 4756 * SENSE KEY values from include/scsi/scsi.h 4757 */ 4758 switch (reason) { 4759 case TCM_NON_EXISTENT_LUN: 4760 /* CURRENT ERROR */ 4761 buffer[offset] = 0x70; 4762 /* ILLEGAL REQUEST */ 4763 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 4764 /* LOGICAL UNIT NOT SUPPORTED */ 4765 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25; 4766 break; 4767 case TCM_UNSUPPORTED_SCSI_OPCODE: 4768 case TCM_SECTOR_COUNT_TOO_MANY: 4769 /* CURRENT ERROR */ 4770 buffer[offset] = 0x70; 4771 /* ILLEGAL REQUEST */ 4772 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 4773 /* INVALID COMMAND OPERATION CODE */ 4774 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20; 4775 break; 4776 case TCM_UNKNOWN_MODE_PAGE: 4777 /* CURRENT ERROR */ 4778 buffer[offset] = 0x70; 4779 /* ILLEGAL REQUEST */ 4780 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 4781 /* INVALID FIELD IN CDB */ 4782 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24; 4783 break; 4784 case TCM_CHECK_CONDITION_ABORT_CMD: 4785 /* CURRENT ERROR */ 4786 buffer[offset] = 0x70; 4787 /* ABORTED COMMAND */ 4788 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 4789 /* BUS DEVICE RESET FUNCTION OCCURRED */ 4790 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29; 4791 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03; 4792 break; 4793 case TCM_INCORRECT_AMOUNT_OF_DATA: 4794 /* CURRENT ERROR */ 4795 buffer[offset] = 0x70; 4796 /* ABORTED COMMAND */ 4797 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 4798 /* WRITE ERROR */ 4799 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c; 4800 /* NOT ENOUGH UNSOLICITED DATA */ 4801 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d; 4802 break; 4803 case TCM_INVALID_CDB_FIELD: 4804 /* CURRENT ERROR */ 4805 buffer[offset] = 0x70; 4806 /* ABORTED COMMAND */ 4807 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 4808 /* INVALID FIELD IN CDB */ 4809 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24; 4810 break; 4811 case TCM_INVALID_PARAMETER_LIST: 4812 /* CURRENT ERROR */ 4813 buffer[offset] = 0x70; 4814 /* ABORTED COMMAND */ 4815 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 4816 /* INVALID FIELD IN PARAMETER LIST */ 4817 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26; 4818 break; 4819 case TCM_UNEXPECTED_UNSOLICITED_DATA: 4820 /* CURRENT ERROR */ 4821 buffer[offset] = 0x70; 4822 /* ABORTED COMMAND */ 4823 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 4824 /* WRITE ERROR */ 4825 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c; 4826 /* UNEXPECTED_UNSOLICITED_DATA */ 4827 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c; 4828 break; 4829 case TCM_SERVICE_CRC_ERROR: 4830 /* CURRENT ERROR */ 4831 buffer[offset] = 0x70; 4832 /* ABORTED COMMAND */ 4833 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 4834 /* PROTOCOL SERVICE CRC ERROR */ 4835 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47; 4836 /* N/A */ 4837 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05; 4838 break; 4839 case TCM_SNACK_REJECTED: 4840 /* CURRENT ERROR */ 4841 buffer[offset] = 0x70; 4842 /* ABORTED COMMAND */ 4843 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 4844 /* READ ERROR */ 4845 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11; 4846 /* FAILED RETRANSMISSION REQUEST */ 4847 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13; 4848 break; 4849 case TCM_WRITE_PROTECTED: 4850 /* CURRENT ERROR */ 4851 buffer[offset] = 0x70; 4852 /* DATA PROTECT */ 4853 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT; 4854 /* WRITE PROTECTED */ 4855 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27; 4856 break; 4857 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 4858 /* CURRENT ERROR */ 4859 buffer[offset] = 0x70; 4860 /* UNIT ATTENTION */ 4861 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION; 4862 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); 4863 buffer[offset+SPC_ASC_KEY_OFFSET] = asc; 4864 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq; 4865 break; 4866 case TCM_CHECK_CONDITION_NOT_READY: 4867 /* CURRENT ERROR */ 4868 buffer[offset] = 0x70; 4869 /* Not Ready */ 4870 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY; 4871 transport_get_sense_codes(cmd, &asc, &ascq); 4872 buffer[offset+SPC_ASC_KEY_OFFSET] = asc; 4873 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq; 4874 break; 4875 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 4876 default: 4877 /* CURRENT ERROR */ 4878 buffer[offset] = 0x70; 4879 /* ILLEGAL REQUEST */ 4880 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 4881 /* LOGICAL UNIT COMMUNICATION FAILURE */ 4882 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80; 4883 break; 4884 } 4885 /* 4886 * This code uses linux/include/scsi/scsi.h SAM status codes! 4887 */ 4888 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 4889 /* 4890 * Automatically padded, this value is encoded in the fabric's 4891 * data_length response PDU containing the SCSI defined sense data. 4892 */ 4893 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset; 4894 4895 after_reason: 4896 return cmd->se_tfo->queue_status(cmd); 4897 } 4898 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 4899 4900 int transport_check_aborted_status(struct se_cmd *cmd, int send_status) 4901 { 4902 int ret = 0; 4903 4904 if (atomic_read(&cmd->t_transport_aborted) != 0) { 4905 if (!send_status || 4906 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS)) 4907 return 1; 4908 #if 0 4909 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED" 4910 " status for CDB: 0x%02x ITT: 0x%08x\n", 4911 cmd->t_task_cdb[0], 4912 cmd->se_tfo->get_task_tag(cmd)); 4913 #endif 4914 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS; 4915 cmd->se_tfo->queue_status(cmd); 4916 ret = 1; 4917 } 4918 return ret; 4919 } 4920 EXPORT_SYMBOL(transport_check_aborted_status); 4921 4922 void transport_send_task_abort(struct se_cmd *cmd) 4923 { 4924 /* 4925 * If there are still expected incoming fabric WRITEs, we wait 4926 * until until they have completed before sending a TASK_ABORTED 4927 * response. This response with TASK_ABORTED status will be 4928 * queued back to fabric module by transport_check_aborted_status(). 4929 */ 4930 if (cmd->data_direction == DMA_TO_DEVICE) { 4931 if (cmd->se_tfo->write_pending_status(cmd) != 0) { 4932 atomic_inc(&cmd->t_transport_aborted); 4933 smp_mb__after_atomic_inc(); 4934 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 4935 transport_new_cmd_failure(cmd); 4936 return; 4937 } 4938 } 4939 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 4940 #if 0 4941 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x," 4942 " ITT: 0x%08x\n", cmd->t_task_cdb[0], 4943 cmd->se_tfo->get_task_tag(cmd)); 4944 #endif 4945 cmd->se_tfo->queue_status(cmd); 4946 } 4947 4948 /* transport_generic_do_tmr(): 4949 * 4950 * 4951 */ 4952 int transport_generic_do_tmr(struct se_cmd *cmd) 4953 { 4954 struct se_device *dev = cmd->se_dev; 4955 struct se_tmr_req *tmr = cmd->se_tmr_req; 4956 int ret; 4957 4958 switch (tmr->function) { 4959 case TMR_ABORT_TASK: 4960 tmr->response = TMR_FUNCTION_REJECTED; 4961 break; 4962 case TMR_ABORT_TASK_SET: 4963 case TMR_CLEAR_ACA: 4964 case TMR_CLEAR_TASK_SET: 4965 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 4966 break; 4967 case TMR_LUN_RESET: 4968 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 4969 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 4970 TMR_FUNCTION_REJECTED; 4971 break; 4972 case TMR_TARGET_WARM_RESET: 4973 tmr->response = TMR_FUNCTION_REJECTED; 4974 break; 4975 case TMR_TARGET_COLD_RESET: 4976 tmr->response = TMR_FUNCTION_REJECTED; 4977 break; 4978 default: 4979 pr_err("Uknown TMR function: 0x%02x.\n", 4980 tmr->function); 4981 tmr->response = TMR_FUNCTION_REJECTED; 4982 break; 4983 } 4984 4985 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 4986 cmd->se_tfo->queue_tm_rsp(cmd); 4987 4988 transport_cmd_check_stop(cmd, 2, 0); 4989 return 0; 4990 } 4991 4992 /* 4993 * Called with spin_lock_irq(&dev->execute_task_lock); held 4994 * 4995 */ 4996 static struct se_task * 4997 transport_get_task_from_state_list(struct se_device *dev) 4998 { 4999 struct se_task *task; 5000 5001 if (list_empty(&dev->state_task_list)) 5002 return NULL; 5003 5004 list_for_each_entry(task, &dev->state_task_list, t_state_list) 5005 break; 5006 5007 list_del(&task->t_state_list); 5008 atomic_set(&task->task_state_active, 0); 5009 5010 return task; 5011 } 5012 5013 static void transport_processing_shutdown(struct se_device *dev) 5014 { 5015 struct se_cmd *cmd; 5016 struct se_task *task; 5017 unsigned long flags; 5018 /* 5019 * Empty the struct se_device's struct se_task state list. 5020 */ 5021 spin_lock_irqsave(&dev->execute_task_lock, flags); 5022 while ((task = transport_get_task_from_state_list(dev))) { 5023 if (!task->task_se_cmd) { 5024 pr_err("task->task_se_cmd is NULL!\n"); 5025 continue; 5026 } 5027 cmd = task->task_se_cmd; 5028 5029 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 5030 5031 spin_lock_irqsave(&cmd->t_state_lock, flags); 5032 5033 pr_debug("PT: cmd: %p task: %p ITT: 0x%08x," 5034 " i_state: %d, t_state/def_t_state:" 5035 " %d/%d cdb: 0x%02x\n", cmd, task, 5036 cmd->se_tfo->get_task_tag(cmd), 5037 cmd->se_tfo->get_cmd_state(cmd), 5038 cmd->t_state, cmd->deferred_t_state, 5039 cmd->t_task_cdb[0]); 5040 pr_debug("PT: ITT[0x%08x] - t_tasks: %d t_task_cdbs_left:" 5041 " %d t_task_cdbs_sent: %d -- t_transport_active: %d" 5042 " t_transport_stop: %d t_transport_sent: %d\n", 5043 cmd->se_tfo->get_task_tag(cmd), 5044 cmd->t_task_list_num, 5045 atomic_read(&cmd->t_task_cdbs_left), 5046 atomic_read(&cmd->t_task_cdbs_sent), 5047 atomic_read(&cmd->t_transport_active), 5048 atomic_read(&cmd->t_transport_stop), 5049 atomic_read(&cmd->t_transport_sent)); 5050 5051 if (atomic_read(&task->task_active)) { 5052 atomic_set(&task->task_stop, 1); 5053 spin_unlock_irqrestore( 5054 &cmd->t_state_lock, flags); 5055 5056 pr_debug("Waiting for task: %p to shutdown for dev:" 5057 " %p\n", task, dev); 5058 wait_for_completion(&task->task_stop_comp); 5059 pr_debug("Completed task: %p shutdown for dev: %p\n", 5060 task, dev); 5061 5062 spin_lock_irqsave(&cmd->t_state_lock, flags); 5063 atomic_dec(&cmd->t_task_cdbs_left); 5064 5065 atomic_set(&task->task_active, 0); 5066 atomic_set(&task->task_stop, 0); 5067 } else { 5068 if (atomic_read(&task->task_execute_queue) != 0) 5069 transport_remove_task_from_execute_queue(task, dev); 5070 } 5071 __transport_stop_task_timer(task, &flags); 5072 5073 if (!atomic_dec_and_test(&cmd->t_task_cdbs_ex_left)) { 5074 spin_unlock_irqrestore( 5075 &cmd->t_state_lock, flags); 5076 5077 pr_debug("Skipping task: %p, dev: %p for" 5078 " t_task_cdbs_ex_left: %d\n", task, dev, 5079 atomic_read(&cmd->t_task_cdbs_ex_left)); 5080 5081 spin_lock_irqsave(&dev->execute_task_lock, flags); 5082 continue; 5083 } 5084 5085 if (atomic_read(&cmd->t_transport_active)) { 5086 pr_debug("got t_transport_active = 1 for task: %p, dev:" 5087 " %p\n", task, dev); 5088 5089 if (atomic_read(&cmd->t_fe_count)) { 5090 spin_unlock_irqrestore( 5091 &cmd->t_state_lock, flags); 5092 transport_send_check_condition_and_sense( 5093 cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 5094 0); 5095 transport_remove_cmd_from_queue(cmd, 5096 &cmd->se_dev->dev_queue_obj); 5097 5098 transport_lun_remove_cmd(cmd); 5099 transport_cmd_check_stop(cmd, 1, 0); 5100 } else { 5101 spin_unlock_irqrestore( 5102 &cmd->t_state_lock, flags); 5103 5104 transport_remove_cmd_from_queue(cmd, 5105 &cmd->se_dev->dev_queue_obj); 5106 5107 transport_lun_remove_cmd(cmd); 5108 5109 if (transport_cmd_check_stop(cmd, 1, 0)) 5110 transport_generic_remove(cmd, 0); 5111 } 5112 5113 spin_lock_irqsave(&dev->execute_task_lock, flags); 5114 continue; 5115 } 5116 pr_debug("Got t_transport_active = 0 for task: %p, dev: %p\n", 5117 task, dev); 5118 5119 if (atomic_read(&cmd->t_fe_count)) { 5120 spin_unlock_irqrestore( 5121 &cmd->t_state_lock, flags); 5122 transport_send_check_condition_and_sense(cmd, 5123 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0); 5124 transport_remove_cmd_from_queue(cmd, 5125 &cmd->se_dev->dev_queue_obj); 5126 5127 transport_lun_remove_cmd(cmd); 5128 transport_cmd_check_stop(cmd, 1, 0); 5129 } else { 5130 spin_unlock_irqrestore( 5131 &cmd->t_state_lock, flags); 5132 5133 transport_remove_cmd_from_queue(cmd, 5134 &cmd->se_dev->dev_queue_obj); 5135 transport_lun_remove_cmd(cmd); 5136 5137 if (transport_cmd_check_stop(cmd, 1, 0)) 5138 transport_generic_remove(cmd, 0); 5139 } 5140 5141 spin_lock_irqsave(&dev->execute_task_lock, flags); 5142 } 5143 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 5144 /* 5145 * Empty the struct se_device's struct se_cmd list. 5146 */ 5147 while ((cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj))) { 5148 5149 pr_debug("From Device Queue: cmd: %p t_state: %d\n", 5150 cmd, cmd->t_state); 5151 5152 if (atomic_read(&cmd->t_fe_count)) { 5153 transport_send_check_condition_and_sense(cmd, 5154 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0); 5155 5156 transport_lun_remove_cmd(cmd); 5157 transport_cmd_check_stop(cmd, 1, 0); 5158 } else { 5159 transport_lun_remove_cmd(cmd); 5160 if (transport_cmd_check_stop(cmd, 1, 0)) 5161 transport_generic_remove(cmd, 0); 5162 } 5163 } 5164 } 5165 5166 /* transport_processing_thread(): 5167 * 5168 * 5169 */ 5170 static int transport_processing_thread(void *param) 5171 { 5172 int ret; 5173 struct se_cmd *cmd; 5174 struct se_device *dev = (struct se_device *) param; 5175 5176 set_user_nice(current, -20); 5177 5178 while (!kthread_should_stop()) { 5179 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq, 5180 atomic_read(&dev->dev_queue_obj.queue_cnt) || 5181 kthread_should_stop()); 5182 if (ret < 0) 5183 goto out; 5184 5185 spin_lock_irq(&dev->dev_status_lock); 5186 if (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) { 5187 spin_unlock_irq(&dev->dev_status_lock); 5188 transport_processing_shutdown(dev); 5189 continue; 5190 } 5191 spin_unlock_irq(&dev->dev_status_lock); 5192 5193 get_cmd: 5194 __transport_execute_tasks(dev); 5195 5196 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj); 5197 if (!cmd) 5198 continue; 5199 5200 switch (cmd->t_state) { 5201 case TRANSPORT_NEW_CMD_MAP: 5202 if (!cmd->se_tfo->new_cmd_map) { 5203 pr_err("cmd->se_tfo->new_cmd_map is" 5204 " NULL for TRANSPORT_NEW_CMD_MAP\n"); 5205 BUG(); 5206 } 5207 ret = cmd->se_tfo->new_cmd_map(cmd); 5208 if (ret < 0) { 5209 cmd->transport_error_status = ret; 5210 transport_generic_request_failure(cmd, NULL, 5211 0, (cmd->data_direction != 5212 DMA_TO_DEVICE)); 5213 break; 5214 } 5215 /* Fall through */ 5216 case TRANSPORT_NEW_CMD: 5217 ret = transport_generic_new_cmd(cmd); 5218 if (ret == -EAGAIN) 5219 break; 5220 else if (ret < 0) { 5221 cmd->transport_error_status = ret; 5222 transport_generic_request_failure(cmd, NULL, 5223 0, (cmd->data_direction != 5224 DMA_TO_DEVICE)); 5225 } 5226 break; 5227 case TRANSPORT_PROCESS_WRITE: 5228 transport_generic_process_write(cmd); 5229 break; 5230 case TRANSPORT_COMPLETE_OK: 5231 transport_stop_all_task_timers(cmd); 5232 transport_generic_complete_ok(cmd); 5233 break; 5234 case TRANSPORT_REMOVE: 5235 transport_generic_remove(cmd, 0); 5236 break; 5237 case TRANSPORT_FREE_CMD_INTR: 5238 transport_generic_free_cmd(cmd, 0, 0); 5239 break; 5240 case TRANSPORT_PROCESS_TMR: 5241 transport_generic_do_tmr(cmd); 5242 break; 5243 case TRANSPORT_COMPLETE_FAILURE: 5244 transport_generic_request_failure(cmd, NULL, 1, 1); 5245 break; 5246 case TRANSPORT_COMPLETE_TIMEOUT: 5247 transport_stop_all_task_timers(cmd); 5248 transport_generic_request_timeout(cmd); 5249 break; 5250 case TRANSPORT_COMPLETE_QF_WP: 5251 transport_generic_write_pending(cmd); 5252 break; 5253 default: 5254 pr_err("Unknown t_state: %d deferred_t_state:" 5255 " %d for ITT: 0x%08x i_state: %d on SE LUN:" 5256 " %u\n", cmd->t_state, cmd->deferred_t_state, 5257 cmd->se_tfo->get_task_tag(cmd), 5258 cmd->se_tfo->get_cmd_state(cmd), 5259 cmd->se_lun->unpacked_lun); 5260 BUG(); 5261 } 5262 5263 goto get_cmd; 5264 } 5265 5266 out: 5267 transport_release_all_cmds(dev); 5268 dev->process_thread = NULL; 5269 return 0; 5270 } 5271