1 /******************************************************************************* 2 * Filename: target_core_transport.c 3 * 4 * This file contains the Generic Target Engine Core. 5 * 6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc. 7 * Copyright (c) 2005, 2006, 2007 SBE, Inc. 8 * Copyright (c) 2007-2010 Rising Tide Systems 9 * Copyright (c) 2008-2010 Linux-iSCSI.org 10 * 11 * Nicholas A. Bellinger <nab@kernel.org> 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or 16 * (at your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 26 * 27 ******************************************************************************/ 28 29 #include <linux/net.h> 30 #include <linux/delay.h> 31 #include <linux/string.h> 32 #include <linux/timer.h> 33 #include <linux/slab.h> 34 #include <linux/blkdev.h> 35 #include <linux/spinlock.h> 36 #include <linux/kthread.h> 37 #include <linux/in.h> 38 #include <linux/cdrom.h> 39 #include <linux/module.h> 40 #include <linux/ratelimit.h> 41 #include <asm/unaligned.h> 42 #include <net/sock.h> 43 #include <net/tcp.h> 44 #include <scsi/scsi.h> 45 #include <scsi/scsi_cmnd.h> 46 #include <scsi/scsi_tcq.h> 47 48 #include <target/target_core_base.h> 49 #include <target/target_core_backend.h> 50 #include <target/target_core_fabric.h> 51 #include <target/target_core_configfs.h> 52 53 #include "target_core_internal.h" 54 #include "target_core_alua.h" 55 #include "target_core_pr.h" 56 #include "target_core_ua.h" 57 58 static int sub_api_initialized; 59 60 static struct workqueue_struct *target_completion_wq; 61 static struct kmem_cache *se_sess_cache; 62 struct kmem_cache *se_ua_cache; 63 struct kmem_cache *t10_pr_reg_cache; 64 struct kmem_cache *t10_alua_lu_gp_cache; 65 struct kmem_cache *t10_alua_lu_gp_mem_cache; 66 struct kmem_cache *t10_alua_tg_pt_gp_cache; 67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache; 68 69 static void transport_complete_task_attr(struct se_cmd *cmd); 70 static void transport_handle_queue_full(struct se_cmd *cmd, 71 struct se_device *dev); 72 static int transport_generic_get_mem(struct se_cmd *cmd); 73 static int target_get_sess_cmd(struct se_session *, struct se_cmd *, bool); 74 static void transport_put_cmd(struct se_cmd *cmd); 75 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq); 76 static void target_complete_ok_work(struct work_struct *work); 77 78 int init_se_kmem_caches(void) 79 { 80 se_sess_cache = kmem_cache_create("se_sess_cache", 81 sizeof(struct se_session), __alignof__(struct se_session), 82 0, NULL); 83 if (!se_sess_cache) { 84 pr_err("kmem_cache_create() for struct se_session" 85 " failed\n"); 86 goto out; 87 } 88 se_ua_cache = kmem_cache_create("se_ua_cache", 89 sizeof(struct se_ua), __alignof__(struct se_ua), 90 0, NULL); 91 if (!se_ua_cache) { 92 pr_err("kmem_cache_create() for struct se_ua failed\n"); 93 goto out_free_sess_cache; 94 } 95 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 96 sizeof(struct t10_pr_registration), 97 __alignof__(struct t10_pr_registration), 0, NULL); 98 if (!t10_pr_reg_cache) { 99 pr_err("kmem_cache_create() for struct t10_pr_registration" 100 " failed\n"); 101 goto out_free_ua_cache; 102 } 103 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 104 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 105 0, NULL); 106 if (!t10_alua_lu_gp_cache) { 107 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 108 " failed\n"); 109 goto out_free_pr_reg_cache; 110 } 111 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 112 sizeof(struct t10_alua_lu_gp_member), 113 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 114 if (!t10_alua_lu_gp_mem_cache) { 115 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 116 "cache failed\n"); 117 goto out_free_lu_gp_cache; 118 } 119 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 120 sizeof(struct t10_alua_tg_pt_gp), 121 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 122 if (!t10_alua_tg_pt_gp_cache) { 123 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 124 "cache failed\n"); 125 goto out_free_lu_gp_mem_cache; 126 } 127 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create( 128 "t10_alua_tg_pt_gp_mem_cache", 129 sizeof(struct t10_alua_tg_pt_gp_member), 130 __alignof__(struct t10_alua_tg_pt_gp_member), 131 0, NULL); 132 if (!t10_alua_tg_pt_gp_mem_cache) { 133 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 134 "mem_t failed\n"); 135 goto out_free_tg_pt_gp_cache; 136 } 137 138 target_completion_wq = alloc_workqueue("target_completion", 139 WQ_MEM_RECLAIM, 0); 140 if (!target_completion_wq) 141 goto out_free_tg_pt_gp_mem_cache; 142 143 return 0; 144 145 out_free_tg_pt_gp_mem_cache: 146 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 147 out_free_tg_pt_gp_cache: 148 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 149 out_free_lu_gp_mem_cache: 150 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 151 out_free_lu_gp_cache: 152 kmem_cache_destroy(t10_alua_lu_gp_cache); 153 out_free_pr_reg_cache: 154 kmem_cache_destroy(t10_pr_reg_cache); 155 out_free_ua_cache: 156 kmem_cache_destroy(se_ua_cache); 157 out_free_sess_cache: 158 kmem_cache_destroy(se_sess_cache); 159 out: 160 return -ENOMEM; 161 } 162 163 void release_se_kmem_caches(void) 164 { 165 destroy_workqueue(target_completion_wq); 166 kmem_cache_destroy(se_sess_cache); 167 kmem_cache_destroy(se_ua_cache); 168 kmem_cache_destroy(t10_pr_reg_cache); 169 kmem_cache_destroy(t10_alua_lu_gp_cache); 170 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 171 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 172 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 173 } 174 175 /* This code ensures unique mib indexes are handed out. */ 176 static DEFINE_SPINLOCK(scsi_mib_index_lock); 177 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 178 179 /* 180 * Allocate a new row index for the entry type specified 181 */ 182 u32 scsi_get_new_index(scsi_index_t type) 183 { 184 u32 new_index; 185 186 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 187 188 spin_lock(&scsi_mib_index_lock); 189 new_index = ++scsi_mib_index[type]; 190 spin_unlock(&scsi_mib_index_lock); 191 192 return new_index; 193 } 194 195 void transport_subsystem_check_init(void) 196 { 197 int ret; 198 199 if (sub_api_initialized) 200 return; 201 202 ret = request_module("target_core_iblock"); 203 if (ret != 0) 204 pr_err("Unable to load target_core_iblock\n"); 205 206 ret = request_module("target_core_file"); 207 if (ret != 0) 208 pr_err("Unable to load target_core_file\n"); 209 210 ret = request_module("target_core_pscsi"); 211 if (ret != 0) 212 pr_err("Unable to load target_core_pscsi\n"); 213 214 ret = request_module("target_core_stgt"); 215 if (ret != 0) 216 pr_err("Unable to load target_core_stgt\n"); 217 218 sub_api_initialized = 1; 219 return; 220 } 221 222 struct se_session *transport_init_session(void) 223 { 224 struct se_session *se_sess; 225 226 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 227 if (!se_sess) { 228 pr_err("Unable to allocate struct se_session from" 229 " se_sess_cache\n"); 230 return ERR_PTR(-ENOMEM); 231 } 232 INIT_LIST_HEAD(&se_sess->sess_list); 233 INIT_LIST_HEAD(&se_sess->sess_acl_list); 234 INIT_LIST_HEAD(&se_sess->sess_cmd_list); 235 spin_lock_init(&se_sess->sess_cmd_lock); 236 kref_init(&se_sess->sess_kref); 237 238 return se_sess; 239 } 240 EXPORT_SYMBOL(transport_init_session); 241 242 /* 243 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 244 */ 245 void __transport_register_session( 246 struct se_portal_group *se_tpg, 247 struct se_node_acl *se_nacl, 248 struct se_session *se_sess, 249 void *fabric_sess_ptr) 250 { 251 unsigned char buf[PR_REG_ISID_LEN]; 252 253 se_sess->se_tpg = se_tpg; 254 se_sess->fabric_sess_ptr = fabric_sess_ptr; 255 /* 256 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 257 * 258 * Only set for struct se_session's that will actually be moving I/O. 259 * eg: *NOT* discovery sessions. 260 */ 261 if (se_nacl) { 262 /* 263 * If the fabric module supports an ISID based TransportID, 264 * save this value in binary from the fabric I_T Nexus now. 265 */ 266 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 267 memset(&buf[0], 0, PR_REG_ISID_LEN); 268 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 269 &buf[0], PR_REG_ISID_LEN); 270 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 271 } 272 kref_get(&se_nacl->acl_kref); 273 274 spin_lock_irq(&se_nacl->nacl_sess_lock); 275 /* 276 * The se_nacl->nacl_sess pointer will be set to the 277 * last active I_T Nexus for each struct se_node_acl. 278 */ 279 se_nacl->nacl_sess = se_sess; 280 281 list_add_tail(&se_sess->sess_acl_list, 282 &se_nacl->acl_sess_list); 283 spin_unlock_irq(&se_nacl->nacl_sess_lock); 284 } 285 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 286 287 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 288 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr); 289 } 290 EXPORT_SYMBOL(__transport_register_session); 291 292 void transport_register_session( 293 struct se_portal_group *se_tpg, 294 struct se_node_acl *se_nacl, 295 struct se_session *se_sess, 296 void *fabric_sess_ptr) 297 { 298 unsigned long flags; 299 300 spin_lock_irqsave(&se_tpg->session_lock, flags); 301 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 302 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 303 } 304 EXPORT_SYMBOL(transport_register_session); 305 306 void target_release_session(struct kref *kref) 307 { 308 struct se_session *se_sess = container_of(kref, 309 struct se_session, sess_kref); 310 struct se_portal_group *se_tpg = se_sess->se_tpg; 311 312 se_tpg->se_tpg_tfo->close_session(se_sess); 313 } 314 315 void target_get_session(struct se_session *se_sess) 316 { 317 kref_get(&se_sess->sess_kref); 318 } 319 EXPORT_SYMBOL(target_get_session); 320 321 void target_put_session(struct se_session *se_sess) 322 { 323 struct se_portal_group *tpg = se_sess->se_tpg; 324 325 if (tpg->se_tpg_tfo->put_session != NULL) { 326 tpg->se_tpg_tfo->put_session(se_sess); 327 return; 328 } 329 kref_put(&se_sess->sess_kref, target_release_session); 330 } 331 EXPORT_SYMBOL(target_put_session); 332 333 static void target_complete_nacl(struct kref *kref) 334 { 335 struct se_node_acl *nacl = container_of(kref, 336 struct se_node_acl, acl_kref); 337 338 complete(&nacl->acl_free_comp); 339 } 340 341 void target_put_nacl(struct se_node_acl *nacl) 342 { 343 kref_put(&nacl->acl_kref, target_complete_nacl); 344 } 345 346 void transport_deregister_session_configfs(struct se_session *se_sess) 347 { 348 struct se_node_acl *se_nacl; 349 unsigned long flags; 350 /* 351 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 352 */ 353 se_nacl = se_sess->se_node_acl; 354 if (se_nacl) { 355 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 356 if (se_nacl->acl_stop == 0) 357 list_del(&se_sess->sess_acl_list); 358 /* 359 * If the session list is empty, then clear the pointer. 360 * Otherwise, set the struct se_session pointer from the tail 361 * element of the per struct se_node_acl active session list. 362 */ 363 if (list_empty(&se_nacl->acl_sess_list)) 364 se_nacl->nacl_sess = NULL; 365 else { 366 se_nacl->nacl_sess = container_of( 367 se_nacl->acl_sess_list.prev, 368 struct se_session, sess_acl_list); 369 } 370 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 371 } 372 } 373 EXPORT_SYMBOL(transport_deregister_session_configfs); 374 375 void transport_free_session(struct se_session *se_sess) 376 { 377 kmem_cache_free(se_sess_cache, se_sess); 378 } 379 EXPORT_SYMBOL(transport_free_session); 380 381 void transport_deregister_session(struct se_session *se_sess) 382 { 383 struct se_portal_group *se_tpg = se_sess->se_tpg; 384 struct target_core_fabric_ops *se_tfo; 385 struct se_node_acl *se_nacl; 386 unsigned long flags; 387 bool comp_nacl = true; 388 389 if (!se_tpg) { 390 transport_free_session(se_sess); 391 return; 392 } 393 se_tfo = se_tpg->se_tpg_tfo; 394 395 spin_lock_irqsave(&se_tpg->session_lock, flags); 396 list_del(&se_sess->sess_list); 397 se_sess->se_tpg = NULL; 398 se_sess->fabric_sess_ptr = NULL; 399 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 400 401 /* 402 * Determine if we need to do extra work for this initiator node's 403 * struct se_node_acl if it had been previously dynamically generated. 404 */ 405 se_nacl = se_sess->se_node_acl; 406 407 spin_lock_irqsave(&se_tpg->acl_node_lock, flags); 408 if (se_nacl && se_nacl->dynamic_node_acl) { 409 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 410 list_del(&se_nacl->acl_list); 411 se_tpg->num_node_acls--; 412 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); 413 core_tpg_wait_for_nacl_pr_ref(se_nacl); 414 core_free_device_list_for_node(se_nacl, se_tpg); 415 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl); 416 417 comp_nacl = false; 418 spin_lock_irqsave(&se_tpg->acl_node_lock, flags); 419 } 420 } 421 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); 422 423 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 424 se_tpg->se_tpg_tfo->get_fabric_name()); 425 /* 426 * If last kref is dropping now for an explict NodeACL, awake sleeping 427 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 428 * removal context. 429 */ 430 if (se_nacl && comp_nacl == true) 431 target_put_nacl(se_nacl); 432 433 transport_free_session(se_sess); 434 } 435 EXPORT_SYMBOL(transport_deregister_session); 436 437 /* 438 * Called with cmd->t_state_lock held. 439 */ 440 static void target_remove_from_state_list(struct se_cmd *cmd) 441 { 442 struct se_device *dev = cmd->se_dev; 443 unsigned long flags; 444 445 if (!dev) 446 return; 447 448 if (cmd->transport_state & CMD_T_BUSY) 449 return; 450 451 spin_lock_irqsave(&dev->execute_task_lock, flags); 452 if (cmd->state_active) { 453 list_del(&cmd->state_list); 454 cmd->state_active = false; 455 } 456 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 457 } 458 459 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists) 460 { 461 unsigned long flags; 462 463 spin_lock_irqsave(&cmd->t_state_lock, flags); 464 /* 465 * Determine if IOCTL context caller in requesting the stopping of this 466 * command for LUN shutdown purposes. 467 */ 468 if (cmd->transport_state & CMD_T_LUN_STOP) { 469 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n", 470 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd)); 471 472 cmd->transport_state &= ~CMD_T_ACTIVE; 473 if (remove_from_lists) 474 target_remove_from_state_list(cmd); 475 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 476 477 complete(&cmd->transport_lun_stop_comp); 478 return 1; 479 } 480 481 if (remove_from_lists) { 482 target_remove_from_state_list(cmd); 483 484 /* 485 * Clear struct se_cmd->se_lun before the handoff to FE. 486 */ 487 cmd->se_lun = NULL; 488 } 489 490 /* 491 * Determine if frontend context caller is requesting the stopping of 492 * this command for frontend exceptions. 493 */ 494 if (cmd->transport_state & CMD_T_STOP) { 495 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n", 496 __func__, __LINE__, 497 cmd->se_tfo->get_task_tag(cmd)); 498 499 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 500 501 complete(&cmd->t_transport_stop_comp); 502 return 1; 503 } 504 505 cmd->transport_state &= ~CMD_T_ACTIVE; 506 if (remove_from_lists) { 507 /* 508 * Some fabric modules like tcm_loop can release 509 * their internally allocated I/O reference now and 510 * struct se_cmd now. 511 * 512 * Fabric modules are expected to return '1' here if the 513 * se_cmd being passed is released at this point, 514 * or zero if not being released. 515 */ 516 if (cmd->se_tfo->check_stop_free != NULL) { 517 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 518 return cmd->se_tfo->check_stop_free(cmd); 519 } 520 } 521 522 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 523 return 0; 524 } 525 526 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 527 { 528 return transport_cmd_check_stop(cmd, true); 529 } 530 531 static void transport_lun_remove_cmd(struct se_cmd *cmd) 532 { 533 struct se_lun *lun = cmd->se_lun; 534 unsigned long flags; 535 536 if (!lun) 537 return; 538 539 spin_lock_irqsave(&cmd->t_state_lock, flags); 540 if (cmd->transport_state & CMD_T_DEV_ACTIVE) { 541 cmd->transport_state &= ~CMD_T_DEV_ACTIVE; 542 target_remove_from_state_list(cmd); 543 } 544 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 545 546 spin_lock_irqsave(&lun->lun_cmd_lock, flags); 547 if (!list_empty(&cmd->se_lun_node)) 548 list_del_init(&cmd->se_lun_node); 549 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags); 550 } 551 552 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove) 553 { 554 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 555 transport_lun_remove_cmd(cmd); 556 557 if (transport_cmd_check_stop_to_fabric(cmd)) 558 return; 559 if (remove) 560 transport_put_cmd(cmd); 561 } 562 563 static void target_complete_failure_work(struct work_struct *work) 564 { 565 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 566 567 transport_generic_request_failure(cmd); 568 } 569 570 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 571 { 572 struct se_device *dev = cmd->se_dev; 573 int success = scsi_status == GOOD; 574 unsigned long flags; 575 576 cmd->scsi_status = scsi_status; 577 578 579 spin_lock_irqsave(&cmd->t_state_lock, flags); 580 cmd->transport_state &= ~CMD_T_BUSY; 581 582 if (dev && dev->transport->transport_complete) { 583 if (dev->transport->transport_complete(cmd, 584 cmd->t_data_sg) != 0) { 585 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE; 586 success = 1; 587 } 588 } 589 590 /* 591 * See if we are waiting to complete for an exception condition. 592 */ 593 if (cmd->transport_state & CMD_T_REQUEST_STOP) { 594 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 595 complete(&cmd->task_stop_comp); 596 return; 597 } 598 599 if (!success) 600 cmd->transport_state |= CMD_T_FAILED; 601 602 /* 603 * Check for case where an explict ABORT_TASK has been received 604 * and transport_wait_for_tasks() will be waiting for completion.. 605 */ 606 if (cmd->transport_state & CMD_T_ABORTED && 607 cmd->transport_state & CMD_T_STOP) { 608 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 609 complete(&cmd->t_transport_stop_comp); 610 return; 611 } else if (cmd->transport_state & CMD_T_FAILED) { 612 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 613 INIT_WORK(&cmd->work, target_complete_failure_work); 614 } else { 615 INIT_WORK(&cmd->work, target_complete_ok_work); 616 } 617 618 cmd->t_state = TRANSPORT_COMPLETE; 619 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 620 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 621 622 queue_work(target_completion_wq, &cmd->work); 623 } 624 EXPORT_SYMBOL(target_complete_cmd); 625 626 static void target_add_to_state_list(struct se_cmd *cmd) 627 { 628 struct se_device *dev = cmd->se_dev; 629 unsigned long flags; 630 631 spin_lock_irqsave(&dev->execute_task_lock, flags); 632 if (!cmd->state_active) { 633 list_add_tail(&cmd->state_list, &dev->state_list); 634 cmd->state_active = true; 635 } 636 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 637 } 638 639 /* 640 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 641 */ 642 static void transport_write_pending_qf(struct se_cmd *cmd); 643 static void transport_complete_qf(struct se_cmd *cmd); 644 645 static void target_qf_do_work(struct work_struct *work) 646 { 647 struct se_device *dev = container_of(work, struct se_device, 648 qf_work_queue); 649 LIST_HEAD(qf_cmd_list); 650 struct se_cmd *cmd, *cmd_tmp; 651 652 spin_lock_irq(&dev->qf_cmd_lock); 653 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 654 spin_unlock_irq(&dev->qf_cmd_lock); 655 656 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 657 list_del(&cmd->se_qf_node); 658 atomic_dec(&dev->dev_qf_count); 659 smp_mb__after_atomic_dec(); 660 661 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 662 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd, 663 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 664 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 665 : "UNKNOWN"); 666 667 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 668 transport_write_pending_qf(cmd); 669 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) 670 transport_complete_qf(cmd); 671 } 672 } 673 674 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 675 { 676 switch (cmd->data_direction) { 677 case DMA_NONE: 678 return "NONE"; 679 case DMA_FROM_DEVICE: 680 return "READ"; 681 case DMA_TO_DEVICE: 682 return "WRITE"; 683 case DMA_BIDIRECTIONAL: 684 return "BIDI"; 685 default: 686 break; 687 } 688 689 return "UNKNOWN"; 690 } 691 692 void transport_dump_dev_state( 693 struct se_device *dev, 694 char *b, 695 int *bl) 696 { 697 *bl += sprintf(b + *bl, "Status: "); 698 switch (dev->dev_status) { 699 case TRANSPORT_DEVICE_ACTIVATED: 700 *bl += sprintf(b + *bl, "ACTIVATED"); 701 break; 702 case TRANSPORT_DEVICE_DEACTIVATED: 703 *bl += sprintf(b + *bl, "DEACTIVATED"); 704 break; 705 case TRANSPORT_DEVICE_SHUTDOWN: 706 *bl += sprintf(b + *bl, "SHUTDOWN"); 707 break; 708 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED: 709 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED: 710 *bl += sprintf(b + *bl, "OFFLINE"); 711 break; 712 default: 713 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status); 714 break; 715 } 716 717 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 718 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 719 dev->se_sub_dev->se_dev_attrib.block_size, 720 dev->se_sub_dev->se_dev_attrib.hw_max_sectors); 721 *bl += sprintf(b + *bl, " "); 722 } 723 724 void transport_dump_vpd_proto_id( 725 struct t10_vpd *vpd, 726 unsigned char *p_buf, 727 int p_buf_len) 728 { 729 unsigned char buf[VPD_TMP_BUF_SIZE]; 730 int len; 731 732 memset(buf, 0, VPD_TMP_BUF_SIZE); 733 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 734 735 switch (vpd->protocol_identifier) { 736 case 0x00: 737 sprintf(buf+len, "Fibre Channel\n"); 738 break; 739 case 0x10: 740 sprintf(buf+len, "Parallel SCSI\n"); 741 break; 742 case 0x20: 743 sprintf(buf+len, "SSA\n"); 744 break; 745 case 0x30: 746 sprintf(buf+len, "IEEE 1394\n"); 747 break; 748 case 0x40: 749 sprintf(buf+len, "SCSI Remote Direct Memory Access" 750 " Protocol\n"); 751 break; 752 case 0x50: 753 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 754 break; 755 case 0x60: 756 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 757 break; 758 case 0x70: 759 sprintf(buf+len, "Automation/Drive Interface Transport" 760 " Protocol\n"); 761 break; 762 case 0x80: 763 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 764 break; 765 default: 766 sprintf(buf+len, "Unknown 0x%02x\n", 767 vpd->protocol_identifier); 768 break; 769 } 770 771 if (p_buf) 772 strncpy(p_buf, buf, p_buf_len); 773 else 774 pr_debug("%s", buf); 775 } 776 777 void 778 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 779 { 780 /* 781 * Check if the Protocol Identifier Valid (PIV) bit is set.. 782 * 783 * from spc3r23.pdf section 7.5.1 784 */ 785 if (page_83[1] & 0x80) { 786 vpd->protocol_identifier = (page_83[0] & 0xf0); 787 vpd->protocol_identifier_set = 1; 788 transport_dump_vpd_proto_id(vpd, NULL, 0); 789 } 790 } 791 EXPORT_SYMBOL(transport_set_vpd_proto_id); 792 793 int transport_dump_vpd_assoc( 794 struct t10_vpd *vpd, 795 unsigned char *p_buf, 796 int p_buf_len) 797 { 798 unsigned char buf[VPD_TMP_BUF_SIZE]; 799 int ret = 0; 800 int len; 801 802 memset(buf, 0, VPD_TMP_BUF_SIZE); 803 len = sprintf(buf, "T10 VPD Identifier Association: "); 804 805 switch (vpd->association) { 806 case 0x00: 807 sprintf(buf+len, "addressed logical unit\n"); 808 break; 809 case 0x10: 810 sprintf(buf+len, "target port\n"); 811 break; 812 case 0x20: 813 sprintf(buf+len, "SCSI target device\n"); 814 break; 815 default: 816 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 817 ret = -EINVAL; 818 break; 819 } 820 821 if (p_buf) 822 strncpy(p_buf, buf, p_buf_len); 823 else 824 pr_debug("%s", buf); 825 826 return ret; 827 } 828 829 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 830 { 831 /* 832 * The VPD identification association.. 833 * 834 * from spc3r23.pdf Section 7.6.3.1 Table 297 835 */ 836 vpd->association = (page_83[1] & 0x30); 837 return transport_dump_vpd_assoc(vpd, NULL, 0); 838 } 839 EXPORT_SYMBOL(transport_set_vpd_assoc); 840 841 int transport_dump_vpd_ident_type( 842 struct t10_vpd *vpd, 843 unsigned char *p_buf, 844 int p_buf_len) 845 { 846 unsigned char buf[VPD_TMP_BUF_SIZE]; 847 int ret = 0; 848 int len; 849 850 memset(buf, 0, VPD_TMP_BUF_SIZE); 851 len = sprintf(buf, "T10 VPD Identifier Type: "); 852 853 switch (vpd->device_identifier_type) { 854 case 0x00: 855 sprintf(buf+len, "Vendor specific\n"); 856 break; 857 case 0x01: 858 sprintf(buf+len, "T10 Vendor ID based\n"); 859 break; 860 case 0x02: 861 sprintf(buf+len, "EUI-64 based\n"); 862 break; 863 case 0x03: 864 sprintf(buf+len, "NAA\n"); 865 break; 866 case 0x04: 867 sprintf(buf+len, "Relative target port identifier\n"); 868 break; 869 case 0x08: 870 sprintf(buf+len, "SCSI name string\n"); 871 break; 872 default: 873 sprintf(buf+len, "Unsupported: 0x%02x\n", 874 vpd->device_identifier_type); 875 ret = -EINVAL; 876 break; 877 } 878 879 if (p_buf) { 880 if (p_buf_len < strlen(buf)+1) 881 return -EINVAL; 882 strncpy(p_buf, buf, p_buf_len); 883 } else { 884 pr_debug("%s", buf); 885 } 886 887 return ret; 888 } 889 890 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 891 { 892 /* 893 * The VPD identifier type.. 894 * 895 * from spc3r23.pdf Section 7.6.3.1 Table 298 896 */ 897 vpd->device_identifier_type = (page_83[1] & 0x0f); 898 return transport_dump_vpd_ident_type(vpd, NULL, 0); 899 } 900 EXPORT_SYMBOL(transport_set_vpd_ident_type); 901 902 int transport_dump_vpd_ident( 903 struct t10_vpd *vpd, 904 unsigned char *p_buf, 905 int p_buf_len) 906 { 907 unsigned char buf[VPD_TMP_BUF_SIZE]; 908 int ret = 0; 909 910 memset(buf, 0, VPD_TMP_BUF_SIZE); 911 912 switch (vpd->device_identifier_code_set) { 913 case 0x01: /* Binary */ 914 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n", 915 &vpd->device_identifier[0]); 916 break; 917 case 0x02: /* ASCII */ 918 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n", 919 &vpd->device_identifier[0]); 920 break; 921 case 0x03: /* UTF-8 */ 922 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n", 923 &vpd->device_identifier[0]); 924 break; 925 default: 926 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 927 " 0x%02x", vpd->device_identifier_code_set); 928 ret = -EINVAL; 929 break; 930 } 931 932 if (p_buf) 933 strncpy(p_buf, buf, p_buf_len); 934 else 935 pr_debug("%s", buf); 936 937 return ret; 938 } 939 940 int 941 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 942 { 943 static const char hex_str[] = "0123456789abcdef"; 944 int j = 0, i = 4; /* offset to start of the identifer */ 945 946 /* 947 * The VPD Code Set (encoding) 948 * 949 * from spc3r23.pdf Section 7.6.3.1 Table 296 950 */ 951 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 952 switch (vpd->device_identifier_code_set) { 953 case 0x01: /* Binary */ 954 vpd->device_identifier[j++] = 955 hex_str[vpd->device_identifier_type]; 956 while (i < (4 + page_83[3])) { 957 vpd->device_identifier[j++] = 958 hex_str[(page_83[i] & 0xf0) >> 4]; 959 vpd->device_identifier[j++] = 960 hex_str[page_83[i] & 0x0f]; 961 i++; 962 } 963 break; 964 case 0x02: /* ASCII */ 965 case 0x03: /* UTF-8 */ 966 while (i < (4 + page_83[3])) 967 vpd->device_identifier[j++] = page_83[i++]; 968 break; 969 default: 970 break; 971 } 972 973 return transport_dump_vpd_ident(vpd, NULL, 0); 974 } 975 EXPORT_SYMBOL(transport_set_vpd_ident); 976 977 static void core_setup_task_attr_emulation(struct se_device *dev) 978 { 979 /* 980 * If this device is from Target_Core_Mod/pSCSI, disable the 981 * SAM Task Attribute emulation. 982 * 983 * This is currently not available in upsream Linux/SCSI Target 984 * mode code, and is assumed to be disabled while using TCM/pSCSI. 985 */ 986 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) { 987 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH; 988 return; 989 } 990 991 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED; 992 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x" 993 " device\n", dev->transport->name, 994 dev->transport->get_device_rev(dev)); 995 } 996 997 static void scsi_dump_inquiry(struct se_device *dev) 998 { 999 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn; 1000 char buf[17]; 1001 int i, device_type; 1002 /* 1003 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer 1004 */ 1005 for (i = 0; i < 8; i++) 1006 if (wwn->vendor[i] >= 0x20) 1007 buf[i] = wwn->vendor[i]; 1008 else 1009 buf[i] = ' '; 1010 buf[i] = '\0'; 1011 pr_debug(" Vendor: %s\n", buf); 1012 1013 for (i = 0; i < 16; i++) 1014 if (wwn->model[i] >= 0x20) 1015 buf[i] = wwn->model[i]; 1016 else 1017 buf[i] = ' '; 1018 buf[i] = '\0'; 1019 pr_debug(" Model: %s\n", buf); 1020 1021 for (i = 0; i < 4; i++) 1022 if (wwn->revision[i] >= 0x20) 1023 buf[i] = wwn->revision[i]; 1024 else 1025 buf[i] = ' '; 1026 buf[i] = '\0'; 1027 pr_debug(" Revision: %s\n", buf); 1028 1029 device_type = dev->transport->get_device_type(dev); 1030 pr_debug(" Type: %s ", scsi_device_type(device_type)); 1031 pr_debug(" ANSI SCSI revision: %02x\n", 1032 dev->transport->get_device_rev(dev)); 1033 } 1034 1035 struct se_device *transport_add_device_to_core_hba( 1036 struct se_hba *hba, 1037 struct se_subsystem_api *transport, 1038 struct se_subsystem_dev *se_dev, 1039 u32 device_flags, 1040 void *transport_dev, 1041 struct se_dev_limits *dev_limits, 1042 const char *inquiry_prod, 1043 const char *inquiry_rev) 1044 { 1045 int force_pt; 1046 struct se_device *dev; 1047 1048 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL); 1049 if (!dev) { 1050 pr_err("Unable to allocate memory for se_dev_t\n"); 1051 return NULL; 1052 } 1053 1054 dev->dev_flags = device_flags; 1055 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED; 1056 dev->dev_ptr = transport_dev; 1057 dev->se_hba = hba; 1058 dev->se_sub_dev = se_dev; 1059 dev->transport = transport; 1060 INIT_LIST_HEAD(&dev->dev_list); 1061 INIT_LIST_HEAD(&dev->dev_sep_list); 1062 INIT_LIST_HEAD(&dev->dev_tmr_list); 1063 INIT_LIST_HEAD(&dev->delayed_cmd_list); 1064 INIT_LIST_HEAD(&dev->state_list); 1065 INIT_LIST_HEAD(&dev->qf_cmd_list); 1066 spin_lock_init(&dev->execute_task_lock); 1067 spin_lock_init(&dev->delayed_cmd_lock); 1068 spin_lock_init(&dev->dev_reservation_lock); 1069 spin_lock_init(&dev->dev_status_lock); 1070 spin_lock_init(&dev->se_port_lock); 1071 spin_lock_init(&dev->se_tmr_lock); 1072 spin_lock_init(&dev->qf_cmd_lock); 1073 atomic_set(&dev->dev_ordered_id, 0); 1074 1075 se_dev_set_default_attribs(dev, dev_limits); 1076 1077 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX); 1078 dev->creation_time = get_jiffies_64(); 1079 spin_lock_init(&dev->stats_lock); 1080 1081 spin_lock(&hba->device_lock); 1082 list_add_tail(&dev->dev_list, &hba->hba_dev_list); 1083 hba->dev_count++; 1084 spin_unlock(&hba->device_lock); 1085 /* 1086 * Setup the SAM Task Attribute emulation for struct se_device 1087 */ 1088 core_setup_task_attr_emulation(dev); 1089 /* 1090 * Force PR and ALUA passthrough emulation with internal object use. 1091 */ 1092 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE); 1093 /* 1094 * Setup the Reservations infrastructure for struct se_device 1095 */ 1096 core_setup_reservations(dev, force_pt); 1097 /* 1098 * Setup the Asymmetric Logical Unit Assignment for struct se_device 1099 */ 1100 if (core_setup_alua(dev, force_pt) < 0) 1101 goto err_dev_list; 1102 1103 /* 1104 * Startup the struct se_device processing thread 1105 */ 1106 dev->tmr_wq = alloc_workqueue("tmr-%s", WQ_MEM_RECLAIM | WQ_UNBOUND, 1, 1107 dev->transport->name); 1108 if (!dev->tmr_wq) { 1109 pr_err("Unable to create tmr workqueue for %s\n", 1110 dev->transport->name); 1111 goto err_dev_list; 1112 } 1113 /* 1114 * Setup work_queue for QUEUE_FULL 1115 */ 1116 INIT_WORK(&dev->qf_work_queue, target_qf_do_work); 1117 /* 1118 * Preload the initial INQUIRY const values if we are doing 1119 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI 1120 * passthrough because this is being provided by the backend LLD. 1121 * This is required so that transport_get_inquiry() copies these 1122 * originals once back into DEV_T10_WWN(dev) for the virtual device 1123 * setup. 1124 */ 1125 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) { 1126 if (!inquiry_prod || !inquiry_rev) { 1127 pr_err("All non TCM/pSCSI plugins require" 1128 " INQUIRY consts\n"); 1129 goto err_wq; 1130 } 1131 1132 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8); 1133 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16); 1134 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4); 1135 } 1136 scsi_dump_inquiry(dev); 1137 1138 return dev; 1139 1140 err_wq: 1141 destroy_workqueue(dev->tmr_wq); 1142 err_dev_list: 1143 spin_lock(&hba->device_lock); 1144 list_del(&dev->dev_list); 1145 hba->dev_count--; 1146 spin_unlock(&hba->device_lock); 1147 1148 se_release_vpd_for_dev(dev); 1149 1150 kfree(dev); 1151 1152 return NULL; 1153 } 1154 EXPORT_SYMBOL(transport_add_device_to_core_hba); 1155 1156 int target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 1157 { 1158 struct se_device *dev = cmd->se_dev; 1159 1160 if (cmd->unknown_data_length) { 1161 cmd->data_length = size; 1162 } else if (size != cmd->data_length) { 1163 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:" 1164 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 1165 " 0x%02x\n", cmd->se_tfo->get_fabric_name(), 1166 cmd->data_length, size, cmd->t_task_cdb[0]); 1167 1168 cmd->cmd_spdtl = size; 1169 1170 if (cmd->data_direction == DMA_TO_DEVICE) { 1171 pr_err("Rejecting underflow/overflow" 1172 " WRITE data\n"); 1173 goto out_invalid_cdb_field; 1174 } 1175 /* 1176 * Reject READ_* or WRITE_* with overflow/underflow for 1177 * type SCF_SCSI_DATA_CDB. 1178 */ 1179 if (dev->se_sub_dev->se_dev_attrib.block_size != 512) { 1180 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 1181 " CDB on non 512-byte sector setup subsystem" 1182 " plugin: %s\n", dev->transport->name); 1183 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 1184 goto out_invalid_cdb_field; 1185 } 1186 1187 if (size > cmd->data_length) { 1188 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1189 cmd->residual_count = (size - cmd->data_length); 1190 } else { 1191 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1192 cmd->residual_count = (cmd->data_length - size); 1193 } 1194 cmd->data_length = size; 1195 } 1196 1197 return 0; 1198 1199 out_invalid_cdb_field: 1200 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 1201 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD; 1202 return -EINVAL; 1203 } 1204 1205 /* 1206 * Used by fabric modules containing a local struct se_cmd within their 1207 * fabric dependent per I/O descriptor. 1208 */ 1209 void transport_init_se_cmd( 1210 struct se_cmd *cmd, 1211 struct target_core_fabric_ops *tfo, 1212 struct se_session *se_sess, 1213 u32 data_length, 1214 int data_direction, 1215 int task_attr, 1216 unsigned char *sense_buffer) 1217 { 1218 INIT_LIST_HEAD(&cmd->se_lun_node); 1219 INIT_LIST_HEAD(&cmd->se_delayed_node); 1220 INIT_LIST_HEAD(&cmd->se_qf_node); 1221 INIT_LIST_HEAD(&cmd->se_cmd_list); 1222 INIT_LIST_HEAD(&cmd->state_list); 1223 init_completion(&cmd->transport_lun_fe_stop_comp); 1224 init_completion(&cmd->transport_lun_stop_comp); 1225 init_completion(&cmd->t_transport_stop_comp); 1226 init_completion(&cmd->cmd_wait_comp); 1227 init_completion(&cmd->task_stop_comp); 1228 spin_lock_init(&cmd->t_state_lock); 1229 cmd->transport_state = CMD_T_DEV_ACTIVE; 1230 1231 cmd->se_tfo = tfo; 1232 cmd->se_sess = se_sess; 1233 cmd->data_length = data_length; 1234 cmd->data_direction = data_direction; 1235 cmd->sam_task_attr = task_attr; 1236 cmd->sense_buffer = sense_buffer; 1237 1238 cmd->state_active = false; 1239 } 1240 EXPORT_SYMBOL(transport_init_se_cmd); 1241 1242 static int transport_check_alloc_task_attr(struct se_cmd *cmd) 1243 { 1244 /* 1245 * Check if SAM Task Attribute emulation is enabled for this 1246 * struct se_device storage object 1247 */ 1248 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) 1249 return 0; 1250 1251 if (cmd->sam_task_attr == MSG_ACA_TAG) { 1252 pr_debug("SAM Task Attribute ACA" 1253 " emulation is not supported\n"); 1254 return -EINVAL; 1255 } 1256 /* 1257 * Used to determine when ORDERED commands should go from 1258 * Dormant to Active status. 1259 */ 1260 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id); 1261 smp_mb__after_atomic_inc(); 1262 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n", 1263 cmd->se_ordered_id, cmd->sam_task_attr, 1264 cmd->se_dev->transport->name); 1265 return 0; 1266 } 1267 1268 /* target_setup_cmd_from_cdb(): 1269 * 1270 * Called from fabric RX Thread. 1271 */ 1272 int target_setup_cmd_from_cdb( 1273 struct se_cmd *cmd, 1274 unsigned char *cdb) 1275 { 1276 struct se_subsystem_dev *su_dev = cmd->se_dev->se_sub_dev; 1277 u32 pr_reg_type = 0; 1278 u8 alua_ascq = 0; 1279 unsigned long flags; 1280 int ret; 1281 1282 /* 1283 * Ensure that the received CDB is less than the max (252 + 8) bytes 1284 * for VARIABLE_LENGTH_CMD 1285 */ 1286 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1287 pr_err("Received SCSI CDB with command_size: %d that" 1288 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1289 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1290 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 1291 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD; 1292 return -EINVAL; 1293 } 1294 /* 1295 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1296 * allocate the additional extended CDB buffer now.. Otherwise 1297 * setup the pointer from __t_task_cdb to t_task_cdb. 1298 */ 1299 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1300 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1301 GFP_KERNEL); 1302 if (!cmd->t_task_cdb) { 1303 pr_err("Unable to allocate cmd->t_task_cdb" 1304 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1305 scsi_command_size(cdb), 1306 (unsigned long)sizeof(cmd->__t_task_cdb)); 1307 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 1308 cmd->scsi_sense_reason = 1309 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1310 return -ENOMEM; 1311 } 1312 } else 1313 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1314 /* 1315 * Copy the original CDB into cmd-> 1316 */ 1317 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1318 1319 /* 1320 * Check for an existing UNIT ATTENTION condition 1321 */ 1322 if (core_scsi3_ua_check(cmd, cdb) < 0) { 1323 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 1324 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION; 1325 return -EINVAL; 1326 } 1327 1328 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq); 1329 if (ret != 0) { 1330 /* 1331 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible'; 1332 * The ALUA additional sense code qualifier (ASCQ) is determined 1333 * by the ALUA primary or secondary access state.. 1334 */ 1335 if (ret > 0) { 1336 pr_debug("[%s]: ALUA TG Port not available, " 1337 "SenseKey: NOT_READY, ASC/ASCQ: " 1338 "0x04/0x%02x\n", 1339 cmd->se_tfo->get_fabric_name(), alua_ascq); 1340 1341 transport_set_sense_codes(cmd, 0x04, alua_ascq); 1342 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 1343 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY; 1344 return -EINVAL; 1345 } 1346 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 1347 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD; 1348 return -EINVAL; 1349 } 1350 1351 /* 1352 * Check status for SPC-3 Persistent Reservations 1353 */ 1354 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type)) { 1355 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder( 1356 cmd, cdb, pr_reg_type) != 0) { 1357 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 1358 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT; 1359 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1360 cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT; 1361 return -EBUSY; 1362 } 1363 /* 1364 * This means the CDB is allowed for the SCSI Initiator port 1365 * when said port is *NOT* holding the legacy SPC-2 or 1366 * SPC-3 Persistent Reservation. 1367 */ 1368 } 1369 1370 ret = cmd->se_dev->transport->parse_cdb(cmd); 1371 if (ret < 0) 1372 return ret; 1373 1374 spin_lock_irqsave(&cmd->t_state_lock, flags); 1375 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1376 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 1377 1378 /* 1379 * Check for SAM Task Attribute Emulation 1380 */ 1381 if (transport_check_alloc_task_attr(cmd) < 0) { 1382 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 1383 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD; 1384 return -EINVAL; 1385 } 1386 spin_lock(&cmd->se_lun->lun_sep_lock); 1387 if (cmd->se_lun->lun_sep) 1388 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++; 1389 spin_unlock(&cmd->se_lun->lun_sep_lock); 1390 return 0; 1391 } 1392 EXPORT_SYMBOL(target_setup_cmd_from_cdb); 1393 1394 /* 1395 * Used by fabric module frontends to queue tasks directly. 1396 * Many only be used from process context only 1397 */ 1398 int transport_handle_cdb_direct( 1399 struct se_cmd *cmd) 1400 { 1401 int ret; 1402 1403 if (!cmd->se_lun) { 1404 dump_stack(); 1405 pr_err("cmd->se_lun is NULL\n"); 1406 return -EINVAL; 1407 } 1408 if (in_interrupt()) { 1409 dump_stack(); 1410 pr_err("transport_generic_handle_cdb cannot be called" 1411 " from interrupt context\n"); 1412 return -EINVAL; 1413 } 1414 /* 1415 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1416 * outstanding descriptors are handled correctly during shutdown via 1417 * transport_wait_for_tasks() 1418 * 1419 * Also, we don't take cmd->t_state_lock here as we only expect 1420 * this to be called for initial descriptor submission. 1421 */ 1422 cmd->t_state = TRANSPORT_NEW_CMD; 1423 cmd->transport_state |= CMD_T_ACTIVE; 1424 1425 /* 1426 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1427 * so follow TRANSPORT_NEW_CMD processing thread context usage 1428 * and call transport_generic_request_failure() if necessary.. 1429 */ 1430 ret = transport_generic_new_cmd(cmd); 1431 if (ret < 0) 1432 transport_generic_request_failure(cmd); 1433 1434 return 0; 1435 } 1436 EXPORT_SYMBOL(transport_handle_cdb_direct); 1437 1438 /** 1439 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1440 * 1441 * @se_cmd: command descriptor to submit 1442 * @se_sess: associated se_sess for endpoint 1443 * @cdb: pointer to SCSI CDB 1444 * @sense: pointer to SCSI sense buffer 1445 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1446 * @data_length: fabric expected data transfer length 1447 * @task_addr: SAM task attribute 1448 * @data_dir: DMA data direction 1449 * @flags: flags for command submission from target_sc_flags_tables 1450 * 1451 * Returns non zero to signal active I/O shutdown failure. All other 1452 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1453 * but still return zero here. 1454 * 1455 * This may only be called from process context, and also currently 1456 * assumes internal allocation of fabric payload buffer by target-core. 1457 **/ 1458 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1459 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun, 1460 u32 data_length, int task_attr, int data_dir, int flags) 1461 { 1462 struct se_portal_group *se_tpg; 1463 int rc; 1464 1465 se_tpg = se_sess->se_tpg; 1466 BUG_ON(!se_tpg); 1467 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1468 BUG_ON(in_interrupt()); 1469 /* 1470 * Initialize se_cmd for target operation. From this point 1471 * exceptions are handled by sending exception status via 1472 * target_core_fabric_ops->queue_status() callback 1473 */ 1474 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1475 data_length, data_dir, task_attr, sense); 1476 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1477 se_cmd->unknown_data_length = 1; 1478 /* 1479 * Obtain struct se_cmd->cmd_kref reference and add new cmd to 1480 * se_sess->sess_cmd_list. A second kref_get here is necessary 1481 * for fabrics using TARGET_SCF_ACK_KREF that expect a second 1482 * kref_put() to happen during fabric packet acknowledgement. 1483 */ 1484 rc = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF)); 1485 if (rc) 1486 return rc; 1487 /* 1488 * Signal bidirectional data payloads to target-core 1489 */ 1490 if (flags & TARGET_SCF_BIDI_OP) 1491 se_cmd->se_cmd_flags |= SCF_BIDI; 1492 /* 1493 * Locate se_lun pointer and attach it to struct se_cmd 1494 */ 1495 if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) { 1496 transport_send_check_condition_and_sense(se_cmd, 1497 se_cmd->scsi_sense_reason, 0); 1498 target_put_sess_cmd(se_sess, se_cmd); 1499 return 0; 1500 } 1501 1502 rc = target_setup_cmd_from_cdb(se_cmd, cdb); 1503 if (rc != 0) { 1504 transport_generic_request_failure(se_cmd); 1505 return 0; 1506 } 1507 1508 /* 1509 * Check if we need to delay processing because of ALUA 1510 * Active/NonOptimized primary access state.. 1511 */ 1512 core_alua_check_nonop_delay(se_cmd); 1513 1514 transport_handle_cdb_direct(se_cmd); 1515 return 0; 1516 } 1517 EXPORT_SYMBOL(target_submit_cmd); 1518 1519 static void target_complete_tmr_failure(struct work_struct *work) 1520 { 1521 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1522 1523 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1524 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1525 transport_generic_free_cmd(se_cmd, 0); 1526 } 1527 1528 /** 1529 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1530 * for TMR CDBs 1531 * 1532 * @se_cmd: command descriptor to submit 1533 * @se_sess: associated se_sess for endpoint 1534 * @sense: pointer to SCSI sense buffer 1535 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1536 * @fabric_context: fabric context for TMR req 1537 * @tm_type: Type of TM request 1538 * @gfp: gfp type for caller 1539 * @tag: referenced task tag for TMR_ABORT_TASK 1540 * @flags: submit cmd flags 1541 * 1542 * Callable from all contexts. 1543 **/ 1544 1545 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1546 unsigned char *sense, u32 unpacked_lun, 1547 void *fabric_tmr_ptr, unsigned char tm_type, 1548 gfp_t gfp, unsigned int tag, int flags) 1549 { 1550 struct se_portal_group *se_tpg; 1551 int ret; 1552 1553 se_tpg = se_sess->se_tpg; 1554 BUG_ON(!se_tpg); 1555 1556 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1557 0, DMA_NONE, MSG_SIMPLE_TAG, sense); 1558 /* 1559 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1560 * allocation failure. 1561 */ 1562 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1563 if (ret < 0) 1564 return -ENOMEM; 1565 1566 if (tm_type == TMR_ABORT_TASK) 1567 se_cmd->se_tmr_req->ref_task_tag = tag; 1568 1569 /* See target_submit_cmd for commentary */ 1570 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF)); 1571 if (ret) { 1572 core_tmr_release_req(se_cmd->se_tmr_req); 1573 return ret; 1574 } 1575 1576 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun); 1577 if (ret) { 1578 /* 1579 * For callback during failure handling, push this work off 1580 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1581 */ 1582 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1583 schedule_work(&se_cmd->work); 1584 return 0; 1585 } 1586 transport_generic_handle_tmr(se_cmd); 1587 return 0; 1588 } 1589 EXPORT_SYMBOL(target_submit_tmr); 1590 1591 /* 1592 * If the cmd is active, request it to be stopped and sleep until it 1593 * has completed. 1594 */ 1595 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags) 1596 { 1597 bool was_active = false; 1598 1599 if (cmd->transport_state & CMD_T_BUSY) { 1600 cmd->transport_state |= CMD_T_REQUEST_STOP; 1601 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 1602 1603 pr_debug("cmd %p waiting to complete\n", cmd); 1604 wait_for_completion(&cmd->task_stop_comp); 1605 pr_debug("cmd %p stopped successfully\n", cmd); 1606 1607 spin_lock_irqsave(&cmd->t_state_lock, *flags); 1608 cmd->transport_state &= ~CMD_T_REQUEST_STOP; 1609 cmd->transport_state &= ~CMD_T_BUSY; 1610 was_active = true; 1611 } 1612 1613 return was_active; 1614 } 1615 1616 /* 1617 * Handle SAM-esque emulation for generic transport request failures. 1618 */ 1619 void transport_generic_request_failure(struct se_cmd *cmd) 1620 { 1621 int ret = 0; 1622 1623 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x" 1624 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd), 1625 cmd->t_task_cdb[0]); 1626 pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n", 1627 cmd->se_tfo->get_cmd_state(cmd), 1628 cmd->t_state, cmd->scsi_sense_reason); 1629 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n", 1630 (cmd->transport_state & CMD_T_ACTIVE) != 0, 1631 (cmd->transport_state & CMD_T_STOP) != 0, 1632 (cmd->transport_state & CMD_T_SENT) != 0); 1633 1634 /* 1635 * For SAM Task Attribute emulation for failed struct se_cmd 1636 */ 1637 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED) 1638 transport_complete_task_attr(cmd); 1639 1640 switch (cmd->scsi_sense_reason) { 1641 case TCM_NON_EXISTENT_LUN: 1642 case TCM_UNSUPPORTED_SCSI_OPCODE: 1643 case TCM_INVALID_CDB_FIELD: 1644 case TCM_INVALID_PARAMETER_LIST: 1645 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1646 case TCM_UNKNOWN_MODE_PAGE: 1647 case TCM_WRITE_PROTECTED: 1648 case TCM_ADDRESS_OUT_OF_RANGE: 1649 case TCM_CHECK_CONDITION_ABORT_CMD: 1650 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1651 case TCM_CHECK_CONDITION_NOT_READY: 1652 break; 1653 case TCM_RESERVATION_CONFLICT: 1654 /* 1655 * No SENSE Data payload for this case, set SCSI Status 1656 * and queue the response to $FABRIC_MOD. 1657 * 1658 * Uses linux/include/scsi/scsi.h SAM status codes defs 1659 */ 1660 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1661 /* 1662 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1663 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1664 * CONFLICT STATUS. 1665 * 1666 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1667 */ 1668 if (cmd->se_sess && 1669 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2) 1670 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl, 1671 cmd->orig_fe_lun, 0x2C, 1672 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1673 1674 ret = cmd->se_tfo->queue_status(cmd); 1675 if (ret == -EAGAIN || ret == -ENOMEM) 1676 goto queue_full; 1677 goto check_stop; 1678 default: 1679 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1680 cmd->t_task_cdb[0], cmd->scsi_sense_reason); 1681 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1682 break; 1683 } 1684 1685 ret = transport_send_check_condition_and_sense(cmd, 1686 cmd->scsi_sense_reason, 0); 1687 if (ret == -EAGAIN || ret == -ENOMEM) 1688 goto queue_full; 1689 1690 check_stop: 1691 transport_lun_remove_cmd(cmd); 1692 if (!transport_cmd_check_stop_to_fabric(cmd)) 1693 ; 1694 return; 1695 1696 queue_full: 1697 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 1698 transport_handle_queue_full(cmd, cmd->se_dev); 1699 } 1700 EXPORT_SYMBOL(transport_generic_request_failure); 1701 1702 static void __target_execute_cmd(struct se_cmd *cmd) 1703 { 1704 int error = 0; 1705 1706 spin_lock_irq(&cmd->t_state_lock); 1707 cmd->transport_state |= (CMD_T_BUSY|CMD_T_SENT); 1708 spin_unlock_irq(&cmd->t_state_lock); 1709 1710 if (cmd->execute_cmd) 1711 error = cmd->execute_cmd(cmd); 1712 1713 if (error) { 1714 spin_lock_irq(&cmd->t_state_lock); 1715 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT); 1716 spin_unlock_irq(&cmd->t_state_lock); 1717 1718 transport_generic_request_failure(cmd); 1719 } 1720 } 1721 1722 void target_execute_cmd(struct se_cmd *cmd) 1723 { 1724 struct se_device *dev = cmd->se_dev; 1725 1726 /* 1727 * If the received CDB has aleady been aborted stop processing it here. 1728 */ 1729 if (transport_check_aborted_status(cmd, 1)) 1730 return; 1731 1732 /* 1733 * Determine if IOCTL context caller in requesting the stopping of this 1734 * command for LUN shutdown purposes. 1735 */ 1736 spin_lock_irq(&cmd->t_state_lock); 1737 if (cmd->transport_state & CMD_T_LUN_STOP) { 1738 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n", 1739 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd)); 1740 1741 cmd->transport_state &= ~CMD_T_ACTIVE; 1742 spin_unlock_irq(&cmd->t_state_lock); 1743 complete(&cmd->transport_lun_stop_comp); 1744 return; 1745 } 1746 /* 1747 * Determine if frontend context caller is requesting the stopping of 1748 * this command for frontend exceptions. 1749 */ 1750 if (cmd->transport_state & CMD_T_STOP) { 1751 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n", 1752 __func__, __LINE__, 1753 cmd->se_tfo->get_task_tag(cmd)); 1754 1755 spin_unlock_irq(&cmd->t_state_lock); 1756 complete(&cmd->t_transport_stop_comp); 1757 return; 1758 } 1759 1760 cmd->t_state = TRANSPORT_PROCESSING; 1761 spin_unlock_irq(&cmd->t_state_lock); 1762 1763 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) 1764 goto execute; 1765 1766 /* 1767 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 1768 * to allow the passed struct se_cmd list of tasks to the front of the list. 1769 */ 1770 switch (cmd->sam_task_attr) { 1771 case MSG_HEAD_TAG: 1772 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, " 1773 "se_ordered_id: %u\n", 1774 cmd->t_task_cdb[0], cmd->se_ordered_id); 1775 goto execute; 1776 case MSG_ORDERED_TAG: 1777 atomic_inc(&dev->dev_ordered_sync); 1778 smp_mb__after_atomic_inc(); 1779 1780 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, " 1781 " se_ordered_id: %u\n", 1782 cmd->t_task_cdb[0], cmd->se_ordered_id); 1783 1784 /* 1785 * Execute an ORDERED command if no other older commands 1786 * exist that need to be completed first. 1787 */ 1788 if (!atomic_read(&dev->simple_cmds)) 1789 goto execute; 1790 break; 1791 default: 1792 /* 1793 * For SIMPLE and UNTAGGED Task Attribute commands 1794 */ 1795 atomic_inc(&dev->simple_cmds); 1796 smp_mb__after_atomic_inc(); 1797 break; 1798 } 1799 1800 if (atomic_read(&dev->dev_ordered_sync) != 0) { 1801 spin_lock(&dev->delayed_cmd_lock); 1802 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 1803 spin_unlock(&dev->delayed_cmd_lock); 1804 1805 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to" 1806 " delayed CMD list, se_ordered_id: %u\n", 1807 cmd->t_task_cdb[0], cmd->sam_task_attr, 1808 cmd->se_ordered_id); 1809 return; 1810 } 1811 1812 execute: 1813 /* 1814 * Otherwise, no ORDERED task attributes exist.. 1815 */ 1816 __target_execute_cmd(cmd); 1817 } 1818 EXPORT_SYMBOL(target_execute_cmd); 1819 1820 /* 1821 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd 1822 */ 1823 static int transport_get_sense_data(struct se_cmd *cmd) 1824 { 1825 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL; 1826 struct se_device *dev = cmd->se_dev; 1827 unsigned long flags; 1828 u32 offset = 0; 1829 1830 WARN_ON(!cmd->se_lun); 1831 1832 if (!dev) 1833 return 0; 1834 1835 spin_lock_irqsave(&cmd->t_state_lock, flags); 1836 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 1837 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 1838 return 0; 1839 } 1840 1841 if (!(cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)) 1842 goto out; 1843 1844 if (!dev->transport->get_sense_buffer) { 1845 pr_err("dev->transport->get_sense_buffer is NULL\n"); 1846 goto out; 1847 } 1848 1849 sense_buffer = dev->transport->get_sense_buffer(cmd); 1850 if (!sense_buffer) { 1851 pr_err("ITT 0x%08x cmd %p: Unable to locate" 1852 " sense buffer for task with sense\n", 1853 cmd->se_tfo->get_task_tag(cmd), cmd); 1854 goto out; 1855 } 1856 1857 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 1858 1859 offset = cmd->se_tfo->set_fabric_sense_len(cmd, TRANSPORT_SENSE_BUFFER); 1860 1861 memcpy(&buffer[offset], sense_buffer, TRANSPORT_SENSE_BUFFER); 1862 1863 /* Automatically padded */ 1864 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset; 1865 1866 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x and sense\n", 1867 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 1868 return 0; 1869 1870 out: 1871 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 1872 return -1; 1873 } 1874 1875 /* 1876 * Process all commands up to the last received ORDERED task attribute which 1877 * requires another blocking boundary 1878 */ 1879 static void target_restart_delayed_cmds(struct se_device *dev) 1880 { 1881 for (;;) { 1882 struct se_cmd *cmd; 1883 1884 spin_lock(&dev->delayed_cmd_lock); 1885 if (list_empty(&dev->delayed_cmd_list)) { 1886 spin_unlock(&dev->delayed_cmd_lock); 1887 break; 1888 } 1889 1890 cmd = list_entry(dev->delayed_cmd_list.next, 1891 struct se_cmd, se_delayed_node); 1892 list_del(&cmd->se_delayed_node); 1893 spin_unlock(&dev->delayed_cmd_lock); 1894 1895 __target_execute_cmd(cmd); 1896 1897 if (cmd->sam_task_attr == MSG_ORDERED_TAG) 1898 break; 1899 } 1900 } 1901 1902 /* 1903 * Called from I/O completion to determine which dormant/delayed 1904 * and ordered cmds need to have their tasks added to the execution queue. 1905 */ 1906 static void transport_complete_task_attr(struct se_cmd *cmd) 1907 { 1908 struct se_device *dev = cmd->se_dev; 1909 1910 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) { 1911 atomic_dec(&dev->simple_cmds); 1912 smp_mb__after_atomic_dec(); 1913 dev->dev_cur_ordered_id++; 1914 pr_debug("Incremented dev->dev_cur_ordered_id: %u for" 1915 " SIMPLE: %u\n", dev->dev_cur_ordered_id, 1916 cmd->se_ordered_id); 1917 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) { 1918 dev->dev_cur_ordered_id++; 1919 pr_debug("Incremented dev_cur_ordered_id: %u for" 1920 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id, 1921 cmd->se_ordered_id); 1922 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) { 1923 atomic_dec(&dev->dev_ordered_sync); 1924 smp_mb__after_atomic_dec(); 1925 1926 dev->dev_cur_ordered_id++; 1927 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:" 1928 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id); 1929 } 1930 1931 target_restart_delayed_cmds(dev); 1932 } 1933 1934 static void transport_complete_qf(struct se_cmd *cmd) 1935 { 1936 int ret = 0; 1937 1938 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED) 1939 transport_complete_task_attr(cmd); 1940 1941 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 1942 ret = cmd->se_tfo->queue_status(cmd); 1943 if (ret) 1944 goto out; 1945 } 1946 1947 switch (cmd->data_direction) { 1948 case DMA_FROM_DEVICE: 1949 ret = cmd->se_tfo->queue_data_in(cmd); 1950 break; 1951 case DMA_TO_DEVICE: 1952 if (cmd->t_bidi_data_sg) { 1953 ret = cmd->se_tfo->queue_data_in(cmd); 1954 if (ret < 0) 1955 break; 1956 } 1957 /* Fall through for DMA_TO_DEVICE */ 1958 case DMA_NONE: 1959 ret = cmd->se_tfo->queue_status(cmd); 1960 break; 1961 default: 1962 break; 1963 } 1964 1965 out: 1966 if (ret < 0) { 1967 transport_handle_queue_full(cmd, cmd->se_dev); 1968 return; 1969 } 1970 transport_lun_remove_cmd(cmd); 1971 transport_cmd_check_stop_to_fabric(cmd); 1972 } 1973 1974 static void transport_handle_queue_full( 1975 struct se_cmd *cmd, 1976 struct se_device *dev) 1977 { 1978 spin_lock_irq(&dev->qf_cmd_lock); 1979 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 1980 atomic_inc(&dev->dev_qf_count); 1981 smp_mb__after_atomic_inc(); 1982 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 1983 1984 schedule_work(&cmd->se_dev->qf_work_queue); 1985 } 1986 1987 static void target_complete_ok_work(struct work_struct *work) 1988 { 1989 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 1990 int reason = 0, ret; 1991 1992 /* 1993 * Check if we need to move delayed/dormant tasks from cmds on the 1994 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 1995 * Attribute. 1996 */ 1997 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED) 1998 transport_complete_task_attr(cmd); 1999 /* 2000 * Check to schedule QUEUE_FULL work, or execute an existing 2001 * cmd->transport_qf_callback() 2002 */ 2003 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 2004 schedule_work(&cmd->se_dev->qf_work_queue); 2005 2006 /* 2007 * Check if we need to retrieve a sense buffer from 2008 * the struct se_cmd in question. 2009 */ 2010 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 2011 if (transport_get_sense_data(cmd) < 0) 2012 reason = TCM_NON_EXISTENT_LUN; 2013 2014 if (cmd->scsi_status) { 2015 ret = transport_send_check_condition_and_sense( 2016 cmd, reason, 1); 2017 if (ret == -EAGAIN || ret == -ENOMEM) 2018 goto queue_full; 2019 2020 transport_lun_remove_cmd(cmd); 2021 transport_cmd_check_stop_to_fabric(cmd); 2022 return; 2023 } 2024 } 2025 /* 2026 * Check for a callback, used by amongst other things 2027 * XDWRITE_READ_10 emulation. 2028 */ 2029 if (cmd->transport_complete_callback) 2030 cmd->transport_complete_callback(cmd); 2031 2032 switch (cmd->data_direction) { 2033 case DMA_FROM_DEVICE: 2034 spin_lock(&cmd->se_lun->lun_sep_lock); 2035 if (cmd->se_lun->lun_sep) { 2036 cmd->se_lun->lun_sep->sep_stats.tx_data_octets += 2037 cmd->data_length; 2038 } 2039 spin_unlock(&cmd->se_lun->lun_sep_lock); 2040 2041 ret = cmd->se_tfo->queue_data_in(cmd); 2042 if (ret == -EAGAIN || ret == -ENOMEM) 2043 goto queue_full; 2044 break; 2045 case DMA_TO_DEVICE: 2046 spin_lock(&cmd->se_lun->lun_sep_lock); 2047 if (cmd->se_lun->lun_sep) { 2048 cmd->se_lun->lun_sep->sep_stats.rx_data_octets += 2049 cmd->data_length; 2050 } 2051 spin_unlock(&cmd->se_lun->lun_sep_lock); 2052 /* 2053 * Check if we need to send READ payload for BIDI-COMMAND 2054 */ 2055 if (cmd->t_bidi_data_sg) { 2056 spin_lock(&cmd->se_lun->lun_sep_lock); 2057 if (cmd->se_lun->lun_sep) { 2058 cmd->se_lun->lun_sep->sep_stats.tx_data_octets += 2059 cmd->data_length; 2060 } 2061 spin_unlock(&cmd->se_lun->lun_sep_lock); 2062 ret = cmd->se_tfo->queue_data_in(cmd); 2063 if (ret == -EAGAIN || ret == -ENOMEM) 2064 goto queue_full; 2065 break; 2066 } 2067 /* Fall through for DMA_TO_DEVICE */ 2068 case DMA_NONE: 2069 ret = cmd->se_tfo->queue_status(cmd); 2070 if (ret == -EAGAIN || ret == -ENOMEM) 2071 goto queue_full; 2072 break; 2073 default: 2074 break; 2075 } 2076 2077 transport_lun_remove_cmd(cmd); 2078 transport_cmd_check_stop_to_fabric(cmd); 2079 return; 2080 2081 queue_full: 2082 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 2083 " data_direction: %d\n", cmd, cmd->data_direction); 2084 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 2085 transport_handle_queue_full(cmd, cmd->se_dev); 2086 } 2087 2088 static inline void transport_free_sgl(struct scatterlist *sgl, int nents) 2089 { 2090 struct scatterlist *sg; 2091 int count; 2092 2093 for_each_sg(sgl, sg, nents, count) 2094 __free_page(sg_page(sg)); 2095 2096 kfree(sgl); 2097 } 2098 2099 static inline void transport_free_pages(struct se_cmd *cmd) 2100 { 2101 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) 2102 return; 2103 2104 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 2105 cmd->t_data_sg = NULL; 2106 cmd->t_data_nents = 0; 2107 2108 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 2109 cmd->t_bidi_data_sg = NULL; 2110 cmd->t_bidi_data_nents = 0; 2111 } 2112 2113 /** 2114 * transport_release_cmd - free a command 2115 * @cmd: command to free 2116 * 2117 * This routine unconditionally frees a command, and reference counting 2118 * or list removal must be done in the caller. 2119 */ 2120 static void transport_release_cmd(struct se_cmd *cmd) 2121 { 2122 BUG_ON(!cmd->se_tfo); 2123 2124 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 2125 core_tmr_release_req(cmd->se_tmr_req); 2126 if (cmd->t_task_cdb != cmd->__t_task_cdb) 2127 kfree(cmd->t_task_cdb); 2128 /* 2129 * If this cmd has been setup with target_get_sess_cmd(), drop 2130 * the kref and call ->release_cmd() in kref callback. 2131 */ 2132 if (cmd->check_release != 0) { 2133 target_put_sess_cmd(cmd->se_sess, cmd); 2134 return; 2135 } 2136 cmd->se_tfo->release_cmd(cmd); 2137 } 2138 2139 /** 2140 * transport_put_cmd - release a reference to a command 2141 * @cmd: command to release 2142 * 2143 * This routine releases our reference to the command and frees it if possible. 2144 */ 2145 static void transport_put_cmd(struct se_cmd *cmd) 2146 { 2147 unsigned long flags; 2148 2149 spin_lock_irqsave(&cmd->t_state_lock, flags); 2150 if (atomic_read(&cmd->t_fe_count)) { 2151 if (!atomic_dec_and_test(&cmd->t_fe_count)) 2152 goto out_busy; 2153 } 2154 2155 if (cmd->transport_state & CMD_T_DEV_ACTIVE) { 2156 cmd->transport_state &= ~CMD_T_DEV_ACTIVE; 2157 target_remove_from_state_list(cmd); 2158 } 2159 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2160 2161 transport_free_pages(cmd); 2162 transport_release_cmd(cmd); 2163 return; 2164 out_busy: 2165 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2166 } 2167 2168 /* 2169 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of 2170 * allocating in the core. 2171 * @cmd: Associated se_cmd descriptor 2172 * @mem: SGL style memory for TCM WRITE / READ 2173 * @sg_mem_num: Number of SGL elements 2174 * @mem_bidi_in: SGL style memory for TCM BIDI READ 2175 * @sg_mem_bidi_num: Number of BIDI READ SGL elements 2176 * 2177 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage 2178 * of parameters. 2179 */ 2180 int transport_generic_map_mem_to_cmd( 2181 struct se_cmd *cmd, 2182 struct scatterlist *sgl, 2183 u32 sgl_count, 2184 struct scatterlist *sgl_bidi, 2185 u32 sgl_bidi_count) 2186 { 2187 if (!sgl || !sgl_count) 2188 return 0; 2189 2190 /* 2191 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 2192 * scatterlists already have been set to follow what the fabric 2193 * passes for the original expected data transfer length. 2194 */ 2195 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 2196 pr_warn("Rejecting SCSI DATA overflow for fabric using" 2197 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 2198 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 2199 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD; 2200 return -EINVAL; 2201 } 2202 2203 cmd->t_data_sg = sgl; 2204 cmd->t_data_nents = sgl_count; 2205 2206 if (sgl_bidi && sgl_bidi_count) { 2207 cmd->t_bidi_data_sg = sgl_bidi; 2208 cmd->t_bidi_data_nents = sgl_bidi_count; 2209 } 2210 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 2211 return 0; 2212 } 2213 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd); 2214 2215 void *transport_kmap_data_sg(struct se_cmd *cmd) 2216 { 2217 struct scatterlist *sg = cmd->t_data_sg; 2218 struct page **pages; 2219 int i; 2220 2221 BUG_ON(!sg); 2222 /* 2223 * We need to take into account a possible offset here for fabrics like 2224 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2225 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2226 */ 2227 if (!cmd->t_data_nents) 2228 return NULL; 2229 else if (cmd->t_data_nents == 1) 2230 return kmap(sg_page(sg)) + sg->offset; 2231 2232 /* >1 page. use vmap */ 2233 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL); 2234 if (!pages) 2235 return NULL; 2236 2237 /* convert sg[] to pages[] */ 2238 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2239 pages[i] = sg_page(sg); 2240 } 2241 2242 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2243 kfree(pages); 2244 if (!cmd->t_data_vmap) 2245 return NULL; 2246 2247 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2248 } 2249 EXPORT_SYMBOL(transport_kmap_data_sg); 2250 2251 void transport_kunmap_data_sg(struct se_cmd *cmd) 2252 { 2253 if (!cmd->t_data_nents) { 2254 return; 2255 } else if (cmd->t_data_nents == 1) { 2256 kunmap(sg_page(cmd->t_data_sg)); 2257 return; 2258 } 2259 2260 vunmap(cmd->t_data_vmap); 2261 cmd->t_data_vmap = NULL; 2262 } 2263 EXPORT_SYMBOL(transport_kunmap_data_sg); 2264 2265 static int 2266 transport_generic_get_mem(struct se_cmd *cmd) 2267 { 2268 u32 length = cmd->data_length; 2269 unsigned int nents; 2270 struct page *page; 2271 gfp_t zero_flag; 2272 int i = 0; 2273 2274 nents = DIV_ROUND_UP(length, PAGE_SIZE); 2275 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL); 2276 if (!cmd->t_data_sg) 2277 return -ENOMEM; 2278 2279 cmd->t_data_nents = nents; 2280 sg_init_table(cmd->t_data_sg, nents); 2281 2282 zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_CDB ? 0 : __GFP_ZERO; 2283 2284 while (length) { 2285 u32 page_len = min_t(u32, length, PAGE_SIZE); 2286 page = alloc_page(GFP_KERNEL | zero_flag); 2287 if (!page) 2288 goto out; 2289 2290 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0); 2291 length -= page_len; 2292 i++; 2293 } 2294 return 0; 2295 2296 out: 2297 while (i >= 0) { 2298 __free_page(sg_page(&cmd->t_data_sg[i])); 2299 i--; 2300 } 2301 kfree(cmd->t_data_sg); 2302 cmd->t_data_sg = NULL; 2303 return -ENOMEM; 2304 } 2305 2306 /* 2307 * Allocate any required resources to execute the command. For writes we 2308 * might not have the payload yet, so notify the fabric via a call to 2309 * ->write_pending instead. Otherwise place it on the execution queue. 2310 */ 2311 int transport_generic_new_cmd(struct se_cmd *cmd) 2312 { 2313 int ret = 0; 2314 2315 /* 2316 * Determine is the TCM fabric module has already allocated physical 2317 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2318 * beforehand. 2319 */ 2320 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2321 cmd->data_length) { 2322 ret = transport_generic_get_mem(cmd); 2323 if (ret < 0) 2324 goto out_fail; 2325 } 2326 2327 /* Workaround for handling zero-length control CDBs */ 2328 if (!(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && !cmd->data_length) { 2329 spin_lock_irq(&cmd->t_state_lock); 2330 cmd->t_state = TRANSPORT_COMPLETE; 2331 cmd->transport_state |= CMD_T_ACTIVE; 2332 spin_unlock_irq(&cmd->t_state_lock); 2333 2334 if (cmd->t_task_cdb[0] == REQUEST_SENSE) { 2335 u8 ua_asc = 0, ua_ascq = 0; 2336 2337 core_scsi3_ua_clear_for_request_sense(cmd, 2338 &ua_asc, &ua_ascq); 2339 } 2340 2341 INIT_WORK(&cmd->work, target_complete_ok_work); 2342 queue_work(target_completion_wq, &cmd->work); 2343 return 0; 2344 } 2345 2346 atomic_inc(&cmd->t_fe_count); 2347 2348 /* 2349 * If this command is not a write we can execute it right here, 2350 * for write buffers we need to notify the fabric driver first 2351 * and let it call back once the write buffers are ready. 2352 */ 2353 target_add_to_state_list(cmd); 2354 if (cmd->data_direction != DMA_TO_DEVICE) { 2355 target_execute_cmd(cmd); 2356 return 0; 2357 } 2358 2359 spin_lock_irq(&cmd->t_state_lock); 2360 cmd->t_state = TRANSPORT_WRITE_PENDING; 2361 spin_unlock_irq(&cmd->t_state_lock); 2362 2363 transport_cmd_check_stop(cmd, false); 2364 2365 ret = cmd->se_tfo->write_pending(cmd); 2366 if (ret == -EAGAIN || ret == -ENOMEM) 2367 goto queue_full; 2368 2369 if (ret < 0) 2370 return ret; 2371 return 1; 2372 2373 out_fail: 2374 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 2375 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2376 return -EINVAL; 2377 queue_full: 2378 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2379 cmd->t_state = TRANSPORT_COMPLETE_QF_WP; 2380 transport_handle_queue_full(cmd, cmd->se_dev); 2381 return 0; 2382 } 2383 EXPORT_SYMBOL(transport_generic_new_cmd); 2384 2385 static void transport_write_pending_qf(struct se_cmd *cmd) 2386 { 2387 int ret; 2388 2389 ret = cmd->se_tfo->write_pending(cmd); 2390 if (ret == -EAGAIN || ret == -ENOMEM) { 2391 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2392 cmd); 2393 transport_handle_queue_full(cmd, cmd->se_dev); 2394 } 2395 } 2396 2397 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2398 { 2399 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) { 2400 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2401 transport_wait_for_tasks(cmd); 2402 2403 transport_release_cmd(cmd); 2404 } else { 2405 if (wait_for_tasks) 2406 transport_wait_for_tasks(cmd); 2407 2408 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd); 2409 2410 if (cmd->se_lun) 2411 transport_lun_remove_cmd(cmd); 2412 2413 transport_put_cmd(cmd); 2414 } 2415 } 2416 EXPORT_SYMBOL(transport_generic_free_cmd); 2417 2418 /* target_get_sess_cmd - Add command to active ->sess_cmd_list 2419 * @se_sess: session to reference 2420 * @se_cmd: command descriptor to add 2421 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2422 */ 2423 static int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd, 2424 bool ack_kref) 2425 { 2426 unsigned long flags; 2427 int ret = 0; 2428 2429 kref_init(&se_cmd->cmd_kref); 2430 /* 2431 * Add a second kref if the fabric caller is expecting to handle 2432 * fabric acknowledgement that requires two target_put_sess_cmd() 2433 * invocations before se_cmd descriptor release. 2434 */ 2435 if (ack_kref == true) { 2436 kref_get(&se_cmd->cmd_kref); 2437 se_cmd->se_cmd_flags |= SCF_ACK_KREF; 2438 } 2439 2440 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2441 if (se_sess->sess_tearing_down) { 2442 ret = -ESHUTDOWN; 2443 goto out; 2444 } 2445 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); 2446 se_cmd->check_release = 1; 2447 2448 out: 2449 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2450 return ret; 2451 } 2452 2453 static void target_release_cmd_kref(struct kref *kref) 2454 { 2455 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2456 struct se_session *se_sess = se_cmd->se_sess; 2457 unsigned long flags; 2458 2459 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2460 if (list_empty(&se_cmd->se_cmd_list)) { 2461 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2462 se_cmd->se_tfo->release_cmd(se_cmd); 2463 return; 2464 } 2465 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) { 2466 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2467 complete(&se_cmd->cmd_wait_comp); 2468 return; 2469 } 2470 list_del(&se_cmd->se_cmd_list); 2471 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2472 2473 se_cmd->se_tfo->release_cmd(se_cmd); 2474 } 2475 2476 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put 2477 * @se_sess: session to reference 2478 * @se_cmd: command descriptor to drop 2479 */ 2480 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd) 2481 { 2482 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref); 2483 } 2484 EXPORT_SYMBOL(target_put_sess_cmd); 2485 2486 /* target_sess_cmd_list_set_waiting - Flag all commands in 2487 * sess_cmd_list to complete cmd_wait_comp. Set 2488 * sess_tearing_down so no more commands are queued. 2489 * @se_sess: session to flag 2490 */ 2491 void target_sess_cmd_list_set_waiting(struct se_session *se_sess) 2492 { 2493 struct se_cmd *se_cmd; 2494 unsigned long flags; 2495 2496 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2497 2498 WARN_ON(se_sess->sess_tearing_down); 2499 se_sess->sess_tearing_down = 1; 2500 2501 list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) 2502 se_cmd->cmd_wait_set = 1; 2503 2504 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2505 } 2506 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting); 2507 2508 /* target_wait_for_sess_cmds - Wait for outstanding descriptors 2509 * @se_sess: session to wait for active I/O 2510 * @wait_for_tasks: Make extra transport_wait_for_tasks call 2511 */ 2512 void target_wait_for_sess_cmds( 2513 struct se_session *se_sess, 2514 int wait_for_tasks) 2515 { 2516 struct se_cmd *se_cmd, *tmp_cmd; 2517 bool rc = false; 2518 2519 list_for_each_entry_safe(se_cmd, tmp_cmd, 2520 &se_sess->sess_cmd_list, se_cmd_list) { 2521 list_del(&se_cmd->se_cmd_list); 2522 2523 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:" 2524 " %d\n", se_cmd, se_cmd->t_state, 2525 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2526 2527 if (wait_for_tasks) { 2528 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d," 2529 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2530 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2531 2532 rc = transport_wait_for_tasks(se_cmd); 2533 2534 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d," 2535 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2536 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2537 } 2538 2539 if (!rc) { 2540 wait_for_completion(&se_cmd->cmd_wait_comp); 2541 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d" 2542 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2543 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2544 } 2545 2546 se_cmd->se_tfo->release_cmd(se_cmd); 2547 } 2548 } 2549 EXPORT_SYMBOL(target_wait_for_sess_cmds); 2550 2551 /* transport_lun_wait_for_tasks(): 2552 * 2553 * Called from ConfigFS context to stop the passed struct se_cmd to allow 2554 * an struct se_lun to be successfully shutdown. 2555 */ 2556 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun) 2557 { 2558 unsigned long flags; 2559 int ret = 0; 2560 2561 /* 2562 * If the frontend has already requested this struct se_cmd to 2563 * be stopped, we can safely ignore this struct se_cmd. 2564 */ 2565 spin_lock_irqsave(&cmd->t_state_lock, flags); 2566 if (cmd->transport_state & CMD_T_STOP) { 2567 cmd->transport_state &= ~CMD_T_LUN_STOP; 2568 2569 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n", 2570 cmd->se_tfo->get_task_tag(cmd)); 2571 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2572 transport_cmd_check_stop(cmd, false); 2573 return -EPERM; 2574 } 2575 cmd->transport_state |= CMD_T_LUN_FE_STOP; 2576 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2577 2578 // XXX: audit task_flags checks. 2579 spin_lock_irqsave(&cmd->t_state_lock, flags); 2580 if ((cmd->transport_state & CMD_T_BUSY) && 2581 (cmd->transport_state & CMD_T_SENT)) { 2582 if (!target_stop_cmd(cmd, &flags)) 2583 ret++; 2584 } 2585 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2586 2587 pr_debug("ConfigFS: cmd: %p stop tasks ret:" 2588 " %d\n", cmd, ret); 2589 if (!ret) { 2590 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n", 2591 cmd->se_tfo->get_task_tag(cmd)); 2592 wait_for_completion(&cmd->transport_lun_stop_comp); 2593 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n", 2594 cmd->se_tfo->get_task_tag(cmd)); 2595 } 2596 2597 return 0; 2598 } 2599 2600 static void __transport_clear_lun_from_sessions(struct se_lun *lun) 2601 { 2602 struct se_cmd *cmd = NULL; 2603 unsigned long lun_flags, cmd_flags; 2604 /* 2605 * Do exception processing and return CHECK_CONDITION status to the 2606 * Initiator Port. 2607 */ 2608 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 2609 while (!list_empty(&lun->lun_cmd_list)) { 2610 cmd = list_first_entry(&lun->lun_cmd_list, 2611 struct se_cmd, se_lun_node); 2612 list_del_init(&cmd->se_lun_node); 2613 2614 spin_lock(&cmd->t_state_lock); 2615 pr_debug("SE_LUN[%d] - Setting cmd->transport" 2616 "_lun_stop for ITT: 0x%08x\n", 2617 cmd->se_lun->unpacked_lun, 2618 cmd->se_tfo->get_task_tag(cmd)); 2619 cmd->transport_state |= CMD_T_LUN_STOP; 2620 spin_unlock(&cmd->t_state_lock); 2621 2622 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags); 2623 2624 if (!cmd->se_lun) { 2625 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n", 2626 cmd->se_tfo->get_task_tag(cmd), 2627 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2628 BUG(); 2629 } 2630 /* 2631 * If the Storage engine still owns the iscsi_cmd_t, determine 2632 * and/or stop its context. 2633 */ 2634 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport" 2635 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun, 2636 cmd->se_tfo->get_task_tag(cmd)); 2637 2638 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) { 2639 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 2640 continue; 2641 } 2642 2643 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun" 2644 "_wait_for_tasks(): SUCCESS\n", 2645 cmd->se_lun->unpacked_lun, 2646 cmd->se_tfo->get_task_tag(cmd)); 2647 2648 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags); 2649 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) { 2650 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags); 2651 goto check_cond; 2652 } 2653 cmd->transport_state &= ~CMD_T_DEV_ACTIVE; 2654 target_remove_from_state_list(cmd); 2655 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags); 2656 2657 /* 2658 * The Storage engine stopped this struct se_cmd before it was 2659 * send to the fabric frontend for delivery back to the 2660 * Initiator Node. Return this SCSI CDB back with an 2661 * CHECK_CONDITION status. 2662 */ 2663 check_cond: 2664 transport_send_check_condition_and_sense(cmd, 2665 TCM_NON_EXISTENT_LUN, 0); 2666 /* 2667 * If the fabric frontend is waiting for this iscsi_cmd_t to 2668 * be released, notify the waiting thread now that LU has 2669 * finished accessing it. 2670 */ 2671 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags); 2672 if (cmd->transport_state & CMD_T_LUN_FE_STOP) { 2673 pr_debug("SE_LUN[%d] - Detected FE stop for" 2674 " struct se_cmd: %p ITT: 0x%08x\n", 2675 lun->unpacked_lun, 2676 cmd, cmd->se_tfo->get_task_tag(cmd)); 2677 2678 spin_unlock_irqrestore(&cmd->t_state_lock, 2679 cmd_flags); 2680 transport_cmd_check_stop(cmd, false); 2681 complete(&cmd->transport_lun_fe_stop_comp); 2682 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 2683 continue; 2684 } 2685 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n", 2686 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd)); 2687 2688 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags); 2689 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 2690 } 2691 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags); 2692 } 2693 2694 static int transport_clear_lun_thread(void *p) 2695 { 2696 struct se_lun *lun = p; 2697 2698 __transport_clear_lun_from_sessions(lun); 2699 complete(&lun->lun_shutdown_comp); 2700 2701 return 0; 2702 } 2703 2704 int transport_clear_lun_from_sessions(struct se_lun *lun) 2705 { 2706 struct task_struct *kt; 2707 2708 kt = kthread_run(transport_clear_lun_thread, lun, 2709 "tcm_cl_%u", lun->unpacked_lun); 2710 if (IS_ERR(kt)) { 2711 pr_err("Unable to start clear_lun thread\n"); 2712 return PTR_ERR(kt); 2713 } 2714 wait_for_completion(&lun->lun_shutdown_comp); 2715 2716 return 0; 2717 } 2718 2719 /** 2720 * transport_wait_for_tasks - wait for completion to occur 2721 * @cmd: command to wait 2722 * 2723 * Called from frontend fabric context to wait for storage engine 2724 * to pause and/or release frontend generated struct se_cmd. 2725 */ 2726 bool transport_wait_for_tasks(struct se_cmd *cmd) 2727 { 2728 unsigned long flags; 2729 2730 spin_lock_irqsave(&cmd->t_state_lock, flags); 2731 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 2732 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2733 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2734 return false; 2735 } 2736 2737 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 2738 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2739 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2740 return false; 2741 } 2742 /* 2743 * If we are already stopped due to an external event (ie: LUN shutdown) 2744 * sleep until the connection can have the passed struct se_cmd back. 2745 * The cmd->transport_lun_stopped_sem will be upped by 2746 * transport_clear_lun_from_sessions() once the ConfigFS context caller 2747 * has completed its operation on the struct se_cmd. 2748 */ 2749 if (cmd->transport_state & CMD_T_LUN_STOP) { 2750 pr_debug("wait_for_tasks: Stopping" 2751 " wait_for_completion(&cmd->t_tasktransport_lun_fe" 2752 "_stop_comp); for ITT: 0x%08x\n", 2753 cmd->se_tfo->get_task_tag(cmd)); 2754 /* 2755 * There is a special case for WRITES where a FE exception + 2756 * LUN shutdown means ConfigFS context is still sleeping on 2757 * transport_lun_stop_comp in transport_lun_wait_for_tasks(). 2758 * We go ahead and up transport_lun_stop_comp just to be sure 2759 * here. 2760 */ 2761 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2762 complete(&cmd->transport_lun_stop_comp); 2763 wait_for_completion(&cmd->transport_lun_fe_stop_comp); 2764 spin_lock_irqsave(&cmd->t_state_lock, flags); 2765 2766 target_remove_from_state_list(cmd); 2767 /* 2768 * At this point, the frontend who was the originator of this 2769 * struct se_cmd, now owns the structure and can be released through 2770 * normal means below. 2771 */ 2772 pr_debug("wait_for_tasks: Stopped" 2773 " wait_for_completion(&cmd->t_tasktransport_lun_fe_" 2774 "stop_comp); for ITT: 0x%08x\n", 2775 cmd->se_tfo->get_task_tag(cmd)); 2776 2777 cmd->transport_state &= ~CMD_T_LUN_STOP; 2778 } 2779 2780 if (!(cmd->transport_state & CMD_T_ACTIVE)) { 2781 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2782 return false; 2783 } 2784 2785 cmd->transport_state |= CMD_T_STOP; 2786 2787 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x" 2788 " i_state: %d, t_state: %d, CMD_T_STOP\n", 2789 cmd, cmd->se_tfo->get_task_tag(cmd), 2790 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2791 2792 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2793 2794 wait_for_completion(&cmd->t_transport_stop_comp); 2795 2796 spin_lock_irqsave(&cmd->t_state_lock, flags); 2797 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 2798 2799 pr_debug("wait_for_tasks: Stopped wait_for_compltion(" 2800 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n", 2801 cmd->se_tfo->get_task_tag(cmd)); 2802 2803 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2804 2805 return true; 2806 } 2807 EXPORT_SYMBOL(transport_wait_for_tasks); 2808 2809 static int transport_get_sense_codes( 2810 struct se_cmd *cmd, 2811 u8 *asc, 2812 u8 *ascq) 2813 { 2814 *asc = cmd->scsi_asc; 2815 *ascq = cmd->scsi_ascq; 2816 2817 return 0; 2818 } 2819 2820 static int transport_set_sense_codes( 2821 struct se_cmd *cmd, 2822 u8 asc, 2823 u8 ascq) 2824 { 2825 cmd->scsi_asc = asc; 2826 cmd->scsi_ascq = ascq; 2827 2828 return 0; 2829 } 2830 2831 int transport_send_check_condition_and_sense( 2832 struct se_cmd *cmd, 2833 u8 reason, 2834 int from_transport) 2835 { 2836 unsigned char *buffer = cmd->sense_buffer; 2837 unsigned long flags; 2838 int offset; 2839 u8 asc = 0, ascq = 0; 2840 2841 spin_lock_irqsave(&cmd->t_state_lock, flags); 2842 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 2843 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2844 return 0; 2845 } 2846 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 2847 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2848 2849 if (!reason && from_transport) 2850 goto after_reason; 2851 2852 if (!from_transport) 2853 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 2854 /* 2855 * Data Segment and SenseLength of the fabric response PDU. 2856 * 2857 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE 2858 * from include/scsi/scsi_cmnd.h 2859 */ 2860 offset = cmd->se_tfo->set_fabric_sense_len(cmd, 2861 TRANSPORT_SENSE_BUFFER); 2862 /* 2863 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses 2864 * SENSE KEY values from include/scsi/scsi.h 2865 */ 2866 switch (reason) { 2867 case TCM_NON_EXISTENT_LUN: 2868 /* CURRENT ERROR */ 2869 buffer[offset] = 0x70; 2870 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; 2871 /* ILLEGAL REQUEST */ 2872 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2873 /* LOGICAL UNIT NOT SUPPORTED */ 2874 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25; 2875 break; 2876 case TCM_UNSUPPORTED_SCSI_OPCODE: 2877 case TCM_SECTOR_COUNT_TOO_MANY: 2878 /* CURRENT ERROR */ 2879 buffer[offset] = 0x70; 2880 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; 2881 /* ILLEGAL REQUEST */ 2882 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2883 /* INVALID COMMAND OPERATION CODE */ 2884 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20; 2885 break; 2886 case TCM_UNKNOWN_MODE_PAGE: 2887 /* CURRENT ERROR */ 2888 buffer[offset] = 0x70; 2889 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; 2890 /* ILLEGAL REQUEST */ 2891 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2892 /* INVALID FIELD IN CDB */ 2893 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24; 2894 break; 2895 case TCM_CHECK_CONDITION_ABORT_CMD: 2896 /* CURRENT ERROR */ 2897 buffer[offset] = 0x70; 2898 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; 2899 /* ABORTED COMMAND */ 2900 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2901 /* BUS DEVICE RESET FUNCTION OCCURRED */ 2902 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29; 2903 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03; 2904 break; 2905 case TCM_INCORRECT_AMOUNT_OF_DATA: 2906 /* CURRENT ERROR */ 2907 buffer[offset] = 0x70; 2908 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; 2909 /* ABORTED COMMAND */ 2910 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2911 /* WRITE ERROR */ 2912 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c; 2913 /* NOT ENOUGH UNSOLICITED DATA */ 2914 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d; 2915 break; 2916 case TCM_INVALID_CDB_FIELD: 2917 /* CURRENT ERROR */ 2918 buffer[offset] = 0x70; 2919 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; 2920 /* ILLEGAL REQUEST */ 2921 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2922 /* INVALID FIELD IN CDB */ 2923 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24; 2924 break; 2925 case TCM_INVALID_PARAMETER_LIST: 2926 /* CURRENT ERROR */ 2927 buffer[offset] = 0x70; 2928 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; 2929 /* ILLEGAL REQUEST */ 2930 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2931 /* INVALID FIELD IN PARAMETER LIST */ 2932 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26; 2933 break; 2934 case TCM_UNEXPECTED_UNSOLICITED_DATA: 2935 /* CURRENT ERROR */ 2936 buffer[offset] = 0x70; 2937 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; 2938 /* ABORTED COMMAND */ 2939 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2940 /* WRITE ERROR */ 2941 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c; 2942 /* UNEXPECTED_UNSOLICITED_DATA */ 2943 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c; 2944 break; 2945 case TCM_SERVICE_CRC_ERROR: 2946 /* CURRENT ERROR */ 2947 buffer[offset] = 0x70; 2948 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; 2949 /* ABORTED COMMAND */ 2950 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2951 /* PROTOCOL SERVICE CRC ERROR */ 2952 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47; 2953 /* N/A */ 2954 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05; 2955 break; 2956 case TCM_SNACK_REJECTED: 2957 /* CURRENT ERROR */ 2958 buffer[offset] = 0x70; 2959 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; 2960 /* ABORTED COMMAND */ 2961 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2962 /* READ ERROR */ 2963 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11; 2964 /* FAILED RETRANSMISSION REQUEST */ 2965 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13; 2966 break; 2967 case TCM_WRITE_PROTECTED: 2968 /* CURRENT ERROR */ 2969 buffer[offset] = 0x70; 2970 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; 2971 /* DATA PROTECT */ 2972 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT; 2973 /* WRITE PROTECTED */ 2974 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27; 2975 break; 2976 case TCM_ADDRESS_OUT_OF_RANGE: 2977 /* CURRENT ERROR */ 2978 buffer[offset] = 0x70; 2979 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; 2980 /* ILLEGAL REQUEST */ 2981 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2982 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 2983 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x21; 2984 break; 2985 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 2986 /* CURRENT ERROR */ 2987 buffer[offset] = 0x70; 2988 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; 2989 /* UNIT ATTENTION */ 2990 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION; 2991 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); 2992 buffer[offset+SPC_ASC_KEY_OFFSET] = asc; 2993 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq; 2994 break; 2995 case TCM_CHECK_CONDITION_NOT_READY: 2996 /* CURRENT ERROR */ 2997 buffer[offset] = 0x70; 2998 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; 2999 /* Not Ready */ 3000 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY; 3001 transport_get_sense_codes(cmd, &asc, &ascq); 3002 buffer[offset+SPC_ASC_KEY_OFFSET] = asc; 3003 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq; 3004 break; 3005 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 3006 default: 3007 /* CURRENT ERROR */ 3008 buffer[offset] = 0x70; 3009 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; 3010 /* ILLEGAL REQUEST */ 3011 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 3012 /* LOGICAL UNIT COMMUNICATION FAILURE */ 3013 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80; 3014 break; 3015 } 3016 /* 3017 * This code uses linux/include/scsi/scsi.h SAM status codes! 3018 */ 3019 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 3020 /* 3021 * Automatically padded, this value is encoded in the fabric's 3022 * data_length response PDU containing the SCSI defined sense data. 3023 */ 3024 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset; 3025 3026 after_reason: 3027 return cmd->se_tfo->queue_status(cmd); 3028 } 3029 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 3030 3031 int transport_check_aborted_status(struct se_cmd *cmd, int send_status) 3032 { 3033 int ret = 0; 3034 3035 if (cmd->transport_state & CMD_T_ABORTED) { 3036 if (!send_status || 3037 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS)) 3038 return 1; 3039 3040 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED" 3041 " status for CDB: 0x%02x ITT: 0x%08x\n", 3042 cmd->t_task_cdb[0], 3043 cmd->se_tfo->get_task_tag(cmd)); 3044 3045 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS; 3046 cmd->se_tfo->queue_status(cmd); 3047 ret = 1; 3048 } 3049 return ret; 3050 } 3051 EXPORT_SYMBOL(transport_check_aborted_status); 3052 3053 void transport_send_task_abort(struct se_cmd *cmd) 3054 { 3055 unsigned long flags; 3056 3057 spin_lock_irqsave(&cmd->t_state_lock, flags); 3058 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 3059 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3060 return; 3061 } 3062 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3063 3064 /* 3065 * If there are still expected incoming fabric WRITEs, we wait 3066 * until until they have completed before sending a TASK_ABORTED 3067 * response. This response with TASK_ABORTED status will be 3068 * queued back to fabric module by transport_check_aborted_status(). 3069 */ 3070 if (cmd->data_direction == DMA_TO_DEVICE) { 3071 if (cmd->se_tfo->write_pending_status(cmd) != 0) { 3072 cmd->transport_state |= CMD_T_ABORTED; 3073 smp_mb__after_atomic_inc(); 3074 } 3075 } 3076 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 3077 3078 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x," 3079 " ITT: 0x%08x\n", cmd->t_task_cdb[0], 3080 cmd->se_tfo->get_task_tag(cmd)); 3081 3082 cmd->se_tfo->queue_status(cmd); 3083 } 3084 3085 static void target_tmr_work(struct work_struct *work) 3086 { 3087 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 3088 struct se_device *dev = cmd->se_dev; 3089 struct se_tmr_req *tmr = cmd->se_tmr_req; 3090 int ret; 3091 3092 switch (tmr->function) { 3093 case TMR_ABORT_TASK: 3094 core_tmr_abort_task(dev, tmr, cmd->se_sess); 3095 break; 3096 case TMR_ABORT_TASK_SET: 3097 case TMR_CLEAR_ACA: 3098 case TMR_CLEAR_TASK_SET: 3099 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 3100 break; 3101 case TMR_LUN_RESET: 3102 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 3103 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 3104 TMR_FUNCTION_REJECTED; 3105 break; 3106 case TMR_TARGET_WARM_RESET: 3107 tmr->response = TMR_FUNCTION_REJECTED; 3108 break; 3109 case TMR_TARGET_COLD_RESET: 3110 tmr->response = TMR_FUNCTION_REJECTED; 3111 break; 3112 default: 3113 pr_err("Uknown TMR function: 0x%02x.\n", 3114 tmr->function); 3115 tmr->response = TMR_FUNCTION_REJECTED; 3116 break; 3117 } 3118 3119 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 3120 cmd->se_tfo->queue_tm_rsp(cmd); 3121 3122 transport_cmd_check_stop_to_fabric(cmd); 3123 } 3124 3125 int transport_generic_handle_tmr( 3126 struct se_cmd *cmd) 3127 { 3128 INIT_WORK(&cmd->work, target_tmr_work); 3129 queue_work(cmd->se_dev->tmr_wq, &cmd->work); 3130 return 0; 3131 } 3132 EXPORT_SYMBOL(transport_generic_handle_tmr); 3133