xref: /linux/drivers/target/target_core_transport.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28 
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
46 
47 #include <target/target_core_base.h>
48 #include <target/target_core_backend.h>
49 #include <target/target_core_fabric.h>
50 #include <target/target_core_configfs.h>
51 
52 #include "target_core_internal.h"
53 #include "target_core_alua.h"
54 #include "target_core_pr.h"
55 #include "target_core_ua.h"
56 
57 static int sub_api_initialized;
58 
59 static struct workqueue_struct *target_completion_wq;
60 static struct kmem_cache *se_sess_cache;
61 struct kmem_cache *se_tmr_req_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68 
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74 		struct se_device *dev);
75 static void transport_free_dev_tasks(struct se_cmd *cmd);
76 static int transport_generic_get_mem(struct se_cmd *cmd);
77 static void transport_put_cmd(struct se_cmd *cmd);
78 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
79 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
80 static void transport_generic_request_failure(struct se_cmd *);
81 static void target_complete_ok_work(struct work_struct *work);
82 
83 int init_se_kmem_caches(void)
84 {
85 	se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
86 			sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
87 			0, NULL);
88 	if (!se_tmr_req_cache) {
89 		pr_err("kmem_cache_create() for struct se_tmr_req"
90 				" failed\n");
91 		goto out;
92 	}
93 	se_sess_cache = kmem_cache_create("se_sess_cache",
94 			sizeof(struct se_session), __alignof__(struct se_session),
95 			0, NULL);
96 	if (!se_sess_cache) {
97 		pr_err("kmem_cache_create() for struct se_session"
98 				" failed\n");
99 		goto out_free_tmr_req_cache;
100 	}
101 	se_ua_cache = kmem_cache_create("se_ua_cache",
102 			sizeof(struct se_ua), __alignof__(struct se_ua),
103 			0, NULL);
104 	if (!se_ua_cache) {
105 		pr_err("kmem_cache_create() for struct se_ua failed\n");
106 		goto out_free_sess_cache;
107 	}
108 	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
109 			sizeof(struct t10_pr_registration),
110 			__alignof__(struct t10_pr_registration), 0, NULL);
111 	if (!t10_pr_reg_cache) {
112 		pr_err("kmem_cache_create() for struct t10_pr_registration"
113 				" failed\n");
114 		goto out_free_ua_cache;
115 	}
116 	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
117 			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
118 			0, NULL);
119 	if (!t10_alua_lu_gp_cache) {
120 		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
121 				" failed\n");
122 		goto out_free_pr_reg_cache;
123 	}
124 	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
125 			sizeof(struct t10_alua_lu_gp_member),
126 			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
127 	if (!t10_alua_lu_gp_mem_cache) {
128 		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
129 				"cache failed\n");
130 		goto out_free_lu_gp_cache;
131 	}
132 	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
133 			sizeof(struct t10_alua_tg_pt_gp),
134 			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
135 	if (!t10_alua_tg_pt_gp_cache) {
136 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
137 				"cache failed\n");
138 		goto out_free_lu_gp_mem_cache;
139 	}
140 	t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
141 			"t10_alua_tg_pt_gp_mem_cache",
142 			sizeof(struct t10_alua_tg_pt_gp_member),
143 			__alignof__(struct t10_alua_tg_pt_gp_member),
144 			0, NULL);
145 	if (!t10_alua_tg_pt_gp_mem_cache) {
146 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
147 				"mem_t failed\n");
148 		goto out_free_tg_pt_gp_cache;
149 	}
150 
151 	target_completion_wq = alloc_workqueue("target_completion",
152 					       WQ_MEM_RECLAIM, 0);
153 	if (!target_completion_wq)
154 		goto out_free_tg_pt_gp_mem_cache;
155 
156 	return 0;
157 
158 out_free_tg_pt_gp_mem_cache:
159 	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
160 out_free_tg_pt_gp_cache:
161 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
162 out_free_lu_gp_mem_cache:
163 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
164 out_free_lu_gp_cache:
165 	kmem_cache_destroy(t10_alua_lu_gp_cache);
166 out_free_pr_reg_cache:
167 	kmem_cache_destroy(t10_pr_reg_cache);
168 out_free_ua_cache:
169 	kmem_cache_destroy(se_ua_cache);
170 out_free_sess_cache:
171 	kmem_cache_destroy(se_sess_cache);
172 out_free_tmr_req_cache:
173 	kmem_cache_destroy(se_tmr_req_cache);
174 out:
175 	return -ENOMEM;
176 }
177 
178 void release_se_kmem_caches(void)
179 {
180 	destroy_workqueue(target_completion_wq);
181 	kmem_cache_destroy(se_tmr_req_cache);
182 	kmem_cache_destroy(se_sess_cache);
183 	kmem_cache_destroy(se_ua_cache);
184 	kmem_cache_destroy(t10_pr_reg_cache);
185 	kmem_cache_destroy(t10_alua_lu_gp_cache);
186 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
187 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
188 	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
189 }
190 
191 /* This code ensures unique mib indexes are handed out. */
192 static DEFINE_SPINLOCK(scsi_mib_index_lock);
193 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
194 
195 /*
196  * Allocate a new row index for the entry type specified
197  */
198 u32 scsi_get_new_index(scsi_index_t type)
199 {
200 	u32 new_index;
201 
202 	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
203 
204 	spin_lock(&scsi_mib_index_lock);
205 	new_index = ++scsi_mib_index[type];
206 	spin_unlock(&scsi_mib_index_lock);
207 
208 	return new_index;
209 }
210 
211 static void transport_init_queue_obj(struct se_queue_obj *qobj)
212 {
213 	atomic_set(&qobj->queue_cnt, 0);
214 	INIT_LIST_HEAD(&qobj->qobj_list);
215 	init_waitqueue_head(&qobj->thread_wq);
216 	spin_lock_init(&qobj->cmd_queue_lock);
217 }
218 
219 void transport_subsystem_check_init(void)
220 {
221 	int ret;
222 
223 	if (sub_api_initialized)
224 		return;
225 
226 	ret = request_module("target_core_iblock");
227 	if (ret != 0)
228 		pr_err("Unable to load target_core_iblock\n");
229 
230 	ret = request_module("target_core_file");
231 	if (ret != 0)
232 		pr_err("Unable to load target_core_file\n");
233 
234 	ret = request_module("target_core_pscsi");
235 	if (ret != 0)
236 		pr_err("Unable to load target_core_pscsi\n");
237 
238 	ret = request_module("target_core_stgt");
239 	if (ret != 0)
240 		pr_err("Unable to load target_core_stgt\n");
241 
242 	sub_api_initialized = 1;
243 	return;
244 }
245 
246 struct se_session *transport_init_session(void)
247 {
248 	struct se_session *se_sess;
249 
250 	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
251 	if (!se_sess) {
252 		pr_err("Unable to allocate struct se_session from"
253 				" se_sess_cache\n");
254 		return ERR_PTR(-ENOMEM);
255 	}
256 	INIT_LIST_HEAD(&se_sess->sess_list);
257 	INIT_LIST_HEAD(&se_sess->sess_acl_list);
258 	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
259 	INIT_LIST_HEAD(&se_sess->sess_wait_list);
260 	spin_lock_init(&se_sess->sess_cmd_lock);
261 
262 	return se_sess;
263 }
264 EXPORT_SYMBOL(transport_init_session);
265 
266 /*
267  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
268  */
269 void __transport_register_session(
270 	struct se_portal_group *se_tpg,
271 	struct se_node_acl *se_nacl,
272 	struct se_session *se_sess,
273 	void *fabric_sess_ptr)
274 {
275 	unsigned char buf[PR_REG_ISID_LEN];
276 
277 	se_sess->se_tpg = se_tpg;
278 	se_sess->fabric_sess_ptr = fabric_sess_ptr;
279 	/*
280 	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
281 	 *
282 	 * Only set for struct se_session's that will actually be moving I/O.
283 	 * eg: *NOT* discovery sessions.
284 	 */
285 	if (se_nacl) {
286 		/*
287 		 * If the fabric module supports an ISID based TransportID,
288 		 * save this value in binary from the fabric I_T Nexus now.
289 		 */
290 		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
291 			memset(&buf[0], 0, PR_REG_ISID_LEN);
292 			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
293 					&buf[0], PR_REG_ISID_LEN);
294 			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
295 		}
296 		spin_lock_irq(&se_nacl->nacl_sess_lock);
297 		/*
298 		 * The se_nacl->nacl_sess pointer will be set to the
299 		 * last active I_T Nexus for each struct se_node_acl.
300 		 */
301 		se_nacl->nacl_sess = se_sess;
302 
303 		list_add_tail(&se_sess->sess_acl_list,
304 			      &se_nacl->acl_sess_list);
305 		spin_unlock_irq(&se_nacl->nacl_sess_lock);
306 	}
307 	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
308 
309 	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
310 		se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
311 }
312 EXPORT_SYMBOL(__transport_register_session);
313 
314 void transport_register_session(
315 	struct se_portal_group *se_tpg,
316 	struct se_node_acl *se_nacl,
317 	struct se_session *se_sess,
318 	void *fabric_sess_ptr)
319 {
320 	spin_lock_bh(&se_tpg->session_lock);
321 	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
322 	spin_unlock_bh(&se_tpg->session_lock);
323 }
324 EXPORT_SYMBOL(transport_register_session);
325 
326 void transport_deregister_session_configfs(struct se_session *se_sess)
327 {
328 	struct se_node_acl *se_nacl;
329 	unsigned long flags;
330 	/*
331 	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
332 	 */
333 	se_nacl = se_sess->se_node_acl;
334 	if (se_nacl) {
335 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
336 		list_del(&se_sess->sess_acl_list);
337 		/*
338 		 * If the session list is empty, then clear the pointer.
339 		 * Otherwise, set the struct se_session pointer from the tail
340 		 * element of the per struct se_node_acl active session list.
341 		 */
342 		if (list_empty(&se_nacl->acl_sess_list))
343 			se_nacl->nacl_sess = NULL;
344 		else {
345 			se_nacl->nacl_sess = container_of(
346 					se_nacl->acl_sess_list.prev,
347 					struct se_session, sess_acl_list);
348 		}
349 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
350 	}
351 }
352 EXPORT_SYMBOL(transport_deregister_session_configfs);
353 
354 void transport_free_session(struct se_session *se_sess)
355 {
356 	kmem_cache_free(se_sess_cache, se_sess);
357 }
358 EXPORT_SYMBOL(transport_free_session);
359 
360 void transport_deregister_session(struct se_session *se_sess)
361 {
362 	struct se_portal_group *se_tpg = se_sess->se_tpg;
363 	struct se_node_acl *se_nacl;
364 	unsigned long flags;
365 
366 	if (!se_tpg) {
367 		transport_free_session(se_sess);
368 		return;
369 	}
370 
371 	spin_lock_irqsave(&se_tpg->session_lock, flags);
372 	list_del(&se_sess->sess_list);
373 	se_sess->se_tpg = NULL;
374 	se_sess->fabric_sess_ptr = NULL;
375 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
376 
377 	/*
378 	 * Determine if we need to do extra work for this initiator node's
379 	 * struct se_node_acl if it had been previously dynamically generated.
380 	 */
381 	se_nacl = se_sess->se_node_acl;
382 	if (se_nacl) {
383 		spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
384 		if (se_nacl->dynamic_node_acl) {
385 			if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
386 					se_tpg)) {
387 				list_del(&se_nacl->acl_list);
388 				se_tpg->num_node_acls--;
389 				spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
390 
391 				core_tpg_wait_for_nacl_pr_ref(se_nacl);
392 				core_free_device_list_for_node(se_nacl, se_tpg);
393 				se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
394 						se_nacl);
395 				spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
396 			}
397 		}
398 		spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
399 	}
400 
401 	transport_free_session(se_sess);
402 
403 	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
404 		se_tpg->se_tpg_tfo->get_fabric_name());
405 }
406 EXPORT_SYMBOL(transport_deregister_session);
407 
408 /*
409  * Called with cmd->t_state_lock held.
410  */
411 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
412 {
413 	struct se_device *dev = cmd->se_dev;
414 	struct se_task *task;
415 	unsigned long flags;
416 
417 	if (!dev)
418 		return;
419 
420 	list_for_each_entry(task, &cmd->t_task_list, t_list) {
421 		if (task->task_flags & TF_ACTIVE)
422 			continue;
423 
424 		spin_lock_irqsave(&dev->execute_task_lock, flags);
425 		if (task->t_state_active) {
426 			pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
427 				cmd->se_tfo->get_task_tag(cmd), dev, task);
428 
429 			list_del(&task->t_state_list);
430 			atomic_dec(&cmd->t_task_cdbs_ex_left);
431 			task->t_state_active = false;
432 		}
433 		spin_unlock_irqrestore(&dev->execute_task_lock, flags);
434 	}
435 
436 }
437 
438 /*	transport_cmd_check_stop():
439  *
440  *	'transport_off = 1' determines if t_transport_active should be cleared.
441  *	'transport_off = 2' determines if task_dev_state should be removed.
442  *
443  *	A non-zero u8 t_state sets cmd->t_state.
444  *	Returns 1 when command is stopped, else 0.
445  */
446 static int transport_cmd_check_stop(
447 	struct se_cmd *cmd,
448 	int transport_off,
449 	u8 t_state)
450 {
451 	unsigned long flags;
452 
453 	spin_lock_irqsave(&cmd->t_state_lock, flags);
454 	/*
455 	 * Determine if IOCTL context caller in requesting the stopping of this
456 	 * command for LUN shutdown purposes.
457 	 */
458 	if (atomic_read(&cmd->transport_lun_stop)) {
459 		pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
460 			" == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
461 			cmd->se_tfo->get_task_tag(cmd));
462 
463 		atomic_set(&cmd->t_transport_active, 0);
464 		if (transport_off == 2)
465 			transport_all_task_dev_remove_state(cmd);
466 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
467 
468 		complete(&cmd->transport_lun_stop_comp);
469 		return 1;
470 	}
471 	/*
472 	 * Determine if frontend context caller is requesting the stopping of
473 	 * this command for frontend exceptions.
474 	 */
475 	if (atomic_read(&cmd->t_transport_stop)) {
476 		pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
477 			" TRUE for ITT: 0x%08x\n", __func__, __LINE__,
478 			cmd->se_tfo->get_task_tag(cmd));
479 
480 		if (transport_off == 2)
481 			transport_all_task_dev_remove_state(cmd);
482 
483 		/*
484 		 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
485 		 * to FE.
486 		 */
487 		if (transport_off == 2)
488 			cmd->se_lun = NULL;
489 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
490 
491 		complete(&cmd->t_transport_stop_comp);
492 		return 1;
493 	}
494 	if (transport_off) {
495 		atomic_set(&cmd->t_transport_active, 0);
496 		if (transport_off == 2) {
497 			transport_all_task_dev_remove_state(cmd);
498 			/*
499 			 * Clear struct se_cmd->se_lun before the transport_off == 2
500 			 * handoff to fabric module.
501 			 */
502 			cmd->se_lun = NULL;
503 			/*
504 			 * Some fabric modules like tcm_loop can release
505 			 * their internally allocated I/O reference now and
506 			 * struct se_cmd now.
507 			 *
508 			 * Fabric modules are expected to return '1' here if the
509 			 * se_cmd being passed is released at this point,
510 			 * or zero if not being released.
511 			 */
512 			if (cmd->se_tfo->check_stop_free != NULL) {
513 				spin_unlock_irqrestore(
514 					&cmd->t_state_lock, flags);
515 
516 				return cmd->se_tfo->check_stop_free(cmd);
517 			}
518 		}
519 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
520 
521 		return 0;
522 	} else if (t_state)
523 		cmd->t_state = t_state;
524 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
525 
526 	return 0;
527 }
528 
529 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
530 {
531 	return transport_cmd_check_stop(cmd, 2, 0);
532 }
533 
534 static void transport_lun_remove_cmd(struct se_cmd *cmd)
535 {
536 	struct se_lun *lun = cmd->se_lun;
537 	unsigned long flags;
538 
539 	if (!lun)
540 		return;
541 
542 	spin_lock_irqsave(&cmd->t_state_lock, flags);
543 	if (!atomic_read(&cmd->transport_dev_active)) {
544 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
545 		goto check_lun;
546 	}
547 	atomic_set(&cmd->transport_dev_active, 0);
548 	transport_all_task_dev_remove_state(cmd);
549 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
550 
551 
552 check_lun:
553 	spin_lock_irqsave(&lun->lun_cmd_lock, flags);
554 	if (atomic_read(&cmd->transport_lun_active)) {
555 		list_del(&cmd->se_lun_node);
556 		atomic_set(&cmd->transport_lun_active, 0);
557 #if 0
558 		pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
559 			cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
560 #endif
561 	}
562 	spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
563 }
564 
565 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
566 {
567 	if (!cmd->se_tmr_req)
568 		transport_lun_remove_cmd(cmd);
569 
570 	if (transport_cmd_check_stop_to_fabric(cmd))
571 		return;
572 	if (remove) {
573 		transport_remove_cmd_from_queue(cmd);
574 		transport_put_cmd(cmd);
575 	}
576 }
577 
578 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
579 		bool at_head)
580 {
581 	struct se_device *dev = cmd->se_dev;
582 	struct se_queue_obj *qobj = &dev->dev_queue_obj;
583 	unsigned long flags;
584 
585 	if (t_state) {
586 		spin_lock_irqsave(&cmd->t_state_lock, flags);
587 		cmd->t_state = t_state;
588 		atomic_set(&cmd->t_transport_active, 1);
589 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
590 	}
591 
592 	spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
593 
594 	/* If the cmd is already on the list, remove it before we add it */
595 	if (!list_empty(&cmd->se_queue_node))
596 		list_del(&cmd->se_queue_node);
597 	else
598 		atomic_inc(&qobj->queue_cnt);
599 
600 	if (at_head)
601 		list_add(&cmd->se_queue_node, &qobj->qobj_list);
602 	else
603 		list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
604 	atomic_set(&cmd->t_transport_queue_active, 1);
605 	spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
606 
607 	wake_up_interruptible(&qobj->thread_wq);
608 }
609 
610 static struct se_cmd *
611 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
612 {
613 	struct se_cmd *cmd;
614 	unsigned long flags;
615 
616 	spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
617 	if (list_empty(&qobj->qobj_list)) {
618 		spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
619 		return NULL;
620 	}
621 	cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
622 
623 	atomic_set(&cmd->t_transport_queue_active, 0);
624 
625 	list_del_init(&cmd->se_queue_node);
626 	atomic_dec(&qobj->queue_cnt);
627 	spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
628 
629 	return cmd;
630 }
631 
632 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
633 {
634 	struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
635 	unsigned long flags;
636 
637 	spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
638 	if (!atomic_read(&cmd->t_transport_queue_active)) {
639 		spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
640 		return;
641 	}
642 	atomic_set(&cmd->t_transport_queue_active, 0);
643 	atomic_dec(&qobj->queue_cnt);
644 	list_del_init(&cmd->se_queue_node);
645 	spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
646 
647 	if (atomic_read(&cmd->t_transport_queue_active)) {
648 		pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
649 			cmd->se_tfo->get_task_tag(cmd),
650 			atomic_read(&cmd->t_transport_queue_active));
651 	}
652 }
653 
654 /*
655  * Completion function used by TCM subsystem plugins (such as FILEIO)
656  * for queueing up response from struct se_subsystem_api->do_task()
657  */
658 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
659 {
660 	struct se_task *task = list_entry(cmd->t_task_list.next,
661 				struct se_task, t_list);
662 
663 	if (good) {
664 		cmd->scsi_status = SAM_STAT_GOOD;
665 		task->task_scsi_status = GOOD;
666 	} else {
667 		task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
668 		task->task_se_cmd->scsi_sense_reason =
669 				TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
670 
671 	}
672 
673 	transport_complete_task(task, good);
674 }
675 EXPORT_SYMBOL(transport_complete_sync_cache);
676 
677 static void target_complete_failure_work(struct work_struct *work)
678 {
679 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
680 
681 	transport_generic_request_failure(cmd);
682 }
683 
684 /*	transport_complete_task():
685  *
686  *	Called from interrupt and non interrupt context depending
687  *	on the transport plugin.
688  */
689 void transport_complete_task(struct se_task *task, int success)
690 {
691 	struct se_cmd *cmd = task->task_se_cmd;
692 	struct se_device *dev = cmd->se_dev;
693 	unsigned long flags;
694 
695 	spin_lock_irqsave(&cmd->t_state_lock, flags);
696 	task->task_flags &= ~TF_ACTIVE;
697 
698 	/*
699 	 * See if any sense data exists, if so set the TASK_SENSE flag.
700 	 * Also check for any other post completion work that needs to be
701 	 * done by the plugins.
702 	 */
703 	if (dev && dev->transport->transport_complete) {
704 		if (dev->transport->transport_complete(task) != 0) {
705 			cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
706 			task->task_flags |= TF_HAS_SENSE;
707 			success = 1;
708 		}
709 	}
710 
711 	/*
712 	 * See if we are waiting for outstanding struct se_task
713 	 * to complete for an exception condition
714 	 */
715 	if (task->task_flags & TF_REQUEST_STOP) {
716 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
717 		complete(&task->task_stop_comp);
718 		return;
719 	}
720 
721 	if (!success)
722 		cmd->t_tasks_failed = 1;
723 
724 	/*
725 	 * Decrement the outstanding t_task_cdbs_left count.  The last
726 	 * struct se_task from struct se_cmd will complete itself into the
727 	 * device queue depending upon int success.
728 	 */
729 	if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
730 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
731 		return;
732 	}
733 
734 	if (cmd->t_tasks_failed) {
735 		cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
736 		INIT_WORK(&cmd->work, target_complete_failure_work);
737 	} else {
738 		atomic_set(&cmd->t_transport_complete, 1);
739 		INIT_WORK(&cmd->work, target_complete_ok_work);
740 	}
741 
742 	cmd->t_state = TRANSPORT_COMPLETE;
743 	atomic_set(&cmd->t_transport_active, 1);
744 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
745 
746 	queue_work(target_completion_wq, &cmd->work);
747 }
748 EXPORT_SYMBOL(transport_complete_task);
749 
750 /*
751  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
752  * struct se_task list are ready to be added to the active execution list
753  * struct se_device
754 
755  * Called with se_dev_t->execute_task_lock called.
756  */
757 static inline int transport_add_task_check_sam_attr(
758 	struct se_task *task,
759 	struct se_task *task_prev,
760 	struct se_device *dev)
761 {
762 	/*
763 	 * No SAM Task attribute emulation enabled, add to tail of
764 	 * execution queue
765 	 */
766 	if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
767 		list_add_tail(&task->t_execute_list, &dev->execute_task_list);
768 		return 0;
769 	}
770 	/*
771 	 * HEAD_OF_QUEUE attribute for received CDB, which means
772 	 * the first task that is associated with a struct se_cmd goes to
773 	 * head of the struct se_device->execute_task_list, and task_prev
774 	 * after that for each subsequent task
775 	 */
776 	if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
777 		list_add(&task->t_execute_list,
778 				(task_prev != NULL) ?
779 				&task_prev->t_execute_list :
780 				&dev->execute_task_list);
781 
782 		pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
783 				" in execution queue\n",
784 				task->task_se_cmd->t_task_cdb[0]);
785 		return 1;
786 	}
787 	/*
788 	 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
789 	 * transitioned from Dermant -> Active state, and are added to the end
790 	 * of the struct se_device->execute_task_list
791 	 */
792 	list_add_tail(&task->t_execute_list, &dev->execute_task_list);
793 	return 0;
794 }
795 
796 /*	__transport_add_task_to_execute_queue():
797  *
798  *	Called with se_dev_t->execute_task_lock called.
799  */
800 static void __transport_add_task_to_execute_queue(
801 	struct se_task *task,
802 	struct se_task *task_prev,
803 	struct se_device *dev)
804 {
805 	int head_of_queue;
806 
807 	head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
808 	atomic_inc(&dev->execute_tasks);
809 
810 	if (task->t_state_active)
811 		return;
812 	/*
813 	 * Determine if this task needs to go to HEAD_OF_QUEUE for the
814 	 * state list as well.  Running with SAM Task Attribute emulation
815 	 * will always return head_of_queue == 0 here
816 	 */
817 	if (head_of_queue)
818 		list_add(&task->t_state_list, (task_prev) ?
819 				&task_prev->t_state_list :
820 				&dev->state_task_list);
821 	else
822 		list_add_tail(&task->t_state_list, &dev->state_task_list);
823 
824 	task->t_state_active = true;
825 
826 	pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
827 		task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
828 		task, dev);
829 }
830 
831 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
832 {
833 	struct se_device *dev = cmd->se_dev;
834 	struct se_task *task;
835 	unsigned long flags;
836 
837 	spin_lock_irqsave(&cmd->t_state_lock, flags);
838 	list_for_each_entry(task, &cmd->t_task_list, t_list) {
839 		spin_lock(&dev->execute_task_lock);
840 		if (!task->t_state_active) {
841 			list_add_tail(&task->t_state_list,
842 				      &dev->state_task_list);
843 			task->t_state_active = true;
844 
845 			pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
846 				task->task_se_cmd->se_tfo->get_task_tag(
847 				task->task_se_cmd), task, dev);
848 		}
849 		spin_unlock(&dev->execute_task_lock);
850 	}
851 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
852 }
853 
854 static void __transport_add_tasks_from_cmd(struct se_cmd *cmd)
855 {
856 	struct se_device *dev = cmd->se_dev;
857 	struct se_task *task, *task_prev = NULL;
858 
859 	list_for_each_entry(task, &cmd->t_task_list, t_list) {
860 		if (!list_empty(&task->t_execute_list))
861 			continue;
862 		/*
863 		 * __transport_add_task_to_execute_queue() handles the
864 		 * SAM Task Attribute emulation if enabled
865 		 */
866 		__transport_add_task_to_execute_queue(task, task_prev, dev);
867 		task_prev = task;
868 	}
869 }
870 
871 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
872 {
873 	unsigned long flags;
874 	struct se_device *dev = cmd->se_dev;
875 
876 	spin_lock_irqsave(&dev->execute_task_lock, flags);
877 	__transport_add_tasks_from_cmd(cmd);
878 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
879 }
880 
881 void __transport_remove_task_from_execute_queue(struct se_task *task,
882 		struct se_device *dev)
883 {
884 	list_del_init(&task->t_execute_list);
885 	atomic_dec(&dev->execute_tasks);
886 }
887 
888 static void transport_remove_task_from_execute_queue(
889 	struct se_task *task,
890 	struct se_device *dev)
891 {
892 	unsigned long flags;
893 
894 	if (WARN_ON(list_empty(&task->t_execute_list)))
895 		return;
896 
897 	spin_lock_irqsave(&dev->execute_task_lock, flags);
898 	__transport_remove_task_from_execute_queue(task, dev);
899 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
900 }
901 
902 /*
903  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
904  */
905 
906 static void target_qf_do_work(struct work_struct *work)
907 {
908 	struct se_device *dev = container_of(work, struct se_device,
909 					qf_work_queue);
910 	LIST_HEAD(qf_cmd_list);
911 	struct se_cmd *cmd, *cmd_tmp;
912 
913 	spin_lock_irq(&dev->qf_cmd_lock);
914 	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
915 	spin_unlock_irq(&dev->qf_cmd_lock);
916 
917 	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
918 		list_del(&cmd->se_qf_node);
919 		atomic_dec(&dev->dev_qf_count);
920 		smp_mb__after_atomic_dec();
921 
922 		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
923 			" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
924 			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
925 			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
926 			: "UNKNOWN");
927 
928 		transport_add_cmd_to_queue(cmd, cmd->t_state, true);
929 	}
930 }
931 
932 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
933 {
934 	switch (cmd->data_direction) {
935 	case DMA_NONE:
936 		return "NONE";
937 	case DMA_FROM_DEVICE:
938 		return "READ";
939 	case DMA_TO_DEVICE:
940 		return "WRITE";
941 	case DMA_BIDIRECTIONAL:
942 		return "BIDI";
943 	default:
944 		break;
945 	}
946 
947 	return "UNKNOWN";
948 }
949 
950 void transport_dump_dev_state(
951 	struct se_device *dev,
952 	char *b,
953 	int *bl)
954 {
955 	*bl += sprintf(b + *bl, "Status: ");
956 	switch (dev->dev_status) {
957 	case TRANSPORT_DEVICE_ACTIVATED:
958 		*bl += sprintf(b + *bl, "ACTIVATED");
959 		break;
960 	case TRANSPORT_DEVICE_DEACTIVATED:
961 		*bl += sprintf(b + *bl, "DEACTIVATED");
962 		break;
963 	case TRANSPORT_DEVICE_SHUTDOWN:
964 		*bl += sprintf(b + *bl, "SHUTDOWN");
965 		break;
966 	case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
967 	case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
968 		*bl += sprintf(b + *bl, "OFFLINE");
969 		break;
970 	default:
971 		*bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
972 		break;
973 	}
974 
975 	*bl += sprintf(b + *bl, "  Execute/Max Queue Depth: %d/%d",
976 		atomic_read(&dev->execute_tasks), dev->queue_depth);
977 	*bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
978 		dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
979 	*bl += sprintf(b + *bl, "        ");
980 }
981 
982 void transport_dump_vpd_proto_id(
983 	struct t10_vpd *vpd,
984 	unsigned char *p_buf,
985 	int p_buf_len)
986 {
987 	unsigned char buf[VPD_TMP_BUF_SIZE];
988 	int len;
989 
990 	memset(buf, 0, VPD_TMP_BUF_SIZE);
991 	len = sprintf(buf, "T10 VPD Protocol Identifier: ");
992 
993 	switch (vpd->protocol_identifier) {
994 	case 0x00:
995 		sprintf(buf+len, "Fibre Channel\n");
996 		break;
997 	case 0x10:
998 		sprintf(buf+len, "Parallel SCSI\n");
999 		break;
1000 	case 0x20:
1001 		sprintf(buf+len, "SSA\n");
1002 		break;
1003 	case 0x30:
1004 		sprintf(buf+len, "IEEE 1394\n");
1005 		break;
1006 	case 0x40:
1007 		sprintf(buf+len, "SCSI Remote Direct Memory Access"
1008 				" Protocol\n");
1009 		break;
1010 	case 0x50:
1011 		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1012 		break;
1013 	case 0x60:
1014 		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1015 		break;
1016 	case 0x70:
1017 		sprintf(buf+len, "Automation/Drive Interface Transport"
1018 				" Protocol\n");
1019 		break;
1020 	case 0x80:
1021 		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1022 		break;
1023 	default:
1024 		sprintf(buf+len, "Unknown 0x%02x\n",
1025 				vpd->protocol_identifier);
1026 		break;
1027 	}
1028 
1029 	if (p_buf)
1030 		strncpy(p_buf, buf, p_buf_len);
1031 	else
1032 		pr_debug("%s", buf);
1033 }
1034 
1035 void
1036 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1037 {
1038 	/*
1039 	 * Check if the Protocol Identifier Valid (PIV) bit is set..
1040 	 *
1041 	 * from spc3r23.pdf section 7.5.1
1042 	 */
1043 	 if (page_83[1] & 0x80) {
1044 		vpd->protocol_identifier = (page_83[0] & 0xf0);
1045 		vpd->protocol_identifier_set = 1;
1046 		transport_dump_vpd_proto_id(vpd, NULL, 0);
1047 	}
1048 }
1049 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1050 
1051 int transport_dump_vpd_assoc(
1052 	struct t10_vpd *vpd,
1053 	unsigned char *p_buf,
1054 	int p_buf_len)
1055 {
1056 	unsigned char buf[VPD_TMP_BUF_SIZE];
1057 	int ret = 0;
1058 	int len;
1059 
1060 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1061 	len = sprintf(buf, "T10 VPD Identifier Association: ");
1062 
1063 	switch (vpd->association) {
1064 	case 0x00:
1065 		sprintf(buf+len, "addressed logical unit\n");
1066 		break;
1067 	case 0x10:
1068 		sprintf(buf+len, "target port\n");
1069 		break;
1070 	case 0x20:
1071 		sprintf(buf+len, "SCSI target device\n");
1072 		break;
1073 	default:
1074 		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1075 		ret = -EINVAL;
1076 		break;
1077 	}
1078 
1079 	if (p_buf)
1080 		strncpy(p_buf, buf, p_buf_len);
1081 	else
1082 		pr_debug("%s", buf);
1083 
1084 	return ret;
1085 }
1086 
1087 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1088 {
1089 	/*
1090 	 * The VPD identification association..
1091 	 *
1092 	 * from spc3r23.pdf Section 7.6.3.1 Table 297
1093 	 */
1094 	vpd->association = (page_83[1] & 0x30);
1095 	return transport_dump_vpd_assoc(vpd, NULL, 0);
1096 }
1097 EXPORT_SYMBOL(transport_set_vpd_assoc);
1098 
1099 int transport_dump_vpd_ident_type(
1100 	struct t10_vpd *vpd,
1101 	unsigned char *p_buf,
1102 	int p_buf_len)
1103 {
1104 	unsigned char buf[VPD_TMP_BUF_SIZE];
1105 	int ret = 0;
1106 	int len;
1107 
1108 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1109 	len = sprintf(buf, "T10 VPD Identifier Type: ");
1110 
1111 	switch (vpd->device_identifier_type) {
1112 	case 0x00:
1113 		sprintf(buf+len, "Vendor specific\n");
1114 		break;
1115 	case 0x01:
1116 		sprintf(buf+len, "T10 Vendor ID based\n");
1117 		break;
1118 	case 0x02:
1119 		sprintf(buf+len, "EUI-64 based\n");
1120 		break;
1121 	case 0x03:
1122 		sprintf(buf+len, "NAA\n");
1123 		break;
1124 	case 0x04:
1125 		sprintf(buf+len, "Relative target port identifier\n");
1126 		break;
1127 	case 0x08:
1128 		sprintf(buf+len, "SCSI name string\n");
1129 		break;
1130 	default:
1131 		sprintf(buf+len, "Unsupported: 0x%02x\n",
1132 				vpd->device_identifier_type);
1133 		ret = -EINVAL;
1134 		break;
1135 	}
1136 
1137 	if (p_buf) {
1138 		if (p_buf_len < strlen(buf)+1)
1139 			return -EINVAL;
1140 		strncpy(p_buf, buf, p_buf_len);
1141 	} else {
1142 		pr_debug("%s", buf);
1143 	}
1144 
1145 	return ret;
1146 }
1147 
1148 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1149 {
1150 	/*
1151 	 * The VPD identifier type..
1152 	 *
1153 	 * from spc3r23.pdf Section 7.6.3.1 Table 298
1154 	 */
1155 	vpd->device_identifier_type = (page_83[1] & 0x0f);
1156 	return transport_dump_vpd_ident_type(vpd, NULL, 0);
1157 }
1158 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1159 
1160 int transport_dump_vpd_ident(
1161 	struct t10_vpd *vpd,
1162 	unsigned char *p_buf,
1163 	int p_buf_len)
1164 {
1165 	unsigned char buf[VPD_TMP_BUF_SIZE];
1166 	int ret = 0;
1167 
1168 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1169 
1170 	switch (vpd->device_identifier_code_set) {
1171 	case 0x01: /* Binary */
1172 		sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1173 			&vpd->device_identifier[0]);
1174 		break;
1175 	case 0x02: /* ASCII */
1176 		sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1177 			&vpd->device_identifier[0]);
1178 		break;
1179 	case 0x03: /* UTF-8 */
1180 		sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1181 			&vpd->device_identifier[0]);
1182 		break;
1183 	default:
1184 		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1185 			" 0x%02x", vpd->device_identifier_code_set);
1186 		ret = -EINVAL;
1187 		break;
1188 	}
1189 
1190 	if (p_buf)
1191 		strncpy(p_buf, buf, p_buf_len);
1192 	else
1193 		pr_debug("%s", buf);
1194 
1195 	return ret;
1196 }
1197 
1198 int
1199 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1200 {
1201 	static const char hex_str[] = "0123456789abcdef";
1202 	int j = 0, i = 4; /* offset to start of the identifer */
1203 
1204 	/*
1205 	 * The VPD Code Set (encoding)
1206 	 *
1207 	 * from spc3r23.pdf Section 7.6.3.1 Table 296
1208 	 */
1209 	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1210 	switch (vpd->device_identifier_code_set) {
1211 	case 0x01: /* Binary */
1212 		vpd->device_identifier[j++] =
1213 				hex_str[vpd->device_identifier_type];
1214 		while (i < (4 + page_83[3])) {
1215 			vpd->device_identifier[j++] =
1216 				hex_str[(page_83[i] & 0xf0) >> 4];
1217 			vpd->device_identifier[j++] =
1218 				hex_str[page_83[i] & 0x0f];
1219 			i++;
1220 		}
1221 		break;
1222 	case 0x02: /* ASCII */
1223 	case 0x03: /* UTF-8 */
1224 		while (i < (4 + page_83[3]))
1225 			vpd->device_identifier[j++] = page_83[i++];
1226 		break;
1227 	default:
1228 		break;
1229 	}
1230 
1231 	return transport_dump_vpd_ident(vpd, NULL, 0);
1232 }
1233 EXPORT_SYMBOL(transport_set_vpd_ident);
1234 
1235 static void core_setup_task_attr_emulation(struct se_device *dev)
1236 {
1237 	/*
1238 	 * If this device is from Target_Core_Mod/pSCSI, disable the
1239 	 * SAM Task Attribute emulation.
1240 	 *
1241 	 * This is currently not available in upsream Linux/SCSI Target
1242 	 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1243 	 */
1244 	if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1245 		dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1246 		return;
1247 	}
1248 
1249 	dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1250 	pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1251 		" device\n", dev->transport->name,
1252 		dev->transport->get_device_rev(dev));
1253 }
1254 
1255 static void scsi_dump_inquiry(struct se_device *dev)
1256 {
1257 	struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1258 	int i, device_type;
1259 	/*
1260 	 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1261 	 */
1262 	pr_debug("  Vendor: ");
1263 	for (i = 0; i < 8; i++)
1264 		if (wwn->vendor[i] >= 0x20)
1265 			pr_debug("%c", wwn->vendor[i]);
1266 		else
1267 			pr_debug(" ");
1268 
1269 	pr_debug("  Model: ");
1270 	for (i = 0; i < 16; i++)
1271 		if (wwn->model[i] >= 0x20)
1272 			pr_debug("%c", wwn->model[i]);
1273 		else
1274 			pr_debug(" ");
1275 
1276 	pr_debug("  Revision: ");
1277 	for (i = 0; i < 4; i++)
1278 		if (wwn->revision[i] >= 0x20)
1279 			pr_debug("%c", wwn->revision[i]);
1280 		else
1281 			pr_debug(" ");
1282 
1283 	pr_debug("\n");
1284 
1285 	device_type = dev->transport->get_device_type(dev);
1286 	pr_debug("  Type:   %s ", scsi_device_type(device_type));
1287 	pr_debug("                 ANSI SCSI revision: %02x\n",
1288 				dev->transport->get_device_rev(dev));
1289 }
1290 
1291 struct se_device *transport_add_device_to_core_hba(
1292 	struct se_hba *hba,
1293 	struct se_subsystem_api *transport,
1294 	struct se_subsystem_dev *se_dev,
1295 	u32 device_flags,
1296 	void *transport_dev,
1297 	struct se_dev_limits *dev_limits,
1298 	const char *inquiry_prod,
1299 	const char *inquiry_rev)
1300 {
1301 	int force_pt;
1302 	struct se_device  *dev;
1303 
1304 	dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1305 	if (!dev) {
1306 		pr_err("Unable to allocate memory for se_dev_t\n");
1307 		return NULL;
1308 	}
1309 
1310 	transport_init_queue_obj(&dev->dev_queue_obj);
1311 	dev->dev_flags		= device_flags;
1312 	dev->dev_status		|= TRANSPORT_DEVICE_DEACTIVATED;
1313 	dev->dev_ptr		= transport_dev;
1314 	dev->se_hba		= hba;
1315 	dev->se_sub_dev		= se_dev;
1316 	dev->transport		= transport;
1317 	INIT_LIST_HEAD(&dev->dev_list);
1318 	INIT_LIST_HEAD(&dev->dev_sep_list);
1319 	INIT_LIST_HEAD(&dev->dev_tmr_list);
1320 	INIT_LIST_HEAD(&dev->execute_task_list);
1321 	INIT_LIST_HEAD(&dev->delayed_cmd_list);
1322 	INIT_LIST_HEAD(&dev->state_task_list);
1323 	INIT_LIST_HEAD(&dev->qf_cmd_list);
1324 	spin_lock_init(&dev->execute_task_lock);
1325 	spin_lock_init(&dev->delayed_cmd_lock);
1326 	spin_lock_init(&dev->dev_reservation_lock);
1327 	spin_lock_init(&dev->dev_status_lock);
1328 	spin_lock_init(&dev->se_port_lock);
1329 	spin_lock_init(&dev->se_tmr_lock);
1330 	spin_lock_init(&dev->qf_cmd_lock);
1331 	atomic_set(&dev->dev_ordered_id, 0);
1332 
1333 	se_dev_set_default_attribs(dev, dev_limits);
1334 
1335 	dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1336 	dev->creation_time = get_jiffies_64();
1337 	spin_lock_init(&dev->stats_lock);
1338 
1339 	spin_lock(&hba->device_lock);
1340 	list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1341 	hba->dev_count++;
1342 	spin_unlock(&hba->device_lock);
1343 	/*
1344 	 * Setup the SAM Task Attribute emulation for struct se_device
1345 	 */
1346 	core_setup_task_attr_emulation(dev);
1347 	/*
1348 	 * Force PR and ALUA passthrough emulation with internal object use.
1349 	 */
1350 	force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1351 	/*
1352 	 * Setup the Reservations infrastructure for struct se_device
1353 	 */
1354 	core_setup_reservations(dev, force_pt);
1355 	/*
1356 	 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1357 	 */
1358 	if (core_setup_alua(dev, force_pt) < 0)
1359 		goto out;
1360 
1361 	/*
1362 	 * Startup the struct se_device processing thread
1363 	 */
1364 	dev->process_thread = kthread_run(transport_processing_thread, dev,
1365 					  "LIO_%s", dev->transport->name);
1366 	if (IS_ERR(dev->process_thread)) {
1367 		pr_err("Unable to create kthread: LIO_%s\n",
1368 			dev->transport->name);
1369 		goto out;
1370 	}
1371 	/*
1372 	 * Setup work_queue for QUEUE_FULL
1373 	 */
1374 	INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1375 	/*
1376 	 * Preload the initial INQUIRY const values if we are doing
1377 	 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1378 	 * passthrough because this is being provided by the backend LLD.
1379 	 * This is required so that transport_get_inquiry() copies these
1380 	 * originals once back into DEV_T10_WWN(dev) for the virtual device
1381 	 * setup.
1382 	 */
1383 	if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1384 		if (!inquiry_prod || !inquiry_rev) {
1385 			pr_err("All non TCM/pSCSI plugins require"
1386 				" INQUIRY consts\n");
1387 			goto out;
1388 		}
1389 
1390 		strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1391 		strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1392 		strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1393 	}
1394 	scsi_dump_inquiry(dev);
1395 
1396 	return dev;
1397 out:
1398 	kthread_stop(dev->process_thread);
1399 
1400 	spin_lock(&hba->device_lock);
1401 	list_del(&dev->dev_list);
1402 	hba->dev_count--;
1403 	spin_unlock(&hba->device_lock);
1404 
1405 	se_release_vpd_for_dev(dev);
1406 
1407 	kfree(dev);
1408 
1409 	return NULL;
1410 }
1411 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1412 
1413 /*	transport_generic_prepare_cdb():
1414  *
1415  *	Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1416  *	contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1417  *	The point of this is since we are mapping iSCSI LUNs to
1418  *	SCSI Target IDs having a non-zero LUN in the CDB will throw the
1419  *	devices and HBAs for a loop.
1420  */
1421 static inline void transport_generic_prepare_cdb(
1422 	unsigned char *cdb)
1423 {
1424 	switch (cdb[0]) {
1425 	case READ_10: /* SBC - RDProtect */
1426 	case READ_12: /* SBC - RDProtect */
1427 	case READ_16: /* SBC - RDProtect */
1428 	case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1429 	case VERIFY: /* SBC - VRProtect */
1430 	case VERIFY_16: /* SBC - VRProtect */
1431 	case WRITE_VERIFY: /* SBC - VRProtect */
1432 	case WRITE_VERIFY_12: /* SBC - VRProtect */
1433 		break;
1434 	default:
1435 		cdb[1] &= 0x1f; /* clear logical unit number */
1436 		break;
1437 	}
1438 }
1439 
1440 static struct se_task *
1441 transport_generic_get_task(struct se_cmd *cmd,
1442 		enum dma_data_direction data_direction)
1443 {
1444 	struct se_task *task;
1445 	struct se_device *dev = cmd->se_dev;
1446 
1447 	task = dev->transport->alloc_task(cmd->t_task_cdb);
1448 	if (!task) {
1449 		pr_err("Unable to allocate struct se_task\n");
1450 		return NULL;
1451 	}
1452 
1453 	INIT_LIST_HEAD(&task->t_list);
1454 	INIT_LIST_HEAD(&task->t_execute_list);
1455 	INIT_LIST_HEAD(&task->t_state_list);
1456 	init_completion(&task->task_stop_comp);
1457 	task->task_se_cmd = cmd;
1458 	task->task_data_direction = data_direction;
1459 
1460 	return task;
1461 }
1462 
1463 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1464 
1465 /*
1466  * Used by fabric modules containing a local struct se_cmd within their
1467  * fabric dependent per I/O descriptor.
1468  */
1469 void transport_init_se_cmd(
1470 	struct se_cmd *cmd,
1471 	struct target_core_fabric_ops *tfo,
1472 	struct se_session *se_sess,
1473 	u32 data_length,
1474 	int data_direction,
1475 	int task_attr,
1476 	unsigned char *sense_buffer)
1477 {
1478 	INIT_LIST_HEAD(&cmd->se_lun_node);
1479 	INIT_LIST_HEAD(&cmd->se_delayed_node);
1480 	INIT_LIST_HEAD(&cmd->se_qf_node);
1481 	INIT_LIST_HEAD(&cmd->se_queue_node);
1482 	INIT_LIST_HEAD(&cmd->se_cmd_list);
1483 	INIT_LIST_HEAD(&cmd->t_task_list);
1484 	init_completion(&cmd->transport_lun_fe_stop_comp);
1485 	init_completion(&cmd->transport_lun_stop_comp);
1486 	init_completion(&cmd->t_transport_stop_comp);
1487 	init_completion(&cmd->cmd_wait_comp);
1488 	spin_lock_init(&cmd->t_state_lock);
1489 	atomic_set(&cmd->transport_dev_active, 1);
1490 
1491 	cmd->se_tfo = tfo;
1492 	cmd->se_sess = se_sess;
1493 	cmd->data_length = data_length;
1494 	cmd->data_direction = data_direction;
1495 	cmd->sam_task_attr = task_attr;
1496 	cmd->sense_buffer = sense_buffer;
1497 }
1498 EXPORT_SYMBOL(transport_init_se_cmd);
1499 
1500 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1501 {
1502 	/*
1503 	 * Check if SAM Task Attribute emulation is enabled for this
1504 	 * struct se_device storage object
1505 	 */
1506 	if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1507 		return 0;
1508 
1509 	if (cmd->sam_task_attr == MSG_ACA_TAG) {
1510 		pr_debug("SAM Task Attribute ACA"
1511 			" emulation is not supported\n");
1512 		return -EINVAL;
1513 	}
1514 	/*
1515 	 * Used to determine when ORDERED commands should go from
1516 	 * Dormant to Active status.
1517 	 */
1518 	cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1519 	smp_mb__after_atomic_inc();
1520 	pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1521 			cmd->se_ordered_id, cmd->sam_task_attr,
1522 			cmd->se_dev->transport->name);
1523 	return 0;
1524 }
1525 
1526 /*	transport_generic_allocate_tasks():
1527  *
1528  *	Called from fabric RX Thread.
1529  */
1530 int transport_generic_allocate_tasks(
1531 	struct se_cmd *cmd,
1532 	unsigned char *cdb)
1533 {
1534 	int ret;
1535 
1536 	transport_generic_prepare_cdb(cdb);
1537 	/*
1538 	 * Ensure that the received CDB is less than the max (252 + 8) bytes
1539 	 * for VARIABLE_LENGTH_CMD
1540 	 */
1541 	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1542 		pr_err("Received SCSI CDB with command_size: %d that"
1543 			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1544 			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1545 		cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1546 		cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1547 		return -EINVAL;
1548 	}
1549 	/*
1550 	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1551 	 * allocate the additional extended CDB buffer now..  Otherwise
1552 	 * setup the pointer from __t_task_cdb to t_task_cdb.
1553 	 */
1554 	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1555 		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1556 						GFP_KERNEL);
1557 		if (!cmd->t_task_cdb) {
1558 			pr_err("Unable to allocate cmd->t_task_cdb"
1559 				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1560 				scsi_command_size(cdb),
1561 				(unsigned long)sizeof(cmd->__t_task_cdb));
1562 			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1563 			cmd->scsi_sense_reason =
1564 					TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1565 			return -ENOMEM;
1566 		}
1567 	} else
1568 		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1569 	/*
1570 	 * Copy the original CDB into cmd->
1571 	 */
1572 	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1573 	/*
1574 	 * Setup the received CDB based on SCSI defined opcodes and
1575 	 * perform unit attention, persistent reservations and ALUA
1576 	 * checks for virtual device backends.  The cmd->t_task_cdb
1577 	 * pointer is expected to be setup before we reach this point.
1578 	 */
1579 	ret = transport_generic_cmd_sequencer(cmd, cdb);
1580 	if (ret < 0)
1581 		return ret;
1582 	/*
1583 	 * Check for SAM Task Attribute Emulation
1584 	 */
1585 	if (transport_check_alloc_task_attr(cmd) < 0) {
1586 		cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1587 		cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1588 		return -EINVAL;
1589 	}
1590 	spin_lock(&cmd->se_lun->lun_sep_lock);
1591 	if (cmd->se_lun->lun_sep)
1592 		cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1593 	spin_unlock(&cmd->se_lun->lun_sep_lock);
1594 	return 0;
1595 }
1596 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1597 
1598 /*
1599  * Used by fabric module frontends to queue tasks directly.
1600  * Many only be used from process context only
1601  */
1602 int transport_handle_cdb_direct(
1603 	struct se_cmd *cmd)
1604 {
1605 	int ret;
1606 
1607 	if (!cmd->se_lun) {
1608 		dump_stack();
1609 		pr_err("cmd->se_lun is NULL\n");
1610 		return -EINVAL;
1611 	}
1612 	if (in_interrupt()) {
1613 		dump_stack();
1614 		pr_err("transport_generic_handle_cdb cannot be called"
1615 				" from interrupt context\n");
1616 		return -EINVAL;
1617 	}
1618 	/*
1619 	 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1620 	 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1621 	 * in existing usage to ensure that outstanding descriptors are handled
1622 	 * correctly during shutdown via transport_wait_for_tasks()
1623 	 *
1624 	 * Also, we don't take cmd->t_state_lock here as we only expect
1625 	 * this to be called for initial descriptor submission.
1626 	 */
1627 	cmd->t_state = TRANSPORT_NEW_CMD;
1628 	atomic_set(&cmd->t_transport_active, 1);
1629 	/*
1630 	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1631 	 * so follow TRANSPORT_NEW_CMD processing thread context usage
1632 	 * and call transport_generic_request_failure() if necessary..
1633 	 */
1634 	ret = transport_generic_new_cmd(cmd);
1635 	if (ret < 0)
1636 		transport_generic_request_failure(cmd);
1637 
1638 	return 0;
1639 }
1640 EXPORT_SYMBOL(transport_handle_cdb_direct);
1641 
1642 /**
1643  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1644  *
1645  * @se_cmd: command descriptor to submit
1646  * @se_sess: associated se_sess for endpoint
1647  * @cdb: pointer to SCSI CDB
1648  * @sense: pointer to SCSI sense buffer
1649  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1650  * @data_length: fabric expected data transfer length
1651  * @task_addr: SAM task attribute
1652  * @data_dir: DMA data direction
1653  * @flags: flags for command submission from target_sc_flags_tables
1654  *
1655  * This may only be called from process context, and also currently
1656  * assumes internal allocation of fabric payload buffer by target-core.
1657  **/
1658 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1659 		unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1660 		u32 data_length, int task_attr, int data_dir, int flags)
1661 {
1662 	struct se_portal_group *se_tpg;
1663 	int rc;
1664 
1665 	se_tpg = se_sess->se_tpg;
1666 	BUG_ON(!se_tpg);
1667 	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1668 	BUG_ON(in_interrupt());
1669 	/*
1670 	 * Initialize se_cmd for target operation.  From this point
1671 	 * exceptions are handled by sending exception status via
1672 	 * target_core_fabric_ops->queue_status() callback
1673 	 */
1674 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1675 				data_length, data_dir, task_attr, sense);
1676 	/*
1677 	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1678 	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
1679 	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1680 	 * kref_put() to happen during fabric packet acknowledgement.
1681 	 */
1682 	target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1683 	/*
1684 	 * Signal bidirectional data payloads to target-core
1685 	 */
1686 	if (flags & TARGET_SCF_BIDI_OP)
1687 		se_cmd->se_cmd_flags |= SCF_BIDI;
1688 	/*
1689 	 * Locate se_lun pointer and attach it to struct se_cmd
1690 	 */
1691 	if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0)
1692 		goto out_check_cond;
1693 	/*
1694 	 * Sanitize CDBs via transport_generic_cmd_sequencer() and
1695 	 * allocate the necessary tasks to complete the received CDB+data
1696 	 */
1697 	rc = transport_generic_allocate_tasks(se_cmd, cdb);
1698 	if (rc != 0)
1699 		goto out_check_cond;
1700 	/*
1701 	 * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1702 	 * for immediate execution of READs, otherwise wait for
1703 	 * transport_generic_handle_data() to be called for WRITEs
1704 	 * when fabric has filled the incoming buffer.
1705 	 */
1706 	transport_handle_cdb_direct(se_cmd);
1707 	return 0;
1708 
1709 out_check_cond:
1710 	transport_send_check_condition_and_sense(se_cmd,
1711 				se_cmd->scsi_sense_reason, 0);
1712 	return 0;
1713 }
1714 EXPORT_SYMBOL(target_submit_cmd);
1715 
1716 /*
1717  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1718  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1719  * complete setup in TCM process context w/ TFO->new_cmd_map().
1720  */
1721 int transport_generic_handle_cdb_map(
1722 	struct se_cmd *cmd)
1723 {
1724 	if (!cmd->se_lun) {
1725 		dump_stack();
1726 		pr_err("cmd->se_lun is NULL\n");
1727 		return -EINVAL;
1728 	}
1729 
1730 	transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1731 	return 0;
1732 }
1733 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1734 
1735 /*	transport_generic_handle_data():
1736  *
1737  *
1738  */
1739 int transport_generic_handle_data(
1740 	struct se_cmd *cmd)
1741 {
1742 	/*
1743 	 * For the software fabric case, then we assume the nexus is being
1744 	 * failed/shutdown when signals are pending from the kthread context
1745 	 * caller, so we return a failure.  For the HW target mode case running
1746 	 * in interrupt code, the signal_pending() check is skipped.
1747 	 */
1748 	if (!in_interrupt() && signal_pending(current))
1749 		return -EPERM;
1750 	/*
1751 	 * If the received CDB has aleady been ABORTED by the generic
1752 	 * target engine, we now call transport_check_aborted_status()
1753 	 * to queue any delated TASK_ABORTED status for the received CDB to the
1754 	 * fabric module as we are expecting no further incoming DATA OUT
1755 	 * sequences at this point.
1756 	 */
1757 	if (transport_check_aborted_status(cmd, 1) != 0)
1758 		return 0;
1759 
1760 	transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1761 	return 0;
1762 }
1763 EXPORT_SYMBOL(transport_generic_handle_data);
1764 
1765 /*	transport_generic_handle_tmr():
1766  *
1767  *
1768  */
1769 int transport_generic_handle_tmr(
1770 	struct se_cmd *cmd)
1771 {
1772 	transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1773 	return 0;
1774 }
1775 EXPORT_SYMBOL(transport_generic_handle_tmr);
1776 
1777 /*
1778  * If the task is active, request it to be stopped and sleep until it
1779  * has completed.
1780  */
1781 bool target_stop_task(struct se_task *task, unsigned long *flags)
1782 {
1783 	struct se_cmd *cmd = task->task_se_cmd;
1784 	bool was_active = false;
1785 
1786 	if (task->task_flags & TF_ACTIVE) {
1787 		task->task_flags |= TF_REQUEST_STOP;
1788 		spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1789 
1790 		pr_debug("Task %p waiting to complete\n", task);
1791 		wait_for_completion(&task->task_stop_comp);
1792 		pr_debug("Task %p stopped successfully\n", task);
1793 
1794 		spin_lock_irqsave(&cmd->t_state_lock, *flags);
1795 		atomic_dec(&cmd->t_task_cdbs_left);
1796 		task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1797 		was_active = true;
1798 	}
1799 
1800 	return was_active;
1801 }
1802 
1803 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1804 {
1805 	struct se_task *task, *task_tmp;
1806 	unsigned long flags;
1807 	int ret = 0;
1808 
1809 	pr_debug("ITT[0x%08x] - Stopping tasks\n",
1810 		cmd->se_tfo->get_task_tag(cmd));
1811 
1812 	/*
1813 	 * No tasks remain in the execution queue
1814 	 */
1815 	spin_lock_irqsave(&cmd->t_state_lock, flags);
1816 	list_for_each_entry_safe(task, task_tmp,
1817 				&cmd->t_task_list, t_list) {
1818 		pr_debug("Processing task %p\n", task);
1819 		/*
1820 		 * If the struct se_task has not been sent and is not active,
1821 		 * remove the struct se_task from the execution queue.
1822 		 */
1823 		if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1824 			spin_unlock_irqrestore(&cmd->t_state_lock,
1825 					flags);
1826 			transport_remove_task_from_execute_queue(task,
1827 					cmd->se_dev);
1828 
1829 			pr_debug("Task %p removed from execute queue\n", task);
1830 			spin_lock_irqsave(&cmd->t_state_lock, flags);
1831 			continue;
1832 		}
1833 
1834 		if (!target_stop_task(task, &flags)) {
1835 			pr_debug("Task %p - did nothing\n", task);
1836 			ret++;
1837 		}
1838 	}
1839 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1840 
1841 	return ret;
1842 }
1843 
1844 /*
1845  * Handle SAM-esque emulation for generic transport request failures.
1846  */
1847 static void transport_generic_request_failure(struct se_cmd *cmd)
1848 {
1849 	int ret = 0;
1850 
1851 	pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1852 		" CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1853 		cmd->t_task_cdb[0]);
1854 	pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1855 		cmd->se_tfo->get_cmd_state(cmd),
1856 		cmd->t_state, cmd->scsi_sense_reason);
1857 	pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1858 		" t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1859 		" t_transport_active: %d t_transport_stop: %d"
1860 		" t_transport_sent: %d\n", cmd->t_task_list_num,
1861 		atomic_read(&cmd->t_task_cdbs_left),
1862 		atomic_read(&cmd->t_task_cdbs_sent),
1863 		atomic_read(&cmd->t_task_cdbs_ex_left),
1864 		atomic_read(&cmd->t_transport_active),
1865 		atomic_read(&cmd->t_transport_stop),
1866 		atomic_read(&cmd->t_transport_sent));
1867 
1868 	/*
1869 	 * For SAM Task Attribute emulation for failed struct se_cmd
1870 	 */
1871 	if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1872 		transport_complete_task_attr(cmd);
1873 
1874 	switch (cmd->scsi_sense_reason) {
1875 	case TCM_NON_EXISTENT_LUN:
1876 	case TCM_UNSUPPORTED_SCSI_OPCODE:
1877 	case TCM_INVALID_CDB_FIELD:
1878 	case TCM_INVALID_PARAMETER_LIST:
1879 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1880 	case TCM_UNKNOWN_MODE_PAGE:
1881 	case TCM_WRITE_PROTECTED:
1882 	case TCM_CHECK_CONDITION_ABORT_CMD:
1883 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1884 	case TCM_CHECK_CONDITION_NOT_READY:
1885 		break;
1886 	case TCM_RESERVATION_CONFLICT:
1887 		/*
1888 		 * No SENSE Data payload for this case, set SCSI Status
1889 		 * and queue the response to $FABRIC_MOD.
1890 		 *
1891 		 * Uses linux/include/scsi/scsi.h SAM status codes defs
1892 		 */
1893 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1894 		/*
1895 		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1896 		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1897 		 * CONFLICT STATUS.
1898 		 *
1899 		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1900 		 */
1901 		if (cmd->se_sess &&
1902 		    cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1903 			core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1904 				cmd->orig_fe_lun, 0x2C,
1905 				ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1906 
1907 		ret = cmd->se_tfo->queue_status(cmd);
1908 		if (ret == -EAGAIN || ret == -ENOMEM)
1909 			goto queue_full;
1910 		goto check_stop;
1911 	default:
1912 		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1913 			cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1914 		cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1915 		break;
1916 	}
1917 	/*
1918 	 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1919 	 * make the call to transport_send_check_condition_and_sense()
1920 	 * directly.  Otherwise expect the fabric to make the call to
1921 	 * transport_send_check_condition_and_sense() after handling
1922 	 * possible unsoliticied write data payloads.
1923 	 */
1924 	ret = transport_send_check_condition_and_sense(cmd,
1925 			cmd->scsi_sense_reason, 0);
1926 	if (ret == -EAGAIN || ret == -ENOMEM)
1927 		goto queue_full;
1928 
1929 check_stop:
1930 	transport_lun_remove_cmd(cmd);
1931 	if (!transport_cmd_check_stop_to_fabric(cmd))
1932 		;
1933 	return;
1934 
1935 queue_full:
1936 	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1937 	transport_handle_queue_full(cmd, cmd->se_dev);
1938 }
1939 
1940 static inline u32 transport_lba_21(unsigned char *cdb)
1941 {
1942 	return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1943 }
1944 
1945 static inline u32 transport_lba_32(unsigned char *cdb)
1946 {
1947 	return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1948 }
1949 
1950 static inline unsigned long long transport_lba_64(unsigned char *cdb)
1951 {
1952 	unsigned int __v1, __v2;
1953 
1954 	__v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1955 	__v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1956 
1957 	return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1958 }
1959 
1960 /*
1961  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1962  */
1963 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1964 {
1965 	unsigned int __v1, __v2;
1966 
1967 	__v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1968 	__v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1969 
1970 	return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1971 }
1972 
1973 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
1974 {
1975 	unsigned long flags;
1976 
1977 	spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1978 	se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1979 	spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1980 }
1981 
1982 /*
1983  * Called from Fabric Module context from transport_execute_tasks()
1984  *
1985  * The return of this function determins if the tasks from struct se_cmd
1986  * get added to the execution queue in transport_execute_tasks(),
1987  * or are added to the delayed or ordered lists here.
1988  */
1989 static inline int transport_execute_task_attr(struct se_cmd *cmd)
1990 {
1991 	if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1992 		return 1;
1993 	/*
1994 	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1995 	 * to allow the passed struct se_cmd list of tasks to the front of the list.
1996 	 */
1997 	 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1998 		pr_debug("Added HEAD_OF_QUEUE for CDB:"
1999 			" 0x%02x, se_ordered_id: %u\n",
2000 			cmd->t_task_cdb[0],
2001 			cmd->se_ordered_id);
2002 		return 1;
2003 	} else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2004 		atomic_inc(&cmd->se_dev->dev_ordered_sync);
2005 		smp_mb__after_atomic_inc();
2006 
2007 		pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2008 				" list, se_ordered_id: %u\n",
2009 				cmd->t_task_cdb[0],
2010 				cmd->se_ordered_id);
2011 		/*
2012 		 * Add ORDERED command to tail of execution queue if
2013 		 * no other older commands exist that need to be
2014 		 * completed first.
2015 		 */
2016 		if (!atomic_read(&cmd->se_dev->simple_cmds))
2017 			return 1;
2018 	} else {
2019 		/*
2020 		 * For SIMPLE and UNTAGGED Task Attribute commands
2021 		 */
2022 		atomic_inc(&cmd->se_dev->simple_cmds);
2023 		smp_mb__after_atomic_inc();
2024 	}
2025 	/*
2026 	 * Otherwise if one or more outstanding ORDERED task attribute exist,
2027 	 * add the dormant task(s) built for the passed struct se_cmd to the
2028 	 * execution queue and become in Active state for this struct se_device.
2029 	 */
2030 	if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2031 		/*
2032 		 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2033 		 * will be drained upon completion of HEAD_OF_QUEUE task.
2034 		 */
2035 		spin_lock(&cmd->se_dev->delayed_cmd_lock);
2036 		cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2037 		list_add_tail(&cmd->se_delayed_node,
2038 				&cmd->se_dev->delayed_cmd_list);
2039 		spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2040 
2041 		pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2042 			" delayed CMD list, se_ordered_id: %u\n",
2043 			cmd->t_task_cdb[0], cmd->sam_task_attr,
2044 			cmd->se_ordered_id);
2045 		/*
2046 		 * Return zero to let transport_execute_tasks() know
2047 		 * not to add the delayed tasks to the execution list.
2048 		 */
2049 		return 0;
2050 	}
2051 	/*
2052 	 * Otherwise, no ORDERED task attributes exist..
2053 	 */
2054 	return 1;
2055 }
2056 
2057 /*
2058  * Called from fabric module context in transport_generic_new_cmd() and
2059  * transport_generic_process_write()
2060  */
2061 static int transport_execute_tasks(struct se_cmd *cmd)
2062 {
2063 	int add_tasks;
2064 	struct se_device *se_dev = cmd->se_dev;
2065 	/*
2066 	 * Call transport_cmd_check_stop() to see if a fabric exception
2067 	 * has occurred that prevents execution.
2068 	 */
2069 	if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2070 		/*
2071 		 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2072 		 * attribute for the tasks of the received struct se_cmd CDB
2073 		 */
2074 		add_tasks = transport_execute_task_attr(cmd);
2075 		if (!add_tasks)
2076 			goto execute_tasks;
2077 		/*
2078 		 * __transport_execute_tasks() -> __transport_add_tasks_from_cmd()
2079 		 * adds associated se_tasks while holding dev->execute_task_lock
2080 		 * before I/O dispath to avoid a double spinlock access.
2081 		 */
2082 		__transport_execute_tasks(se_dev, cmd);
2083 		return 0;
2084 	}
2085 
2086 execute_tasks:
2087 	__transport_execute_tasks(se_dev, NULL);
2088 	return 0;
2089 }
2090 
2091 /*
2092  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2093  * from struct se_device->execute_task_list and
2094  *
2095  * Called from transport_processing_thread()
2096  */
2097 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *new_cmd)
2098 {
2099 	int error;
2100 	struct se_cmd *cmd = NULL;
2101 	struct se_task *task = NULL;
2102 	unsigned long flags;
2103 
2104 check_depth:
2105 	spin_lock_irq(&dev->execute_task_lock);
2106 	if (new_cmd != NULL)
2107 		__transport_add_tasks_from_cmd(new_cmd);
2108 
2109 	if (list_empty(&dev->execute_task_list)) {
2110 		spin_unlock_irq(&dev->execute_task_lock);
2111 		return 0;
2112 	}
2113 	task = list_first_entry(&dev->execute_task_list,
2114 				struct se_task, t_execute_list);
2115 	__transport_remove_task_from_execute_queue(task, dev);
2116 	spin_unlock_irq(&dev->execute_task_lock);
2117 
2118 	cmd = task->task_se_cmd;
2119 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2120 	task->task_flags |= (TF_ACTIVE | TF_SENT);
2121 	atomic_inc(&cmd->t_task_cdbs_sent);
2122 
2123 	if (atomic_read(&cmd->t_task_cdbs_sent) ==
2124 	    cmd->t_task_list_num)
2125 		atomic_set(&cmd->t_transport_sent, 1);
2126 
2127 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2128 
2129 	if (cmd->execute_task)
2130 		error = cmd->execute_task(task);
2131 	else
2132 		error = dev->transport->do_task(task);
2133 	if (error != 0) {
2134 		spin_lock_irqsave(&cmd->t_state_lock, flags);
2135 		task->task_flags &= ~TF_ACTIVE;
2136 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2137 		atomic_set(&cmd->t_transport_sent, 0);
2138 		transport_stop_tasks_for_cmd(cmd);
2139 		transport_generic_request_failure(cmd);
2140 	}
2141 
2142 	new_cmd = NULL;
2143 	goto check_depth;
2144 
2145 	return 0;
2146 }
2147 
2148 static inline u32 transport_get_sectors_6(
2149 	unsigned char *cdb,
2150 	struct se_cmd *cmd,
2151 	int *ret)
2152 {
2153 	struct se_device *dev = cmd->se_dev;
2154 
2155 	/*
2156 	 * Assume TYPE_DISK for non struct se_device objects.
2157 	 * Use 8-bit sector value.
2158 	 */
2159 	if (!dev)
2160 		goto type_disk;
2161 
2162 	/*
2163 	 * Use 24-bit allocation length for TYPE_TAPE.
2164 	 */
2165 	if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2166 		return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2167 
2168 	/*
2169 	 * Everything else assume TYPE_DISK Sector CDB location.
2170 	 * Use 8-bit sector value.  SBC-3 says:
2171 	 *
2172 	 *   A TRANSFER LENGTH field set to zero specifies that 256
2173 	 *   logical blocks shall be written.  Any other value
2174 	 *   specifies the number of logical blocks that shall be
2175 	 *   written.
2176 	 */
2177 type_disk:
2178 	return cdb[4] ? : 256;
2179 }
2180 
2181 static inline u32 transport_get_sectors_10(
2182 	unsigned char *cdb,
2183 	struct se_cmd *cmd,
2184 	int *ret)
2185 {
2186 	struct se_device *dev = cmd->se_dev;
2187 
2188 	/*
2189 	 * Assume TYPE_DISK for non struct se_device objects.
2190 	 * Use 16-bit sector value.
2191 	 */
2192 	if (!dev)
2193 		goto type_disk;
2194 
2195 	/*
2196 	 * XXX_10 is not defined in SSC, throw an exception
2197 	 */
2198 	if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2199 		*ret = -EINVAL;
2200 		return 0;
2201 	}
2202 
2203 	/*
2204 	 * Everything else assume TYPE_DISK Sector CDB location.
2205 	 * Use 16-bit sector value.
2206 	 */
2207 type_disk:
2208 	return (u32)(cdb[7] << 8) + cdb[8];
2209 }
2210 
2211 static inline u32 transport_get_sectors_12(
2212 	unsigned char *cdb,
2213 	struct se_cmd *cmd,
2214 	int *ret)
2215 {
2216 	struct se_device *dev = cmd->se_dev;
2217 
2218 	/*
2219 	 * Assume TYPE_DISK for non struct se_device objects.
2220 	 * Use 32-bit sector value.
2221 	 */
2222 	if (!dev)
2223 		goto type_disk;
2224 
2225 	/*
2226 	 * XXX_12 is not defined in SSC, throw an exception
2227 	 */
2228 	if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2229 		*ret = -EINVAL;
2230 		return 0;
2231 	}
2232 
2233 	/*
2234 	 * Everything else assume TYPE_DISK Sector CDB location.
2235 	 * Use 32-bit sector value.
2236 	 */
2237 type_disk:
2238 	return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2239 }
2240 
2241 static inline u32 transport_get_sectors_16(
2242 	unsigned char *cdb,
2243 	struct se_cmd *cmd,
2244 	int *ret)
2245 {
2246 	struct se_device *dev = cmd->se_dev;
2247 
2248 	/*
2249 	 * Assume TYPE_DISK for non struct se_device objects.
2250 	 * Use 32-bit sector value.
2251 	 */
2252 	if (!dev)
2253 		goto type_disk;
2254 
2255 	/*
2256 	 * Use 24-bit allocation length for TYPE_TAPE.
2257 	 */
2258 	if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2259 		return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2260 
2261 type_disk:
2262 	return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2263 		    (cdb[12] << 8) + cdb[13];
2264 }
2265 
2266 /*
2267  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2268  */
2269 static inline u32 transport_get_sectors_32(
2270 	unsigned char *cdb,
2271 	struct se_cmd *cmd,
2272 	int *ret)
2273 {
2274 	/*
2275 	 * Assume TYPE_DISK for non struct se_device objects.
2276 	 * Use 32-bit sector value.
2277 	 */
2278 	return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2279 		    (cdb[30] << 8) + cdb[31];
2280 
2281 }
2282 
2283 static inline u32 transport_get_size(
2284 	u32 sectors,
2285 	unsigned char *cdb,
2286 	struct se_cmd *cmd)
2287 {
2288 	struct se_device *dev = cmd->se_dev;
2289 
2290 	if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2291 		if (cdb[1] & 1) { /* sectors */
2292 			return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2293 		} else /* bytes */
2294 			return sectors;
2295 	}
2296 #if 0
2297 	pr_debug("Returning block_size: %u, sectors: %u == %u for"
2298 			" %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2299 			dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2300 			dev->transport->name);
2301 #endif
2302 	return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2303 }
2304 
2305 static void transport_xor_callback(struct se_cmd *cmd)
2306 {
2307 	unsigned char *buf, *addr;
2308 	struct scatterlist *sg;
2309 	unsigned int offset;
2310 	int i;
2311 	int count;
2312 	/*
2313 	 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2314 	 *
2315 	 * 1) read the specified logical block(s);
2316 	 * 2) transfer logical blocks from the data-out buffer;
2317 	 * 3) XOR the logical blocks transferred from the data-out buffer with
2318 	 *    the logical blocks read, storing the resulting XOR data in a buffer;
2319 	 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2320 	 *    blocks transferred from the data-out buffer; and
2321 	 * 5) transfer the resulting XOR data to the data-in buffer.
2322 	 */
2323 	buf = kmalloc(cmd->data_length, GFP_KERNEL);
2324 	if (!buf) {
2325 		pr_err("Unable to allocate xor_callback buf\n");
2326 		return;
2327 	}
2328 	/*
2329 	 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2330 	 * into the locally allocated *buf
2331 	 */
2332 	sg_copy_to_buffer(cmd->t_data_sg,
2333 			  cmd->t_data_nents,
2334 			  buf,
2335 			  cmd->data_length);
2336 
2337 	/*
2338 	 * Now perform the XOR against the BIDI read memory located at
2339 	 * cmd->t_mem_bidi_list
2340 	 */
2341 
2342 	offset = 0;
2343 	for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2344 		addr = kmap_atomic(sg_page(sg), KM_USER0);
2345 		if (!addr)
2346 			goto out;
2347 
2348 		for (i = 0; i < sg->length; i++)
2349 			*(addr + sg->offset + i) ^= *(buf + offset + i);
2350 
2351 		offset += sg->length;
2352 		kunmap_atomic(addr, KM_USER0);
2353 	}
2354 
2355 out:
2356 	kfree(buf);
2357 }
2358 
2359 /*
2360  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2361  */
2362 static int transport_get_sense_data(struct se_cmd *cmd)
2363 {
2364 	unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2365 	struct se_device *dev = cmd->se_dev;
2366 	struct se_task *task = NULL, *task_tmp;
2367 	unsigned long flags;
2368 	u32 offset = 0;
2369 
2370 	WARN_ON(!cmd->se_lun);
2371 
2372 	if (!dev)
2373 		return 0;
2374 
2375 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2376 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2377 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2378 		return 0;
2379 	}
2380 
2381 	list_for_each_entry_safe(task, task_tmp,
2382 				&cmd->t_task_list, t_list) {
2383 		if (!(task->task_flags & TF_HAS_SENSE))
2384 			continue;
2385 
2386 		if (!dev->transport->get_sense_buffer) {
2387 			pr_err("dev->transport->get_sense_buffer"
2388 					" is NULL\n");
2389 			continue;
2390 		}
2391 
2392 		sense_buffer = dev->transport->get_sense_buffer(task);
2393 		if (!sense_buffer) {
2394 			pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2395 				" sense buffer for task with sense\n",
2396 				cmd->se_tfo->get_task_tag(cmd), task);
2397 			continue;
2398 		}
2399 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2400 
2401 		offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2402 				TRANSPORT_SENSE_BUFFER);
2403 
2404 		memcpy(&buffer[offset], sense_buffer,
2405 				TRANSPORT_SENSE_BUFFER);
2406 		cmd->scsi_status = task->task_scsi_status;
2407 		/* Automatically padded */
2408 		cmd->scsi_sense_length =
2409 				(TRANSPORT_SENSE_BUFFER + offset);
2410 
2411 		pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2412 				" and sense\n",
2413 			dev->se_hba->hba_id, dev->transport->name,
2414 				cmd->scsi_status);
2415 		return 0;
2416 	}
2417 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2418 
2419 	return -1;
2420 }
2421 
2422 static inline long long transport_dev_end_lba(struct se_device *dev)
2423 {
2424 	return dev->transport->get_blocks(dev) + 1;
2425 }
2426 
2427 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2428 {
2429 	struct se_device *dev = cmd->se_dev;
2430 	u32 sectors;
2431 
2432 	if (dev->transport->get_device_type(dev) != TYPE_DISK)
2433 		return 0;
2434 
2435 	sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2436 
2437 	if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2438 		pr_err("LBA: %llu Sectors: %u exceeds"
2439 			" transport_dev_end_lba(): %llu\n",
2440 			cmd->t_task_lba, sectors,
2441 			transport_dev_end_lba(dev));
2442 		return -EINVAL;
2443 	}
2444 
2445 	return 0;
2446 }
2447 
2448 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2449 {
2450 	/*
2451 	 * Determine if the received WRITE_SAME is used to for direct
2452 	 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2453 	 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2454 	 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2455 	 */
2456 	int passthrough = (dev->transport->transport_type ==
2457 				TRANSPORT_PLUGIN_PHBA_PDEV);
2458 
2459 	if (!passthrough) {
2460 		if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2461 			pr_err("WRITE_SAME PBDATA and LBDATA"
2462 				" bits not supported for Block Discard"
2463 				" Emulation\n");
2464 			return -ENOSYS;
2465 		}
2466 		/*
2467 		 * Currently for the emulated case we only accept
2468 		 * tpws with the UNMAP=1 bit set.
2469 		 */
2470 		if (!(flags[0] & 0x08)) {
2471 			pr_err("WRITE_SAME w/o UNMAP bit not"
2472 				" supported for Block Discard Emulation\n");
2473 			return -ENOSYS;
2474 		}
2475 	}
2476 
2477 	return 0;
2478 }
2479 
2480 /*	transport_generic_cmd_sequencer():
2481  *
2482  *	Generic Command Sequencer that should work for most DAS transport
2483  *	drivers.
2484  *
2485  *	Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2486  *	RX Thread.
2487  *
2488  *	FIXME: Need to support other SCSI OPCODES where as well.
2489  */
2490 static int transport_generic_cmd_sequencer(
2491 	struct se_cmd *cmd,
2492 	unsigned char *cdb)
2493 {
2494 	struct se_device *dev = cmd->se_dev;
2495 	struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2496 	int ret = 0, sector_ret = 0, passthrough;
2497 	u32 sectors = 0, size = 0, pr_reg_type = 0;
2498 	u16 service_action;
2499 	u8 alua_ascq = 0;
2500 	/*
2501 	 * Check for an existing UNIT ATTENTION condition
2502 	 */
2503 	if (core_scsi3_ua_check(cmd, cdb) < 0) {
2504 		cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2505 		cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2506 		return -EINVAL;
2507 	}
2508 	/*
2509 	 * Check status of Asymmetric Logical Unit Assignment port
2510 	 */
2511 	ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2512 	if (ret != 0) {
2513 		/*
2514 		 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2515 		 * The ALUA additional sense code qualifier (ASCQ) is determined
2516 		 * by the ALUA primary or secondary access state..
2517 		 */
2518 		if (ret > 0) {
2519 #if 0
2520 			pr_debug("[%s]: ALUA TG Port not available,"
2521 				" SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2522 				cmd->se_tfo->get_fabric_name(), alua_ascq);
2523 #endif
2524 			transport_set_sense_codes(cmd, 0x04, alua_ascq);
2525 			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2526 			cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2527 			return -EINVAL;
2528 		}
2529 		goto out_invalid_cdb_field;
2530 	}
2531 	/*
2532 	 * Check status for SPC-3 Persistent Reservations
2533 	 */
2534 	if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2535 		if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2536 					cmd, cdb, pr_reg_type) != 0) {
2537 			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2538 			cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2539 			cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2540 			return -EBUSY;
2541 		}
2542 		/*
2543 		 * This means the CDB is allowed for the SCSI Initiator port
2544 		 * when said port is *NOT* holding the legacy SPC-2 or
2545 		 * SPC-3 Persistent Reservation.
2546 		 */
2547 	}
2548 
2549 	/*
2550 	 * If we operate in passthrough mode we skip most CDB emulation and
2551 	 * instead hand the commands down to the physical SCSI device.
2552 	 */
2553 	passthrough =
2554 		(dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2555 
2556 	switch (cdb[0]) {
2557 	case READ_6:
2558 		sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2559 		if (sector_ret)
2560 			goto out_unsupported_cdb;
2561 		size = transport_get_size(sectors, cdb, cmd);
2562 		cmd->t_task_lba = transport_lba_21(cdb);
2563 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2564 		break;
2565 	case READ_10:
2566 		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2567 		if (sector_ret)
2568 			goto out_unsupported_cdb;
2569 		size = transport_get_size(sectors, cdb, cmd);
2570 		cmd->t_task_lba = transport_lba_32(cdb);
2571 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2572 		break;
2573 	case READ_12:
2574 		sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2575 		if (sector_ret)
2576 			goto out_unsupported_cdb;
2577 		size = transport_get_size(sectors, cdb, cmd);
2578 		cmd->t_task_lba = transport_lba_32(cdb);
2579 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2580 		break;
2581 	case READ_16:
2582 		sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2583 		if (sector_ret)
2584 			goto out_unsupported_cdb;
2585 		size = transport_get_size(sectors, cdb, cmd);
2586 		cmd->t_task_lba = transport_lba_64(cdb);
2587 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2588 		break;
2589 	case WRITE_6:
2590 		sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2591 		if (sector_ret)
2592 			goto out_unsupported_cdb;
2593 		size = transport_get_size(sectors, cdb, cmd);
2594 		cmd->t_task_lba = transport_lba_21(cdb);
2595 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2596 		break;
2597 	case WRITE_10:
2598 		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2599 		if (sector_ret)
2600 			goto out_unsupported_cdb;
2601 		size = transport_get_size(sectors, cdb, cmd);
2602 		cmd->t_task_lba = transport_lba_32(cdb);
2603 		if (cdb[1] & 0x8)
2604 			cmd->se_cmd_flags |= SCF_FUA;
2605 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2606 		break;
2607 	case WRITE_12:
2608 		sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2609 		if (sector_ret)
2610 			goto out_unsupported_cdb;
2611 		size = transport_get_size(sectors, cdb, cmd);
2612 		cmd->t_task_lba = transport_lba_32(cdb);
2613 		if (cdb[1] & 0x8)
2614 			cmd->se_cmd_flags |= SCF_FUA;
2615 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2616 		break;
2617 	case WRITE_16:
2618 		sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2619 		if (sector_ret)
2620 			goto out_unsupported_cdb;
2621 		size = transport_get_size(sectors, cdb, cmd);
2622 		cmd->t_task_lba = transport_lba_64(cdb);
2623 		if (cdb[1] & 0x8)
2624 			cmd->se_cmd_flags |= SCF_FUA;
2625 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2626 		break;
2627 	case XDWRITEREAD_10:
2628 		if ((cmd->data_direction != DMA_TO_DEVICE) ||
2629 		    !(cmd->se_cmd_flags & SCF_BIDI))
2630 			goto out_invalid_cdb_field;
2631 		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2632 		if (sector_ret)
2633 			goto out_unsupported_cdb;
2634 		size = transport_get_size(sectors, cdb, cmd);
2635 		cmd->t_task_lba = transport_lba_32(cdb);
2636 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2637 
2638 		/*
2639 		 * Do now allow BIDI commands for passthrough mode.
2640 		 */
2641 		if (passthrough)
2642 			goto out_unsupported_cdb;
2643 
2644 		/*
2645 		 * Setup BIDI XOR callback to be run after I/O completion.
2646 		 */
2647 		cmd->transport_complete_callback = &transport_xor_callback;
2648 		if (cdb[1] & 0x8)
2649 			cmd->se_cmd_flags |= SCF_FUA;
2650 		break;
2651 	case VARIABLE_LENGTH_CMD:
2652 		service_action = get_unaligned_be16(&cdb[8]);
2653 		switch (service_action) {
2654 		case XDWRITEREAD_32:
2655 			sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2656 			if (sector_ret)
2657 				goto out_unsupported_cdb;
2658 			size = transport_get_size(sectors, cdb, cmd);
2659 			/*
2660 			 * Use WRITE_32 and READ_32 opcodes for the emulated
2661 			 * XDWRITE_READ_32 logic.
2662 			 */
2663 			cmd->t_task_lba = transport_lba_64_ext(cdb);
2664 			cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2665 
2666 			/*
2667 			 * Do now allow BIDI commands for passthrough mode.
2668 			 */
2669 			if (passthrough)
2670 				goto out_unsupported_cdb;
2671 
2672 			/*
2673 			 * Setup BIDI XOR callback to be run during after I/O
2674 			 * completion.
2675 			 */
2676 			cmd->transport_complete_callback = &transport_xor_callback;
2677 			if (cdb[1] & 0x8)
2678 				cmd->se_cmd_flags |= SCF_FUA;
2679 			break;
2680 		case WRITE_SAME_32:
2681 			sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2682 			if (sector_ret)
2683 				goto out_unsupported_cdb;
2684 
2685 			if (sectors)
2686 				size = transport_get_size(1, cdb, cmd);
2687 			else {
2688 				pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2689 				       " supported\n");
2690 				goto out_invalid_cdb_field;
2691 			}
2692 
2693 			cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2694 			cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2695 
2696 			if (target_check_write_same_discard(&cdb[10], dev) < 0)
2697 				goto out_invalid_cdb_field;
2698 			if (!passthrough)
2699 				cmd->execute_task = target_emulate_write_same;
2700 			break;
2701 		default:
2702 			pr_err("VARIABLE_LENGTH_CMD service action"
2703 				" 0x%04x not supported\n", service_action);
2704 			goto out_unsupported_cdb;
2705 		}
2706 		break;
2707 	case MAINTENANCE_IN:
2708 		if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2709 			/* MAINTENANCE_IN from SCC-2 */
2710 			/*
2711 			 * Check for emulated MI_REPORT_TARGET_PGS.
2712 			 */
2713 			if (cdb[1] == MI_REPORT_TARGET_PGS &&
2714 			    su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2715 				cmd->execute_task =
2716 					target_emulate_report_target_port_groups;
2717 			}
2718 			size = (cdb[6] << 24) | (cdb[7] << 16) |
2719 			       (cdb[8] << 8) | cdb[9];
2720 		} else {
2721 			/* GPCMD_SEND_KEY from multi media commands */
2722 			size = (cdb[8] << 8) + cdb[9];
2723 		}
2724 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2725 		break;
2726 	case MODE_SELECT:
2727 		size = cdb[4];
2728 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2729 		break;
2730 	case MODE_SELECT_10:
2731 		size = (cdb[7] << 8) + cdb[8];
2732 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2733 		break;
2734 	case MODE_SENSE:
2735 		size = cdb[4];
2736 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2737 		if (!passthrough)
2738 			cmd->execute_task = target_emulate_modesense;
2739 		break;
2740 	case MODE_SENSE_10:
2741 		size = (cdb[7] << 8) + cdb[8];
2742 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2743 		if (!passthrough)
2744 			cmd->execute_task = target_emulate_modesense;
2745 		break;
2746 	case GPCMD_READ_BUFFER_CAPACITY:
2747 	case GPCMD_SEND_OPC:
2748 	case LOG_SELECT:
2749 	case LOG_SENSE:
2750 		size = (cdb[7] << 8) + cdb[8];
2751 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2752 		break;
2753 	case READ_BLOCK_LIMITS:
2754 		size = READ_BLOCK_LEN;
2755 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2756 		break;
2757 	case GPCMD_GET_CONFIGURATION:
2758 	case GPCMD_READ_FORMAT_CAPACITIES:
2759 	case GPCMD_READ_DISC_INFO:
2760 	case GPCMD_READ_TRACK_RZONE_INFO:
2761 		size = (cdb[7] << 8) + cdb[8];
2762 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2763 		break;
2764 	case PERSISTENT_RESERVE_IN:
2765 		if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2766 			cmd->execute_task = target_scsi3_emulate_pr_in;
2767 		size = (cdb[7] << 8) + cdb[8];
2768 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2769 		break;
2770 	case PERSISTENT_RESERVE_OUT:
2771 		if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2772 			cmd->execute_task = target_scsi3_emulate_pr_out;
2773 		size = (cdb[7] << 8) + cdb[8];
2774 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2775 		break;
2776 	case GPCMD_MECHANISM_STATUS:
2777 	case GPCMD_READ_DVD_STRUCTURE:
2778 		size = (cdb[8] << 8) + cdb[9];
2779 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2780 		break;
2781 	case READ_POSITION:
2782 		size = READ_POSITION_LEN;
2783 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2784 		break;
2785 	case MAINTENANCE_OUT:
2786 		if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2787 			/* MAINTENANCE_OUT from SCC-2
2788 			 *
2789 			 * Check for emulated MO_SET_TARGET_PGS.
2790 			 */
2791 			if (cdb[1] == MO_SET_TARGET_PGS &&
2792 			    su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2793 				cmd->execute_task =
2794 					target_emulate_set_target_port_groups;
2795 			}
2796 
2797 			size = (cdb[6] << 24) | (cdb[7] << 16) |
2798 			       (cdb[8] << 8) | cdb[9];
2799 		} else  {
2800 			/* GPCMD_REPORT_KEY from multi media commands */
2801 			size = (cdb[8] << 8) + cdb[9];
2802 		}
2803 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2804 		break;
2805 	case INQUIRY:
2806 		size = (cdb[3] << 8) + cdb[4];
2807 		/*
2808 		 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2809 		 * See spc4r17 section 5.3
2810 		 */
2811 		if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2812 			cmd->sam_task_attr = MSG_HEAD_TAG;
2813 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2814 		if (!passthrough)
2815 			cmd->execute_task = target_emulate_inquiry;
2816 		break;
2817 	case READ_BUFFER:
2818 		size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2819 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2820 		break;
2821 	case READ_CAPACITY:
2822 		size = READ_CAP_LEN;
2823 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2824 		if (!passthrough)
2825 			cmd->execute_task = target_emulate_readcapacity;
2826 		break;
2827 	case READ_MEDIA_SERIAL_NUMBER:
2828 	case SECURITY_PROTOCOL_IN:
2829 	case SECURITY_PROTOCOL_OUT:
2830 		size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2831 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2832 		break;
2833 	case SERVICE_ACTION_IN:
2834 		switch (cmd->t_task_cdb[1] & 0x1f) {
2835 		case SAI_READ_CAPACITY_16:
2836 			if (!passthrough)
2837 				cmd->execute_task =
2838 					target_emulate_readcapacity_16;
2839 			break;
2840 		default:
2841 			if (passthrough)
2842 				break;
2843 
2844 			pr_err("Unsupported SA: 0x%02x\n",
2845 				cmd->t_task_cdb[1] & 0x1f);
2846 			goto out_unsupported_cdb;
2847 		}
2848 		/*FALLTHROUGH*/
2849 	case ACCESS_CONTROL_IN:
2850 	case ACCESS_CONTROL_OUT:
2851 	case EXTENDED_COPY:
2852 	case READ_ATTRIBUTE:
2853 	case RECEIVE_COPY_RESULTS:
2854 	case WRITE_ATTRIBUTE:
2855 		size = (cdb[10] << 24) | (cdb[11] << 16) |
2856 		       (cdb[12] << 8) | cdb[13];
2857 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2858 		break;
2859 	case RECEIVE_DIAGNOSTIC:
2860 	case SEND_DIAGNOSTIC:
2861 		size = (cdb[3] << 8) | cdb[4];
2862 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2863 		break;
2864 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2865 #if 0
2866 	case GPCMD_READ_CD:
2867 		sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2868 		size = (2336 * sectors);
2869 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2870 		break;
2871 #endif
2872 	case READ_TOC:
2873 		size = cdb[8];
2874 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2875 		break;
2876 	case REQUEST_SENSE:
2877 		size = cdb[4];
2878 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2879 		if (!passthrough)
2880 			cmd->execute_task = target_emulate_request_sense;
2881 		break;
2882 	case READ_ELEMENT_STATUS:
2883 		size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2884 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2885 		break;
2886 	case WRITE_BUFFER:
2887 		size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2888 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2889 		break;
2890 	case RESERVE:
2891 	case RESERVE_10:
2892 		/*
2893 		 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2894 		 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2895 		 */
2896 		if (cdb[0] == RESERVE_10)
2897 			size = (cdb[7] << 8) | cdb[8];
2898 		else
2899 			size = cmd->data_length;
2900 
2901 		/*
2902 		 * Setup the legacy emulated handler for SPC-2 and
2903 		 * >= SPC-3 compatible reservation handling (CRH=1)
2904 		 * Otherwise, we assume the underlying SCSI logic is
2905 		 * is running in SPC_PASSTHROUGH, and wants reservations
2906 		 * emulation disabled.
2907 		 */
2908 		if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2909 			cmd->execute_task = target_scsi2_reservation_reserve;
2910 		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2911 		break;
2912 	case RELEASE:
2913 	case RELEASE_10:
2914 		/*
2915 		 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2916 		 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2917 		*/
2918 		if (cdb[0] == RELEASE_10)
2919 			size = (cdb[7] << 8) | cdb[8];
2920 		else
2921 			size = cmd->data_length;
2922 
2923 		if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2924 			cmd->execute_task = target_scsi2_reservation_release;
2925 		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2926 		break;
2927 	case SYNCHRONIZE_CACHE:
2928 	case 0x91: /* SYNCHRONIZE_CACHE_16: */
2929 		/*
2930 		 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2931 		 */
2932 		if (cdb[0] == SYNCHRONIZE_CACHE) {
2933 			sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2934 			cmd->t_task_lba = transport_lba_32(cdb);
2935 		} else {
2936 			sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2937 			cmd->t_task_lba = transport_lba_64(cdb);
2938 		}
2939 		if (sector_ret)
2940 			goto out_unsupported_cdb;
2941 
2942 		size = transport_get_size(sectors, cdb, cmd);
2943 		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2944 
2945 		if (passthrough)
2946 			break;
2947 
2948 		/*
2949 		 * Check to ensure that LBA + Range does not exceed past end of
2950 		 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
2951 		 */
2952 		if ((cmd->t_task_lba != 0) || (sectors != 0)) {
2953 			if (transport_cmd_get_valid_sectors(cmd) < 0)
2954 				goto out_invalid_cdb_field;
2955 		}
2956 		cmd->execute_task = target_emulate_synchronize_cache;
2957 		break;
2958 	case UNMAP:
2959 		size = get_unaligned_be16(&cdb[7]);
2960 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2961 		if (!passthrough)
2962 			cmd->execute_task = target_emulate_unmap;
2963 		break;
2964 	case WRITE_SAME_16:
2965 		sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2966 		if (sector_ret)
2967 			goto out_unsupported_cdb;
2968 
2969 		if (sectors)
2970 			size = transport_get_size(1, cdb, cmd);
2971 		else {
2972 			pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2973 			goto out_invalid_cdb_field;
2974 		}
2975 
2976 		cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
2977 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2978 
2979 		if (target_check_write_same_discard(&cdb[1], dev) < 0)
2980 			goto out_invalid_cdb_field;
2981 		if (!passthrough)
2982 			cmd->execute_task = target_emulate_write_same;
2983 		break;
2984 	case WRITE_SAME:
2985 		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2986 		if (sector_ret)
2987 			goto out_unsupported_cdb;
2988 
2989 		if (sectors)
2990 			size = transport_get_size(1, cdb, cmd);
2991 		else {
2992 			pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2993 			goto out_invalid_cdb_field;
2994 		}
2995 
2996 		cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
2997 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2998 		/*
2999 		 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3000 		 * of byte 1 bit 3 UNMAP instead of original reserved field
3001 		 */
3002 		if (target_check_write_same_discard(&cdb[1], dev) < 0)
3003 			goto out_invalid_cdb_field;
3004 		if (!passthrough)
3005 			cmd->execute_task = target_emulate_write_same;
3006 		break;
3007 	case ALLOW_MEDIUM_REMOVAL:
3008 	case ERASE:
3009 	case REZERO_UNIT:
3010 	case SEEK_10:
3011 	case SPACE:
3012 	case START_STOP:
3013 	case TEST_UNIT_READY:
3014 	case VERIFY:
3015 	case WRITE_FILEMARKS:
3016 		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3017 		if (!passthrough)
3018 			cmd->execute_task = target_emulate_noop;
3019 		break;
3020 	case GPCMD_CLOSE_TRACK:
3021 	case INITIALIZE_ELEMENT_STATUS:
3022 	case GPCMD_LOAD_UNLOAD:
3023 	case GPCMD_SET_SPEED:
3024 	case MOVE_MEDIUM:
3025 		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3026 		break;
3027 	case REPORT_LUNS:
3028 		cmd->execute_task = target_report_luns;
3029 		size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3030 		/*
3031 		 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3032 		 * See spc4r17 section 5.3
3033 		 */
3034 		if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3035 			cmd->sam_task_attr = MSG_HEAD_TAG;
3036 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3037 		break;
3038 	default:
3039 		pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3040 			" 0x%02x, sending CHECK_CONDITION.\n",
3041 			cmd->se_tfo->get_fabric_name(), cdb[0]);
3042 		goto out_unsupported_cdb;
3043 	}
3044 
3045 	if (size != cmd->data_length) {
3046 		pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3047 			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
3048 			" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3049 				cmd->data_length, size, cdb[0]);
3050 
3051 		cmd->cmd_spdtl = size;
3052 
3053 		if (cmd->data_direction == DMA_TO_DEVICE) {
3054 			pr_err("Rejecting underflow/overflow"
3055 					" WRITE data\n");
3056 			goto out_invalid_cdb_field;
3057 		}
3058 		/*
3059 		 * Reject READ_* or WRITE_* with overflow/underflow for
3060 		 * type SCF_SCSI_DATA_SG_IO_CDB.
3061 		 */
3062 		if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3063 			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3064 				" CDB on non 512-byte sector setup subsystem"
3065 				" plugin: %s\n", dev->transport->name);
3066 			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3067 			goto out_invalid_cdb_field;
3068 		}
3069 
3070 		if (size > cmd->data_length) {
3071 			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3072 			cmd->residual_count = (size - cmd->data_length);
3073 		} else {
3074 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3075 			cmd->residual_count = (cmd->data_length - size);
3076 		}
3077 		cmd->data_length = size;
3078 	}
3079 
3080 	/* reject any command that we don't have a handler for */
3081 	if (!(passthrough || cmd->execute_task ||
3082 	     (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3083 		goto out_unsupported_cdb;
3084 
3085 	/* Let's limit control cdbs to a page, for simplicity's sake. */
3086 	if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3087 	    size > PAGE_SIZE)
3088 		goto out_invalid_cdb_field;
3089 
3090 	transport_set_supported_SAM_opcode(cmd);
3091 	return ret;
3092 
3093 out_unsupported_cdb:
3094 	cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3095 	cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3096 	return -EINVAL;
3097 out_invalid_cdb_field:
3098 	cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3099 	cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3100 	return -EINVAL;
3101 }
3102 
3103 /*
3104  * Called from I/O completion to determine which dormant/delayed
3105  * and ordered cmds need to have their tasks added to the execution queue.
3106  */
3107 static void transport_complete_task_attr(struct se_cmd *cmd)
3108 {
3109 	struct se_device *dev = cmd->se_dev;
3110 	struct se_cmd *cmd_p, *cmd_tmp;
3111 	int new_active_tasks = 0;
3112 
3113 	if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3114 		atomic_dec(&dev->simple_cmds);
3115 		smp_mb__after_atomic_dec();
3116 		dev->dev_cur_ordered_id++;
3117 		pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3118 			" SIMPLE: %u\n", dev->dev_cur_ordered_id,
3119 			cmd->se_ordered_id);
3120 	} else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3121 		dev->dev_cur_ordered_id++;
3122 		pr_debug("Incremented dev_cur_ordered_id: %u for"
3123 			" HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3124 			cmd->se_ordered_id);
3125 	} else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3126 		atomic_dec(&dev->dev_ordered_sync);
3127 		smp_mb__after_atomic_dec();
3128 
3129 		dev->dev_cur_ordered_id++;
3130 		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3131 			" %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3132 	}
3133 	/*
3134 	 * Process all commands up to the last received
3135 	 * ORDERED task attribute which requires another blocking
3136 	 * boundary
3137 	 */
3138 	spin_lock(&dev->delayed_cmd_lock);
3139 	list_for_each_entry_safe(cmd_p, cmd_tmp,
3140 			&dev->delayed_cmd_list, se_delayed_node) {
3141 
3142 		list_del(&cmd_p->se_delayed_node);
3143 		spin_unlock(&dev->delayed_cmd_lock);
3144 
3145 		pr_debug("Calling add_tasks() for"
3146 			" cmd_p: 0x%02x Task Attr: 0x%02x"
3147 			" Dormant -> Active, se_ordered_id: %u\n",
3148 			cmd_p->t_task_cdb[0],
3149 			cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3150 
3151 		transport_add_tasks_from_cmd(cmd_p);
3152 		new_active_tasks++;
3153 
3154 		spin_lock(&dev->delayed_cmd_lock);
3155 		if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3156 			break;
3157 	}
3158 	spin_unlock(&dev->delayed_cmd_lock);
3159 	/*
3160 	 * If new tasks have become active, wake up the transport thread
3161 	 * to do the processing of the Active tasks.
3162 	 */
3163 	if (new_active_tasks != 0)
3164 		wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3165 }
3166 
3167 static void transport_complete_qf(struct se_cmd *cmd)
3168 {
3169 	int ret = 0;
3170 
3171 	if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3172 		transport_complete_task_attr(cmd);
3173 
3174 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3175 		ret = cmd->se_tfo->queue_status(cmd);
3176 		if (ret)
3177 			goto out;
3178 	}
3179 
3180 	switch (cmd->data_direction) {
3181 	case DMA_FROM_DEVICE:
3182 		ret = cmd->se_tfo->queue_data_in(cmd);
3183 		break;
3184 	case DMA_TO_DEVICE:
3185 		if (cmd->t_bidi_data_sg) {
3186 			ret = cmd->se_tfo->queue_data_in(cmd);
3187 			if (ret < 0)
3188 				break;
3189 		}
3190 		/* Fall through for DMA_TO_DEVICE */
3191 	case DMA_NONE:
3192 		ret = cmd->se_tfo->queue_status(cmd);
3193 		break;
3194 	default:
3195 		break;
3196 	}
3197 
3198 out:
3199 	if (ret < 0) {
3200 		transport_handle_queue_full(cmd, cmd->se_dev);
3201 		return;
3202 	}
3203 	transport_lun_remove_cmd(cmd);
3204 	transport_cmd_check_stop_to_fabric(cmd);
3205 }
3206 
3207 static void transport_handle_queue_full(
3208 	struct se_cmd *cmd,
3209 	struct se_device *dev)
3210 {
3211 	spin_lock_irq(&dev->qf_cmd_lock);
3212 	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3213 	atomic_inc(&dev->dev_qf_count);
3214 	smp_mb__after_atomic_inc();
3215 	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3216 
3217 	schedule_work(&cmd->se_dev->qf_work_queue);
3218 }
3219 
3220 static void target_complete_ok_work(struct work_struct *work)
3221 {
3222 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3223 	int reason = 0, ret;
3224 
3225 	/*
3226 	 * Check if we need to move delayed/dormant tasks from cmds on the
3227 	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3228 	 * Attribute.
3229 	 */
3230 	if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3231 		transport_complete_task_attr(cmd);
3232 	/*
3233 	 * Check to schedule QUEUE_FULL work, or execute an existing
3234 	 * cmd->transport_qf_callback()
3235 	 */
3236 	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3237 		schedule_work(&cmd->se_dev->qf_work_queue);
3238 
3239 	/*
3240 	 * Check if we need to retrieve a sense buffer from
3241 	 * the struct se_cmd in question.
3242 	 */
3243 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3244 		if (transport_get_sense_data(cmd) < 0)
3245 			reason = TCM_NON_EXISTENT_LUN;
3246 
3247 		/*
3248 		 * Only set when an struct se_task->task_scsi_status returned
3249 		 * a non GOOD status.
3250 		 */
3251 		if (cmd->scsi_status) {
3252 			ret = transport_send_check_condition_and_sense(
3253 					cmd, reason, 1);
3254 			if (ret == -EAGAIN || ret == -ENOMEM)
3255 				goto queue_full;
3256 
3257 			transport_lun_remove_cmd(cmd);
3258 			transport_cmd_check_stop_to_fabric(cmd);
3259 			return;
3260 		}
3261 	}
3262 	/*
3263 	 * Check for a callback, used by amongst other things
3264 	 * XDWRITE_READ_10 emulation.
3265 	 */
3266 	if (cmd->transport_complete_callback)
3267 		cmd->transport_complete_callback(cmd);
3268 
3269 	switch (cmd->data_direction) {
3270 	case DMA_FROM_DEVICE:
3271 		spin_lock(&cmd->se_lun->lun_sep_lock);
3272 		if (cmd->se_lun->lun_sep) {
3273 			cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3274 					cmd->data_length;
3275 		}
3276 		spin_unlock(&cmd->se_lun->lun_sep_lock);
3277 
3278 		ret = cmd->se_tfo->queue_data_in(cmd);
3279 		if (ret == -EAGAIN || ret == -ENOMEM)
3280 			goto queue_full;
3281 		break;
3282 	case DMA_TO_DEVICE:
3283 		spin_lock(&cmd->se_lun->lun_sep_lock);
3284 		if (cmd->se_lun->lun_sep) {
3285 			cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3286 				cmd->data_length;
3287 		}
3288 		spin_unlock(&cmd->se_lun->lun_sep_lock);
3289 		/*
3290 		 * Check if we need to send READ payload for BIDI-COMMAND
3291 		 */
3292 		if (cmd->t_bidi_data_sg) {
3293 			spin_lock(&cmd->se_lun->lun_sep_lock);
3294 			if (cmd->se_lun->lun_sep) {
3295 				cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3296 					cmd->data_length;
3297 			}
3298 			spin_unlock(&cmd->se_lun->lun_sep_lock);
3299 			ret = cmd->se_tfo->queue_data_in(cmd);
3300 			if (ret == -EAGAIN || ret == -ENOMEM)
3301 				goto queue_full;
3302 			break;
3303 		}
3304 		/* Fall through for DMA_TO_DEVICE */
3305 	case DMA_NONE:
3306 		ret = cmd->se_tfo->queue_status(cmd);
3307 		if (ret == -EAGAIN || ret == -ENOMEM)
3308 			goto queue_full;
3309 		break;
3310 	default:
3311 		break;
3312 	}
3313 
3314 	transport_lun_remove_cmd(cmd);
3315 	transport_cmd_check_stop_to_fabric(cmd);
3316 	return;
3317 
3318 queue_full:
3319 	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3320 		" data_direction: %d\n", cmd, cmd->data_direction);
3321 	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3322 	transport_handle_queue_full(cmd, cmd->se_dev);
3323 }
3324 
3325 static void transport_free_dev_tasks(struct se_cmd *cmd)
3326 {
3327 	struct se_task *task, *task_tmp;
3328 	unsigned long flags;
3329 	LIST_HEAD(dispose_list);
3330 
3331 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3332 	list_for_each_entry_safe(task, task_tmp,
3333 				&cmd->t_task_list, t_list) {
3334 		if (!(task->task_flags & TF_ACTIVE))
3335 			list_move_tail(&task->t_list, &dispose_list);
3336 	}
3337 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3338 
3339 	while (!list_empty(&dispose_list)) {
3340 		task = list_first_entry(&dispose_list, struct se_task, t_list);
3341 
3342 		if (task->task_sg != cmd->t_data_sg &&
3343 		    task->task_sg != cmd->t_bidi_data_sg)
3344 			kfree(task->task_sg);
3345 
3346 		list_del(&task->t_list);
3347 
3348 		cmd->se_dev->transport->free_task(task);
3349 	}
3350 }
3351 
3352 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3353 {
3354 	struct scatterlist *sg;
3355 	int count;
3356 
3357 	for_each_sg(sgl, sg, nents, count)
3358 		__free_page(sg_page(sg));
3359 
3360 	kfree(sgl);
3361 }
3362 
3363 static inline void transport_free_pages(struct se_cmd *cmd)
3364 {
3365 	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3366 		return;
3367 
3368 	transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3369 	cmd->t_data_sg = NULL;
3370 	cmd->t_data_nents = 0;
3371 
3372 	transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3373 	cmd->t_bidi_data_sg = NULL;
3374 	cmd->t_bidi_data_nents = 0;
3375 }
3376 
3377 /**
3378  * transport_release_cmd - free a command
3379  * @cmd:       command to free
3380  *
3381  * This routine unconditionally frees a command, and reference counting
3382  * or list removal must be done in the caller.
3383  */
3384 static void transport_release_cmd(struct se_cmd *cmd)
3385 {
3386 	BUG_ON(!cmd->se_tfo);
3387 
3388 	if (cmd->se_tmr_req)
3389 		core_tmr_release_req(cmd->se_tmr_req);
3390 	if (cmd->t_task_cdb != cmd->__t_task_cdb)
3391 		kfree(cmd->t_task_cdb);
3392 	/*
3393 	 * If this cmd has been setup with target_get_sess_cmd(), drop
3394 	 * the kref and call ->release_cmd() in kref callback.
3395 	 */
3396 	 if (cmd->check_release != 0) {
3397 		target_put_sess_cmd(cmd->se_sess, cmd);
3398 		return;
3399 	}
3400 	cmd->se_tfo->release_cmd(cmd);
3401 }
3402 
3403 /**
3404  * transport_put_cmd - release a reference to a command
3405  * @cmd:       command to release
3406  *
3407  * This routine releases our reference to the command and frees it if possible.
3408  */
3409 static void transport_put_cmd(struct se_cmd *cmd)
3410 {
3411 	unsigned long flags;
3412 	int free_tasks = 0;
3413 
3414 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3415 	if (atomic_read(&cmd->t_fe_count)) {
3416 		if (!atomic_dec_and_test(&cmd->t_fe_count))
3417 			goto out_busy;
3418 	}
3419 
3420 	if (atomic_read(&cmd->t_se_count)) {
3421 		if (!atomic_dec_and_test(&cmd->t_se_count))
3422 			goto out_busy;
3423 	}
3424 
3425 	if (atomic_read(&cmd->transport_dev_active)) {
3426 		atomic_set(&cmd->transport_dev_active, 0);
3427 		transport_all_task_dev_remove_state(cmd);
3428 		free_tasks = 1;
3429 	}
3430 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3431 
3432 	if (free_tasks != 0)
3433 		transport_free_dev_tasks(cmd);
3434 
3435 	transport_free_pages(cmd);
3436 	transport_release_cmd(cmd);
3437 	return;
3438 out_busy:
3439 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3440 }
3441 
3442 /*
3443  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3444  * allocating in the core.
3445  * @cmd:  Associated se_cmd descriptor
3446  * @mem:  SGL style memory for TCM WRITE / READ
3447  * @sg_mem_num: Number of SGL elements
3448  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3449  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3450  *
3451  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3452  * of parameters.
3453  */
3454 int transport_generic_map_mem_to_cmd(
3455 	struct se_cmd *cmd,
3456 	struct scatterlist *sgl,
3457 	u32 sgl_count,
3458 	struct scatterlist *sgl_bidi,
3459 	u32 sgl_bidi_count)
3460 {
3461 	if (!sgl || !sgl_count)
3462 		return 0;
3463 
3464 	if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3465 	    (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3466 		/*
3467 		 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3468 		 * scatterlists already have been set to follow what the fabric
3469 		 * passes for the original expected data transfer length.
3470 		 */
3471 		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3472 			pr_warn("Rejecting SCSI DATA overflow for fabric using"
3473 				" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3474 			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3475 			cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3476 			return -EINVAL;
3477 		}
3478 
3479 		cmd->t_data_sg = sgl;
3480 		cmd->t_data_nents = sgl_count;
3481 
3482 		if (sgl_bidi && sgl_bidi_count) {
3483 			cmd->t_bidi_data_sg = sgl_bidi;
3484 			cmd->t_bidi_data_nents = sgl_bidi_count;
3485 		}
3486 		cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3487 	}
3488 
3489 	return 0;
3490 }
3491 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3492 
3493 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3494 {
3495 	struct scatterlist *sg = cmd->t_data_sg;
3496 
3497 	BUG_ON(!sg);
3498 	/*
3499 	 * We need to take into account a possible offset here for fabrics like
3500 	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3501 	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3502 	 */
3503 	return kmap(sg_page(sg)) + sg->offset;
3504 }
3505 EXPORT_SYMBOL(transport_kmap_first_data_page);
3506 
3507 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3508 {
3509 	kunmap(sg_page(cmd->t_data_sg));
3510 }
3511 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3512 
3513 static int
3514 transport_generic_get_mem(struct se_cmd *cmd)
3515 {
3516 	u32 length = cmd->data_length;
3517 	unsigned int nents;
3518 	struct page *page;
3519 	int i = 0;
3520 
3521 	nents = DIV_ROUND_UP(length, PAGE_SIZE);
3522 	cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3523 	if (!cmd->t_data_sg)
3524 		return -ENOMEM;
3525 
3526 	cmd->t_data_nents = nents;
3527 	sg_init_table(cmd->t_data_sg, nents);
3528 
3529 	while (length) {
3530 		u32 page_len = min_t(u32, length, PAGE_SIZE);
3531 		page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3532 		if (!page)
3533 			goto out;
3534 
3535 		sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3536 		length -= page_len;
3537 		i++;
3538 	}
3539 	return 0;
3540 
3541 out:
3542 	while (i >= 0) {
3543 		__free_page(sg_page(&cmd->t_data_sg[i]));
3544 		i--;
3545 	}
3546 	kfree(cmd->t_data_sg);
3547 	cmd->t_data_sg = NULL;
3548 	return -ENOMEM;
3549 }
3550 
3551 /* Reduce sectors if they are too long for the device */
3552 static inline sector_t transport_limit_task_sectors(
3553 	struct se_device *dev,
3554 	unsigned long long lba,
3555 	sector_t sectors)
3556 {
3557 	sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3558 
3559 	if (dev->transport->get_device_type(dev) == TYPE_DISK)
3560 		if ((lba + sectors) > transport_dev_end_lba(dev))
3561 			sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3562 
3563 	return sectors;
3564 }
3565 
3566 
3567 /*
3568  * This function can be used by HW target mode drivers to create a linked
3569  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3570  * This is intended to be called during the completion path by TCM Core
3571  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3572  */
3573 void transport_do_task_sg_chain(struct se_cmd *cmd)
3574 {
3575 	struct scatterlist *sg_first = NULL;
3576 	struct scatterlist *sg_prev = NULL;
3577 	int sg_prev_nents = 0;
3578 	struct scatterlist *sg;
3579 	struct se_task *task;
3580 	u32 chained_nents = 0;
3581 	int i;
3582 
3583 	BUG_ON(!cmd->se_tfo->task_sg_chaining);
3584 
3585 	/*
3586 	 * Walk the struct se_task list and setup scatterlist chains
3587 	 * for each contiguously allocated struct se_task->task_sg[].
3588 	 */
3589 	list_for_each_entry(task, &cmd->t_task_list, t_list) {
3590 		if (!task->task_sg)
3591 			continue;
3592 
3593 		if (!sg_first) {
3594 			sg_first = task->task_sg;
3595 			chained_nents = task->task_sg_nents;
3596 		} else {
3597 			sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3598 			chained_nents += task->task_sg_nents;
3599 		}
3600 		/*
3601 		 * For the padded tasks, use the extra SGL vector allocated
3602 		 * in transport_allocate_data_tasks() for the sg_prev_nents
3603 		 * offset into sg_chain() above.
3604 		 *
3605 		 * We do not need the padding for the last task (or a single
3606 		 * task), but in that case we will never use the sg_prev_nents
3607 		 * value below which would be incorrect.
3608 		 */
3609 		sg_prev_nents = (task->task_sg_nents + 1);
3610 		sg_prev = task->task_sg;
3611 	}
3612 	/*
3613 	 * Setup the starting pointer and total t_tasks_sg_linked_no including
3614 	 * padding SGs for linking and to mark the end.
3615 	 */
3616 	cmd->t_tasks_sg_chained = sg_first;
3617 	cmd->t_tasks_sg_chained_no = chained_nents;
3618 
3619 	pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3620 		" t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3621 		cmd->t_tasks_sg_chained_no);
3622 
3623 	for_each_sg(cmd->t_tasks_sg_chained, sg,
3624 			cmd->t_tasks_sg_chained_no, i) {
3625 
3626 		pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3627 			i, sg, sg_page(sg), sg->length, sg->offset);
3628 		if (sg_is_chain(sg))
3629 			pr_debug("SG: %p sg_is_chain=1\n", sg);
3630 		if (sg_is_last(sg))
3631 			pr_debug("SG: %p sg_is_last=1\n", sg);
3632 	}
3633 }
3634 EXPORT_SYMBOL(transport_do_task_sg_chain);
3635 
3636 /*
3637  * Break up cmd into chunks transport can handle
3638  */
3639 static int
3640 transport_allocate_data_tasks(struct se_cmd *cmd,
3641 	enum dma_data_direction data_direction,
3642 	struct scatterlist *cmd_sg, unsigned int sgl_nents)
3643 {
3644 	struct se_device *dev = cmd->se_dev;
3645 	int task_count, i;
3646 	unsigned long long lba;
3647 	sector_t sectors, dev_max_sectors;
3648 	u32 sector_size;
3649 
3650 	if (transport_cmd_get_valid_sectors(cmd) < 0)
3651 		return -EINVAL;
3652 
3653 	dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3654 	sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3655 
3656 	WARN_ON(cmd->data_length % sector_size);
3657 
3658 	lba = cmd->t_task_lba;
3659 	sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3660 	task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3661 
3662 	/*
3663 	 * If we need just a single task reuse the SG list in the command
3664 	 * and avoid a lot of work.
3665 	 */
3666 	if (task_count == 1) {
3667 		struct se_task *task;
3668 		unsigned long flags;
3669 
3670 		task = transport_generic_get_task(cmd, data_direction);
3671 		if (!task)
3672 			return -ENOMEM;
3673 
3674 		task->task_sg = cmd_sg;
3675 		task->task_sg_nents = sgl_nents;
3676 
3677 		task->task_lba = lba;
3678 		task->task_sectors = sectors;
3679 		task->task_size = task->task_sectors * sector_size;
3680 
3681 		spin_lock_irqsave(&cmd->t_state_lock, flags);
3682 		list_add_tail(&task->t_list, &cmd->t_task_list);
3683 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3684 
3685 		return task_count;
3686 	}
3687 
3688 	for (i = 0; i < task_count; i++) {
3689 		struct se_task *task;
3690 		unsigned int task_size, task_sg_nents_padded;
3691 		struct scatterlist *sg;
3692 		unsigned long flags;
3693 		int count;
3694 
3695 		task = transport_generic_get_task(cmd, data_direction);
3696 		if (!task)
3697 			return -ENOMEM;
3698 
3699 		task->task_lba = lba;
3700 		task->task_sectors = min(sectors, dev_max_sectors);
3701 		task->task_size = task->task_sectors * sector_size;
3702 
3703 		/*
3704 		 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3705 		 * in order to calculate the number per task SGL entries
3706 		 */
3707 		task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3708 		/*
3709 		 * Check if the fabric module driver is requesting that all
3710 		 * struct se_task->task_sg[] be chained together..  If so,
3711 		 * then allocate an extra padding SG entry for linking and
3712 		 * marking the end of the chained SGL for every task except
3713 		 * the last one for (task_count > 1) operation, or skipping
3714 		 * the extra padding for the (task_count == 1) case.
3715 		 */
3716 		if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3717 			task_sg_nents_padded = (task->task_sg_nents + 1);
3718 		} else
3719 			task_sg_nents_padded = task->task_sg_nents;
3720 
3721 		task->task_sg = kmalloc(sizeof(struct scatterlist) *
3722 					task_sg_nents_padded, GFP_KERNEL);
3723 		if (!task->task_sg) {
3724 			cmd->se_dev->transport->free_task(task);
3725 			return -ENOMEM;
3726 		}
3727 
3728 		sg_init_table(task->task_sg, task_sg_nents_padded);
3729 
3730 		task_size = task->task_size;
3731 
3732 		/* Build new sgl, only up to task_size */
3733 		for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3734 			if (cmd_sg->length > task_size)
3735 				break;
3736 
3737 			*sg = *cmd_sg;
3738 			task_size -= cmd_sg->length;
3739 			cmd_sg = sg_next(cmd_sg);
3740 		}
3741 
3742 		lba += task->task_sectors;
3743 		sectors -= task->task_sectors;
3744 
3745 		spin_lock_irqsave(&cmd->t_state_lock, flags);
3746 		list_add_tail(&task->t_list, &cmd->t_task_list);
3747 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3748 	}
3749 
3750 	return task_count;
3751 }
3752 
3753 static int
3754 transport_allocate_control_task(struct se_cmd *cmd)
3755 {
3756 	struct se_task *task;
3757 	unsigned long flags;
3758 
3759 	task = transport_generic_get_task(cmd, cmd->data_direction);
3760 	if (!task)
3761 		return -ENOMEM;
3762 
3763 	task->task_sg = cmd->t_data_sg;
3764 	task->task_size = cmd->data_length;
3765 	task->task_sg_nents = cmd->t_data_nents;
3766 
3767 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3768 	list_add_tail(&task->t_list, &cmd->t_task_list);
3769 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3770 
3771 	/* Success! Return number of tasks allocated */
3772 	return 1;
3773 }
3774 
3775 /*
3776  * Allocate any required ressources to execute the command, and either place
3777  * it on the execution queue if possible.  For writes we might not have the
3778  * payload yet, thus notify the fabric via a call to ->write_pending instead.
3779  */
3780 int transport_generic_new_cmd(struct se_cmd *cmd)
3781 {
3782 	struct se_device *dev = cmd->se_dev;
3783 	int task_cdbs, task_cdbs_bidi = 0;
3784 	int set_counts = 1;
3785 	int ret = 0;
3786 
3787 	/*
3788 	 * Determine is the TCM fabric module has already allocated physical
3789 	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
3790 	 * beforehand.
3791 	 */
3792 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3793 	    cmd->data_length) {
3794 		ret = transport_generic_get_mem(cmd);
3795 		if (ret < 0)
3796 			goto out_fail;
3797 	}
3798 
3799 	/*
3800 	 * For BIDI command set up the read tasks first.
3801 	 */
3802 	if (cmd->t_bidi_data_sg &&
3803 	    dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3804 		BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3805 
3806 		task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3807 				DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3808 				cmd->t_bidi_data_nents);
3809 		if (task_cdbs_bidi <= 0)
3810 			goto out_fail;
3811 
3812 		atomic_inc(&cmd->t_fe_count);
3813 		atomic_inc(&cmd->t_se_count);
3814 		set_counts = 0;
3815 	}
3816 
3817 	if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3818 		task_cdbs = transport_allocate_data_tasks(cmd,
3819 					cmd->data_direction, cmd->t_data_sg,
3820 					cmd->t_data_nents);
3821 	} else {
3822 		task_cdbs = transport_allocate_control_task(cmd);
3823 	}
3824 
3825 	if (task_cdbs < 0)
3826 		goto out_fail;
3827 	else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3828 		cmd->t_state = TRANSPORT_COMPLETE;
3829 		atomic_set(&cmd->t_transport_active, 1);
3830 		INIT_WORK(&cmd->work, target_complete_ok_work);
3831 		queue_work(target_completion_wq, &cmd->work);
3832 		return 0;
3833 	}
3834 
3835 	if (set_counts) {
3836 		atomic_inc(&cmd->t_fe_count);
3837 		atomic_inc(&cmd->t_se_count);
3838 	}
3839 
3840 	cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3841 	atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3842 	atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3843 
3844 	/*
3845 	 * For WRITEs, let the fabric know its buffer is ready..
3846 	 * This WRITE struct se_cmd (and all of its associated struct se_task's)
3847 	 * will be added to the struct se_device execution queue after its WRITE
3848 	 * data has arrived. (ie: It gets handled by the transport processing
3849 	 * thread a second time)
3850 	 */
3851 	if (cmd->data_direction == DMA_TO_DEVICE) {
3852 		transport_add_tasks_to_state_queue(cmd);
3853 		return transport_generic_write_pending(cmd);
3854 	}
3855 	/*
3856 	 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3857 	 * to the execution queue.
3858 	 */
3859 	transport_execute_tasks(cmd);
3860 	return 0;
3861 
3862 out_fail:
3863 	cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3864 	cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3865 	return -EINVAL;
3866 }
3867 EXPORT_SYMBOL(transport_generic_new_cmd);
3868 
3869 /*	transport_generic_process_write():
3870  *
3871  *
3872  */
3873 void transport_generic_process_write(struct se_cmd *cmd)
3874 {
3875 	transport_execute_tasks(cmd);
3876 }
3877 EXPORT_SYMBOL(transport_generic_process_write);
3878 
3879 static void transport_write_pending_qf(struct se_cmd *cmd)
3880 {
3881 	int ret;
3882 
3883 	ret = cmd->se_tfo->write_pending(cmd);
3884 	if (ret == -EAGAIN || ret == -ENOMEM) {
3885 		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3886 			 cmd);
3887 		transport_handle_queue_full(cmd, cmd->se_dev);
3888 	}
3889 }
3890 
3891 static int transport_generic_write_pending(struct se_cmd *cmd)
3892 {
3893 	unsigned long flags;
3894 	int ret;
3895 
3896 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3897 	cmd->t_state = TRANSPORT_WRITE_PENDING;
3898 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3899 
3900 	/*
3901 	 * Clear the se_cmd for WRITE_PENDING status in order to set
3902 	 * cmd->t_transport_active=0 so that transport_generic_handle_data
3903 	 * can be called from HW target mode interrupt code.  This is safe
3904 	 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
3905 	 * because the se_cmd->se_lun pointer is not being cleared.
3906 	 */
3907 	transport_cmd_check_stop(cmd, 1, 0);
3908 
3909 	/*
3910 	 * Call the fabric write_pending function here to let the
3911 	 * frontend know that WRITE buffers are ready.
3912 	 */
3913 	ret = cmd->se_tfo->write_pending(cmd);
3914 	if (ret == -EAGAIN || ret == -ENOMEM)
3915 		goto queue_full;
3916 	else if (ret < 0)
3917 		return ret;
3918 
3919 	return 1;
3920 
3921 queue_full:
3922 	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3923 	cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3924 	transport_handle_queue_full(cmd, cmd->se_dev);
3925 	return 0;
3926 }
3927 
3928 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3929 {
3930 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3931 		if (wait_for_tasks && cmd->se_tmr_req)
3932 			 transport_wait_for_tasks(cmd);
3933 
3934 		transport_release_cmd(cmd);
3935 	} else {
3936 		if (wait_for_tasks)
3937 			transport_wait_for_tasks(cmd);
3938 
3939 		core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3940 
3941 		if (cmd->se_lun)
3942 			transport_lun_remove_cmd(cmd);
3943 
3944 		transport_free_dev_tasks(cmd);
3945 
3946 		transport_put_cmd(cmd);
3947 	}
3948 }
3949 EXPORT_SYMBOL(transport_generic_free_cmd);
3950 
3951 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3952  * @se_sess:	session to reference
3953  * @se_cmd:	command descriptor to add
3954  * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
3955  */
3956 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
3957 			bool ack_kref)
3958 {
3959 	unsigned long flags;
3960 
3961 	kref_init(&se_cmd->cmd_kref);
3962 	/*
3963 	 * Add a second kref if the fabric caller is expecting to handle
3964 	 * fabric acknowledgement that requires two target_put_sess_cmd()
3965 	 * invocations before se_cmd descriptor release.
3966 	 */
3967 	if (ack_kref == true)
3968 		kref_get(&se_cmd->cmd_kref);
3969 
3970 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3971 	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
3972 	se_cmd->check_release = 1;
3973 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3974 }
3975 EXPORT_SYMBOL(target_get_sess_cmd);
3976 
3977 static void target_release_cmd_kref(struct kref *kref)
3978 {
3979 	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
3980 	struct se_session *se_sess = se_cmd->se_sess;
3981 	unsigned long flags;
3982 
3983 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3984 	if (list_empty(&se_cmd->se_cmd_list)) {
3985 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3986 		WARN_ON(1);
3987 		return;
3988 	}
3989 	if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
3990 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3991 		complete(&se_cmd->cmd_wait_comp);
3992 		return;
3993 	}
3994 	list_del(&se_cmd->se_cmd_list);
3995 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3996 
3997 	se_cmd->se_tfo->release_cmd(se_cmd);
3998 }
3999 
4000 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
4001  * @se_sess:	session to reference
4002  * @se_cmd:	command descriptor to drop
4003  */
4004 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
4005 {
4006 	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
4007 }
4008 EXPORT_SYMBOL(target_put_sess_cmd);
4009 
4010 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4011  * @se_sess:	session to split
4012  */
4013 void target_splice_sess_cmd_list(struct se_session *se_sess)
4014 {
4015 	struct se_cmd *se_cmd;
4016 	unsigned long flags;
4017 
4018 	WARN_ON(!list_empty(&se_sess->sess_wait_list));
4019 	INIT_LIST_HEAD(&se_sess->sess_wait_list);
4020 
4021 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4022 	se_sess->sess_tearing_down = 1;
4023 
4024 	list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4025 
4026 	list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4027 		se_cmd->cmd_wait_set = 1;
4028 
4029 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4030 }
4031 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4032 
4033 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4034  * @se_sess:    session to wait for active I/O
4035  * @wait_for_tasks:	Make extra transport_wait_for_tasks call
4036  */
4037 void target_wait_for_sess_cmds(
4038 	struct se_session *se_sess,
4039 	int wait_for_tasks)
4040 {
4041 	struct se_cmd *se_cmd, *tmp_cmd;
4042 	bool rc = false;
4043 
4044 	list_for_each_entry_safe(se_cmd, tmp_cmd,
4045 				&se_sess->sess_wait_list, se_cmd_list) {
4046 		list_del(&se_cmd->se_cmd_list);
4047 
4048 		pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4049 			" %d\n", se_cmd, se_cmd->t_state,
4050 			se_cmd->se_tfo->get_cmd_state(se_cmd));
4051 
4052 		if (wait_for_tasks) {
4053 			pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4054 				" fabric state: %d\n", se_cmd, se_cmd->t_state,
4055 				se_cmd->se_tfo->get_cmd_state(se_cmd));
4056 
4057 			rc = transport_wait_for_tasks(se_cmd);
4058 
4059 			pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4060 				" fabric state: %d\n", se_cmd, se_cmd->t_state,
4061 				se_cmd->se_tfo->get_cmd_state(se_cmd));
4062 		}
4063 
4064 		if (!rc) {
4065 			wait_for_completion(&se_cmd->cmd_wait_comp);
4066 			pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4067 				" fabric state: %d\n", se_cmd, se_cmd->t_state,
4068 				se_cmd->se_tfo->get_cmd_state(se_cmd));
4069 		}
4070 
4071 		se_cmd->se_tfo->release_cmd(se_cmd);
4072 	}
4073 }
4074 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4075 
4076 /*	transport_lun_wait_for_tasks():
4077  *
4078  *	Called from ConfigFS context to stop the passed struct se_cmd to allow
4079  *	an struct se_lun to be successfully shutdown.
4080  */
4081 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4082 {
4083 	unsigned long flags;
4084 	int ret;
4085 	/*
4086 	 * If the frontend has already requested this struct se_cmd to
4087 	 * be stopped, we can safely ignore this struct se_cmd.
4088 	 */
4089 	spin_lock_irqsave(&cmd->t_state_lock, flags);
4090 	if (atomic_read(&cmd->t_transport_stop)) {
4091 		atomic_set(&cmd->transport_lun_stop, 0);
4092 		pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4093 			" TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4094 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4095 		transport_cmd_check_stop(cmd, 1, 0);
4096 		return -EPERM;
4097 	}
4098 	atomic_set(&cmd->transport_lun_fe_stop, 1);
4099 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4100 
4101 	wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4102 
4103 	ret = transport_stop_tasks_for_cmd(cmd);
4104 
4105 	pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4106 			" %d\n", cmd, cmd->t_task_list_num, ret);
4107 	if (!ret) {
4108 		pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4109 				cmd->se_tfo->get_task_tag(cmd));
4110 		wait_for_completion(&cmd->transport_lun_stop_comp);
4111 		pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4112 				cmd->se_tfo->get_task_tag(cmd));
4113 	}
4114 	transport_remove_cmd_from_queue(cmd);
4115 
4116 	return 0;
4117 }
4118 
4119 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4120 {
4121 	struct se_cmd *cmd = NULL;
4122 	unsigned long lun_flags, cmd_flags;
4123 	/*
4124 	 * Do exception processing and return CHECK_CONDITION status to the
4125 	 * Initiator Port.
4126 	 */
4127 	spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4128 	while (!list_empty(&lun->lun_cmd_list)) {
4129 		cmd = list_first_entry(&lun->lun_cmd_list,
4130 		       struct se_cmd, se_lun_node);
4131 		list_del(&cmd->se_lun_node);
4132 
4133 		atomic_set(&cmd->transport_lun_active, 0);
4134 		/*
4135 		 * This will notify iscsi_target_transport.c:
4136 		 * transport_cmd_check_stop() that a LUN shutdown is in
4137 		 * progress for the iscsi_cmd_t.
4138 		 */
4139 		spin_lock(&cmd->t_state_lock);
4140 		pr_debug("SE_LUN[%d] - Setting cmd->transport"
4141 			"_lun_stop for  ITT: 0x%08x\n",
4142 			cmd->se_lun->unpacked_lun,
4143 			cmd->se_tfo->get_task_tag(cmd));
4144 		atomic_set(&cmd->transport_lun_stop, 1);
4145 		spin_unlock(&cmd->t_state_lock);
4146 
4147 		spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4148 
4149 		if (!cmd->se_lun) {
4150 			pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4151 				cmd->se_tfo->get_task_tag(cmd),
4152 				cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4153 			BUG();
4154 		}
4155 		/*
4156 		 * If the Storage engine still owns the iscsi_cmd_t, determine
4157 		 * and/or stop its context.
4158 		 */
4159 		pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4160 			"_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4161 			cmd->se_tfo->get_task_tag(cmd));
4162 
4163 		if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4164 			spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4165 			continue;
4166 		}
4167 
4168 		pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4169 			"_wait_for_tasks(): SUCCESS\n",
4170 			cmd->se_lun->unpacked_lun,
4171 			cmd->se_tfo->get_task_tag(cmd));
4172 
4173 		spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4174 		if (!atomic_read(&cmd->transport_dev_active)) {
4175 			spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4176 			goto check_cond;
4177 		}
4178 		atomic_set(&cmd->transport_dev_active, 0);
4179 		transport_all_task_dev_remove_state(cmd);
4180 		spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4181 
4182 		transport_free_dev_tasks(cmd);
4183 		/*
4184 		 * The Storage engine stopped this struct se_cmd before it was
4185 		 * send to the fabric frontend for delivery back to the
4186 		 * Initiator Node.  Return this SCSI CDB back with an
4187 		 * CHECK_CONDITION status.
4188 		 */
4189 check_cond:
4190 		transport_send_check_condition_and_sense(cmd,
4191 				TCM_NON_EXISTENT_LUN, 0);
4192 		/*
4193 		 *  If the fabric frontend is waiting for this iscsi_cmd_t to
4194 		 * be released, notify the waiting thread now that LU has
4195 		 * finished accessing it.
4196 		 */
4197 		spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4198 		if (atomic_read(&cmd->transport_lun_fe_stop)) {
4199 			pr_debug("SE_LUN[%d] - Detected FE stop for"
4200 				" struct se_cmd: %p ITT: 0x%08x\n",
4201 				lun->unpacked_lun,
4202 				cmd, cmd->se_tfo->get_task_tag(cmd));
4203 
4204 			spin_unlock_irqrestore(&cmd->t_state_lock,
4205 					cmd_flags);
4206 			transport_cmd_check_stop(cmd, 1, 0);
4207 			complete(&cmd->transport_lun_fe_stop_comp);
4208 			spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4209 			continue;
4210 		}
4211 		pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4212 			lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4213 
4214 		spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4215 		spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4216 	}
4217 	spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4218 }
4219 
4220 static int transport_clear_lun_thread(void *p)
4221 {
4222 	struct se_lun *lun = p;
4223 
4224 	__transport_clear_lun_from_sessions(lun);
4225 	complete(&lun->lun_shutdown_comp);
4226 
4227 	return 0;
4228 }
4229 
4230 int transport_clear_lun_from_sessions(struct se_lun *lun)
4231 {
4232 	struct task_struct *kt;
4233 
4234 	kt = kthread_run(transport_clear_lun_thread, lun,
4235 			"tcm_cl_%u", lun->unpacked_lun);
4236 	if (IS_ERR(kt)) {
4237 		pr_err("Unable to start clear_lun thread\n");
4238 		return PTR_ERR(kt);
4239 	}
4240 	wait_for_completion(&lun->lun_shutdown_comp);
4241 
4242 	return 0;
4243 }
4244 
4245 /**
4246  * transport_wait_for_tasks - wait for completion to occur
4247  * @cmd:	command to wait
4248  *
4249  * Called from frontend fabric context to wait for storage engine
4250  * to pause and/or release frontend generated struct se_cmd.
4251  */
4252 bool transport_wait_for_tasks(struct se_cmd *cmd)
4253 {
4254 	unsigned long flags;
4255 
4256 	spin_lock_irqsave(&cmd->t_state_lock, flags);
4257 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4258 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4259 		return false;
4260 	}
4261 	/*
4262 	 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4263 	 * has been set in transport_set_supported_SAM_opcode().
4264 	 */
4265 	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4266 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4267 		return false;
4268 	}
4269 	/*
4270 	 * If we are already stopped due to an external event (ie: LUN shutdown)
4271 	 * sleep until the connection can have the passed struct se_cmd back.
4272 	 * The cmd->transport_lun_stopped_sem will be upped by
4273 	 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4274 	 * has completed its operation on the struct se_cmd.
4275 	 */
4276 	if (atomic_read(&cmd->transport_lun_stop)) {
4277 
4278 		pr_debug("wait_for_tasks: Stopping"
4279 			" wait_for_completion(&cmd->t_tasktransport_lun_fe"
4280 			"_stop_comp); for ITT: 0x%08x\n",
4281 			cmd->se_tfo->get_task_tag(cmd));
4282 		/*
4283 		 * There is a special case for WRITES where a FE exception +
4284 		 * LUN shutdown means ConfigFS context is still sleeping on
4285 		 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4286 		 * We go ahead and up transport_lun_stop_comp just to be sure
4287 		 * here.
4288 		 */
4289 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4290 		complete(&cmd->transport_lun_stop_comp);
4291 		wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4292 		spin_lock_irqsave(&cmd->t_state_lock, flags);
4293 
4294 		transport_all_task_dev_remove_state(cmd);
4295 		/*
4296 		 * At this point, the frontend who was the originator of this
4297 		 * struct se_cmd, now owns the structure and can be released through
4298 		 * normal means below.
4299 		 */
4300 		pr_debug("wait_for_tasks: Stopped"
4301 			" wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4302 			"stop_comp); for ITT: 0x%08x\n",
4303 			cmd->se_tfo->get_task_tag(cmd));
4304 
4305 		atomic_set(&cmd->transport_lun_stop, 0);
4306 	}
4307 	if (!atomic_read(&cmd->t_transport_active) ||
4308 	     atomic_read(&cmd->t_transport_aborted)) {
4309 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4310 		return false;
4311 	}
4312 
4313 	atomic_set(&cmd->t_transport_stop, 1);
4314 
4315 	pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4316 		" i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4317 		cmd, cmd->se_tfo->get_task_tag(cmd),
4318 		cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4319 
4320 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4321 
4322 	wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4323 
4324 	wait_for_completion(&cmd->t_transport_stop_comp);
4325 
4326 	spin_lock_irqsave(&cmd->t_state_lock, flags);
4327 	atomic_set(&cmd->t_transport_active, 0);
4328 	atomic_set(&cmd->t_transport_stop, 0);
4329 
4330 	pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4331 		"&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4332 		cmd->se_tfo->get_task_tag(cmd));
4333 
4334 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4335 
4336 	return true;
4337 }
4338 EXPORT_SYMBOL(transport_wait_for_tasks);
4339 
4340 static int transport_get_sense_codes(
4341 	struct se_cmd *cmd,
4342 	u8 *asc,
4343 	u8 *ascq)
4344 {
4345 	*asc = cmd->scsi_asc;
4346 	*ascq = cmd->scsi_ascq;
4347 
4348 	return 0;
4349 }
4350 
4351 static int transport_set_sense_codes(
4352 	struct se_cmd *cmd,
4353 	u8 asc,
4354 	u8 ascq)
4355 {
4356 	cmd->scsi_asc = asc;
4357 	cmd->scsi_ascq = ascq;
4358 
4359 	return 0;
4360 }
4361 
4362 int transport_send_check_condition_and_sense(
4363 	struct se_cmd *cmd,
4364 	u8 reason,
4365 	int from_transport)
4366 {
4367 	unsigned char *buffer = cmd->sense_buffer;
4368 	unsigned long flags;
4369 	int offset;
4370 	u8 asc = 0, ascq = 0;
4371 
4372 	spin_lock_irqsave(&cmd->t_state_lock, flags);
4373 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4374 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4375 		return 0;
4376 	}
4377 	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4378 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4379 
4380 	if (!reason && from_transport)
4381 		goto after_reason;
4382 
4383 	if (!from_transport)
4384 		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4385 	/*
4386 	 * Data Segment and SenseLength of the fabric response PDU.
4387 	 *
4388 	 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4389 	 * from include/scsi/scsi_cmnd.h
4390 	 */
4391 	offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4392 				TRANSPORT_SENSE_BUFFER);
4393 	/*
4394 	 * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4395 	 * SENSE KEY values from include/scsi/scsi.h
4396 	 */
4397 	switch (reason) {
4398 	case TCM_NON_EXISTENT_LUN:
4399 		/* CURRENT ERROR */
4400 		buffer[offset] = 0x70;
4401 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4402 		/* ILLEGAL REQUEST */
4403 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4404 		/* LOGICAL UNIT NOT SUPPORTED */
4405 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4406 		break;
4407 	case TCM_UNSUPPORTED_SCSI_OPCODE:
4408 	case TCM_SECTOR_COUNT_TOO_MANY:
4409 		/* CURRENT ERROR */
4410 		buffer[offset] = 0x70;
4411 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4412 		/* ILLEGAL REQUEST */
4413 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4414 		/* INVALID COMMAND OPERATION CODE */
4415 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4416 		break;
4417 	case TCM_UNKNOWN_MODE_PAGE:
4418 		/* CURRENT ERROR */
4419 		buffer[offset] = 0x70;
4420 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4421 		/* ILLEGAL REQUEST */
4422 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4423 		/* INVALID FIELD IN CDB */
4424 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4425 		break;
4426 	case TCM_CHECK_CONDITION_ABORT_CMD:
4427 		/* CURRENT ERROR */
4428 		buffer[offset] = 0x70;
4429 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4430 		/* ABORTED COMMAND */
4431 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4432 		/* BUS DEVICE RESET FUNCTION OCCURRED */
4433 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4434 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4435 		break;
4436 	case TCM_INCORRECT_AMOUNT_OF_DATA:
4437 		/* CURRENT ERROR */
4438 		buffer[offset] = 0x70;
4439 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4440 		/* ABORTED COMMAND */
4441 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4442 		/* WRITE ERROR */
4443 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4444 		/* NOT ENOUGH UNSOLICITED DATA */
4445 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4446 		break;
4447 	case TCM_INVALID_CDB_FIELD:
4448 		/* CURRENT ERROR */
4449 		buffer[offset] = 0x70;
4450 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4451 		/* ABORTED COMMAND */
4452 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4453 		/* INVALID FIELD IN CDB */
4454 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4455 		break;
4456 	case TCM_INVALID_PARAMETER_LIST:
4457 		/* CURRENT ERROR */
4458 		buffer[offset] = 0x70;
4459 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4460 		/* ABORTED COMMAND */
4461 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4462 		/* INVALID FIELD IN PARAMETER LIST */
4463 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4464 		break;
4465 	case TCM_UNEXPECTED_UNSOLICITED_DATA:
4466 		/* CURRENT ERROR */
4467 		buffer[offset] = 0x70;
4468 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4469 		/* ABORTED COMMAND */
4470 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4471 		/* WRITE ERROR */
4472 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4473 		/* UNEXPECTED_UNSOLICITED_DATA */
4474 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4475 		break;
4476 	case TCM_SERVICE_CRC_ERROR:
4477 		/* CURRENT ERROR */
4478 		buffer[offset] = 0x70;
4479 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4480 		/* ABORTED COMMAND */
4481 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4482 		/* PROTOCOL SERVICE CRC ERROR */
4483 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4484 		/* N/A */
4485 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4486 		break;
4487 	case TCM_SNACK_REJECTED:
4488 		/* CURRENT ERROR */
4489 		buffer[offset] = 0x70;
4490 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4491 		/* ABORTED COMMAND */
4492 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4493 		/* READ ERROR */
4494 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4495 		/* FAILED RETRANSMISSION REQUEST */
4496 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4497 		break;
4498 	case TCM_WRITE_PROTECTED:
4499 		/* CURRENT ERROR */
4500 		buffer[offset] = 0x70;
4501 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4502 		/* DATA PROTECT */
4503 		buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4504 		/* WRITE PROTECTED */
4505 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4506 		break;
4507 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4508 		/* CURRENT ERROR */
4509 		buffer[offset] = 0x70;
4510 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4511 		/* UNIT ATTENTION */
4512 		buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4513 		core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4514 		buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4515 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4516 		break;
4517 	case TCM_CHECK_CONDITION_NOT_READY:
4518 		/* CURRENT ERROR */
4519 		buffer[offset] = 0x70;
4520 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4521 		/* Not Ready */
4522 		buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4523 		transport_get_sense_codes(cmd, &asc, &ascq);
4524 		buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4525 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4526 		break;
4527 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4528 	default:
4529 		/* CURRENT ERROR */
4530 		buffer[offset] = 0x70;
4531 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4532 		/* ILLEGAL REQUEST */
4533 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4534 		/* LOGICAL UNIT COMMUNICATION FAILURE */
4535 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4536 		break;
4537 	}
4538 	/*
4539 	 * This code uses linux/include/scsi/scsi.h SAM status codes!
4540 	 */
4541 	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4542 	/*
4543 	 * Automatically padded, this value is encoded in the fabric's
4544 	 * data_length response PDU containing the SCSI defined sense data.
4545 	 */
4546 	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4547 
4548 after_reason:
4549 	return cmd->se_tfo->queue_status(cmd);
4550 }
4551 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4552 
4553 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4554 {
4555 	int ret = 0;
4556 
4557 	if (atomic_read(&cmd->t_transport_aborted) != 0) {
4558 		if (!send_status ||
4559 		     (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4560 			return 1;
4561 #if 0
4562 		pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4563 			" status for CDB: 0x%02x ITT: 0x%08x\n",
4564 			cmd->t_task_cdb[0],
4565 			cmd->se_tfo->get_task_tag(cmd));
4566 #endif
4567 		cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4568 		cmd->se_tfo->queue_status(cmd);
4569 		ret = 1;
4570 	}
4571 	return ret;
4572 }
4573 EXPORT_SYMBOL(transport_check_aborted_status);
4574 
4575 void transport_send_task_abort(struct se_cmd *cmd)
4576 {
4577 	unsigned long flags;
4578 
4579 	spin_lock_irqsave(&cmd->t_state_lock, flags);
4580 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4581 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4582 		return;
4583 	}
4584 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4585 
4586 	/*
4587 	 * If there are still expected incoming fabric WRITEs, we wait
4588 	 * until until they have completed before sending a TASK_ABORTED
4589 	 * response.  This response with TASK_ABORTED status will be
4590 	 * queued back to fabric module by transport_check_aborted_status().
4591 	 */
4592 	if (cmd->data_direction == DMA_TO_DEVICE) {
4593 		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4594 			atomic_inc(&cmd->t_transport_aborted);
4595 			smp_mb__after_atomic_inc();
4596 		}
4597 	}
4598 	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4599 #if 0
4600 	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4601 		" ITT: 0x%08x\n", cmd->t_task_cdb[0],
4602 		cmd->se_tfo->get_task_tag(cmd));
4603 #endif
4604 	cmd->se_tfo->queue_status(cmd);
4605 }
4606 
4607 static int transport_generic_do_tmr(struct se_cmd *cmd)
4608 {
4609 	struct se_device *dev = cmd->se_dev;
4610 	struct se_tmr_req *tmr = cmd->se_tmr_req;
4611 	int ret;
4612 
4613 	switch (tmr->function) {
4614 	case TMR_ABORT_TASK:
4615 		tmr->response = TMR_FUNCTION_REJECTED;
4616 		break;
4617 	case TMR_ABORT_TASK_SET:
4618 	case TMR_CLEAR_ACA:
4619 	case TMR_CLEAR_TASK_SET:
4620 		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4621 		break;
4622 	case TMR_LUN_RESET:
4623 		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4624 		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4625 					 TMR_FUNCTION_REJECTED;
4626 		break;
4627 	case TMR_TARGET_WARM_RESET:
4628 		tmr->response = TMR_FUNCTION_REJECTED;
4629 		break;
4630 	case TMR_TARGET_COLD_RESET:
4631 		tmr->response = TMR_FUNCTION_REJECTED;
4632 		break;
4633 	default:
4634 		pr_err("Uknown TMR function: 0x%02x.\n",
4635 				tmr->function);
4636 		tmr->response = TMR_FUNCTION_REJECTED;
4637 		break;
4638 	}
4639 
4640 	cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4641 	cmd->se_tfo->queue_tm_rsp(cmd);
4642 
4643 	transport_cmd_check_stop_to_fabric(cmd);
4644 	return 0;
4645 }
4646 
4647 /*	transport_processing_thread():
4648  *
4649  *
4650  */
4651 static int transport_processing_thread(void *param)
4652 {
4653 	int ret;
4654 	struct se_cmd *cmd;
4655 	struct se_device *dev = param;
4656 
4657 	while (!kthread_should_stop()) {
4658 		ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4659 				atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4660 				kthread_should_stop());
4661 		if (ret < 0)
4662 			goto out;
4663 
4664 get_cmd:
4665 		cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4666 		if (!cmd)
4667 			continue;
4668 
4669 		switch (cmd->t_state) {
4670 		case TRANSPORT_NEW_CMD:
4671 			BUG();
4672 			break;
4673 		case TRANSPORT_NEW_CMD_MAP:
4674 			if (!cmd->se_tfo->new_cmd_map) {
4675 				pr_err("cmd->se_tfo->new_cmd_map is"
4676 					" NULL for TRANSPORT_NEW_CMD_MAP\n");
4677 				BUG();
4678 			}
4679 			ret = cmd->se_tfo->new_cmd_map(cmd);
4680 			if (ret < 0) {
4681 				transport_generic_request_failure(cmd);
4682 				break;
4683 			}
4684 			ret = transport_generic_new_cmd(cmd);
4685 			if (ret < 0) {
4686 				transport_generic_request_failure(cmd);
4687 				break;
4688 			}
4689 			break;
4690 		case TRANSPORT_PROCESS_WRITE:
4691 			transport_generic_process_write(cmd);
4692 			break;
4693 		case TRANSPORT_PROCESS_TMR:
4694 			transport_generic_do_tmr(cmd);
4695 			break;
4696 		case TRANSPORT_COMPLETE_QF_WP:
4697 			transport_write_pending_qf(cmd);
4698 			break;
4699 		case TRANSPORT_COMPLETE_QF_OK:
4700 			transport_complete_qf(cmd);
4701 			break;
4702 		default:
4703 			pr_err("Unknown t_state: %d  for ITT: 0x%08x "
4704 				"i_state: %d on SE LUN: %u\n",
4705 				cmd->t_state,
4706 				cmd->se_tfo->get_task_tag(cmd),
4707 				cmd->se_tfo->get_cmd_state(cmd),
4708 				cmd->se_lun->unpacked_lun);
4709 			BUG();
4710 		}
4711 
4712 		goto get_cmd;
4713 	}
4714 
4715 out:
4716 	WARN_ON(!list_empty(&dev->state_task_list));
4717 	WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4718 	dev->process_thread = NULL;
4719 	return 0;
4720 }
4721