1 /******************************************************************************* 2 * Filename: target_core_transport.c 3 * 4 * This file contains the Generic Target Engine Core. 5 * 6 * (c) Copyright 2002-2013 Datera, Inc. 7 * 8 * Nicholas A. Bellinger <nab@kernel.org> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 23 * 24 ******************************************************************************/ 25 26 #include <linux/net.h> 27 #include <linux/delay.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/slab.h> 31 #include <linux/spinlock.h> 32 #include <linux/kthread.h> 33 #include <linux/in.h> 34 #include <linux/cdrom.h> 35 #include <linux/module.h> 36 #include <linux/ratelimit.h> 37 #include <asm/unaligned.h> 38 #include <net/sock.h> 39 #include <net/tcp.h> 40 #include <scsi/scsi.h> 41 #include <scsi/scsi_cmnd.h> 42 #include <scsi/scsi_tcq.h> 43 44 #include <target/target_core_base.h> 45 #include <target/target_core_backend.h> 46 #include <target/target_core_fabric.h> 47 #include <target/target_core_configfs.h> 48 49 #include "target_core_internal.h" 50 #include "target_core_alua.h" 51 #include "target_core_pr.h" 52 #include "target_core_ua.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/target.h> 56 57 static struct workqueue_struct *target_completion_wq; 58 static struct kmem_cache *se_sess_cache; 59 struct kmem_cache *se_ua_cache; 60 struct kmem_cache *t10_pr_reg_cache; 61 struct kmem_cache *t10_alua_lu_gp_cache; 62 struct kmem_cache *t10_alua_lu_gp_mem_cache; 63 struct kmem_cache *t10_alua_tg_pt_gp_cache; 64 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache; 65 struct kmem_cache *t10_alua_lba_map_cache; 66 struct kmem_cache *t10_alua_lba_map_mem_cache; 67 68 static void transport_complete_task_attr(struct se_cmd *cmd); 69 static void transport_handle_queue_full(struct se_cmd *cmd, 70 struct se_device *dev); 71 static int transport_put_cmd(struct se_cmd *cmd); 72 static void target_complete_ok_work(struct work_struct *work); 73 74 int init_se_kmem_caches(void) 75 { 76 se_sess_cache = kmem_cache_create("se_sess_cache", 77 sizeof(struct se_session), __alignof__(struct se_session), 78 0, NULL); 79 if (!se_sess_cache) { 80 pr_err("kmem_cache_create() for struct se_session" 81 " failed\n"); 82 goto out; 83 } 84 se_ua_cache = kmem_cache_create("se_ua_cache", 85 sizeof(struct se_ua), __alignof__(struct se_ua), 86 0, NULL); 87 if (!se_ua_cache) { 88 pr_err("kmem_cache_create() for struct se_ua failed\n"); 89 goto out_free_sess_cache; 90 } 91 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 92 sizeof(struct t10_pr_registration), 93 __alignof__(struct t10_pr_registration), 0, NULL); 94 if (!t10_pr_reg_cache) { 95 pr_err("kmem_cache_create() for struct t10_pr_registration" 96 " failed\n"); 97 goto out_free_ua_cache; 98 } 99 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 100 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 101 0, NULL); 102 if (!t10_alua_lu_gp_cache) { 103 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 104 " failed\n"); 105 goto out_free_pr_reg_cache; 106 } 107 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 108 sizeof(struct t10_alua_lu_gp_member), 109 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 110 if (!t10_alua_lu_gp_mem_cache) { 111 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 112 "cache failed\n"); 113 goto out_free_lu_gp_cache; 114 } 115 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 116 sizeof(struct t10_alua_tg_pt_gp), 117 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 118 if (!t10_alua_tg_pt_gp_cache) { 119 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 120 "cache failed\n"); 121 goto out_free_lu_gp_mem_cache; 122 } 123 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create( 124 "t10_alua_tg_pt_gp_mem_cache", 125 sizeof(struct t10_alua_tg_pt_gp_member), 126 __alignof__(struct t10_alua_tg_pt_gp_member), 127 0, NULL); 128 if (!t10_alua_tg_pt_gp_mem_cache) { 129 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 130 "mem_t failed\n"); 131 goto out_free_tg_pt_gp_cache; 132 } 133 t10_alua_lba_map_cache = kmem_cache_create( 134 "t10_alua_lba_map_cache", 135 sizeof(struct t10_alua_lba_map), 136 __alignof__(struct t10_alua_lba_map), 0, NULL); 137 if (!t10_alua_lba_map_cache) { 138 pr_err("kmem_cache_create() for t10_alua_lba_map_" 139 "cache failed\n"); 140 goto out_free_tg_pt_gp_mem_cache; 141 } 142 t10_alua_lba_map_mem_cache = kmem_cache_create( 143 "t10_alua_lba_map_mem_cache", 144 sizeof(struct t10_alua_lba_map_member), 145 __alignof__(struct t10_alua_lba_map_member), 0, NULL); 146 if (!t10_alua_lba_map_mem_cache) { 147 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_" 148 "cache failed\n"); 149 goto out_free_lba_map_cache; 150 } 151 152 target_completion_wq = alloc_workqueue("target_completion", 153 WQ_MEM_RECLAIM, 0); 154 if (!target_completion_wq) 155 goto out_free_lba_map_mem_cache; 156 157 return 0; 158 159 out_free_lba_map_mem_cache: 160 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 161 out_free_lba_map_cache: 162 kmem_cache_destroy(t10_alua_lba_map_cache); 163 out_free_tg_pt_gp_mem_cache: 164 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 165 out_free_tg_pt_gp_cache: 166 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 167 out_free_lu_gp_mem_cache: 168 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 169 out_free_lu_gp_cache: 170 kmem_cache_destroy(t10_alua_lu_gp_cache); 171 out_free_pr_reg_cache: 172 kmem_cache_destroy(t10_pr_reg_cache); 173 out_free_ua_cache: 174 kmem_cache_destroy(se_ua_cache); 175 out_free_sess_cache: 176 kmem_cache_destroy(se_sess_cache); 177 out: 178 return -ENOMEM; 179 } 180 181 void release_se_kmem_caches(void) 182 { 183 destroy_workqueue(target_completion_wq); 184 kmem_cache_destroy(se_sess_cache); 185 kmem_cache_destroy(se_ua_cache); 186 kmem_cache_destroy(t10_pr_reg_cache); 187 kmem_cache_destroy(t10_alua_lu_gp_cache); 188 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 189 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 190 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 191 kmem_cache_destroy(t10_alua_lba_map_cache); 192 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 193 } 194 195 /* This code ensures unique mib indexes are handed out. */ 196 static DEFINE_SPINLOCK(scsi_mib_index_lock); 197 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 198 199 /* 200 * Allocate a new row index for the entry type specified 201 */ 202 u32 scsi_get_new_index(scsi_index_t type) 203 { 204 u32 new_index; 205 206 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 207 208 spin_lock(&scsi_mib_index_lock); 209 new_index = ++scsi_mib_index[type]; 210 spin_unlock(&scsi_mib_index_lock); 211 212 return new_index; 213 } 214 215 void transport_subsystem_check_init(void) 216 { 217 int ret; 218 static int sub_api_initialized; 219 220 if (sub_api_initialized) 221 return; 222 223 ret = request_module("target_core_iblock"); 224 if (ret != 0) 225 pr_err("Unable to load target_core_iblock\n"); 226 227 ret = request_module("target_core_file"); 228 if (ret != 0) 229 pr_err("Unable to load target_core_file\n"); 230 231 ret = request_module("target_core_pscsi"); 232 if (ret != 0) 233 pr_err("Unable to load target_core_pscsi\n"); 234 235 ret = request_module("target_core_user"); 236 if (ret != 0) 237 pr_err("Unable to load target_core_user\n"); 238 239 sub_api_initialized = 1; 240 } 241 242 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops) 243 { 244 struct se_session *se_sess; 245 246 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 247 if (!se_sess) { 248 pr_err("Unable to allocate struct se_session from" 249 " se_sess_cache\n"); 250 return ERR_PTR(-ENOMEM); 251 } 252 INIT_LIST_HEAD(&se_sess->sess_list); 253 INIT_LIST_HEAD(&se_sess->sess_acl_list); 254 INIT_LIST_HEAD(&se_sess->sess_cmd_list); 255 INIT_LIST_HEAD(&se_sess->sess_wait_list); 256 spin_lock_init(&se_sess->sess_cmd_lock); 257 kref_init(&se_sess->sess_kref); 258 se_sess->sup_prot_ops = sup_prot_ops; 259 260 return se_sess; 261 } 262 EXPORT_SYMBOL(transport_init_session); 263 264 int transport_alloc_session_tags(struct se_session *se_sess, 265 unsigned int tag_num, unsigned int tag_size) 266 { 267 int rc; 268 269 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size, 270 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 271 if (!se_sess->sess_cmd_map) { 272 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size); 273 if (!se_sess->sess_cmd_map) { 274 pr_err("Unable to allocate se_sess->sess_cmd_map\n"); 275 return -ENOMEM; 276 } 277 } 278 279 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num); 280 if (rc < 0) { 281 pr_err("Unable to init se_sess->sess_tag_pool," 282 " tag_num: %u\n", tag_num); 283 if (is_vmalloc_addr(se_sess->sess_cmd_map)) 284 vfree(se_sess->sess_cmd_map); 285 else 286 kfree(se_sess->sess_cmd_map); 287 se_sess->sess_cmd_map = NULL; 288 return -ENOMEM; 289 } 290 291 return 0; 292 } 293 EXPORT_SYMBOL(transport_alloc_session_tags); 294 295 struct se_session *transport_init_session_tags(unsigned int tag_num, 296 unsigned int tag_size, 297 enum target_prot_op sup_prot_ops) 298 { 299 struct se_session *se_sess; 300 int rc; 301 302 se_sess = transport_init_session(sup_prot_ops); 303 if (IS_ERR(se_sess)) 304 return se_sess; 305 306 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size); 307 if (rc < 0) { 308 transport_free_session(se_sess); 309 return ERR_PTR(-ENOMEM); 310 } 311 312 return se_sess; 313 } 314 EXPORT_SYMBOL(transport_init_session_tags); 315 316 /* 317 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 318 */ 319 void __transport_register_session( 320 struct se_portal_group *se_tpg, 321 struct se_node_acl *se_nacl, 322 struct se_session *se_sess, 323 void *fabric_sess_ptr) 324 { 325 unsigned char buf[PR_REG_ISID_LEN]; 326 327 se_sess->se_tpg = se_tpg; 328 se_sess->fabric_sess_ptr = fabric_sess_ptr; 329 /* 330 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 331 * 332 * Only set for struct se_session's that will actually be moving I/O. 333 * eg: *NOT* discovery sessions. 334 */ 335 if (se_nacl) { 336 /* 337 * If the fabric module supports an ISID based TransportID, 338 * save this value in binary from the fabric I_T Nexus now. 339 */ 340 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 341 memset(&buf[0], 0, PR_REG_ISID_LEN); 342 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 343 &buf[0], PR_REG_ISID_LEN); 344 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 345 } 346 kref_get(&se_nacl->acl_kref); 347 348 spin_lock_irq(&se_nacl->nacl_sess_lock); 349 /* 350 * The se_nacl->nacl_sess pointer will be set to the 351 * last active I_T Nexus for each struct se_node_acl. 352 */ 353 se_nacl->nacl_sess = se_sess; 354 355 list_add_tail(&se_sess->sess_acl_list, 356 &se_nacl->acl_sess_list); 357 spin_unlock_irq(&se_nacl->nacl_sess_lock); 358 } 359 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 360 361 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 362 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr); 363 } 364 EXPORT_SYMBOL(__transport_register_session); 365 366 void transport_register_session( 367 struct se_portal_group *se_tpg, 368 struct se_node_acl *se_nacl, 369 struct se_session *se_sess, 370 void *fabric_sess_ptr) 371 { 372 unsigned long flags; 373 374 spin_lock_irqsave(&se_tpg->session_lock, flags); 375 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 376 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 377 } 378 EXPORT_SYMBOL(transport_register_session); 379 380 static void target_release_session(struct kref *kref) 381 { 382 struct se_session *se_sess = container_of(kref, 383 struct se_session, sess_kref); 384 struct se_portal_group *se_tpg = se_sess->se_tpg; 385 386 se_tpg->se_tpg_tfo->close_session(se_sess); 387 } 388 389 void target_get_session(struct se_session *se_sess) 390 { 391 kref_get(&se_sess->sess_kref); 392 } 393 EXPORT_SYMBOL(target_get_session); 394 395 void target_put_session(struct se_session *se_sess) 396 { 397 struct se_portal_group *tpg = se_sess->se_tpg; 398 399 if (tpg->se_tpg_tfo->put_session != NULL) { 400 tpg->se_tpg_tfo->put_session(se_sess); 401 return; 402 } 403 kref_put(&se_sess->sess_kref, target_release_session); 404 } 405 EXPORT_SYMBOL(target_put_session); 406 407 static void target_complete_nacl(struct kref *kref) 408 { 409 struct se_node_acl *nacl = container_of(kref, 410 struct se_node_acl, acl_kref); 411 412 complete(&nacl->acl_free_comp); 413 } 414 415 void target_put_nacl(struct se_node_acl *nacl) 416 { 417 kref_put(&nacl->acl_kref, target_complete_nacl); 418 } 419 420 void transport_deregister_session_configfs(struct se_session *se_sess) 421 { 422 struct se_node_acl *se_nacl; 423 unsigned long flags; 424 /* 425 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 426 */ 427 se_nacl = se_sess->se_node_acl; 428 if (se_nacl) { 429 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 430 if (se_nacl->acl_stop == 0) 431 list_del(&se_sess->sess_acl_list); 432 /* 433 * If the session list is empty, then clear the pointer. 434 * Otherwise, set the struct se_session pointer from the tail 435 * element of the per struct se_node_acl active session list. 436 */ 437 if (list_empty(&se_nacl->acl_sess_list)) 438 se_nacl->nacl_sess = NULL; 439 else { 440 se_nacl->nacl_sess = container_of( 441 se_nacl->acl_sess_list.prev, 442 struct se_session, sess_acl_list); 443 } 444 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 445 } 446 } 447 EXPORT_SYMBOL(transport_deregister_session_configfs); 448 449 void transport_free_session(struct se_session *se_sess) 450 { 451 if (se_sess->sess_cmd_map) { 452 percpu_ida_destroy(&se_sess->sess_tag_pool); 453 if (is_vmalloc_addr(se_sess->sess_cmd_map)) 454 vfree(se_sess->sess_cmd_map); 455 else 456 kfree(se_sess->sess_cmd_map); 457 } 458 kmem_cache_free(se_sess_cache, se_sess); 459 } 460 EXPORT_SYMBOL(transport_free_session); 461 462 void transport_deregister_session(struct se_session *se_sess) 463 { 464 struct se_portal_group *se_tpg = se_sess->se_tpg; 465 struct target_core_fabric_ops *se_tfo; 466 struct se_node_acl *se_nacl; 467 unsigned long flags; 468 bool comp_nacl = true; 469 470 if (!se_tpg) { 471 transport_free_session(se_sess); 472 return; 473 } 474 se_tfo = se_tpg->se_tpg_tfo; 475 476 spin_lock_irqsave(&se_tpg->session_lock, flags); 477 list_del(&se_sess->sess_list); 478 se_sess->se_tpg = NULL; 479 se_sess->fabric_sess_ptr = NULL; 480 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 481 482 /* 483 * Determine if we need to do extra work for this initiator node's 484 * struct se_node_acl if it had been previously dynamically generated. 485 */ 486 se_nacl = se_sess->se_node_acl; 487 488 spin_lock_irqsave(&se_tpg->acl_node_lock, flags); 489 if (se_nacl && se_nacl->dynamic_node_acl) { 490 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 491 list_del(&se_nacl->acl_list); 492 se_tpg->num_node_acls--; 493 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); 494 core_tpg_wait_for_nacl_pr_ref(se_nacl); 495 core_free_device_list_for_node(se_nacl, se_tpg); 496 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl); 497 498 comp_nacl = false; 499 spin_lock_irqsave(&se_tpg->acl_node_lock, flags); 500 } 501 } 502 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); 503 504 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 505 se_tpg->se_tpg_tfo->get_fabric_name()); 506 /* 507 * If last kref is dropping now for an explicit NodeACL, awake sleeping 508 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 509 * removal context. 510 */ 511 if (se_nacl && comp_nacl) 512 target_put_nacl(se_nacl); 513 514 transport_free_session(se_sess); 515 } 516 EXPORT_SYMBOL(transport_deregister_session); 517 518 /* 519 * Called with cmd->t_state_lock held. 520 */ 521 static void target_remove_from_state_list(struct se_cmd *cmd) 522 { 523 struct se_device *dev = cmd->se_dev; 524 unsigned long flags; 525 526 if (!dev) 527 return; 528 529 if (cmd->transport_state & CMD_T_BUSY) 530 return; 531 532 spin_lock_irqsave(&dev->execute_task_lock, flags); 533 if (cmd->state_active) { 534 list_del(&cmd->state_list); 535 cmd->state_active = false; 536 } 537 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 538 } 539 540 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists, 541 bool write_pending) 542 { 543 unsigned long flags; 544 545 spin_lock_irqsave(&cmd->t_state_lock, flags); 546 if (write_pending) 547 cmd->t_state = TRANSPORT_WRITE_PENDING; 548 549 if (remove_from_lists) { 550 target_remove_from_state_list(cmd); 551 552 /* 553 * Clear struct se_cmd->se_lun before the handoff to FE. 554 */ 555 cmd->se_lun = NULL; 556 } 557 558 /* 559 * Determine if frontend context caller is requesting the stopping of 560 * this command for frontend exceptions. 561 */ 562 if (cmd->transport_state & CMD_T_STOP) { 563 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n", 564 __func__, __LINE__, 565 cmd->se_tfo->get_task_tag(cmd)); 566 567 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 568 569 complete_all(&cmd->t_transport_stop_comp); 570 return 1; 571 } 572 573 cmd->transport_state &= ~CMD_T_ACTIVE; 574 if (remove_from_lists) { 575 /* 576 * Some fabric modules like tcm_loop can release 577 * their internally allocated I/O reference now and 578 * struct se_cmd now. 579 * 580 * Fabric modules are expected to return '1' here if the 581 * se_cmd being passed is released at this point, 582 * or zero if not being released. 583 */ 584 if (cmd->se_tfo->check_stop_free != NULL) { 585 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 586 return cmd->se_tfo->check_stop_free(cmd); 587 } 588 } 589 590 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 591 return 0; 592 } 593 594 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 595 { 596 return transport_cmd_check_stop(cmd, true, false); 597 } 598 599 static void transport_lun_remove_cmd(struct se_cmd *cmd) 600 { 601 struct se_lun *lun = cmd->se_lun; 602 603 if (!lun) 604 return; 605 606 if (cmpxchg(&cmd->lun_ref_active, true, false)) 607 percpu_ref_put(&lun->lun_ref); 608 } 609 610 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove) 611 { 612 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) 613 transport_lun_remove_cmd(cmd); 614 /* 615 * Allow the fabric driver to unmap any resources before 616 * releasing the descriptor via TFO->release_cmd() 617 */ 618 if (remove) 619 cmd->se_tfo->aborted_task(cmd); 620 621 if (transport_cmd_check_stop_to_fabric(cmd)) 622 return; 623 if (remove) 624 transport_put_cmd(cmd); 625 } 626 627 static void target_complete_failure_work(struct work_struct *work) 628 { 629 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 630 631 transport_generic_request_failure(cmd, 632 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 633 } 634 635 /* 636 * Used when asking transport to copy Sense Data from the underlying 637 * Linux/SCSI struct scsi_cmnd 638 */ 639 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 640 { 641 struct se_device *dev = cmd->se_dev; 642 643 WARN_ON(!cmd->se_lun); 644 645 if (!dev) 646 return NULL; 647 648 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 649 return NULL; 650 651 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 652 653 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 654 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 655 return cmd->sense_buffer; 656 } 657 658 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 659 { 660 struct se_device *dev = cmd->se_dev; 661 int success = scsi_status == GOOD; 662 unsigned long flags; 663 664 cmd->scsi_status = scsi_status; 665 666 667 spin_lock_irqsave(&cmd->t_state_lock, flags); 668 cmd->transport_state &= ~CMD_T_BUSY; 669 670 if (dev && dev->transport->transport_complete) { 671 dev->transport->transport_complete(cmd, 672 cmd->t_data_sg, 673 transport_get_sense_buffer(cmd)); 674 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 675 success = 1; 676 } 677 678 /* 679 * See if we are waiting to complete for an exception condition. 680 */ 681 if (cmd->transport_state & CMD_T_REQUEST_STOP) { 682 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 683 complete(&cmd->task_stop_comp); 684 return; 685 } 686 687 /* 688 * Check for case where an explicit ABORT_TASK has been received 689 * and transport_wait_for_tasks() will be waiting for completion.. 690 */ 691 if (cmd->transport_state & CMD_T_ABORTED && 692 cmd->transport_state & CMD_T_STOP) { 693 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 694 complete_all(&cmd->t_transport_stop_comp); 695 return; 696 } else if (!success) { 697 INIT_WORK(&cmd->work, target_complete_failure_work); 698 } else { 699 INIT_WORK(&cmd->work, target_complete_ok_work); 700 } 701 702 cmd->t_state = TRANSPORT_COMPLETE; 703 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 704 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 705 706 queue_work(target_completion_wq, &cmd->work); 707 } 708 EXPORT_SYMBOL(target_complete_cmd); 709 710 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length) 711 { 712 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) { 713 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 714 cmd->residual_count += cmd->data_length - length; 715 } else { 716 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 717 cmd->residual_count = cmd->data_length - length; 718 } 719 720 cmd->data_length = length; 721 } 722 723 target_complete_cmd(cmd, scsi_status); 724 } 725 EXPORT_SYMBOL(target_complete_cmd_with_length); 726 727 static void target_add_to_state_list(struct se_cmd *cmd) 728 { 729 struct se_device *dev = cmd->se_dev; 730 unsigned long flags; 731 732 spin_lock_irqsave(&dev->execute_task_lock, flags); 733 if (!cmd->state_active) { 734 list_add_tail(&cmd->state_list, &dev->state_list); 735 cmd->state_active = true; 736 } 737 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 738 } 739 740 /* 741 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 742 */ 743 static void transport_write_pending_qf(struct se_cmd *cmd); 744 static void transport_complete_qf(struct se_cmd *cmd); 745 746 void target_qf_do_work(struct work_struct *work) 747 { 748 struct se_device *dev = container_of(work, struct se_device, 749 qf_work_queue); 750 LIST_HEAD(qf_cmd_list); 751 struct se_cmd *cmd, *cmd_tmp; 752 753 spin_lock_irq(&dev->qf_cmd_lock); 754 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 755 spin_unlock_irq(&dev->qf_cmd_lock); 756 757 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 758 list_del(&cmd->se_qf_node); 759 atomic_dec_mb(&dev->dev_qf_count); 760 761 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 762 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd, 763 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 764 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 765 : "UNKNOWN"); 766 767 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 768 transport_write_pending_qf(cmd); 769 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) 770 transport_complete_qf(cmd); 771 } 772 } 773 774 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 775 { 776 switch (cmd->data_direction) { 777 case DMA_NONE: 778 return "NONE"; 779 case DMA_FROM_DEVICE: 780 return "READ"; 781 case DMA_TO_DEVICE: 782 return "WRITE"; 783 case DMA_BIDIRECTIONAL: 784 return "BIDI"; 785 default: 786 break; 787 } 788 789 return "UNKNOWN"; 790 } 791 792 void transport_dump_dev_state( 793 struct se_device *dev, 794 char *b, 795 int *bl) 796 { 797 *bl += sprintf(b + *bl, "Status: "); 798 if (dev->export_count) 799 *bl += sprintf(b + *bl, "ACTIVATED"); 800 else 801 *bl += sprintf(b + *bl, "DEACTIVATED"); 802 803 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 804 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 805 dev->dev_attrib.block_size, 806 dev->dev_attrib.hw_max_sectors); 807 *bl += sprintf(b + *bl, " "); 808 } 809 810 void transport_dump_vpd_proto_id( 811 struct t10_vpd *vpd, 812 unsigned char *p_buf, 813 int p_buf_len) 814 { 815 unsigned char buf[VPD_TMP_BUF_SIZE]; 816 int len; 817 818 memset(buf, 0, VPD_TMP_BUF_SIZE); 819 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 820 821 switch (vpd->protocol_identifier) { 822 case 0x00: 823 sprintf(buf+len, "Fibre Channel\n"); 824 break; 825 case 0x10: 826 sprintf(buf+len, "Parallel SCSI\n"); 827 break; 828 case 0x20: 829 sprintf(buf+len, "SSA\n"); 830 break; 831 case 0x30: 832 sprintf(buf+len, "IEEE 1394\n"); 833 break; 834 case 0x40: 835 sprintf(buf+len, "SCSI Remote Direct Memory Access" 836 " Protocol\n"); 837 break; 838 case 0x50: 839 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 840 break; 841 case 0x60: 842 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 843 break; 844 case 0x70: 845 sprintf(buf+len, "Automation/Drive Interface Transport" 846 " Protocol\n"); 847 break; 848 case 0x80: 849 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 850 break; 851 default: 852 sprintf(buf+len, "Unknown 0x%02x\n", 853 vpd->protocol_identifier); 854 break; 855 } 856 857 if (p_buf) 858 strncpy(p_buf, buf, p_buf_len); 859 else 860 pr_debug("%s", buf); 861 } 862 863 void 864 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 865 { 866 /* 867 * Check if the Protocol Identifier Valid (PIV) bit is set.. 868 * 869 * from spc3r23.pdf section 7.5.1 870 */ 871 if (page_83[1] & 0x80) { 872 vpd->protocol_identifier = (page_83[0] & 0xf0); 873 vpd->protocol_identifier_set = 1; 874 transport_dump_vpd_proto_id(vpd, NULL, 0); 875 } 876 } 877 EXPORT_SYMBOL(transport_set_vpd_proto_id); 878 879 int transport_dump_vpd_assoc( 880 struct t10_vpd *vpd, 881 unsigned char *p_buf, 882 int p_buf_len) 883 { 884 unsigned char buf[VPD_TMP_BUF_SIZE]; 885 int ret = 0; 886 int len; 887 888 memset(buf, 0, VPD_TMP_BUF_SIZE); 889 len = sprintf(buf, "T10 VPD Identifier Association: "); 890 891 switch (vpd->association) { 892 case 0x00: 893 sprintf(buf+len, "addressed logical unit\n"); 894 break; 895 case 0x10: 896 sprintf(buf+len, "target port\n"); 897 break; 898 case 0x20: 899 sprintf(buf+len, "SCSI target device\n"); 900 break; 901 default: 902 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 903 ret = -EINVAL; 904 break; 905 } 906 907 if (p_buf) 908 strncpy(p_buf, buf, p_buf_len); 909 else 910 pr_debug("%s", buf); 911 912 return ret; 913 } 914 915 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 916 { 917 /* 918 * The VPD identification association.. 919 * 920 * from spc3r23.pdf Section 7.6.3.1 Table 297 921 */ 922 vpd->association = (page_83[1] & 0x30); 923 return transport_dump_vpd_assoc(vpd, NULL, 0); 924 } 925 EXPORT_SYMBOL(transport_set_vpd_assoc); 926 927 int transport_dump_vpd_ident_type( 928 struct t10_vpd *vpd, 929 unsigned char *p_buf, 930 int p_buf_len) 931 { 932 unsigned char buf[VPD_TMP_BUF_SIZE]; 933 int ret = 0; 934 int len; 935 936 memset(buf, 0, VPD_TMP_BUF_SIZE); 937 len = sprintf(buf, "T10 VPD Identifier Type: "); 938 939 switch (vpd->device_identifier_type) { 940 case 0x00: 941 sprintf(buf+len, "Vendor specific\n"); 942 break; 943 case 0x01: 944 sprintf(buf+len, "T10 Vendor ID based\n"); 945 break; 946 case 0x02: 947 sprintf(buf+len, "EUI-64 based\n"); 948 break; 949 case 0x03: 950 sprintf(buf+len, "NAA\n"); 951 break; 952 case 0x04: 953 sprintf(buf+len, "Relative target port identifier\n"); 954 break; 955 case 0x08: 956 sprintf(buf+len, "SCSI name string\n"); 957 break; 958 default: 959 sprintf(buf+len, "Unsupported: 0x%02x\n", 960 vpd->device_identifier_type); 961 ret = -EINVAL; 962 break; 963 } 964 965 if (p_buf) { 966 if (p_buf_len < strlen(buf)+1) 967 return -EINVAL; 968 strncpy(p_buf, buf, p_buf_len); 969 } else { 970 pr_debug("%s", buf); 971 } 972 973 return ret; 974 } 975 976 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 977 { 978 /* 979 * The VPD identifier type.. 980 * 981 * from spc3r23.pdf Section 7.6.3.1 Table 298 982 */ 983 vpd->device_identifier_type = (page_83[1] & 0x0f); 984 return transport_dump_vpd_ident_type(vpd, NULL, 0); 985 } 986 EXPORT_SYMBOL(transport_set_vpd_ident_type); 987 988 int transport_dump_vpd_ident( 989 struct t10_vpd *vpd, 990 unsigned char *p_buf, 991 int p_buf_len) 992 { 993 unsigned char buf[VPD_TMP_BUF_SIZE]; 994 int ret = 0; 995 996 memset(buf, 0, VPD_TMP_BUF_SIZE); 997 998 switch (vpd->device_identifier_code_set) { 999 case 0x01: /* Binary */ 1000 snprintf(buf, sizeof(buf), 1001 "T10 VPD Binary Device Identifier: %s\n", 1002 &vpd->device_identifier[0]); 1003 break; 1004 case 0x02: /* ASCII */ 1005 snprintf(buf, sizeof(buf), 1006 "T10 VPD ASCII Device Identifier: %s\n", 1007 &vpd->device_identifier[0]); 1008 break; 1009 case 0x03: /* UTF-8 */ 1010 snprintf(buf, sizeof(buf), 1011 "T10 VPD UTF-8 Device Identifier: %s\n", 1012 &vpd->device_identifier[0]); 1013 break; 1014 default: 1015 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 1016 " 0x%02x", vpd->device_identifier_code_set); 1017 ret = -EINVAL; 1018 break; 1019 } 1020 1021 if (p_buf) 1022 strncpy(p_buf, buf, p_buf_len); 1023 else 1024 pr_debug("%s", buf); 1025 1026 return ret; 1027 } 1028 1029 int 1030 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 1031 { 1032 static const char hex_str[] = "0123456789abcdef"; 1033 int j = 0, i = 4; /* offset to start of the identifier */ 1034 1035 /* 1036 * The VPD Code Set (encoding) 1037 * 1038 * from spc3r23.pdf Section 7.6.3.1 Table 296 1039 */ 1040 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 1041 switch (vpd->device_identifier_code_set) { 1042 case 0x01: /* Binary */ 1043 vpd->device_identifier[j++] = 1044 hex_str[vpd->device_identifier_type]; 1045 while (i < (4 + page_83[3])) { 1046 vpd->device_identifier[j++] = 1047 hex_str[(page_83[i] & 0xf0) >> 4]; 1048 vpd->device_identifier[j++] = 1049 hex_str[page_83[i] & 0x0f]; 1050 i++; 1051 } 1052 break; 1053 case 0x02: /* ASCII */ 1054 case 0x03: /* UTF-8 */ 1055 while (i < (4 + page_83[3])) 1056 vpd->device_identifier[j++] = page_83[i++]; 1057 break; 1058 default: 1059 break; 1060 } 1061 1062 return transport_dump_vpd_ident(vpd, NULL, 0); 1063 } 1064 EXPORT_SYMBOL(transport_set_vpd_ident); 1065 1066 sense_reason_t 1067 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 1068 { 1069 struct se_device *dev = cmd->se_dev; 1070 1071 if (cmd->unknown_data_length) { 1072 cmd->data_length = size; 1073 } else if (size != cmd->data_length) { 1074 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:" 1075 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 1076 " 0x%02x\n", cmd->se_tfo->get_fabric_name(), 1077 cmd->data_length, size, cmd->t_task_cdb[0]); 1078 1079 if (cmd->data_direction == DMA_TO_DEVICE) { 1080 pr_err("Rejecting underflow/overflow" 1081 " WRITE data\n"); 1082 return TCM_INVALID_CDB_FIELD; 1083 } 1084 /* 1085 * Reject READ_* or WRITE_* with overflow/underflow for 1086 * type SCF_SCSI_DATA_CDB. 1087 */ 1088 if (dev->dev_attrib.block_size != 512) { 1089 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 1090 " CDB on non 512-byte sector setup subsystem" 1091 " plugin: %s\n", dev->transport->name); 1092 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 1093 return TCM_INVALID_CDB_FIELD; 1094 } 1095 /* 1096 * For the overflow case keep the existing fabric provided 1097 * ->data_length. Otherwise for the underflow case, reset 1098 * ->data_length to the smaller SCSI expected data transfer 1099 * length. 1100 */ 1101 if (size > cmd->data_length) { 1102 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1103 cmd->residual_count = (size - cmd->data_length); 1104 } else { 1105 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1106 cmd->residual_count = (cmd->data_length - size); 1107 cmd->data_length = size; 1108 } 1109 } 1110 1111 return 0; 1112 1113 } 1114 1115 /* 1116 * Used by fabric modules containing a local struct se_cmd within their 1117 * fabric dependent per I/O descriptor. 1118 */ 1119 void transport_init_se_cmd( 1120 struct se_cmd *cmd, 1121 struct target_core_fabric_ops *tfo, 1122 struct se_session *se_sess, 1123 u32 data_length, 1124 int data_direction, 1125 int task_attr, 1126 unsigned char *sense_buffer) 1127 { 1128 INIT_LIST_HEAD(&cmd->se_delayed_node); 1129 INIT_LIST_HEAD(&cmd->se_qf_node); 1130 INIT_LIST_HEAD(&cmd->se_cmd_list); 1131 INIT_LIST_HEAD(&cmd->state_list); 1132 init_completion(&cmd->t_transport_stop_comp); 1133 init_completion(&cmd->cmd_wait_comp); 1134 init_completion(&cmd->task_stop_comp); 1135 spin_lock_init(&cmd->t_state_lock); 1136 kref_init(&cmd->cmd_kref); 1137 cmd->transport_state = CMD_T_DEV_ACTIVE; 1138 1139 cmd->se_tfo = tfo; 1140 cmd->se_sess = se_sess; 1141 cmd->data_length = data_length; 1142 cmd->data_direction = data_direction; 1143 cmd->sam_task_attr = task_attr; 1144 cmd->sense_buffer = sense_buffer; 1145 1146 cmd->state_active = false; 1147 } 1148 EXPORT_SYMBOL(transport_init_se_cmd); 1149 1150 static sense_reason_t 1151 transport_check_alloc_task_attr(struct se_cmd *cmd) 1152 { 1153 struct se_device *dev = cmd->se_dev; 1154 1155 /* 1156 * Check if SAM Task Attribute emulation is enabled for this 1157 * struct se_device storage object 1158 */ 1159 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1160 return 0; 1161 1162 if (cmd->sam_task_attr == TCM_ACA_TAG) { 1163 pr_debug("SAM Task Attribute ACA" 1164 " emulation is not supported\n"); 1165 return TCM_INVALID_CDB_FIELD; 1166 } 1167 /* 1168 * Used to determine when ORDERED commands should go from 1169 * Dormant to Active status. 1170 */ 1171 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id); 1172 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n", 1173 cmd->se_ordered_id, cmd->sam_task_attr, 1174 dev->transport->name); 1175 return 0; 1176 } 1177 1178 sense_reason_t 1179 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb) 1180 { 1181 struct se_device *dev = cmd->se_dev; 1182 sense_reason_t ret; 1183 1184 /* 1185 * Ensure that the received CDB is less than the max (252 + 8) bytes 1186 * for VARIABLE_LENGTH_CMD 1187 */ 1188 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1189 pr_err("Received SCSI CDB with command_size: %d that" 1190 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1191 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1192 return TCM_INVALID_CDB_FIELD; 1193 } 1194 /* 1195 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1196 * allocate the additional extended CDB buffer now.. Otherwise 1197 * setup the pointer from __t_task_cdb to t_task_cdb. 1198 */ 1199 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1200 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1201 GFP_KERNEL); 1202 if (!cmd->t_task_cdb) { 1203 pr_err("Unable to allocate cmd->t_task_cdb" 1204 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1205 scsi_command_size(cdb), 1206 (unsigned long)sizeof(cmd->__t_task_cdb)); 1207 return TCM_OUT_OF_RESOURCES; 1208 } 1209 } else 1210 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1211 /* 1212 * Copy the original CDB into cmd-> 1213 */ 1214 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1215 1216 trace_target_sequencer_start(cmd); 1217 1218 /* 1219 * Check for an existing UNIT ATTENTION condition 1220 */ 1221 ret = target_scsi3_ua_check(cmd); 1222 if (ret) 1223 return ret; 1224 1225 ret = target_alua_state_check(cmd); 1226 if (ret) 1227 return ret; 1228 1229 ret = target_check_reservation(cmd); 1230 if (ret) { 1231 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1232 return ret; 1233 } 1234 1235 ret = dev->transport->parse_cdb(cmd); 1236 if (ret) 1237 return ret; 1238 1239 ret = transport_check_alloc_task_attr(cmd); 1240 if (ret) 1241 return ret; 1242 1243 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1244 1245 spin_lock(&cmd->se_lun->lun_sep_lock); 1246 if (cmd->se_lun->lun_sep) 1247 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++; 1248 spin_unlock(&cmd->se_lun->lun_sep_lock); 1249 return 0; 1250 } 1251 EXPORT_SYMBOL(target_setup_cmd_from_cdb); 1252 1253 /* 1254 * Used by fabric module frontends to queue tasks directly. 1255 * Many only be used from process context only 1256 */ 1257 int transport_handle_cdb_direct( 1258 struct se_cmd *cmd) 1259 { 1260 sense_reason_t ret; 1261 1262 if (!cmd->se_lun) { 1263 dump_stack(); 1264 pr_err("cmd->se_lun is NULL\n"); 1265 return -EINVAL; 1266 } 1267 if (in_interrupt()) { 1268 dump_stack(); 1269 pr_err("transport_generic_handle_cdb cannot be called" 1270 " from interrupt context\n"); 1271 return -EINVAL; 1272 } 1273 /* 1274 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1275 * outstanding descriptors are handled correctly during shutdown via 1276 * transport_wait_for_tasks() 1277 * 1278 * Also, we don't take cmd->t_state_lock here as we only expect 1279 * this to be called for initial descriptor submission. 1280 */ 1281 cmd->t_state = TRANSPORT_NEW_CMD; 1282 cmd->transport_state |= CMD_T_ACTIVE; 1283 1284 /* 1285 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1286 * so follow TRANSPORT_NEW_CMD processing thread context usage 1287 * and call transport_generic_request_failure() if necessary.. 1288 */ 1289 ret = transport_generic_new_cmd(cmd); 1290 if (ret) 1291 transport_generic_request_failure(cmd, ret); 1292 return 0; 1293 } 1294 EXPORT_SYMBOL(transport_handle_cdb_direct); 1295 1296 sense_reason_t 1297 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1298 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1299 { 1300 if (!sgl || !sgl_count) 1301 return 0; 1302 1303 /* 1304 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1305 * scatterlists already have been set to follow what the fabric 1306 * passes for the original expected data transfer length. 1307 */ 1308 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1309 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1310 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1311 return TCM_INVALID_CDB_FIELD; 1312 } 1313 1314 cmd->t_data_sg = sgl; 1315 cmd->t_data_nents = sgl_count; 1316 1317 if (sgl_bidi && sgl_bidi_count) { 1318 cmd->t_bidi_data_sg = sgl_bidi; 1319 cmd->t_bidi_data_nents = sgl_bidi_count; 1320 } 1321 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1322 return 0; 1323 } 1324 1325 /* 1326 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized 1327 * se_cmd + use pre-allocated SGL memory. 1328 * 1329 * @se_cmd: command descriptor to submit 1330 * @se_sess: associated se_sess for endpoint 1331 * @cdb: pointer to SCSI CDB 1332 * @sense: pointer to SCSI sense buffer 1333 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1334 * @data_length: fabric expected data transfer length 1335 * @task_addr: SAM task attribute 1336 * @data_dir: DMA data direction 1337 * @flags: flags for command submission from target_sc_flags_tables 1338 * @sgl: struct scatterlist memory for unidirectional mapping 1339 * @sgl_count: scatterlist count for unidirectional mapping 1340 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1341 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1342 * @sgl_prot: struct scatterlist memory protection information 1343 * @sgl_prot_count: scatterlist count for protection information 1344 * 1345 * Returns non zero to signal active I/O shutdown failure. All other 1346 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1347 * but still return zero here. 1348 * 1349 * This may only be called from process context, and also currently 1350 * assumes internal allocation of fabric payload buffer by target-core. 1351 */ 1352 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, 1353 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun, 1354 u32 data_length, int task_attr, int data_dir, int flags, 1355 struct scatterlist *sgl, u32 sgl_count, 1356 struct scatterlist *sgl_bidi, u32 sgl_bidi_count, 1357 struct scatterlist *sgl_prot, u32 sgl_prot_count) 1358 { 1359 struct se_portal_group *se_tpg; 1360 sense_reason_t rc; 1361 int ret; 1362 1363 se_tpg = se_sess->se_tpg; 1364 BUG_ON(!se_tpg); 1365 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1366 BUG_ON(in_interrupt()); 1367 /* 1368 * Initialize se_cmd for target operation. From this point 1369 * exceptions are handled by sending exception status via 1370 * target_core_fabric_ops->queue_status() callback 1371 */ 1372 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1373 data_length, data_dir, task_attr, sense); 1374 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1375 se_cmd->unknown_data_length = 1; 1376 /* 1377 * Obtain struct se_cmd->cmd_kref reference and add new cmd to 1378 * se_sess->sess_cmd_list. A second kref_get here is necessary 1379 * for fabrics using TARGET_SCF_ACK_KREF that expect a second 1380 * kref_put() to happen during fabric packet acknowledgement. 1381 */ 1382 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF)); 1383 if (ret) 1384 return ret; 1385 /* 1386 * Signal bidirectional data payloads to target-core 1387 */ 1388 if (flags & TARGET_SCF_BIDI_OP) 1389 se_cmd->se_cmd_flags |= SCF_BIDI; 1390 /* 1391 * Locate se_lun pointer and attach it to struct se_cmd 1392 */ 1393 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun); 1394 if (rc) { 1395 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1396 target_put_sess_cmd(se_sess, se_cmd); 1397 return 0; 1398 } 1399 1400 rc = target_setup_cmd_from_cdb(se_cmd, cdb); 1401 if (rc != 0) { 1402 transport_generic_request_failure(se_cmd, rc); 1403 return 0; 1404 } 1405 1406 /* 1407 * Save pointers for SGLs containing protection information, 1408 * if present. 1409 */ 1410 if (sgl_prot_count) { 1411 se_cmd->t_prot_sg = sgl_prot; 1412 se_cmd->t_prot_nents = sgl_prot_count; 1413 } 1414 1415 /* 1416 * When a non zero sgl_count has been passed perform SGL passthrough 1417 * mapping for pre-allocated fabric memory instead of having target 1418 * core perform an internal SGL allocation.. 1419 */ 1420 if (sgl_count != 0) { 1421 BUG_ON(!sgl); 1422 1423 /* 1424 * A work-around for tcm_loop as some userspace code via 1425 * scsi-generic do not memset their associated read buffers, 1426 * so go ahead and do that here for type non-data CDBs. Also 1427 * note that this is currently guaranteed to be a single SGL 1428 * for this case by target core in target_setup_cmd_from_cdb() 1429 * -> transport_generic_cmd_sequencer(). 1430 */ 1431 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1432 se_cmd->data_direction == DMA_FROM_DEVICE) { 1433 unsigned char *buf = NULL; 1434 1435 if (sgl) 1436 buf = kmap(sg_page(sgl)) + sgl->offset; 1437 1438 if (buf) { 1439 memset(buf, 0, sgl->length); 1440 kunmap(sg_page(sgl)); 1441 } 1442 } 1443 1444 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1445 sgl_bidi, sgl_bidi_count); 1446 if (rc != 0) { 1447 transport_generic_request_failure(se_cmd, rc); 1448 return 0; 1449 } 1450 } 1451 1452 /* 1453 * Check if we need to delay processing because of ALUA 1454 * Active/NonOptimized primary access state.. 1455 */ 1456 core_alua_check_nonop_delay(se_cmd); 1457 1458 transport_handle_cdb_direct(se_cmd); 1459 return 0; 1460 } 1461 EXPORT_SYMBOL(target_submit_cmd_map_sgls); 1462 1463 /* 1464 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1465 * 1466 * @se_cmd: command descriptor to submit 1467 * @se_sess: associated se_sess for endpoint 1468 * @cdb: pointer to SCSI CDB 1469 * @sense: pointer to SCSI sense buffer 1470 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1471 * @data_length: fabric expected data transfer length 1472 * @task_addr: SAM task attribute 1473 * @data_dir: DMA data direction 1474 * @flags: flags for command submission from target_sc_flags_tables 1475 * 1476 * Returns non zero to signal active I/O shutdown failure. All other 1477 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1478 * but still return zero here. 1479 * 1480 * This may only be called from process context, and also currently 1481 * assumes internal allocation of fabric payload buffer by target-core. 1482 * 1483 * It also assumes interal target core SGL memory allocation. 1484 */ 1485 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1486 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun, 1487 u32 data_length, int task_attr, int data_dir, int flags) 1488 { 1489 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, 1490 unpacked_lun, data_length, task_attr, data_dir, 1491 flags, NULL, 0, NULL, 0, NULL, 0); 1492 } 1493 EXPORT_SYMBOL(target_submit_cmd); 1494 1495 static void target_complete_tmr_failure(struct work_struct *work) 1496 { 1497 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1498 1499 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1500 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1501 1502 transport_cmd_check_stop_to_fabric(se_cmd); 1503 } 1504 1505 /** 1506 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1507 * for TMR CDBs 1508 * 1509 * @se_cmd: command descriptor to submit 1510 * @se_sess: associated se_sess for endpoint 1511 * @sense: pointer to SCSI sense buffer 1512 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1513 * @fabric_context: fabric context for TMR req 1514 * @tm_type: Type of TM request 1515 * @gfp: gfp type for caller 1516 * @tag: referenced task tag for TMR_ABORT_TASK 1517 * @flags: submit cmd flags 1518 * 1519 * Callable from all contexts. 1520 **/ 1521 1522 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1523 unsigned char *sense, u32 unpacked_lun, 1524 void *fabric_tmr_ptr, unsigned char tm_type, 1525 gfp_t gfp, unsigned int tag, int flags) 1526 { 1527 struct se_portal_group *se_tpg; 1528 int ret; 1529 1530 se_tpg = se_sess->se_tpg; 1531 BUG_ON(!se_tpg); 1532 1533 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1534 0, DMA_NONE, TCM_SIMPLE_TAG, sense); 1535 /* 1536 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1537 * allocation failure. 1538 */ 1539 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1540 if (ret < 0) 1541 return -ENOMEM; 1542 1543 if (tm_type == TMR_ABORT_TASK) 1544 se_cmd->se_tmr_req->ref_task_tag = tag; 1545 1546 /* See target_submit_cmd for commentary */ 1547 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF)); 1548 if (ret) { 1549 core_tmr_release_req(se_cmd->se_tmr_req); 1550 return ret; 1551 } 1552 1553 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun); 1554 if (ret) { 1555 /* 1556 * For callback during failure handling, push this work off 1557 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1558 */ 1559 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1560 schedule_work(&se_cmd->work); 1561 return 0; 1562 } 1563 transport_generic_handle_tmr(se_cmd); 1564 return 0; 1565 } 1566 EXPORT_SYMBOL(target_submit_tmr); 1567 1568 /* 1569 * If the cmd is active, request it to be stopped and sleep until it 1570 * has completed. 1571 */ 1572 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags) 1573 { 1574 bool was_active = false; 1575 1576 if (cmd->transport_state & CMD_T_BUSY) { 1577 cmd->transport_state |= CMD_T_REQUEST_STOP; 1578 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 1579 1580 pr_debug("cmd %p waiting to complete\n", cmd); 1581 wait_for_completion(&cmd->task_stop_comp); 1582 pr_debug("cmd %p stopped successfully\n", cmd); 1583 1584 spin_lock_irqsave(&cmd->t_state_lock, *flags); 1585 cmd->transport_state &= ~CMD_T_REQUEST_STOP; 1586 cmd->transport_state &= ~CMD_T_BUSY; 1587 was_active = true; 1588 } 1589 1590 return was_active; 1591 } 1592 1593 /* 1594 * Handle SAM-esque emulation for generic transport request failures. 1595 */ 1596 void transport_generic_request_failure(struct se_cmd *cmd, 1597 sense_reason_t sense_reason) 1598 { 1599 int ret = 0; 1600 1601 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x" 1602 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd), 1603 cmd->t_task_cdb[0]); 1604 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n", 1605 cmd->se_tfo->get_cmd_state(cmd), 1606 cmd->t_state, sense_reason); 1607 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n", 1608 (cmd->transport_state & CMD_T_ACTIVE) != 0, 1609 (cmd->transport_state & CMD_T_STOP) != 0, 1610 (cmd->transport_state & CMD_T_SENT) != 0); 1611 1612 /* 1613 * For SAM Task Attribute emulation for failed struct se_cmd 1614 */ 1615 transport_complete_task_attr(cmd); 1616 /* 1617 * Handle special case for COMPARE_AND_WRITE failure, where the 1618 * callback is expected to drop the per device ->caw_mutex. 1619 */ 1620 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 1621 cmd->transport_complete_callback) 1622 cmd->transport_complete_callback(cmd); 1623 1624 switch (sense_reason) { 1625 case TCM_NON_EXISTENT_LUN: 1626 case TCM_UNSUPPORTED_SCSI_OPCODE: 1627 case TCM_INVALID_CDB_FIELD: 1628 case TCM_INVALID_PARAMETER_LIST: 1629 case TCM_PARAMETER_LIST_LENGTH_ERROR: 1630 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1631 case TCM_UNKNOWN_MODE_PAGE: 1632 case TCM_WRITE_PROTECTED: 1633 case TCM_ADDRESS_OUT_OF_RANGE: 1634 case TCM_CHECK_CONDITION_ABORT_CMD: 1635 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1636 case TCM_CHECK_CONDITION_NOT_READY: 1637 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 1638 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 1639 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 1640 break; 1641 case TCM_OUT_OF_RESOURCES: 1642 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1643 break; 1644 case TCM_RESERVATION_CONFLICT: 1645 /* 1646 * No SENSE Data payload for this case, set SCSI Status 1647 * and queue the response to $FABRIC_MOD. 1648 * 1649 * Uses linux/include/scsi/scsi.h SAM status codes defs 1650 */ 1651 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1652 /* 1653 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1654 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1655 * CONFLICT STATUS. 1656 * 1657 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1658 */ 1659 if (cmd->se_sess && 1660 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) 1661 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl, 1662 cmd->orig_fe_lun, 0x2C, 1663 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1664 1665 trace_target_cmd_complete(cmd); 1666 ret = cmd->se_tfo-> queue_status(cmd); 1667 if (ret == -EAGAIN || ret == -ENOMEM) 1668 goto queue_full; 1669 goto check_stop; 1670 default: 1671 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1672 cmd->t_task_cdb[0], sense_reason); 1673 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1674 break; 1675 } 1676 1677 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 1678 if (ret == -EAGAIN || ret == -ENOMEM) 1679 goto queue_full; 1680 1681 check_stop: 1682 transport_lun_remove_cmd(cmd); 1683 if (!transport_cmd_check_stop_to_fabric(cmd)) 1684 ; 1685 return; 1686 1687 queue_full: 1688 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 1689 transport_handle_queue_full(cmd, cmd->se_dev); 1690 } 1691 EXPORT_SYMBOL(transport_generic_request_failure); 1692 1693 void __target_execute_cmd(struct se_cmd *cmd) 1694 { 1695 sense_reason_t ret; 1696 1697 if (cmd->execute_cmd) { 1698 ret = cmd->execute_cmd(cmd); 1699 if (ret) { 1700 spin_lock_irq(&cmd->t_state_lock); 1701 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT); 1702 spin_unlock_irq(&cmd->t_state_lock); 1703 1704 transport_generic_request_failure(cmd, ret); 1705 } 1706 } 1707 } 1708 1709 static bool target_handle_task_attr(struct se_cmd *cmd) 1710 { 1711 struct se_device *dev = cmd->se_dev; 1712 1713 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1714 return false; 1715 1716 /* 1717 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 1718 * to allow the passed struct se_cmd list of tasks to the front of the list. 1719 */ 1720 switch (cmd->sam_task_attr) { 1721 case TCM_HEAD_TAG: 1722 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, " 1723 "se_ordered_id: %u\n", 1724 cmd->t_task_cdb[0], cmd->se_ordered_id); 1725 return false; 1726 case TCM_ORDERED_TAG: 1727 atomic_inc_mb(&dev->dev_ordered_sync); 1728 1729 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, " 1730 " se_ordered_id: %u\n", 1731 cmd->t_task_cdb[0], cmd->se_ordered_id); 1732 1733 /* 1734 * Execute an ORDERED command if no other older commands 1735 * exist that need to be completed first. 1736 */ 1737 if (!atomic_read(&dev->simple_cmds)) 1738 return false; 1739 break; 1740 default: 1741 /* 1742 * For SIMPLE and UNTAGGED Task Attribute commands 1743 */ 1744 atomic_inc_mb(&dev->simple_cmds); 1745 break; 1746 } 1747 1748 if (atomic_read(&dev->dev_ordered_sync) == 0) 1749 return false; 1750 1751 spin_lock(&dev->delayed_cmd_lock); 1752 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 1753 spin_unlock(&dev->delayed_cmd_lock); 1754 1755 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to" 1756 " delayed CMD list, se_ordered_id: %u\n", 1757 cmd->t_task_cdb[0], cmd->sam_task_attr, 1758 cmd->se_ordered_id); 1759 return true; 1760 } 1761 1762 void target_execute_cmd(struct se_cmd *cmd) 1763 { 1764 /* 1765 * If the received CDB has aleady been aborted stop processing it here. 1766 */ 1767 if (transport_check_aborted_status(cmd, 1)) 1768 return; 1769 1770 /* 1771 * Determine if frontend context caller is requesting the stopping of 1772 * this command for frontend exceptions. 1773 */ 1774 spin_lock_irq(&cmd->t_state_lock); 1775 if (cmd->transport_state & CMD_T_STOP) { 1776 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n", 1777 __func__, __LINE__, 1778 cmd->se_tfo->get_task_tag(cmd)); 1779 1780 spin_unlock_irq(&cmd->t_state_lock); 1781 complete_all(&cmd->t_transport_stop_comp); 1782 return; 1783 } 1784 1785 cmd->t_state = TRANSPORT_PROCESSING; 1786 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT; 1787 spin_unlock_irq(&cmd->t_state_lock); 1788 /* 1789 * Perform WRITE_INSERT of PI using software emulation when backend 1790 * device has PI enabled, if the transport has not already generated 1791 * PI using hardware WRITE_INSERT offload. 1792 */ 1793 if (cmd->prot_op == TARGET_PROT_DOUT_INSERT) { 1794 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT)) 1795 sbc_dif_generate(cmd); 1796 } 1797 1798 if (target_handle_task_attr(cmd)) { 1799 spin_lock_irq(&cmd->t_state_lock); 1800 cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT; 1801 spin_unlock_irq(&cmd->t_state_lock); 1802 return; 1803 } 1804 1805 __target_execute_cmd(cmd); 1806 } 1807 EXPORT_SYMBOL(target_execute_cmd); 1808 1809 /* 1810 * Process all commands up to the last received ORDERED task attribute which 1811 * requires another blocking boundary 1812 */ 1813 static void target_restart_delayed_cmds(struct se_device *dev) 1814 { 1815 for (;;) { 1816 struct se_cmd *cmd; 1817 1818 spin_lock(&dev->delayed_cmd_lock); 1819 if (list_empty(&dev->delayed_cmd_list)) { 1820 spin_unlock(&dev->delayed_cmd_lock); 1821 break; 1822 } 1823 1824 cmd = list_entry(dev->delayed_cmd_list.next, 1825 struct se_cmd, se_delayed_node); 1826 list_del(&cmd->se_delayed_node); 1827 spin_unlock(&dev->delayed_cmd_lock); 1828 1829 __target_execute_cmd(cmd); 1830 1831 if (cmd->sam_task_attr == TCM_ORDERED_TAG) 1832 break; 1833 } 1834 } 1835 1836 /* 1837 * Called from I/O completion to determine which dormant/delayed 1838 * and ordered cmds need to have their tasks added to the execution queue. 1839 */ 1840 static void transport_complete_task_attr(struct se_cmd *cmd) 1841 { 1842 struct se_device *dev = cmd->se_dev; 1843 1844 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1845 return; 1846 1847 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) { 1848 atomic_dec_mb(&dev->simple_cmds); 1849 dev->dev_cur_ordered_id++; 1850 pr_debug("Incremented dev->dev_cur_ordered_id: %u for" 1851 " SIMPLE: %u\n", dev->dev_cur_ordered_id, 1852 cmd->se_ordered_id); 1853 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) { 1854 dev->dev_cur_ordered_id++; 1855 pr_debug("Incremented dev_cur_ordered_id: %u for" 1856 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id, 1857 cmd->se_ordered_id); 1858 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) { 1859 atomic_dec_mb(&dev->dev_ordered_sync); 1860 1861 dev->dev_cur_ordered_id++; 1862 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:" 1863 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id); 1864 } 1865 1866 target_restart_delayed_cmds(dev); 1867 } 1868 1869 static void transport_complete_qf(struct se_cmd *cmd) 1870 { 1871 int ret = 0; 1872 1873 transport_complete_task_attr(cmd); 1874 1875 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 1876 trace_target_cmd_complete(cmd); 1877 ret = cmd->se_tfo->queue_status(cmd); 1878 goto out; 1879 } 1880 1881 switch (cmd->data_direction) { 1882 case DMA_FROM_DEVICE: 1883 trace_target_cmd_complete(cmd); 1884 ret = cmd->se_tfo->queue_data_in(cmd); 1885 break; 1886 case DMA_TO_DEVICE: 1887 if (cmd->se_cmd_flags & SCF_BIDI) { 1888 ret = cmd->se_tfo->queue_data_in(cmd); 1889 if (ret < 0) 1890 break; 1891 } 1892 /* Fall through for DMA_TO_DEVICE */ 1893 case DMA_NONE: 1894 trace_target_cmd_complete(cmd); 1895 ret = cmd->se_tfo->queue_status(cmd); 1896 break; 1897 default: 1898 break; 1899 } 1900 1901 out: 1902 if (ret < 0) { 1903 transport_handle_queue_full(cmd, cmd->se_dev); 1904 return; 1905 } 1906 transport_lun_remove_cmd(cmd); 1907 transport_cmd_check_stop_to_fabric(cmd); 1908 } 1909 1910 static void transport_handle_queue_full( 1911 struct se_cmd *cmd, 1912 struct se_device *dev) 1913 { 1914 spin_lock_irq(&dev->qf_cmd_lock); 1915 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 1916 atomic_inc_mb(&dev->dev_qf_count); 1917 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 1918 1919 schedule_work(&cmd->se_dev->qf_work_queue); 1920 } 1921 1922 static bool target_check_read_strip(struct se_cmd *cmd) 1923 { 1924 sense_reason_t rc; 1925 1926 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) { 1927 rc = sbc_dif_read_strip(cmd); 1928 if (rc) { 1929 cmd->pi_err = rc; 1930 return true; 1931 } 1932 } 1933 1934 return false; 1935 } 1936 1937 static void target_complete_ok_work(struct work_struct *work) 1938 { 1939 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 1940 int ret; 1941 1942 /* 1943 * Check if we need to move delayed/dormant tasks from cmds on the 1944 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 1945 * Attribute. 1946 */ 1947 transport_complete_task_attr(cmd); 1948 1949 /* 1950 * Check to schedule QUEUE_FULL work, or execute an existing 1951 * cmd->transport_qf_callback() 1952 */ 1953 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 1954 schedule_work(&cmd->se_dev->qf_work_queue); 1955 1956 /* 1957 * Check if we need to send a sense buffer from 1958 * the struct se_cmd in question. 1959 */ 1960 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 1961 WARN_ON(!cmd->scsi_status); 1962 ret = transport_send_check_condition_and_sense( 1963 cmd, 0, 1); 1964 if (ret == -EAGAIN || ret == -ENOMEM) 1965 goto queue_full; 1966 1967 transport_lun_remove_cmd(cmd); 1968 transport_cmd_check_stop_to_fabric(cmd); 1969 return; 1970 } 1971 /* 1972 * Check for a callback, used by amongst other things 1973 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation. 1974 */ 1975 if (cmd->transport_complete_callback) { 1976 sense_reason_t rc; 1977 1978 rc = cmd->transport_complete_callback(cmd); 1979 if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) { 1980 return; 1981 } else if (rc) { 1982 ret = transport_send_check_condition_and_sense(cmd, 1983 rc, 0); 1984 if (ret == -EAGAIN || ret == -ENOMEM) 1985 goto queue_full; 1986 1987 transport_lun_remove_cmd(cmd); 1988 transport_cmd_check_stop_to_fabric(cmd); 1989 return; 1990 } 1991 } 1992 1993 switch (cmd->data_direction) { 1994 case DMA_FROM_DEVICE: 1995 spin_lock(&cmd->se_lun->lun_sep_lock); 1996 if (cmd->se_lun->lun_sep) { 1997 cmd->se_lun->lun_sep->sep_stats.tx_data_octets += 1998 cmd->data_length; 1999 } 2000 spin_unlock(&cmd->se_lun->lun_sep_lock); 2001 /* 2002 * Perform READ_STRIP of PI using software emulation when 2003 * backend had PI enabled, if the transport will not be 2004 * performing hardware READ_STRIP offload. 2005 */ 2006 if (cmd->prot_op == TARGET_PROT_DIN_STRIP && 2007 target_check_read_strip(cmd)) { 2008 ret = transport_send_check_condition_and_sense(cmd, 2009 cmd->pi_err, 0); 2010 if (ret == -EAGAIN || ret == -ENOMEM) 2011 goto queue_full; 2012 2013 transport_lun_remove_cmd(cmd); 2014 transport_cmd_check_stop_to_fabric(cmd); 2015 return; 2016 } 2017 2018 trace_target_cmd_complete(cmd); 2019 ret = cmd->se_tfo->queue_data_in(cmd); 2020 if (ret == -EAGAIN || ret == -ENOMEM) 2021 goto queue_full; 2022 break; 2023 case DMA_TO_DEVICE: 2024 spin_lock(&cmd->se_lun->lun_sep_lock); 2025 if (cmd->se_lun->lun_sep) { 2026 cmd->se_lun->lun_sep->sep_stats.rx_data_octets += 2027 cmd->data_length; 2028 } 2029 spin_unlock(&cmd->se_lun->lun_sep_lock); 2030 /* 2031 * Check if we need to send READ payload for BIDI-COMMAND 2032 */ 2033 if (cmd->se_cmd_flags & SCF_BIDI) { 2034 spin_lock(&cmd->se_lun->lun_sep_lock); 2035 if (cmd->se_lun->lun_sep) { 2036 cmd->se_lun->lun_sep->sep_stats.tx_data_octets += 2037 cmd->data_length; 2038 } 2039 spin_unlock(&cmd->se_lun->lun_sep_lock); 2040 ret = cmd->se_tfo->queue_data_in(cmd); 2041 if (ret == -EAGAIN || ret == -ENOMEM) 2042 goto queue_full; 2043 break; 2044 } 2045 /* Fall through for DMA_TO_DEVICE */ 2046 case DMA_NONE: 2047 trace_target_cmd_complete(cmd); 2048 ret = cmd->se_tfo->queue_status(cmd); 2049 if (ret == -EAGAIN || ret == -ENOMEM) 2050 goto queue_full; 2051 break; 2052 default: 2053 break; 2054 } 2055 2056 transport_lun_remove_cmd(cmd); 2057 transport_cmd_check_stop_to_fabric(cmd); 2058 return; 2059 2060 queue_full: 2061 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 2062 " data_direction: %d\n", cmd, cmd->data_direction); 2063 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 2064 transport_handle_queue_full(cmd, cmd->se_dev); 2065 } 2066 2067 static inline void transport_free_sgl(struct scatterlist *sgl, int nents) 2068 { 2069 struct scatterlist *sg; 2070 int count; 2071 2072 for_each_sg(sgl, sg, nents, count) 2073 __free_page(sg_page(sg)); 2074 2075 kfree(sgl); 2076 } 2077 2078 static inline void transport_reset_sgl_orig(struct se_cmd *cmd) 2079 { 2080 /* 2081 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE 2082 * emulation, and free + reset pointers if necessary.. 2083 */ 2084 if (!cmd->t_data_sg_orig) 2085 return; 2086 2087 kfree(cmd->t_data_sg); 2088 cmd->t_data_sg = cmd->t_data_sg_orig; 2089 cmd->t_data_sg_orig = NULL; 2090 cmd->t_data_nents = cmd->t_data_nents_orig; 2091 cmd->t_data_nents_orig = 0; 2092 } 2093 2094 static inline void transport_free_pages(struct se_cmd *cmd) 2095 { 2096 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) { 2097 transport_reset_sgl_orig(cmd); 2098 return; 2099 } 2100 transport_reset_sgl_orig(cmd); 2101 2102 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 2103 cmd->t_data_sg = NULL; 2104 cmd->t_data_nents = 0; 2105 2106 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 2107 cmd->t_bidi_data_sg = NULL; 2108 cmd->t_bidi_data_nents = 0; 2109 2110 transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents); 2111 cmd->t_prot_sg = NULL; 2112 cmd->t_prot_nents = 0; 2113 } 2114 2115 /** 2116 * transport_release_cmd - free a command 2117 * @cmd: command to free 2118 * 2119 * This routine unconditionally frees a command, and reference counting 2120 * or list removal must be done in the caller. 2121 */ 2122 static int transport_release_cmd(struct se_cmd *cmd) 2123 { 2124 BUG_ON(!cmd->se_tfo); 2125 2126 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 2127 core_tmr_release_req(cmd->se_tmr_req); 2128 if (cmd->t_task_cdb != cmd->__t_task_cdb) 2129 kfree(cmd->t_task_cdb); 2130 /* 2131 * If this cmd has been setup with target_get_sess_cmd(), drop 2132 * the kref and call ->release_cmd() in kref callback. 2133 */ 2134 return target_put_sess_cmd(cmd->se_sess, cmd); 2135 } 2136 2137 /** 2138 * transport_put_cmd - release a reference to a command 2139 * @cmd: command to release 2140 * 2141 * This routine releases our reference to the command and frees it if possible. 2142 */ 2143 static int transport_put_cmd(struct se_cmd *cmd) 2144 { 2145 transport_free_pages(cmd); 2146 return transport_release_cmd(cmd); 2147 } 2148 2149 void *transport_kmap_data_sg(struct se_cmd *cmd) 2150 { 2151 struct scatterlist *sg = cmd->t_data_sg; 2152 struct page **pages; 2153 int i; 2154 2155 /* 2156 * We need to take into account a possible offset here for fabrics like 2157 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2158 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2159 */ 2160 if (!cmd->t_data_nents) 2161 return NULL; 2162 2163 BUG_ON(!sg); 2164 if (cmd->t_data_nents == 1) 2165 return kmap(sg_page(sg)) + sg->offset; 2166 2167 /* >1 page. use vmap */ 2168 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL); 2169 if (!pages) 2170 return NULL; 2171 2172 /* convert sg[] to pages[] */ 2173 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2174 pages[i] = sg_page(sg); 2175 } 2176 2177 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2178 kfree(pages); 2179 if (!cmd->t_data_vmap) 2180 return NULL; 2181 2182 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2183 } 2184 EXPORT_SYMBOL(transport_kmap_data_sg); 2185 2186 void transport_kunmap_data_sg(struct se_cmd *cmd) 2187 { 2188 if (!cmd->t_data_nents) { 2189 return; 2190 } else if (cmd->t_data_nents == 1) { 2191 kunmap(sg_page(cmd->t_data_sg)); 2192 return; 2193 } 2194 2195 vunmap(cmd->t_data_vmap); 2196 cmd->t_data_vmap = NULL; 2197 } 2198 EXPORT_SYMBOL(transport_kunmap_data_sg); 2199 2200 int 2201 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length, 2202 bool zero_page) 2203 { 2204 struct scatterlist *sg; 2205 struct page *page; 2206 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0; 2207 unsigned int nent; 2208 int i = 0; 2209 2210 nent = DIV_ROUND_UP(length, PAGE_SIZE); 2211 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL); 2212 if (!sg) 2213 return -ENOMEM; 2214 2215 sg_init_table(sg, nent); 2216 2217 while (length) { 2218 u32 page_len = min_t(u32, length, PAGE_SIZE); 2219 page = alloc_page(GFP_KERNEL | zero_flag); 2220 if (!page) 2221 goto out; 2222 2223 sg_set_page(&sg[i], page, page_len, 0); 2224 length -= page_len; 2225 i++; 2226 } 2227 *sgl = sg; 2228 *nents = nent; 2229 return 0; 2230 2231 out: 2232 while (i > 0) { 2233 i--; 2234 __free_page(sg_page(&sg[i])); 2235 } 2236 kfree(sg); 2237 return -ENOMEM; 2238 } 2239 2240 /* 2241 * Allocate any required resources to execute the command. For writes we 2242 * might not have the payload yet, so notify the fabric via a call to 2243 * ->write_pending instead. Otherwise place it on the execution queue. 2244 */ 2245 sense_reason_t 2246 transport_generic_new_cmd(struct se_cmd *cmd) 2247 { 2248 int ret = 0; 2249 2250 /* 2251 * Determine is the TCM fabric module has already allocated physical 2252 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2253 * beforehand. 2254 */ 2255 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2256 cmd->data_length) { 2257 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB); 2258 2259 if ((cmd->se_cmd_flags & SCF_BIDI) || 2260 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) { 2261 u32 bidi_length; 2262 2263 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) 2264 bidi_length = cmd->t_task_nolb * 2265 cmd->se_dev->dev_attrib.block_size; 2266 else 2267 bidi_length = cmd->data_length; 2268 2269 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2270 &cmd->t_bidi_data_nents, 2271 bidi_length, zero_flag); 2272 if (ret < 0) 2273 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2274 } 2275 2276 if (cmd->prot_op != TARGET_PROT_NORMAL) { 2277 ret = target_alloc_sgl(&cmd->t_prot_sg, 2278 &cmd->t_prot_nents, 2279 cmd->prot_length, true); 2280 if (ret < 0) 2281 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2282 } 2283 2284 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents, 2285 cmd->data_length, zero_flag); 2286 if (ret < 0) 2287 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2288 } 2289 /* 2290 * If this command is not a write we can execute it right here, 2291 * for write buffers we need to notify the fabric driver first 2292 * and let it call back once the write buffers are ready. 2293 */ 2294 target_add_to_state_list(cmd); 2295 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) { 2296 target_execute_cmd(cmd); 2297 return 0; 2298 } 2299 transport_cmd_check_stop(cmd, false, true); 2300 2301 ret = cmd->se_tfo->write_pending(cmd); 2302 if (ret == -EAGAIN || ret == -ENOMEM) 2303 goto queue_full; 2304 2305 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */ 2306 WARN_ON(ret); 2307 2308 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2309 2310 queue_full: 2311 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2312 cmd->t_state = TRANSPORT_COMPLETE_QF_WP; 2313 transport_handle_queue_full(cmd, cmd->se_dev); 2314 return 0; 2315 } 2316 EXPORT_SYMBOL(transport_generic_new_cmd); 2317 2318 static void transport_write_pending_qf(struct se_cmd *cmd) 2319 { 2320 int ret; 2321 2322 ret = cmd->se_tfo->write_pending(cmd); 2323 if (ret == -EAGAIN || ret == -ENOMEM) { 2324 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2325 cmd); 2326 transport_handle_queue_full(cmd, cmd->se_dev); 2327 } 2328 } 2329 2330 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2331 { 2332 unsigned long flags; 2333 int ret = 0; 2334 2335 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) { 2336 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2337 transport_wait_for_tasks(cmd); 2338 2339 ret = transport_release_cmd(cmd); 2340 } else { 2341 if (wait_for_tasks) 2342 transport_wait_for_tasks(cmd); 2343 /* 2344 * Handle WRITE failure case where transport_generic_new_cmd() 2345 * has already added se_cmd to state_list, but fabric has 2346 * failed command before I/O submission. 2347 */ 2348 if (cmd->state_active) { 2349 spin_lock_irqsave(&cmd->t_state_lock, flags); 2350 target_remove_from_state_list(cmd); 2351 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2352 } 2353 2354 if (cmd->se_lun) 2355 transport_lun_remove_cmd(cmd); 2356 2357 ret = transport_put_cmd(cmd); 2358 } 2359 return ret; 2360 } 2361 EXPORT_SYMBOL(transport_generic_free_cmd); 2362 2363 /* target_get_sess_cmd - Add command to active ->sess_cmd_list 2364 * @se_sess: session to reference 2365 * @se_cmd: command descriptor to add 2366 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2367 */ 2368 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd, 2369 bool ack_kref) 2370 { 2371 unsigned long flags; 2372 int ret = 0; 2373 2374 /* 2375 * Add a second kref if the fabric caller is expecting to handle 2376 * fabric acknowledgement that requires two target_put_sess_cmd() 2377 * invocations before se_cmd descriptor release. 2378 */ 2379 if (ack_kref) { 2380 kref_get(&se_cmd->cmd_kref); 2381 se_cmd->se_cmd_flags |= SCF_ACK_KREF; 2382 } 2383 2384 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2385 if (se_sess->sess_tearing_down) { 2386 ret = -ESHUTDOWN; 2387 goto out; 2388 } 2389 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); 2390 out: 2391 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2392 return ret; 2393 } 2394 EXPORT_SYMBOL(target_get_sess_cmd); 2395 2396 static void target_release_cmd_kref(struct kref *kref) 2397 { 2398 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2399 struct se_session *se_sess = se_cmd->se_sess; 2400 2401 if (list_empty(&se_cmd->se_cmd_list)) { 2402 spin_unlock(&se_sess->sess_cmd_lock); 2403 se_cmd->se_tfo->release_cmd(se_cmd); 2404 return; 2405 } 2406 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) { 2407 spin_unlock(&se_sess->sess_cmd_lock); 2408 complete(&se_cmd->cmd_wait_comp); 2409 return; 2410 } 2411 list_del(&se_cmd->se_cmd_list); 2412 spin_unlock(&se_sess->sess_cmd_lock); 2413 2414 se_cmd->se_tfo->release_cmd(se_cmd); 2415 } 2416 2417 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put 2418 * @se_sess: session to reference 2419 * @se_cmd: command descriptor to drop 2420 */ 2421 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd) 2422 { 2423 if (!se_sess) { 2424 se_cmd->se_tfo->release_cmd(se_cmd); 2425 return 1; 2426 } 2427 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref, 2428 &se_sess->sess_cmd_lock); 2429 } 2430 EXPORT_SYMBOL(target_put_sess_cmd); 2431 2432 /* target_sess_cmd_list_set_waiting - Flag all commands in 2433 * sess_cmd_list to complete cmd_wait_comp. Set 2434 * sess_tearing_down so no more commands are queued. 2435 * @se_sess: session to flag 2436 */ 2437 void target_sess_cmd_list_set_waiting(struct se_session *se_sess) 2438 { 2439 struct se_cmd *se_cmd; 2440 unsigned long flags; 2441 2442 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2443 if (se_sess->sess_tearing_down) { 2444 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2445 return; 2446 } 2447 se_sess->sess_tearing_down = 1; 2448 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list); 2449 2450 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) 2451 se_cmd->cmd_wait_set = 1; 2452 2453 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2454 } 2455 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting); 2456 2457 /* target_wait_for_sess_cmds - Wait for outstanding descriptors 2458 * @se_sess: session to wait for active I/O 2459 */ 2460 void target_wait_for_sess_cmds(struct se_session *se_sess) 2461 { 2462 struct se_cmd *se_cmd, *tmp_cmd; 2463 unsigned long flags; 2464 2465 list_for_each_entry_safe(se_cmd, tmp_cmd, 2466 &se_sess->sess_wait_list, se_cmd_list) { 2467 list_del(&se_cmd->se_cmd_list); 2468 2469 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:" 2470 " %d\n", se_cmd, se_cmd->t_state, 2471 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2472 2473 wait_for_completion(&se_cmd->cmd_wait_comp); 2474 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d" 2475 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2476 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2477 2478 se_cmd->se_tfo->release_cmd(se_cmd); 2479 } 2480 2481 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2482 WARN_ON(!list_empty(&se_sess->sess_cmd_list)); 2483 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2484 2485 } 2486 EXPORT_SYMBOL(target_wait_for_sess_cmds); 2487 2488 static int transport_clear_lun_ref_thread(void *p) 2489 { 2490 struct se_lun *lun = p; 2491 2492 percpu_ref_kill(&lun->lun_ref); 2493 2494 wait_for_completion(&lun->lun_ref_comp); 2495 complete(&lun->lun_shutdown_comp); 2496 2497 return 0; 2498 } 2499 2500 int transport_clear_lun_ref(struct se_lun *lun) 2501 { 2502 struct task_struct *kt; 2503 2504 kt = kthread_run(transport_clear_lun_ref_thread, lun, 2505 "tcm_cl_%u", lun->unpacked_lun); 2506 if (IS_ERR(kt)) { 2507 pr_err("Unable to start clear_lun thread\n"); 2508 return PTR_ERR(kt); 2509 } 2510 wait_for_completion(&lun->lun_shutdown_comp); 2511 2512 return 0; 2513 } 2514 2515 /** 2516 * transport_wait_for_tasks - wait for completion to occur 2517 * @cmd: command to wait 2518 * 2519 * Called from frontend fabric context to wait for storage engine 2520 * to pause and/or release frontend generated struct se_cmd. 2521 */ 2522 bool transport_wait_for_tasks(struct se_cmd *cmd) 2523 { 2524 unsigned long flags; 2525 2526 spin_lock_irqsave(&cmd->t_state_lock, flags); 2527 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 2528 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2529 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2530 return false; 2531 } 2532 2533 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 2534 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2535 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2536 return false; 2537 } 2538 2539 if (!(cmd->transport_state & CMD_T_ACTIVE)) { 2540 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2541 return false; 2542 } 2543 2544 cmd->transport_state |= CMD_T_STOP; 2545 2546 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x" 2547 " i_state: %d, t_state: %d, CMD_T_STOP\n", 2548 cmd, cmd->se_tfo->get_task_tag(cmd), 2549 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2550 2551 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2552 2553 wait_for_completion(&cmd->t_transport_stop_comp); 2554 2555 spin_lock_irqsave(&cmd->t_state_lock, flags); 2556 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 2557 2558 pr_debug("wait_for_tasks: Stopped wait_for_completion(" 2559 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n", 2560 cmd->se_tfo->get_task_tag(cmd)); 2561 2562 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2563 2564 return true; 2565 } 2566 EXPORT_SYMBOL(transport_wait_for_tasks); 2567 2568 static int transport_get_sense_codes( 2569 struct se_cmd *cmd, 2570 u8 *asc, 2571 u8 *ascq) 2572 { 2573 *asc = cmd->scsi_asc; 2574 *ascq = cmd->scsi_ascq; 2575 2576 return 0; 2577 } 2578 2579 static 2580 void transport_err_sector_info(unsigned char *buffer, sector_t bad_sector) 2581 { 2582 /* Place failed LBA in sense data information descriptor 0. */ 2583 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 0xc; 2584 buffer[SPC_DESC_TYPE_OFFSET] = 0; /* Information */ 2585 buffer[SPC_ADDITIONAL_DESC_LEN_OFFSET] = 0xa; 2586 buffer[SPC_VALIDITY_OFFSET] = 0x80; 2587 2588 /* Descriptor Information: failing sector */ 2589 put_unaligned_be64(bad_sector, &buffer[12]); 2590 } 2591 2592 int 2593 transport_send_check_condition_and_sense(struct se_cmd *cmd, 2594 sense_reason_t reason, int from_transport) 2595 { 2596 unsigned char *buffer = cmd->sense_buffer; 2597 unsigned long flags; 2598 u8 asc = 0, ascq = 0; 2599 2600 spin_lock_irqsave(&cmd->t_state_lock, flags); 2601 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 2602 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2603 return 0; 2604 } 2605 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 2606 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2607 2608 if (!reason && from_transport) 2609 goto after_reason; 2610 2611 if (!from_transport) 2612 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 2613 2614 /* 2615 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses 2616 * SENSE KEY values from include/scsi/scsi.h 2617 */ 2618 switch (reason) { 2619 case TCM_NO_SENSE: 2620 /* CURRENT ERROR */ 2621 buffer[0] = 0x70; 2622 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2623 /* Not Ready */ 2624 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2625 /* NO ADDITIONAL SENSE INFORMATION */ 2626 buffer[SPC_ASC_KEY_OFFSET] = 0; 2627 buffer[SPC_ASCQ_KEY_OFFSET] = 0; 2628 break; 2629 case TCM_NON_EXISTENT_LUN: 2630 /* CURRENT ERROR */ 2631 buffer[0] = 0x70; 2632 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2633 /* ILLEGAL REQUEST */ 2634 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2635 /* LOGICAL UNIT NOT SUPPORTED */ 2636 buffer[SPC_ASC_KEY_OFFSET] = 0x25; 2637 break; 2638 case TCM_UNSUPPORTED_SCSI_OPCODE: 2639 case TCM_SECTOR_COUNT_TOO_MANY: 2640 /* CURRENT ERROR */ 2641 buffer[0] = 0x70; 2642 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2643 /* ILLEGAL REQUEST */ 2644 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2645 /* INVALID COMMAND OPERATION CODE */ 2646 buffer[SPC_ASC_KEY_OFFSET] = 0x20; 2647 break; 2648 case TCM_UNKNOWN_MODE_PAGE: 2649 /* CURRENT ERROR */ 2650 buffer[0] = 0x70; 2651 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2652 /* ILLEGAL REQUEST */ 2653 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2654 /* INVALID FIELD IN CDB */ 2655 buffer[SPC_ASC_KEY_OFFSET] = 0x24; 2656 break; 2657 case TCM_CHECK_CONDITION_ABORT_CMD: 2658 /* CURRENT ERROR */ 2659 buffer[0] = 0x70; 2660 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2661 /* ABORTED COMMAND */ 2662 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2663 /* BUS DEVICE RESET FUNCTION OCCURRED */ 2664 buffer[SPC_ASC_KEY_OFFSET] = 0x29; 2665 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03; 2666 break; 2667 case TCM_INCORRECT_AMOUNT_OF_DATA: 2668 /* CURRENT ERROR */ 2669 buffer[0] = 0x70; 2670 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2671 /* ABORTED COMMAND */ 2672 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2673 /* WRITE ERROR */ 2674 buffer[SPC_ASC_KEY_OFFSET] = 0x0c; 2675 /* NOT ENOUGH UNSOLICITED DATA */ 2676 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d; 2677 break; 2678 case TCM_INVALID_CDB_FIELD: 2679 /* CURRENT ERROR */ 2680 buffer[0] = 0x70; 2681 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2682 /* ILLEGAL REQUEST */ 2683 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2684 /* INVALID FIELD IN CDB */ 2685 buffer[SPC_ASC_KEY_OFFSET] = 0x24; 2686 break; 2687 case TCM_INVALID_PARAMETER_LIST: 2688 /* CURRENT ERROR */ 2689 buffer[0] = 0x70; 2690 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2691 /* ILLEGAL REQUEST */ 2692 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2693 /* INVALID FIELD IN PARAMETER LIST */ 2694 buffer[SPC_ASC_KEY_OFFSET] = 0x26; 2695 break; 2696 case TCM_PARAMETER_LIST_LENGTH_ERROR: 2697 /* CURRENT ERROR */ 2698 buffer[0] = 0x70; 2699 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2700 /* ILLEGAL REQUEST */ 2701 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2702 /* PARAMETER LIST LENGTH ERROR */ 2703 buffer[SPC_ASC_KEY_OFFSET] = 0x1a; 2704 break; 2705 case TCM_UNEXPECTED_UNSOLICITED_DATA: 2706 /* CURRENT ERROR */ 2707 buffer[0] = 0x70; 2708 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2709 /* ABORTED COMMAND */ 2710 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2711 /* WRITE ERROR */ 2712 buffer[SPC_ASC_KEY_OFFSET] = 0x0c; 2713 /* UNEXPECTED_UNSOLICITED_DATA */ 2714 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c; 2715 break; 2716 case TCM_SERVICE_CRC_ERROR: 2717 /* CURRENT ERROR */ 2718 buffer[0] = 0x70; 2719 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2720 /* ABORTED COMMAND */ 2721 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2722 /* PROTOCOL SERVICE CRC ERROR */ 2723 buffer[SPC_ASC_KEY_OFFSET] = 0x47; 2724 /* N/A */ 2725 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05; 2726 break; 2727 case TCM_SNACK_REJECTED: 2728 /* CURRENT ERROR */ 2729 buffer[0] = 0x70; 2730 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2731 /* ABORTED COMMAND */ 2732 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2733 /* READ ERROR */ 2734 buffer[SPC_ASC_KEY_OFFSET] = 0x11; 2735 /* FAILED RETRANSMISSION REQUEST */ 2736 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13; 2737 break; 2738 case TCM_WRITE_PROTECTED: 2739 /* CURRENT ERROR */ 2740 buffer[0] = 0x70; 2741 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2742 /* DATA PROTECT */ 2743 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT; 2744 /* WRITE PROTECTED */ 2745 buffer[SPC_ASC_KEY_OFFSET] = 0x27; 2746 break; 2747 case TCM_ADDRESS_OUT_OF_RANGE: 2748 /* CURRENT ERROR */ 2749 buffer[0] = 0x70; 2750 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2751 /* ILLEGAL REQUEST */ 2752 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2753 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 2754 buffer[SPC_ASC_KEY_OFFSET] = 0x21; 2755 break; 2756 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 2757 /* CURRENT ERROR */ 2758 buffer[0] = 0x70; 2759 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2760 /* UNIT ATTENTION */ 2761 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION; 2762 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); 2763 buffer[SPC_ASC_KEY_OFFSET] = asc; 2764 buffer[SPC_ASCQ_KEY_OFFSET] = ascq; 2765 break; 2766 case TCM_CHECK_CONDITION_NOT_READY: 2767 /* CURRENT ERROR */ 2768 buffer[0] = 0x70; 2769 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2770 /* Not Ready */ 2771 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2772 transport_get_sense_codes(cmd, &asc, &ascq); 2773 buffer[SPC_ASC_KEY_OFFSET] = asc; 2774 buffer[SPC_ASCQ_KEY_OFFSET] = ascq; 2775 break; 2776 case TCM_MISCOMPARE_VERIFY: 2777 /* CURRENT ERROR */ 2778 buffer[0] = 0x70; 2779 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2780 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE; 2781 /* MISCOMPARE DURING VERIFY OPERATION */ 2782 buffer[SPC_ASC_KEY_OFFSET] = 0x1d; 2783 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00; 2784 break; 2785 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 2786 /* CURRENT ERROR */ 2787 buffer[0] = 0x70; 2788 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2789 /* ILLEGAL REQUEST */ 2790 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2791 /* LOGICAL BLOCK GUARD CHECK FAILED */ 2792 buffer[SPC_ASC_KEY_OFFSET] = 0x10; 2793 buffer[SPC_ASCQ_KEY_OFFSET] = 0x01; 2794 transport_err_sector_info(buffer, cmd->bad_sector); 2795 break; 2796 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 2797 /* CURRENT ERROR */ 2798 buffer[0] = 0x70; 2799 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2800 /* ILLEGAL REQUEST */ 2801 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2802 /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */ 2803 buffer[SPC_ASC_KEY_OFFSET] = 0x10; 2804 buffer[SPC_ASCQ_KEY_OFFSET] = 0x02; 2805 transport_err_sector_info(buffer, cmd->bad_sector); 2806 break; 2807 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 2808 /* CURRENT ERROR */ 2809 buffer[0] = 0x70; 2810 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2811 /* ILLEGAL REQUEST */ 2812 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2813 /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */ 2814 buffer[SPC_ASC_KEY_OFFSET] = 0x10; 2815 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03; 2816 transport_err_sector_info(buffer, cmd->bad_sector); 2817 break; 2818 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 2819 default: 2820 /* CURRENT ERROR */ 2821 buffer[0] = 0x70; 2822 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2823 /* 2824 * Returning ILLEGAL REQUEST would cause immediate IO errors on 2825 * Solaris initiators. Returning NOT READY instead means the 2826 * operations will be retried a finite number of times and we 2827 * can survive intermittent errors. 2828 */ 2829 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2830 /* LOGICAL UNIT COMMUNICATION FAILURE */ 2831 buffer[SPC_ASC_KEY_OFFSET] = 0x08; 2832 break; 2833 } 2834 /* 2835 * This code uses linux/include/scsi/scsi.h SAM status codes! 2836 */ 2837 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 2838 /* 2839 * Automatically padded, this value is encoded in the fabric's 2840 * data_length response PDU containing the SCSI defined sense data. 2841 */ 2842 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 2843 2844 after_reason: 2845 trace_target_cmd_complete(cmd); 2846 return cmd->se_tfo->queue_status(cmd); 2847 } 2848 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 2849 2850 int transport_check_aborted_status(struct se_cmd *cmd, int send_status) 2851 { 2852 if (!(cmd->transport_state & CMD_T_ABORTED)) 2853 return 0; 2854 2855 /* 2856 * If cmd has been aborted but either no status is to be sent or it has 2857 * already been sent, just return 2858 */ 2859 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) 2860 return 1; 2861 2862 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n", 2863 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd)); 2864 2865 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS; 2866 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 2867 trace_target_cmd_complete(cmd); 2868 cmd->se_tfo->queue_status(cmd); 2869 2870 return 1; 2871 } 2872 EXPORT_SYMBOL(transport_check_aborted_status); 2873 2874 void transport_send_task_abort(struct se_cmd *cmd) 2875 { 2876 unsigned long flags; 2877 2878 spin_lock_irqsave(&cmd->t_state_lock, flags); 2879 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) { 2880 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2881 return; 2882 } 2883 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2884 2885 /* 2886 * If there are still expected incoming fabric WRITEs, we wait 2887 * until until they have completed before sending a TASK_ABORTED 2888 * response. This response with TASK_ABORTED status will be 2889 * queued back to fabric module by transport_check_aborted_status(). 2890 */ 2891 if (cmd->data_direction == DMA_TO_DEVICE) { 2892 if (cmd->se_tfo->write_pending_status(cmd) != 0) { 2893 cmd->transport_state |= CMD_T_ABORTED; 2894 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS; 2895 return; 2896 } 2897 } 2898 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 2899 2900 transport_lun_remove_cmd(cmd); 2901 2902 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x," 2903 " ITT: 0x%08x\n", cmd->t_task_cdb[0], 2904 cmd->se_tfo->get_task_tag(cmd)); 2905 2906 trace_target_cmd_complete(cmd); 2907 cmd->se_tfo->queue_status(cmd); 2908 } 2909 2910 static void target_tmr_work(struct work_struct *work) 2911 { 2912 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2913 struct se_device *dev = cmd->se_dev; 2914 struct se_tmr_req *tmr = cmd->se_tmr_req; 2915 int ret; 2916 2917 switch (tmr->function) { 2918 case TMR_ABORT_TASK: 2919 core_tmr_abort_task(dev, tmr, cmd->se_sess); 2920 break; 2921 case TMR_ABORT_TASK_SET: 2922 case TMR_CLEAR_ACA: 2923 case TMR_CLEAR_TASK_SET: 2924 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 2925 break; 2926 case TMR_LUN_RESET: 2927 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 2928 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 2929 TMR_FUNCTION_REJECTED; 2930 break; 2931 case TMR_TARGET_WARM_RESET: 2932 tmr->response = TMR_FUNCTION_REJECTED; 2933 break; 2934 case TMR_TARGET_COLD_RESET: 2935 tmr->response = TMR_FUNCTION_REJECTED; 2936 break; 2937 default: 2938 pr_err("Uknown TMR function: 0x%02x.\n", 2939 tmr->function); 2940 tmr->response = TMR_FUNCTION_REJECTED; 2941 break; 2942 } 2943 2944 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 2945 cmd->se_tfo->queue_tm_rsp(cmd); 2946 2947 transport_cmd_check_stop_to_fabric(cmd); 2948 } 2949 2950 int transport_generic_handle_tmr( 2951 struct se_cmd *cmd) 2952 { 2953 unsigned long flags; 2954 2955 spin_lock_irqsave(&cmd->t_state_lock, flags); 2956 cmd->transport_state |= CMD_T_ACTIVE; 2957 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2958 2959 INIT_WORK(&cmd->work, target_tmr_work); 2960 queue_work(cmd->se_dev->tmr_wq, &cmd->work); 2961 return 0; 2962 } 2963 EXPORT_SYMBOL(transport_generic_handle_tmr); 2964