xref: /linux/drivers/target/target_core_transport.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * (c) Copyright 2002-2013 Datera, Inc.
7  *
8  * Nicholas A. Bellinger <nab@kernel.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  *
24  ******************************************************************************/
25 
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
43 
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
55 
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
65 
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
68 static void transport_handle_queue_full(struct se_cmd *cmd,
69 		struct se_device *dev, int err, bool write_pending);
70 static void target_complete_ok_work(struct work_struct *work);
71 
72 int init_se_kmem_caches(void)
73 {
74 	se_sess_cache = kmem_cache_create("se_sess_cache",
75 			sizeof(struct se_session), __alignof__(struct se_session),
76 			0, NULL);
77 	if (!se_sess_cache) {
78 		pr_err("kmem_cache_create() for struct se_session"
79 				" failed\n");
80 		goto out;
81 	}
82 	se_ua_cache = kmem_cache_create("se_ua_cache",
83 			sizeof(struct se_ua), __alignof__(struct se_ua),
84 			0, NULL);
85 	if (!se_ua_cache) {
86 		pr_err("kmem_cache_create() for struct se_ua failed\n");
87 		goto out_free_sess_cache;
88 	}
89 	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90 			sizeof(struct t10_pr_registration),
91 			__alignof__(struct t10_pr_registration), 0, NULL);
92 	if (!t10_pr_reg_cache) {
93 		pr_err("kmem_cache_create() for struct t10_pr_registration"
94 				" failed\n");
95 		goto out_free_ua_cache;
96 	}
97 	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98 			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99 			0, NULL);
100 	if (!t10_alua_lu_gp_cache) {
101 		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102 				" failed\n");
103 		goto out_free_pr_reg_cache;
104 	}
105 	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 			sizeof(struct t10_alua_lu_gp_member),
107 			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 	if (!t10_alua_lu_gp_mem_cache) {
109 		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110 				"cache failed\n");
111 		goto out_free_lu_gp_cache;
112 	}
113 	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 			sizeof(struct t10_alua_tg_pt_gp),
115 			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 	if (!t10_alua_tg_pt_gp_cache) {
117 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118 				"cache failed\n");
119 		goto out_free_lu_gp_mem_cache;
120 	}
121 	t10_alua_lba_map_cache = kmem_cache_create(
122 			"t10_alua_lba_map_cache",
123 			sizeof(struct t10_alua_lba_map),
124 			__alignof__(struct t10_alua_lba_map), 0, NULL);
125 	if (!t10_alua_lba_map_cache) {
126 		pr_err("kmem_cache_create() for t10_alua_lba_map_"
127 				"cache failed\n");
128 		goto out_free_tg_pt_gp_cache;
129 	}
130 	t10_alua_lba_map_mem_cache = kmem_cache_create(
131 			"t10_alua_lba_map_mem_cache",
132 			sizeof(struct t10_alua_lba_map_member),
133 			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
134 	if (!t10_alua_lba_map_mem_cache) {
135 		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
136 				"cache failed\n");
137 		goto out_free_lba_map_cache;
138 	}
139 
140 	target_completion_wq = alloc_workqueue("target_completion",
141 					       WQ_MEM_RECLAIM, 0);
142 	if (!target_completion_wq)
143 		goto out_free_lba_map_mem_cache;
144 
145 	return 0;
146 
147 out_free_lba_map_mem_cache:
148 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
149 out_free_lba_map_cache:
150 	kmem_cache_destroy(t10_alua_lba_map_cache);
151 out_free_tg_pt_gp_cache:
152 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156 	kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158 	kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160 	kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162 	kmem_cache_destroy(se_sess_cache);
163 out:
164 	return -ENOMEM;
165 }
166 
167 void release_se_kmem_caches(void)
168 {
169 	destroy_workqueue(target_completion_wq);
170 	kmem_cache_destroy(se_sess_cache);
171 	kmem_cache_destroy(se_ua_cache);
172 	kmem_cache_destroy(t10_pr_reg_cache);
173 	kmem_cache_destroy(t10_alua_lu_gp_cache);
174 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 	kmem_cache_destroy(t10_alua_lba_map_cache);
177 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
178 }
179 
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock);
182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
183 
184 /*
185  * Allocate a new row index for the entry type specified
186  */
187 u32 scsi_get_new_index(scsi_index_t type)
188 {
189 	u32 new_index;
190 
191 	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
192 
193 	spin_lock(&scsi_mib_index_lock);
194 	new_index = ++scsi_mib_index[type];
195 	spin_unlock(&scsi_mib_index_lock);
196 
197 	return new_index;
198 }
199 
200 void transport_subsystem_check_init(void)
201 {
202 	int ret;
203 	static int sub_api_initialized;
204 
205 	if (sub_api_initialized)
206 		return;
207 
208 	ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
209 	if (ret != 0)
210 		pr_err("Unable to load target_core_iblock\n");
211 
212 	ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
213 	if (ret != 0)
214 		pr_err("Unable to load target_core_file\n");
215 
216 	ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
217 	if (ret != 0)
218 		pr_err("Unable to load target_core_pscsi\n");
219 
220 	ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
221 	if (ret != 0)
222 		pr_err("Unable to load target_core_user\n");
223 
224 	sub_api_initialized = 1;
225 }
226 
227 static void target_release_sess_cmd_refcnt(struct percpu_ref *ref)
228 {
229 	struct se_session *sess = container_of(ref, typeof(*sess), cmd_count);
230 
231 	wake_up(&sess->cmd_list_wq);
232 }
233 
234 /**
235  * transport_init_session - initialize a session object
236  * @se_sess: Session object pointer.
237  *
238  * The caller must have zero-initialized @se_sess before calling this function.
239  */
240 int transport_init_session(struct se_session *se_sess)
241 {
242 	INIT_LIST_HEAD(&se_sess->sess_list);
243 	INIT_LIST_HEAD(&se_sess->sess_acl_list);
244 	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
245 	spin_lock_init(&se_sess->sess_cmd_lock);
246 	init_waitqueue_head(&se_sess->cmd_list_wq);
247 	return percpu_ref_init(&se_sess->cmd_count,
248 			       target_release_sess_cmd_refcnt, 0, GFP_KERNEL);
249 }
250 EXPORT_SYMBOL(transport_init_session);
251 
252 /**
253  * transport_alloc_session - allocate a session object and initialize it
254  * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
255  */
256 struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
257 {
258 	struct se_session *se_sess;
259 	int ret;
260 
261 	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
262 	if (!se_sess) {
263 		pr_err("Unable to allocate struct se_session from"
264 				" se_sess_cache\n");
265 		return ERR_PTR(-ENOMEM);
266 	}
267 	ret = transport_init_session(se_sess);
268 	if (ret < 0) {
269 		kmem_cache_free(se_sess_cache, se_sess);
270 		return ERR_PTR(ret);
271 	}
272 	se_sess->sup_prot_ops = sup_prot_ops;
273 
274 	return se_sess;
275 }
276 EXPORT_SYMBOL(transport_alloc_session);
277 
278 /**
279  * transport_alloc_session_tags - allocate target driver private data
280  * @se_sess:  Session pointer.
281  * @tag_num:  Maximum number of in-flight commands between initiator and target.
282  * @tag_size: Size in bytes of the private data a target driver associates with
283  *	      each command.
284  */
285 int transport_alloc_session_tags(struct se_session *se_sess,
286 			         unsigned int tag_num, unsigned int tag_size)
287 {
288 	int rc;
289 
290 	se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
291 					 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
292 	if (!se_sess->sess_cmd_map) {
293 		pr_err("Unable to allocate se_sess->sess_cmd_map\n");
294 		return -ENOMEM;
295 	}
296 
297 	rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
298 			false, GFP_KERNEL, NUMA_NO_NODE);
299 	if (rc < 0) {
300 		pr_err("Unable to init se_sess->sess_tag_pool,"
301 			" tag_num: %u\n", tag_num);
302 		kvfree(se_sess->sess_cmd_map);
303 		se_sess->sess_cmd_map = NULL;
304 		return -ENOMEM;
305 	}
306 
307 	return 0;
308 }
309 EXPORT_SYMBOL(transport_alloc_session_tags);
310 
311 /**
312  * transport_init_session_tags - allocate a session and target driver private data
313  * @tag_num:  Maximum number of in-flight commands between initiator and target.
314  * @tag_size: Size in bytes of the private data a target driver associates with
315  *	      each command.
316  * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
317  */
318 static struct se_session *
319 transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
320 			    enum target_prot_op sup_prot_ops)
321 {
322 	struct se_session *se_sess;
323 	int rc;
324 
325 	if (tag_num != 0 && !tag_size) {
326 		pr_err("init_session_tags called with percpu-ida tag_num:"
327 		       " %u, but zero tag_size\n", tag_num);
328 		return ERR_PTR(-EINVAL);
329 	}
330 	if (!tag_num && tag_size) {
331 		pr_err("init_session_tags called with percpu-ida tag_size:"
332 		       " %u, but zero tag_num\n", tag_size);
333 		return ERR_PTR(-EINVAL);
334 	}
335 
336 	se_sess = transport_alloc_session(sup_prot_ops);
337 	if (IS_ERR(se_sess))
338 		return se_sess;
339 
340 	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
341 	if (rc < 0) {
342 		transport_free_session(se_sess);
343 		return ERR_PTR(-ENOMEM);
344 	}
345 
346 	return se_sess;
347 }
348 
349 /*
350  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
351  */
352 void __transport_register_session(
353 	struct se_portal_group *se_tpg,
354 	struct se_node_acl *se_nacl,
355 	struct se_session *se_sess,
356 	void *fabric_sess_ptr)
357 {
358 	const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
359 	unsigned char buf[PR_REG_ISID_LEN];
360 	unsigned long flags;
361 
362 	se_sess->se_tpg = se_tpg;
363 	se_sess->fabric_sess_ptr = fabric_sess_ptr;
364 	/*
365 	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
366 	 *
367 	 * Only set for struct se_session's that will actually be moving I/O.
368 	 * eg: *NOT* discovery sessions.
369 	 */
370 	if (se_nacl) {
371 		/*
372 		 *
373 		 * Determine if fabric allows for T10-PI feature bits exposed to
374 		 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
375 		 *
376 		 * If so, then always save prot_type on a per se_node_acl node
377 		 * basis and re-instate the previous sess_prot_type to avoid
378 		 * disabling PI from below any previously initiator side
379 		 * registered LUNs.
380 		 */
381 		if (se_nacl->saved_prot_type)
382 			se_sess->sess_prot_type = se_nacl->saved_prot_type;
383 		else if (tfo->tpg_check_prot_fabric_only)
384 			se_sess->sess_prot_type = se_nacl->saved_prot_type =
385 					tfo->tpg_check_prot_fabric_only(se_tpg);
386 		/*
387 		 * If the fabric module supports an ISID based TransportID,
388 		 * save this value in binary from the fabric I_T Nexus now.
389 		 */
390 		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
391 			memset(&buf[0], 0, PR_REG_ISID_LEN);
392 			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
393 					&buf[0], PR_REG_ISID_LEN);
394 			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
395 		}
396 
397 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
398 		/*
399 		 * The se_nacl->nacl_sess pointer will be set to the
400 		 * last active I_T Nexus for each struct se_node_acl.
401 		 */
402 		se_nacl->nacl_sess = se_sess;
403 
404 		list_add_tail(&se_sess->sess_acl_list,
405 			      &se_nacl->acl_sess_list);
406 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
407 	}
408 	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
409 
410 	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
411 		se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
412 }
413 EXPORT_SYMBOL(__transport_register_session);
414 
415 void transport_register_session(
416 	struct se_portal_group *se_tpg,
417 	struct se_node_acl *se_nacl,
418 	struct se_session *se_sess,
419 	void *fabric_sess_ptr)
420 {
421 	unsigned long flags;
422 
423 	spin_lock_irqsave(&se_tpg->session_lock, flags);
424 	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
425 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
426 }
427 EXPORT_SYMBOL(transport_register_session);
428 
429 struct se_session *
430 target_setup_session(struct se_portal_group *tpg,
431 		     unsigned int tag_num, unsigned int tag_size,
432 		     enum target_prot_op prot_op,
433 		     const char *initiatorname, void *private,
434 		     int (*callback)(struct se_portal_group *,
435 				     struct se_session *, void *))
436 {
437 	struct se_session *sess;
438 
439 	/*
440 	 * If the fabric driver is using percpu-ida based pre allocation
441 	 * of I/O descriptor tags, go ahead and perform that setup now..
442 	 */
443 	if (tag_num != 0)
444 		sess = transport_init_session_tags(tag_num, tag_size, prot_op);
445 	else
446 		sess = transport_alloc_session(prot_op);
447 
448 	if (IS_ERR(sess))
449 		return sess;
450 
451 	sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
452 					(unsigned char *)initiatorname);
453 	if (!sess->se_node_acl) {
454 		transport_free_session(sess);
455 		return ERR_PTR(-EACCES);
456 	}
457 	/*
458 	 * Go ahead and perform any remaining fabric setup that is
459 	 * required before transport_register_session().
460 	 */
461 	if (callback != NULL) {
462 		int rc = callback(tpg, sess, private);
463 		if (rc) {
464 			transport_free_session(sess);
465 			return ERR_PTR(rc);
466 		}
467 	}
468 
469 	transport_register_session(tpg, sess->se_node_acl, sess, private);
470 	return sess;
471 }
472 EXPORT_SYMBOL(target_setup_session);
473 
474 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
475 {
476 	struct se_session *se_sess;
477 	ssize_t len = 0;
478 
479 	spin_lock_bh(&se_tpg->session_lock);
480 	list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
481 		if (!se_sess->se_node_acl)
482 			continue;
483 		if (!se_sess->se_node_acl->dynamic_node_acl)
484 			continue;
485 		if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
486 			break;
487 
488 		len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
489 				se_sess->se_node_acl->initiatorname);
490 		len += 1; /* Include NULL terminator */
491 	}
492 	spin_unlock_bh(&se_tpg->session_lock);
493 
494 	return len;
495 }
496 EXPORT_SYMBOL(target_show_dynamic_sessions);
497 
498 static void target_complete_nacl(struct kref *kref)
499 {
500 	struct se_node_acl *nacl = container_of(kref,
501 				struct se_node_acl, acl_kref);
502 	struct se_portal_group *se_tpg = nacl->se_tpg;
503 
504 	if (!nacl->dynamic_stop) {
505 		complete(&nacl->acl_free_comp);
506 		return;
507 	}
508 
509 	mutex_lock(&se_tpg->acl_node_mutex);
510 	list_del_init(&nacl->acl_list);
511 	mutex_unlock(&se_tpg->acl_node_mutex);
512 
513 	core_tpg_wait_for_nacl_pr_ref(nacl);
514 	core_free_device_list_for_node(nacl, se_tpg);
515 	kfree(nacl);
516 }
517 
518 void target_put_nacl(struct se_node_acl *nacl)
519 {
520 	kref_put(&nacl->acl_kref, target_complete_nacl);
521 }
522 EXPORT_SYMBOL(target_put_nacl);
523 
524 void transport_deregister_session_configfs(struct se_session *se_sess)
525 {
526 	struct se_node_acl *se_nacl;
527 	unsigned long flags;
528 	/*
529 	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
530 	 */
531 	se_nacl = se_sess->se_node_acl;
532 	if (se_nacl) {
533 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
534 		if (!list_empty(&se_sess->sess_acl_list))
535 			list_del_init(&se_sess->sess_acl_list);
536 		/*
537 		 * If the session list is empty, then clear the pointer.
538 		 * Otherwise, set the struct se_session pointer from the tail
539 		 * element of the per struct se_node_acl active session list.
540 		 */
541 		if (list_empty(&se_nacl->acl_sess_list))
542 			se_nacl->nacl_sess = NULL;
543 		else {
544 			se_nacl->nacl_sess = container_of(
545 					se_nacl->acl_sess_list.prev,
546 					struct se_session, sess_acl_list);
547 		}
548 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
549 	}
550 }
551 EXPORT_SYMBOL(transport_deregister_session_configfs);
552 
553 void transport_free_session(struct se_session *se_sess)
554 {
555 	struct se_node_acl *se_nacl = se_sess->se_node_acl;
556 
557 	/*
558 	 * Drop the se_node_acl->nacl_kref obtained from within
559 	 * core_tpg_get_initiator_node_acl().
560 	 */
561 	if (se_nacl) {
562 		struct se_portal_group *se_tpg = se_nacl->se_tpg;
563 		const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
564 		unsigned long flags;
565 
566 		se_sess->se_node_acl = NULL;
567 
568 		/*
569 		 * Also determine if we need to drop the extra ->cmd_kref if
570 		 * it had been previously dynamically generated, and
571 		 * the endpoint is not caching dynamic ACLs.
572 		 */
573 		mutex_lock(&se_tpg->acl_node_mutex);
574 		if (se_nacl->dynamic_node_acl &&
575 		    !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
576 			spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
577 			if (list_empty(&se_nacl->acl_sess_list))
578 				se_nacl->dynamic_stop = true;
579 			spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
580 
581 			if (se_nacl->dynamic_stop)
582 				list_del_init(&se_nacl->acl_list);
583 		}
584 		mutex_unlock(&se_tpg->acl_node_mutex);
585 
586 		if (se_nacl->dynamic_stop)
587 			target_put_nacl(se_nacl);
588 
589 		target_put_nacl(se_nacl);
590 	}
591 	if (se_sess->sess_cmd_map) {
592 		sbitmap_queue_free(&se_sess->sess_tag_pool);
593 		kvfree(se_sess->sess_cmd_map);
594 	}
595 	percpu_ref_exit(&se_sess->cmd_count);
596 	kmem_cache_free(se_sess_cache, se_sess);
597 }
598 EXPORT_SYMBOL(transport_free_session);
599 
600 void transport_deregister_session(struct se_session *se_sess)
601 {
602 	struct se_portal_group *se_tpg = se_sess->se_tpg;
603 	unsigned long flags;
604 
605 	if (!se_tpg) {
606 		transport_free_session(se_sess);
607 		return;
608 	}
609 
610 	spin_lock_irqsave(&se_tpg->session_lock, flags);
611 	list_del(&se_sess->sess_list);
612 	se_sess->se_tpg = NULL;
613 	se_sess->fabric_sess_ptr = NULL;
614 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
615 
616 	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
617 		se_tpg->se_tpg_tfo->fabric_name);
618 	/*
619 	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
620 	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
621 	 * removal context from within transport_free_session() code.
622 	 *
623 	 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
624 	 * to release all remaining generate_node_acl=1 created ACL resources.
625 	 */
626 
627 	transport_free_session(se_sess);
628 }
629 EXPORT_SYMBOL(transport_deregister_session);
630 
631 void target_remove_session(struct se_session *se_sess)
632 {
633 	transport_deregister_session_configfs(se_sess);
634 	transport_deregister_session(se_sess);
635 }
636 EXPORT_SYMBOL(target_remove_session);
637 
638 static void target_remove_from_state_list(struct se_cmd *cmd)
639 {
640 	struct se_device *dev = cmd->se_dev;
641 	unsigned long flags;
642 
643 	if (!dev)
644 		return;
645 
646 	spin_lock_irqsave(&dev->execute_task_lock, flags);
647 	if (cmd->state_active) {
648 		list_del(&cmd->state_list);
649 		cmd->state_active = false;
650 	}
651 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
652 }
653 
654 /*
655  * This function is called by the target core after the target core has
656  * finished processing a SCSI command or SCSI TMF. Both the regular command
657  * processing code and the code for aborting commands can call this
658  * function. CMD_T_STOP is set if and only if another thread is waiting
659  * inside transport_wait_for_tasks() for t_transport_stop_comp.
660  */
661 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
662 {
663 	unsigned long flags;
664 
665 	target_remove_from_state_list(cmd);
666 
667 	spin_lock_irqsave(&cmd->t_state_lock, flags);
668 	/*
669 	 * Determine if frontend context caller is requesting the stopping of
670 	 * this command for frontend exceptions.
671 	 */
672 	if (cmd->transport_state & CMD_T_STOP) {
673 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
674 			__func__, __LINE__, cmd->tag);
675 
676 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
677 
678 		complete_all(&cmd->t_transport_stop_comp);
679 		return 1;
680 	}
681 	cmd->transport_state &= ~CMD_T_ACTIVE;
682 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
683 
684 	/*
685 	 * Some fabric modules like tcm_loop can release their internally
686 	 * allocated I/O reference and struct se_cmd now.
687 	 *
688 	 * Fabric modules are expected to return '1' here if the se_cmd being
689 	 * passed is released at this point, or zero if not being released.
690 	 */
691 	return cmd->se_tfo->check_stop_free(cmd);
692 }
693 
694 static void target_complete_failure_work(struct work_struct *work)
695 {
696 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
697 
698 	transport_generic_request_failure(cmd,
699 			TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
700 }
701 
702 /*
703  * Used when asking transport to copy Sense Data from the underlying
704  * Linux/SCSI struct scsi_cmnd
705  */
706 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
707 {
708 	struct se_device *dev = cmd->se_dev;
709 
710 	WARN_ON(!cmd->se_lun);
711 
712 	if (!dev)
713 		return NULL;
714 
715 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
716 		return NULL;
717 
718 	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
719 
720 	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
721 		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
722 	return cmd->sense_buffer;
723 }
724 
725 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
726 {
727 	unsigned char *cmd_sense_buf;
728 	unsigned long flags;
729 
730 	spin_lock_irqsave(&cmd->t_state_lock, flags);
731 	cmd_sense_buf = transport_get_sense_buffer(cmd);
732 	if (!cmd_sense_buf) {
733 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
734 		return;
735 	}
736 
737 	cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
738 	memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
739 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
740 }
741 EXPORT_SYMBOL(transport_copy_sense_to_cmd);
742 
743 static void target_handle_abort(struct se_cmd *cmd)
744 {
745 	bool tas = cmd->transport_state & CMD_T_TAS;
746 	bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF;
747 	int ret;
748 
749 	pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas);
750 
751 	if (tas) {
752 		if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
753 			cmd->scsi_status = SAM_STAT_TASK_ABORTED;
754 			pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
755 				 cmd->t_task_cdb[0], cmd->tag);
756 			trace_target_cmd_complete(cmd);
757 			ret = cmd->se_tfo->queue_status(cmd);
758 			if (ret) {
759 				transport_handle_queue_full(cmd, cmd->se_dev,
760 							    ret, false);
761 				return;
762 			}
763 		} else {
764 			cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED;
765 			cmd->se_tfo->queue_tm_rsp(cmd);
766 		}
767 	} else {
768 		/*
769 		 * Allow the fabric driver to unmap any resources before
770 		 * releasing the descriptor via TFO->release_cmd().
771 		 */
772 		cmd->se_tfo->aborted_task(cmd);
773 		if (ack_kref)
774 			WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0);
775 		/*
776 		 * To do: establish a unit attention condition on the I_T
777 		 * nexus associated with cmd. See also the paragraph "Aborting
778 		 * commands" in SAM.
779 		 */
780 	}
781 
782 	WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0);
783 
784 	transport_cmd_check_stop_to_fabric(cmd);
785 }
786 
787 static void target_abort_work(struct work_struct *work)
788 {
789 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
790 
791 	target_handle_abort(cmd);
792 }
793 
794 static bool target_cmd_interrupted(struct se_cmd *cmd)
795 {
796 	int post_ret;
797 
798 	if (cmd->transport_state & CMD_T_ABORTED) {
799 		if (cmd->transport_complete_callback)
800 			cmd->transport_complete_callback(cmd, false, &post_ret);
801 		INIT_WORK(&cmd->work, target_abort_work);
802 		queue_work(target_completion_wq, &cmd->work);
803 		return true;
804 	} else if (cmd->transport_state & CMD_T_STOP) {
805 		if (cmd->transport_complete_callback)
806 			cmd->transport_complete_callback(cmd, false, &post_ret);
807 		complete_all(&cmd->t_transport_stop_comp);
808 		return true;
809 	}
810 
811 	return false;
812 }
813 
814 /* May be called from interrupt context so must not sleep. */
815 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
816 {
817 	int success;
818 	unsigned long flags;
819 
820 	if (target_cmd_interrupted(cmd))
821 		return;
822 
823 	cmd->scsi_status = scsi_status;
824 
825 	spin_lock_irqsave(&cmd->t_state_lock, flags);
826 	switch (cmd->scsi_status) {
827 	case SAM_STAT_CHECK_CONDITION:
828 		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
829 			success = 1;
830 		else
831 			success = 0;
832 		break;
833 	default:
834 		success = 1;
835 		break;
836 	}
837 
838 	cmd->t_state = TRANSPORT_COMPLETE;
839 	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
840 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
841 
842 	INIT_WORK(&cmd->work, success ? target_complete_ok_work :
843 		  target_complete_failure_work);
844 	if (cmd->se_cmd_flags & SCF_USE_CPUID)
845 		queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
846 	else
847 		queue_work(target_completion_wq, &cmd->work);
848 }
849 EXPORT_SYMBOL(target_complete_cmd);
850 
851 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
852 {
853 	if ((scsi_status == SAM_STAT_GOOD ||
854 	     cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
855 	    length < cmd->data_length) {
856 		if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
857 			cmd->residual_count += cmd->data_length - length;
858 		} else {
859 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
860 			cmd->residual_count = cmd->data_length - length;
861 		}
862 
863 		cmd->data_length = length;
864 	}
865 
866 	target_complete_cmd(cmd, scsi_status);
867 }
868 EXPORT_SYMBOL(target_complete_cmd_with_length);
869 
870 static void target_add_to_state_list(struct se_cmd *cmd)
871 {
872 	struct se_device *dev = cmd->se_dev;
873 	unsigned long flags;
874 
875 	spin_lock_irqsave(&dev->execute_task_lock, flags);
876 	if (!cmd->state_active) {
877 		list_add_tail(&cmd->state_list, &dev->state_list);
878 		cmd->state_active = true;
879 	}
880 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
881 }
882 
883 /*
884  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
885  */
886 static void transport_write_pending_qf(struct se_cmd *cmd);
887 static void transport_complete_qf(struct se_cmd *cmd);
888 
889 void target_qf_do_work(struct work_struct *work)
890 {
891 	struct se_device *dev = container_of(work, struct se_device,
892 					qf_work_queue);
893 	LIST_HEAD(qf_cmd_list);
894 	struct se_cmd *cmd, *cmd_tmp;
895 
896 	spin_lock_irq(&dev->qf_cmd_lock);
897 	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
898 	spin_unlock_irq(&dev->qf_cmd_lock);
899 
900 	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
901 		list_del(&cmd->se_qf_node);
902 		atomic_dec_mb(&dev->dev_qf_count);
903 
904 		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
905 			" context: %s\n", cmd->se_tfo->fabric_name, cmd,
906 			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
907 			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
908 			: "UNKNOWN");
909 
910 		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
911 			transport_write_pending_qf(cmd);
912 		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
913 			 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
914 			transport_complete_qf(cmd);
915 	}
916 }
917 
918 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
919 {
920 	switch (cmd->data_direction) {
921 	case DMA_NONE:
922 		return "NONE";
923 	case DMA_FROM_DEVICE:
924 		return "READ";
925 	case DMA_TO_DEVICE:
926 		return "WRITE";
927 	case DMA_BIDIRECTIONAL:
928 		return "BIDI";
929 	default:
930 		break;
931 	}
932 
933 	return "UNKNOWN";
934 }
935 
936 void transport_dump_dev_state(
937 	struct se_device *dev,
938 	char *b,
939 	int *bl)
940 {
941 	*bl += sprintf(b + *bl, "Status: ");
942 	if (dev->export_count)
943 		*bl += sprintf(b + *bl, "ACTIVATED");
944 	else
945 		*bl += sprintf(b + *bl, "DEACTIVATED");
946 
947 	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
948 	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
949 		dev->dev_attrib.block_size,
950 		dev->dev_attrib.hw_max_sectors);
951 	*bl += sprintf(b + *bl, "        ");
952 }
953 
954 void transport_dump_vpd_proto_id(
955 	struct t10_vpd *vpd,
956 	unsigned char *p_buf,
957 	int p_buf_len)
958 {
959 	unsigned char buf[VPD_TMP_BUF_SIZE];
960 	int len;
961 
962 	memset(buf, 0, VPD_TMP_BUF_SIZE);
963 	len = sprintf(buf, "T10 VPD Protocol Identifier: ");
964 
965 	switch (vpd->protocol_identifier) {
966 	case 0x00:
967 		sprintf(buf+len, "Fibre Channel\n");
968 		break;
969 	case 0x10:
970 		sprintf(buf+len, "Parallel SCSI\n");
971 		break;
972 	case 0x20:
973 		sprintf(buf+len, "SSA\n");
974 		break;
975 	case 0x30:
976 		sprintf(buf+len, "IEEE 1394\n");
977 		break;
978 	case 0x40:
979 		sprintf(buf+len, "SCSI Remote Direct Memory Access"
980 				" Protocol\n");
981 		break;
982 	case 0x50:
983 		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
984 		break;
985 	case 0x60:
986 		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
987 		break;
988 	case 0x70:
989 		sprintf(buf+len, "Automation/Drive Interface Transport"
990 				" Protocol\n");
991 		break;
992 	case 0x80:
993 		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
994 		break;
995 	default:
996 		sprintf(buf+len, "Unknown 0x%02x\n",
997 				vpd->protocol_identifier);
998 		break;
999 	}
1000 
1001 	if (p_buf)
1002 		strncpy(p_buf, buf, p_buf_len);
1003 	else
1004 		pr_debug("%s", buf);
1005 }
1006 
1007 void
1008 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1009 {
1010 	/*
1011 	 * Check if the Protocol Identifier Valid (PIV) bit is set..
1012 	 *
1013 	 * from spc3r23.pdf section 7.5.1
1014 	 */
1015 	 if (page_83[1] & 0x80) {
1016 		vpd->protocol_identifier = (page_83[0] & 0xf0);
1017 		vpd->protocol_identifier_set = 1;
1018 		transport_dump_vpd_proto_id(vpd, NULL, 0);
1019 	}
1020 }
1021 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1022 
1023 int transport_dump_vpd_assoc(
1024 	struct t10_vpd *vpd,
1025 	unsigned char *p_buf,
1026 	int p_buf_len)
1027 {
1028 	unsigned char buf[VPD_TMP_BUF_SIZE];
1029 	int ret = 0;
1030 	int len;
1031 
1032 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1033 	len = sprintf(buf, "T10 VPD Identifier Association: ");
1034 
1035 	switch (vpd->association) {
1036 	case 0x00:
1037 		sprintf(buf+len, "addressed logical unit\n");
1038 		break;
1039 	case 0x10:
1040 		sprintf(buf+len, "target port\n");
1041 		break;
1042 	case 0x20:
1043 		sprintf(buf+len, "SCSI target device\n");
1044 		break;
1045 	default:
1046 		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1047 		ret = -EINVAL;
1048 		break;
1049 	}
1050 
1051 	if (p_buf)
1052 		strncpy(p_buf, buf, p_buf_len);
1053 	else
1054 		pr_debug("%s", buf);
1055 
1056 	return ret;
1057 }
1058 
1059 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1060 {
1061 	/*
1062 	 * The VPD identification association..
1063 	 *
1064 	 * from spc3r23.pdf Section 7.6.3.1 Table 297
1065 	 */
1066 	vpd->association = (page_83[1] & 0x30);
1067 	return transport_dump_vpd_assoc(vpd, NULL, 0);
1068 }
1069 EXPORT_SYMBOL(transport_set_vpd_assoc);
1070 
1071 int transport_dump_vpd_ident_type(
1072 	struct t10_vpd *vpd,
1073 	unsigned char *p_buf,
1074 	int p_buf_len)
1075 {
1076 	unsigned char buf[VPD_TMP_BUF_SIZE];
1077 	int ret = 0;
1078 	int len;
1079 
1080 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1081 	len = sprintf(buf, "T10 VPD Identifier Type: ");
1082 
1083 	switch (vpd->device_identifier_type) {
1084 	case 0x00:
1085 		sprintf(buf+len, "Vendor specific\n");
1086 		break;
1087 	case 0x01:
1088 		sprintf(buf+len, "T10 Vendor ID based\n");
1089 		break;
1090 	case 0x02:
1091 		sprintf(buf+len, "EUI-64 based\n");
1092 		break;
1093 	case 0x03:
1094 		sprintf(buf+len, "NAA\n");
1095 		break;
1096 	case 0x04:
1097 		sprintf(buf+len, "Relative target port identifier\n");
1098 		break;
1099 	case 0x08:
1100 		sprintf(buf+len, "SCSI name string\n");
1101 		break;
1102 	default:
1103 		sprintf(buf+len, "Unsupported: 0x%02x\n",
1104 				vpd->device_identifier_type);
1105 		ret = -EINVAL;
1106 		break;
1107 	}
1108 
1109 	if (p_buf) {
1110 		if (p_buf_len < strlen(buf)+1)
1111 			return -EINVAL;
1112 		strncpy(p_buf, buf, p_buf_len);
1113 	} else {
1114 		pr_debug("%s", buf);
1115 	}
1116 
1117 	return ret;
1118 }
1119 
1120 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1121 {
1122 	/*
1123 	 * The VPD identifier type..
1124 	 *
1125 	 * from spc3r23.pdf Section 7.6.3.1 Table 298
1126 	 */
1127 	vpd->device_identifier_type = (page_83[1] & 0x0f);
1128 	return transport_dump_vpd_ident_type(vpd, NULL, 0);
1129 }
1130 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1131 
1132 int transport_dump_vpd_ident(
1133 	struct t10_vpd *vpd,
1134 	unsigned char *p_buf,
1135 	int p_buf_len)
1136 {
1137 	unsigned char buf[VPD_TMP_BUF_SIZE];
1138 	int ret = 0;
1139 
1140 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1141 
1142 	switch (vpd->device_identifier_code_set) {
1143 	case 0x01: /* Binary */
1144 		snprintf(buf, sizeof(buf),
1145 			"T10 VPD Binary Device Identifier: %s\n",
1146 			&vpd->device_identifier[0]);
1147 		break;
1148 	case 0x02: /* ASCII */
1149 		snprintf(buf, sizeof(buf),
1150 			"T10 VPD ASCII Device Identifier: %s\n",
1151 			&vpd->device_identifier[0]);
1152 		break;
1153 	case 0x03: /* UTF-8 */
1154 		snprintf(buf, sizeof(buf),
1155 			"T10 VPD UTF-8 Device Identifier: %s\n",
1156 			&vpd->device_identifier[0]);
1157 		break;
1158 	default:
1159 		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1160 			" 0x%02x", vpd->device_identifier_code_set);
1161 		ret = -EINVAL;
1162 		break;
1163 	}
1164 
1165 	if (p_buf)
1166 		strncpy(p_buf, buf, p_buf_len);
1167 	else
1168 		pr_debug("%s", buf);
1169 
1170 	return ret;
1171 }
1172 
1173 int
1174 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1175 {
1176 	static const char hex_str[] = "0123456789abcdef";
1177 	int j = 0, i = 4; /* offset to start of the identifier */
1178 
1179 	/*
1180 	 * The VPD Code Set (encoding)
1181 	 *
1182 	 * from spc3r23.pdf Section 7.6.3.1 Table 296
1183 	 */
1184 	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1185 	switch (vpd->device_identifier_code_set) {
1186 	case 0x01: /* Binary */
1187 		vpd->device_identifier[j++] =
1188 				hex_str[vpd->device_identifier_type];
1189 		while (i < (4 + page_83[3])) {
1190 			vpd->device_identifier[j++] =
1191 				hex_str[(page_83[i] & 0xf0) >> 4];
1192 			vpd->device_identifier[j++] =
1193 				hex_str[page_83[i] & 0x0f];
1194 			i++;
1195 		}
1196 		break;
1197 	case 0x02: /* ASCII */
1198 	case 0x03: /* UTF-8 */
1199 		while (i < (4 + page_83[3]))
1200 			vpd->device_identifier[j++] = page_83[i++];
1201 		break;
1202 	default:
1203 		break;
1204 	}
1205 
1206 	return transport_dump_vpd_ident(vpd, NULL, 0);
1207 }
1208 EXPORT_SYMBOL(transport_set_vpd_ident);
1209 
1210 static sense_reason_t
1211 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1212 			       unsigned int size)
1213 {
1214 	u32 mtl;
1215 
1216 	if (!cmd->se_tfo->max_data_sg_nents)
1217 		return TCM_NO_SENSE;
1218 	/*
1219 	 * Check if fabric enforced maximum SGL entries per I/O descriptor
1220 	 * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
1221 	 * residual_count and reduce original cmd->data_length to maximum
1222 	 * length based on single PAGE_SIZE entry scatter-lists.
1223 	 */
1224 	mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1225 	if (cmd->data_length > mtl) {
1226 		/*
1227 		 * If an existing CDB overflow is present, calculate new residual
1228 		 * based on CDB size minus fabric maximum transfer length.
1229 		 *
1230 		 * If an existing CDB underflow is present, calculate new residual
1231 		 * based on original cmd->data_length minus fabric maximum transfer
1232 		 * length.
1233 		 *
1234 		 * Otherwise, set the underflow residual based on cmd->data_length
1235 		 * minus fabric maximum transfer length.
1236 		 */
1237 		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1238 			cmd->residual_count = (size - mtl);
1239 		} else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1240 			u32 orig_dl = size + cmd->residual_count;
1241 			cmd->residual_count = (orig_dl - mtl);
1242 		} else {
1243 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1244 			cmd->residual_count = (cmd->data_length - mtl);
1245 		}
1246 		cmd->data_length = mtl;
1247 		/*
1248 		 * Reset sbc_check_prot() calculated protection payload
1249 		 * length based upon the new smaller MTL.
1250 		 */
1251 		if (cmd->prot_length) {
1252 			u32 sectors = (mtl / dev->dev_attrib.block_size);
1253 			cmd->prot_length = dev->prot_length * sectors;
1254 		}
1255 	}
1256 	return TCM_NO_SENSE;
1257 }
1258 
1259 sense_reason_t
1260 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1261 {
1262 	struct se_device *dev = cmd->se_dev;
1263 
1264 	if (cmd->unknown_data_length) {
1265 		cmd->data_length = size;
1266 	} else if (size != cmd->data_length) {
1267 		pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1268 			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
1269 			" 0x%02x\n", cmd->se_tfo->fabric_name,
1270 				cmd->data_length, size, cmd->t_task_cdb[0]);
1271 
1272 		if (cmd->data_direction == DMA_TO_DEVICE) {
1273 			if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1274 				pr_err_ratelimited("Rejecting underflow/overflow"
1275 						   " for WRITE data CDB\n");
1276 				return TCM_INVALID_CDB_FIELD;
1277 			}
1278 			/*
1279 			 * Some fabric drivers like iscsi-target still expect to
1280 			 * always reject overflow writes.  Reject this case until
1281 			 * full fabric driver level support for overflow writes
1282 			 * is introduced tree-wide.
1283 			 */
1284 			if (size > cmd->data_length) {
1285 				pr_err_ratelimited("Rejecting overflow for"
1286 						   " WRITE control CDB\n");
1287 				return TCM_INVALID_CDB_FIELD;
1288 			}
1289 		}
1290 		/*
1291 		 * Reject READ_* or WRITE_* with overflow/underflow for
1292 		 * type SCF_SCSI_DATA_CDB.
1293 		 */
1294 		if (dev->dev_attrib.block_size != 512)  {
1295 			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1296 				" CDB on non 512-byte sector setup subsystem"
1297 				" plugin: %s\n", dev->transport->name);
1298 			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1299 			return TCM_INVALID_CDB_FIELD;
1300 		}
1301 		/*
1302 		 * For the overflow case keep the existing fabric provided
1303 		 * ->data_length.  Otherwise for the underflow case, reset
1304 		 * ->data_length to the smaller SCSI expected data transfer
1305 		 * length.
1306 		 */
1307 		if (size > cmd->data_length) {
1308 			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1309 			cmd->residual_count = (size - cmd->data_length);
1310 		} else {
1311 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1312 			cmd->residual_count = (cmd->data_length - size);
1313 			cmd->data_length = size;
1314 		}
1315 	}
1316 
1317 	return target_check_max_data_sg_nents(cmd, dev, size);
1318 
1319 }
1320 
1321 /*
1322  * Used by fabric modules containing a local struct se_cmd within their
1323  * fabric dependent per I/O descriptor.
1324  *
1325  * Preserves the value of @cmd->tag.
1326  */
1327 void transport_init_se_cmd(
1328 	struct se_cmd *cmd,
1329 	const struct target_core_fabric_ops *tfo,
1330 	struct se_session *se_sess,
1331 	u32 data_length,
1332 	int data_direction,
1333 	int task_attr,
1334 	unsigned char *sense_buffer)
1335 {
1336 	INIT_LIST_HEAD(&cmd->se_delayed_node);
1337 	INIT_LIST_HEAD(&cmd->se_qf_node);
1338 	INIT_LIST_HEAD(&cmd->se_cmd_list);
1339 	INIT_LIST_HEAD(&cmd->state_list);
1340 	init_completion(&cmd->t_transport_stop_comp);
1341 	cmd->free_compl = NULL;
1342 	cmd->abrt_compl = NULL;
1343 	spin_lock_init(&cmd->t_state_lock);
1344 	INIT_WORK(&cmd->work, NULL);
1345 	kref_init(&cmd->cmd_kref);
1346 
1347 	cmd->se_tfo = tfo;
1348 	cmd->se_sess = se_sess;
1349 	cmd->data_length = data_length;
1350 	cmd->data_direction = data_direction;
1351 	cmd->sam_task_attr = task_attr;
1352 	cmd->sense_buffer = sense_buffer;
1353 
1354 	cmd->state_active = false;
1355 }
1356 EXPORT_SYMBOL(transport_init_se_cmd);
1357 
1358 static sense_reason_t
1359 transport_check_alloc_task_attr(struct se_cmd *cmd)
1360 {
1361 	struct se_device *dev = cmd->se_dev;
1362 
1363 	/*
1364 	 * Check if SAM Task Attribute emulation is enabled for this
1365 	 * struct se_device storage object
1366 	 */
1367 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1368 		return 0;
1369 
1370 	if (cmd->sam_task_attr == TCM_ACA_TAG) {
1371 		pr_debug("SAM Task Attribute ACA"
1372 			" emulation is not supported\n");
1373 		return TCM_INVALID_CDB_FIELD;
1374 	}
1375 
1376 	return 0;
1377 }
1378 
1379 sense_reason_t
1380 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1381 {
1382 	struct se_device *dev = cmd->se_dev;
1383 	sense_reason_t ret;
1384 
1385 	/*
1386 	 * Ensure that the received CDB is less than the max (252 + 8) bytes
1387 	 * for VARIABLE_LENGTH_CMD
1388 	 */
1389 	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1390 		pr_err("Received SCSI CDB with command_size: %d that"
1391 			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1392 			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1393 		return TCM_INVALID_CDB_FIELD;
1394 	}
1395 	/*
1396 	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1397 	 * allocate the additional extended CDB buffer now..  Otherwise
1398 	 * setup the pointer from __t_task_cdb to t_task_cdb.
1399 	 */
1400 	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1401 		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1402 						GFP_KERNEL);
1403 		if (!cmd->t_task_cdb) {
1404 			pr_err("Unable to allocate cmd->t_task_cdb"
1405 				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1406 				scsi_command_size(cdb),
1407 				(unsigned long)sizeof(cmd->__t_task_cdb));
1408 			return TCM_OUT_OF_RESOURCES;
1409 		}
1410 	} else
1411 		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1412 	/*
1413 	 * Copy the original CDB into cmd->
1414 	 */
1415 	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1416 
1417 	trace_target_sequencer_start(cmd);
1418 
1419 	ret = dev->transport->parse_cdb(cmd);
1420 	if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1421 		pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1422 				    cmd->se_tfo->fabric_name,
1423 				    cmd->se_sess->se_node_acl->initiatorname,
1424 				    cmd->t_task_cdb[0]);
1425 	if (ret)
1426 		return ret;
1427 
1428 	ret = transport_check_alloc_task_attr(cmd);
1429 	if (ret)
1430 		return ret;
1431 
1432 	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1433 	atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1434 	return 0;
1435 }
1436 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1437 
1438 /*
1439  * Used by fabric module frontends to queue tasks directly.
1440  * May only be used from process context.
1441  */
1442 int transport_handle_cdb_direct(
1443 	struct se_cmd *cmd)
1444 {
1445 	sense_reason_t ret;
1446 
1447 	if (!cmd->se_lun) {
1448 		dump_stack();
1449 		pr_err("cmd->se_lun is NULL\n");
1450 		return -EINVAL;
1451 	}
1452 	if (in_interrupt()) {
1453 		dump_stack();
1454 		pr_err("transport_generic_handle_cdb cannot be called"
1455 				" from interrupt context\n");
1456 		return -EINVAL;
1457 	}
1458 	/*
1459 	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1460 	 * outstanding descriptors are handled correctly during shutdown via
1461 	 * transport_wait_for_tasks()
1462 	 *
1463 	 * Also, we don't take cmd->t_state_lock here as we only expect
1464 	 * this to be called for initial descriptor submission.
1465 	 */
1466 	cmd->t_state = TRANSPORT_NEW_CMD;
1467 	cmd->transport_state |= CMD_T_ACTIVE;
1468 
1469 	/*
1470 	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1471 	 * so follow TRANSPORT_NEW_CMD processing thread context usage
1472 	 * and call transport_generic_request_failure() if necessary..
1473 	 */
1474 	ret = transport_generic_new_cmd(cmd);
1475 	if (ret)
1476 		transport_generic_request_failure(cmd, ret);
1477 	return 0;
1478 }
1479 EXPORT_SYMBOL(transport_handle_cdb_direct);
1480 
1481 sense_reason_t
1482 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1483 		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1484 {
1485 	if (!sgl || !sgl_count)
1486 		return 0;
1487 
1488 	/*
1489 	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1490 	 * scatterlists already have been set to follow what the fabric
1491 	 * passes for the original expected data transfer length.
1492 	 */
1493 	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1494 		pr_warn("Rejecting SCSI DATA overflow for fabric using"
1495 			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1496 		return TCM_INVALID_CDB_FIELD;
1497 	}
1498 
1499 	cmd->t_data_sg = sgl;
1500 	cmd->t_data_nents = sgl_count;
1501 	cmd->t_bidi_data_sg = sgl_bidi;
1502 	cmd->t_bidi_data_nents = sgl_bidi_count;
1503 
1504 	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1505 	return 0;
1506 }
1507 
1508 /**
1509  * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1510  * 			 se_cmd + use pre-allocated SGL memory.
1511  *
1512  * @se_cmd: command descriptor to submit
1513  * @se_sess: associated se_sess for endpoint
1514  * @cdb: pointer to SCSI CDB
1515  * @sense: pointer to SCSI sense buffer
1516  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1517  * @data_length: fabric expected data transfer length
1518  * @task_attr: SAM task attribute
1519  * @data_dir: DMA data direction
1520  * @flags: flags for command submission from target_sc_flags_tables
1521  * @sgl: struct scatterlist memory for unidirectional mapping
1522  * @sgl_count: scatterlist count for unidirectional mapping
1523  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1524  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1525  * @sgl_prot: struct scatterlist memory protection information
1526  * @sgl_prot_count: scatterlist count for protection information
1527  *
1528  * Task tags are supported if the caller has set @se_cmd->tag.
1529  *
1530  * Returns non zero to signal active I/O shutdown failure.  All other
1531  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1532  * but still return zero here.
1533  *
1534  * This may only be called from process context, and also currently
1535  * assumes internal allocation of fabric payload buffer by target-core.
1536  */
1537 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1538 		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1539 		u32 data_length, int task_attr, int data_dir, int flags,
1540 		struct scatterlist *sgl, u32 sgl_count,
1541 		struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1542 		struct scatterlist *sgl_prot, u32 sgl_prot_count)
1543 {
1544 	struct se_portal_group *se_tpg;
1545 	sense_reason_t rc;
1546 	int ret;
1547 
1548 	se_tpg = se_sess->se_tpg;
1549 	BUG_ON(!se_tpg);
1550 	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1551 	BUG_ON(in_interrupt());
1552 	/*
1553 	 * Initialize se_cmd for target operation.  From this point
1554 	 * exceptions are handled by sending exception status via
1555 	 * target_core_fabric_ops->queue_status() callback
1556 	 */
1557 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1558 				data_length, data_dir, task_attr, sense);
1559 
1560 	if (flags & TARGET_SCF_USE_CPUID)
1561 		se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1562 	else
1563 		se_cmd->cpuid = WORK_CPU_UNBOUND;
1564 
1565 	if (flags & TARGET_SCF_UNKNOWN_SIZE)
1566 		se_cmd->unknown_data_length = 1;
1567 	/*
1568 	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1569 	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
1570 	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1571 	 * kref_put() to happen during fabric packet acknowledgement.
1572 	 */
1573 	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1574 	if (ret)
1575 		return ret;
1576 	/*
1577 	 * Signal bidirectional data payloads to target-core
1578 	 */
1579 	if (flags & TARGET_SCF_BIDI_OP)
1580 		se_cmd->se_cmd_flags |= SCF_BIDI;
1581 	/*
1582 	 * Locate se_lun pointer and attach it to struct se_cmd
1583 	 */
1584 	rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1585 	if (rc) {
1586 		transport_send_check_condition_and_sense(se_cmd, rc, 0);
1587 		target_put_sess_cmd(se_cmd);
1588 		return 0;
1589 	}
1590 
1591 	rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1592 	if (rc != 0) {
1593 		transport_generic_request_failure(se_cmd, rc);
1594 		return 0;
1595 	}
1596 
1597 	/*
1598 	 * Save pointers for SGLs containing protection information,
1599 	 * if present.
1600 	 */
1601 	if (sgl_prot_count) {
1602 		se_cmd->t_prot_sg = sgl_prot;
1603 		se_cmd->t_prot_nents = sgl_prot_count;
1604 		se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1605 	}
1606 
1607 	/*
1608 	 * When a non zero sgl_count has been passed perform SGL passthrough
1609 	 * mapping for pre-allocated fabric memory instead of having target
1610 	 * core perform an internal SGL allocation..
1611 	 */
1612 	if (sgl_count != 0) {
1613 		BUG_ON(!sgl);
1614 
1615 		/*
1616 		 * A work-around for tcm_loop as some userspace code via
1617 		 * scsi-generic do not memset their associated read buffers,
1618 		 * so go ahead and do that here for type non-data CDBs.  Also
1619 		 * note that this is currently guaranteed to be a single SGL
1620 		 * for this case by target core in target_setup_cmd_from_cdb()
1621 		 * -> transport_generic_cmd_sequencer().
1622 		 */
1623 		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1624 		     se_cmd->data_direction == DMA_FROM_DEVICE) {
1625 			unsigned char *buf = NULL;
1626 
1627 			if (sgl)
1628 				buf = kmap(sg_page(sgl)) + sgl->offset;
1629 
1630 			if (buf) {
1631 				memset(buf, 0, sgl->length);
1632 				kunmap(sg_page(sgl));
1633 			}
1634 		}
1635 
1636 		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1637 				sgl_bidi, sgl_bidi_count);
1638 		if (rc != 0) {
1639 			transport_generic_request_failure(se_cmd, rc);
1640 			return 0;
1641 		}
1642 	}
1643 
1644 	/*
1645 	 * Check if we need to delay processing because of ALUA
1646 	 * Active/NonOptimized primary access state..
1647 	 */
1648 	core_alua_check_nonop_delay(se_cmd);
1649 
1650 	transport_handle_cdb_direct(se_cmd);
1651 	return 0;
1652 }
1653 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1654 
1655 /**
1656  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1657  *
1658  * @se_cmd: command descriptor to submit
1659  * @se_sess: associated se_sess for endpoint
1660  * @cdb: pointer to SCSI CDB
1661  * @sense: pointer to SCSI sense buffer
1662  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1663  * @data_length: fabric expected data transfer length
1664  * @task_attr: SAM task attribute
1665  * @data_dir: DMA data direction
1666  * @flags: flags for command submission from target_sc_flags_tables
1667  *
1668  * Task tags are supported if the caller has set @se_cmd->tag.
1669  *
1670  * Returns non zero to signal active I/O shutdown failure.  All other
1671  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1672  * but still return zero here.
1673  *
1674  * This may only be called from process context, and also currently
1675  * assumes internal allocation of fabric payload buffer by target-core.
1676  *
1677  * It also assumes interal target core SGL memory allocation.
1678  */
1679 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1680 		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1681 		u32 data_length, int task_attr, int data_dir, int flags)
1682 {
1683 	return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1684 			unpacked_lun, data_length, task_attr, data_dir,
1685 			flags, NULL, 0, NULL, 0, NULL, 0);
1686 }
1687 EXPORT_SYMBOL(target_submit_cmd);
1688 
1689 static void target_complete_tmr_failure(struct work_struct *work)
1690 {
1691 	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1692 
1693 	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1694 	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1695 
1696 	transport_cmd_check_stop_to_fabric(se_cmd);
1697 }
1698 
1699 static bool target_lookup_lun_from_tag(struct se_session *se_sess, u64 tag,
1700 				       u64 *unpacked_lun)
1701 {
1702 	struct se_cmd *se_cmd;
1703 	unsigned long flags;
1704 	bool ret = false;
1705 
1706 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
1707 	list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) {
1708 		if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
1709 			continue;
1710 
1711 		if (se_cmd->tag == tag) {
1712 			*unpacked_lun = se_cmd->orig_fe_lun;
1713 			ret = true;
1714 			break;
1715 		}
1716 	}
1717 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
1718 
1719 	return ret;
1720 }
1721 
1722 /**
1723  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1724  *                     for TMR CDBs
1725  *
1726  * @se_cmd: command descriptor to submit
1727  * @se_sess: associated se_sess for endpoint
1728  * @sense: pointer to SCSI sense buffer
1729  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1730  * @fabric_tmr_ptr: fabric context for TMR req
1731  * @tm_type: Type of TM request
1732  * @gfp: gfp type for caller
1733  * @tag: referenced task tag for TMR_ABORT_TASK
1734  * @flags: submit cmd flags
1735  *
1736  * Callable from all contexts.
1737  **/
1738 
1739 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1740 		unsigned char *sense, u64 unpacked_lun,
1741 		void *fabric_tmr_ptr, unsigned char tm_type,
1742 		gfp_t gfp, u64 tag, int flags)
1743 {
1744 	struct se_portal_group *se_tpg;
1745 	int ret;
1746 
1747 	se_tpg = se_sess->se_tpg;
1748 	BUG_ON(!se_tpg);
1749 
1750 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1751 			      0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1752 	/*
1753 	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1754 	 * allocation failure.
1755 	 */
1756 	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1757 	if (ret < 0)
1758 		return -ENOMEM;
1759 
1760 	if (tm_type == TMR_ABORT_TASK)
1761 		se_cmd->se_tmr_req->ref_task_tag = tag;
1762 
1763 	/* See target_submit_cmd for commentary */
1764 	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1765 	if (ret) {
1766 		core_tmr_release_req(se_cmd->se_tmr_req);
1767 		return ret;
1768 	}
1769 	/*
1770 	 * If this is ABORT_TASK with no explicit fabric provided LUN,
1771 	 * go ahead and search active session tags for a match to figure
1772 	 * out unpacked_lun for the original se_cmd.
1773 	 */
1774 	if (tm_type == TMR_ABORT_TASK && (flags & TARGET_SCF_LOOKUP_LUN_FROM_TAG)) {
1775 		if (!target_lookup_lun_from_tag(se_sess, tag, &unpacked_lun))
1776 			goto failure;
1777 	}
1778 
1779 	ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1780 	if (ret)
1781 		goto failure;
1782 
1783 	transport_generic_handle_tmr(se_cmd);
1784 	return 0;
1785 
1786 	/*
1787 	 * For callback during failure handling, push this work off
1788 	 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1789 	 */
1790 failure:
1791 	INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1792 	schedule_work(&se_cmd->work);
1793 	return 0;
1794 }
1795 EXPORT_SYMBOL(target_submit_tmr);
1796 
1797 /*
1798  * Handle SAM-esque emulation for generic transport request failures.
1799  */
1800 void transport_generic_request_failure(struct se_cmd *cmd,
1801 		sense_reason_t sense_reason)
1802 {
1803 	int ret = 0, post_ret;
1804 
1805 	pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1806 		 sense_reason);
1807 	target_show_cmd("-----[ ", cmd);
1808 
1809 	/*
1810 	 * For SAM Task Attribute emulation for failed struct se_cmd
1811 	 */
1812 	transport_complete_task_attr(cmd);
1813 
1814 	if (cmd->transport_complete_callback)
1815 		cmd->transport_complete_callback(cmd, false, &post_ret);
1816 
1817 	if (cmd->transport_state & CMD_T_ABORTED) {
1818 		INIT_WORK(&cmd->work, target_abort_work);
1819 		queue_work(target_completion_wq, &cmd->work);
1820 		return;
1821 	}
1822 
1823 	switch (sense_reason) {
1824 	case TCM_NON_EXISTENT_LUN:
1825 	case TCM_UNSUPPORTED_SCSI_OPCODE:
1826 	case TCM_INVALID_CDB_FIELD:
1827 	case TCM_INVALID_PARAMETER_LIST:
1828 	case TCM_PARAMETER_LIST_LENGTH_ERROR:
1829 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1830 	case TCM_UNKNOWN_MODE_PAGE:
1831 	case TCM_WRITE_PROTECTED:
1832 	case TCM_ADDRESS_OUT_OF_RANGE:
1833 	case TCM_CHECK_CONDITION_ABORT_CMD:
1834 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1835 	case TCM_CHECK_CONDITION_NOT_READY:
1836 	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1837 	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1838 	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1839 	case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1840 	case TCM_TOO_MANY_TARGET_DESCS:
1841 	case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
1842 	case TCM_TOO_MANY_SEGMENT_DESCS:
1843 	case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1844 		break;
1845 	case TCM_OUT_OF_RESOURCES:
1846 		cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
1847 		goto queue_status;
1848 	case TCM_LUN_BUSY:
1849 		cmd->scsi_status = SAM_STAT_BUSY;
1850 		goto queue_status;
1851 	case TCM_RESERVATION_CONFLICT:
1852 		/*
1853 		 * No SENSE Data payload for this case, set SCSI Status
1854 		 * and queue the response to $FABRIC_MOD.
1855 		 *
1856 		 * Uses linux/include/scsi/scsi.h SAM status codes defs
1857 		 */
1858 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1859 		/*
1860 		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1861 		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1862 		 * CONFLICT STATUS.
1863 		 *
1864 		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1865 		 */
1866 		if (cmd->se_sess &&
1867 		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1868 			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1869 					       cmd->orig_fe_lun, 0x2C,
1870 					ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1871 		}
1872 
1873 		goto queue_status;
1874 	default:
1875 		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1876 			cmd->t_task_cdb[0], sense_reason);
1877 		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1878 		break;
1879 	}
1880 
1881 	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1882 	if (ret)
1883 		goto queue_full;
1884 
1885 check_stop:
1886 	transport_cmd_check_stop_to_fabric(cmd);
1887 	return;
1888 
1889 queue_status:
1890 	trace_target_cmd_complete(cmd);
1891 	ret = cmd->se_tfo->queue_status(cmd);
1892 	if (!ret)
1893 		goto check_stop;
1894 queue_full:
1895 	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1896 }
1897 EXPORT_SYMBOL(transport_generic_request_failure);
1898 
1899 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1900 {
1901 	sense_reason_t ret;
1902 
1903 	if (!cmd->execute_cmd) {
1904 		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1905 		goto err;
1906 	}
1907 	if (do_checks) {
1908 		/*
1909 		 * Check for an existing UNIT ATTENTION condition after
1910 		 * target_handle_task_attr() has done SAM task attr
1911 		 * checking, and possibly have already defered execution
1912 		 * out to target_restart_delayed_cmds() context.
1913 		 */
1914 		ret = target_scsi3_ua_check(cmd);
1915 		if (ret)
1916 			goto err;
1917 
1918 		ret = target_alua_state_check(cmd);
1919 		if (ret)
1920 			goto err;
1921 
1922 		ret = target_check_reservation(cmd);
1923 		if (ret) {
1924 			cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1925 			goto err;
1926 		}
1927 	}
1928 
1929 	ret = cmd->execute_cmd(cmd);
1930 	if (!ret)
1931 		return;
1932 err:
1933 	spin_lock_irq(&cmd->t_state_lock);
1934 	cmd->transport_state &= ~CMD_T_SENT;
1935 	spin_unlock_irq(&cmd->t_state_lock);
1936 
1937 	transport_generic_request_failure(cmd, ret);
1938 }
1939 
1940 static int target_write_prot_action(struct se_cmd *cmd)
1941 {
1942 	u32 sectors;
1943 	/*
1944 	 * Perform WRITE_INSERT of PI using software emulation when backend
1945 	 * device has PI enabled, if the transport has not already generated
1946 	 * PI using hardware WRITE_INSERT offload.
1947 	 */
1948 	switch (cmd->prot_op) {
1949 	case TARGET_PROT_DOUT_INSERT:
1950 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1951 			sbc_dif_generate(cmd);
1952 		break;
1953 	case TARGET_PROT_DOUT_STRIP:
1954 		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1955 			break;
1956 
1957 		sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1958 		cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1959 					     sectors, 0, cmd->t_prot_sg, 0);
1960 		if (unlikely(cmd->pi_err)) {
1961 			spin_lock_irq(&cmd->t_state_lock);
1962 			cmd->transport_state &= ~CMD_T_SENT;
1963 			spin_unlock_irq(&cmd->t_state_lock);
1964 			transport_generic_request_failure(cmd, cmd->pi_err);
1965 			return -1;
1966 		}
1967 		break;
1968 	default:
1969 		break;
1970 	}
1971 
1972 	return 0;
1973 }
1974 
1975 static bool target_handle_task_attr(struct se_cmd *cmd)
1976 {
1977 	struct se_device *dev = cmd->se_dev;
1978 
1979 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1980 		return false;
1981 
1982 	cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
1983 
1984 	/*
1985 	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1986 	 * to allow the passed struct se_cmd list of tasks to the front of the list.
1987 	 */
1988 	switch (cmd->sam_task_attr) {
1989 	case TCM_HEAD_TAG:
1990 		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1991 			 cmd->t_task_cdb[0]);
1992 		return false;
1993 	case TCM_ORDERED_TAG:
1994 		atomic_inc_mb(&dev->dev_ordered_sync);
1995 
1996 		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1997 			 cmd->t_task_cdb[0]);
1998 
1999 		/*
2000 		 * Execute an ORDERED command if no other older commands
2001 		 * exist that need to be completed first.
2002 		 */
2003 		if (!atomic_read(&dev->simple_cmds))
2004 			return false;
2005 		break;
2006 	default:
2007 		/*
2008 		 * For SIMPLE and UNTAGGED Task Attribute commands
2009 		 */
2010 		atomic_inc_mb(&dev->simple_cmds);
2011 		break;
2012 	}
2013 
2014 	if (atomic_read(&dev->dev_ordered_sync) == 0)
2015 		return false;
2016 
2017 	spin_lock(&dev->delayed_cmd_lock);
2018 	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
2019 	spin_unlock(&dev->delayed_cmd_lock);
2020 
2021 	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2022 		cmd->t_task_cdb[0], cmd->sam_task_attr);
2023 	return true;
2024 }
2025 
2026 void target_execute_cmd(struct se_cmd *cmd)
2027 {
2028 	/*
2029 	 * Determine if frontend context caller is requesting the stopping of
2030 	 * this command for frontend exceptions.
2031 	 *
2032 	 * If the received CDB has already been aborted stop processing it here.
2033 	 */
2034 	if (target_cmd_interrupted(cmd))
2035 		return;
2036 
2037 	spin_lock_irq(&cmd->t_state_lock);
2038 	cmd->t_state = TRANSPORT_PROCESSING;
2039 	cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2040 	spin_unlock_irq(&cmd->t_state_lock);
2041 
2042 	if (target_write_prot_action(cmd))
2043 		return;
2044 
2045 	if (target_handle_task_attr(cmd)) {
2046 		spin_lock_irq(&cmd->t_state_lock);
2047 		cmd->transport_state &= ~CMD_T_SENT;
2048 		spin_unlock_irq(&cmd->t_state_lock);
2049 		return;
2050 	}
2051 
2052 	__target_execute_cmd(cmd, true);
2053 }
2054 EXPORT_SYMBOL(target_execute_cmd);
2055 
2056 /*
2057  * Process all commands up to the last received ORDERED task attribute which
2058  * requires another blocking boundary
2059  */
2060 static void target_restart_delayed_cmds(struct se_device *dev)
2061 {
2062 	for (;;) {
2063 		struct se_cmd *cmd;
2064 
2065 		spin_lock(&dev->delayed_cmd_lock);
2066 		if (list_empty(&dev->delayed_cmd_list)) {
2067 			spin_unlock(&dev->delayed_cmd_lock);
2068 			break;
2069 		}
2070 
2071 		cmd = list_entry(dev->delayed_cmd_list.next,
2072 				 struct se_cmd, se_delayed_node);
2073 		list_del(&cmd->se_delayed_node);
2074 		spin_unlock(&dev->delayed_cmd_lock);
2075 
2076 		cmd->transport_state |= CMD_T_SENT;
2077 
2078 		__target_execute_cmd(cmd, true);
2079 
2080 		if (cmd->sam_task_attr == TCM_ORDERED_TAG)
2081 			break;
2082 	}
2083 }
2084 
2085 /*
2086  * Called from I/O completion to determine which dormant/delayed
2087  * and ordered cmds need to have their tasks added to the execution queue.
2088  */
2089 static void transport_complete_task_attr(struct se_cmd *cmd)
2090 {
2091 	struct se_device *dev = cmd->se_dev;
2092 
2093 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2094 		return;
2095 
2096 	if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2097 		goto restart;
2098 
2099 	if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2100 		atomic_dec_mb(&dev->simple_cmds);
2101 		dev->dev_cur_ordered_id++;
2102 	} else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2103 		dev->dev_cur_ordered_id++;
2104 		pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2105 			 dev->dev_cur_ordered_id);
2106 	} else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2107 		atomic_dec_mb(&dev->dev_ordered_sync);
2108 
2109 		dev->dev_cur_ordered_id++;
2110 		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2111 			 dev->dev_cur_ordered_id);
2112 	}
2113 	cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2114 
2115 restart:
2116 	target_restart_delayed_cmds(dev);
2117 }
2118 
2119 static void transport_complete_qf(struct se_cmd *cmd)
2120 {
2121 	int ret = 0;
2122 
2123 	transport_complete_task_attr(cmd);
2124 	/*
2125 	 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2126 	 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2127 	 * the same callbacks should not be retried.  Return CHECK_CONDITION
2128 	 * if a scsi_status is not already set.
2129 	 *
2130 	 * If a fabric driver ->queue_status() has returned non zero, always
2131 	 * keep retrying no matter what..
2132 	 */
2133 	if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2134 		if (cmd->scsi_status)
2135 			goto queue_status;
2136 
2137 		translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2138 		goto queue_status;
2139 	}
2140 
2141 	/*
2142 	 * Check if we need to send a sense buffer from
2143 	 * the struct se_cmd in question. We do NOT want
2144 	 * to take this path of the IO has been marked as
2145 	 * needing to be treated like a "normal read". This
2146 	 * is the case if it's a tape read, and either the
2147 	 * FM, EOM, or ILI bits are set, but there is no
2148 	 * sense data.
2149 	 */
2150 	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2151 	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2152 		goto queue_status;
2153 
2154 	switch (cmd->data_direction) {
2155 	case DMA_FROM_DEVICE:
2156 		/* queue status if not treating this as a normal read */
2157 		if (cmd->scsi_status &&
2158 		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2159 			goto queue_status;
2160 
2161 		trace_target_cmd_complete(cmd);
2162 		ret = cmd->se_tfo->queue_data_in(cmd);
2163 		break;
2164 	case DMA_TO_DEVICE:
2165 		if (cmd->se_cmd_flags & SCF_BIDI) {
2166 			ret = cmd->se_tfo->queue_data_in(cmd);
2167 			break;
2168 		}
2169 		/* fall through */
2170 	case DMA_NONE:
2171 queue_status:
2172 		trace_target_cmd_complete(cmd);
2173 		ret = cmd->se_tfo->queue_status(cmd);
2174 		break;
2175 	default:
2176 		break;
2177 	}
2178 
2179 	if (ret < 0) {
2180 		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2181 		return;
2182 	}
2183 	transport_cmd_check_stop_to_fabric(cmd);
2184 }
2185 
2186 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2187 					int err, bool write_pending)
2188 {
2189 	/*
2190 	 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2191 	 * ->queue_data_in() callbacks from new process context.
2192 	 *
2193 	 * Otherwise for other errors, transport_complete_qf() will send
2194 	 * CHECK_CONDITION via ->queue_status() instead of attempting to
2195 	 * retry associated fabric driver data-transfer callbacks.
2196 	 */
2197 	if (err == -EAGAIN || err == -ENOMEM) {
2198 		cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2199 						 TRANSPORT_COMPLETE_QF_OK;
2200 	} else {
2201 		pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2202 		cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2203 	}
2204 
2205 	spin_lock_irq(&dev->qf_cmd_lock);
2206 	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2207 	atomic_inc_mb(&dev->dev_qf_count);
2208 	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2209 
2210 	schedule_work(&cmd->se_dev->qf_work_queue);
2211 }
2212 
2213 static bool target_read_prot_action(struct se_cmd *cmd)
2214 {
2215 	switch (cmd->prot_op) {
2216 	case TARGET_PROT_DIN_STRIP:
2217 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2218 			u32 sectors = cmd->data_length >>
2219 				  ilog2(cmd->se_dev->dev_attrib.block_size);
2220 
2221 			cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2222 						     sectors, 0, cmd->t_prot_sg,
2223 						     0);
2224 			if (cmd->pi_err)
2225 				return true;
2226 		}
2227 		break;
2228 	case TARGET_PROT_DIN_INSERT:
2229 		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2230 			break;
2231 
2232 		sbc_dif_generate(cmd);
2233 		break;
2234 	default:
2235 		break;
2236 	}
2237 
2238 	return false;
2239 }
2240 
2241 static void target_complete_ok_work(struct work_struct *work)
2242 {
2243 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2244 	int ret;
2245 
2246 	/*
2247 	 * Check if we need to move delayed/dormant tasks from cmds on the
2248 	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2249 	 * Attribute.
2250 	 */
2251 	transport_complete_task_attr(cmd);
2252 
2253 	/*
2254 	 * Check to schedule QUEUE_FULL work, or execute an existing
2255 	 * cmd->transport_qf_callback()
2256 	 */
2257 	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2258 		schedule_work(&cmd->se_dev->qf_work_queue);
2259 
2260 	/*
2261 	 * Check if we need to send a sense buffer from
2262 	 * the struct se_cmd in question. We do NOT want
2263 	 * to take this path of the IO has been marked as
2264 	 * needing to be treated like a "normal read". This
2265 	 * is the case if it's a tape read, and either the
2266 	 * FM, EOM, or ILI bits are set, but there is no
2267 	 * sense data.
2268 	 */
2269 	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2270 	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2271 		WARN_ON(!cmd->scsi_status);
2272 		ret = transport_send_check_condition_and_sense(
2273 					cmd, 0, 1);
2274 		if (ret)
2275 			goto queue_full;
2276 
2277 		transport_cmd_check_stop_to_fabric(cmd);
2278 		return;
2279 	}
2280 	/*
2281 	 * Check for a callback, used by amongst other things
2282 	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2283 	 */
2284 	if (cmd->transport_complete_callback) {
2285 		sense_reason_t rc;
2286 		bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2287 		bool zero_dl = !(cmd->data_length);
2288 		int post_ret = 0;
2289 
2290 		rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2291 		if (!rc && !post_ret) {
2292 			if (caw && zero_dl)
2293 				goto queue_rsp;
2294 
2295 			return;
2296 		} else if (rc) {
2297 			ret = transport_send_check_condition_and_sense(cmd,
2298 						rc, 0);
2299 			if (ret)
2300 				goto queue_full;
2301 
2302 			transport_cmd_check_stop_to_fabric(cmd);
2303 			return;
2304 		}
2305 	}
2306 
2307 queue_rsp:
2308 	switch (cmd->data_direction) {
2309 	case DMA_FROM_DEVICE:
2310 		/*
2311 		 * if this is a READ-type IO, but SCSI status
2312 		 * is set, then skip returning data and just
2313 		 * return the status -- unless this IO is marked
2314 		 * as needing to be treated as a normal read,
2315 		 * in which case we want to go ahead and return
2316 		 * the data. This happens, for example, for tape
2317 		 * reads with the FM, EOM, or ILI bits set, with
2318 		 * no sense data.
2319 		 */
2320 		if (cmd->scsi_status &&
2321 		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2322 			goto queue_status;
2323 
2324 		atomic_long_add(cmd->data_length,
2325 				&cmd->se_lun->lun_stats.tx_data_octets);
2326 		/*
2327 		 * Perform READ_STRIP of PI using software emulation when
2328 		 * backend had PI enabled, if the transport will not be
2329 		 * performing hardware READ_STRIP offload.
2330 		 */
2331 		if (target_read_prot_action(cmd)) {
2332 			ret = transport_send_check_condition_and_sense(cmd,
2333 						cmd->pi_err, 0);
2334 			if (ret)
2335 				goto queue_full;
2336 
2337 			transport_cmd_check_stop_to_fabric(cmd);
2338 			return;
2339 		}
2340 
2341 		trace_target_cmd_complete(cmd);
2342 		ret = cmd->se_tfo->queue_data_in(cmd);
2343 		if (ret)
2344 			goto queue_full;
2345 		break;
2346 	case DMA_TO_DEVICE:
2347 		atomic_long_add(cmd->data_length,
2348 				&cmd->se_lun->lun_stats.rx_data_octets);
2349 		/*
2350 		 * Check if we need to send READ payload for BIDI-COMMAND
2351 		 */
2352 		if (cmd->se_cmd_flags & SCF_BIDI) {
2353 			atomic_long_add(cmd->data_length,
2354 					&cmd->se_lun->lun_stats.tx_data_octets);
2355 			ret = cmd->se_tfo->queue_data_in(cmd);
2356 			if (ret)
2357 				goto queue_full;
2358 			break;
2359 		}
2360 		/* fall through */
2361 	case DMA_NONE:
2362 queue_status:
2363 		trace_target_cmd_complete(cmd);
2364 		ret = cmd->se_tfo->queue_status(cmd);
2365 		if (ret)
2366 			goto queue_full;
2367 		break;
2368 	default:
2369 		break;
2370 	}
2371 
2372 	transport_cmd_check_stop_to_fabric(cmd);
2373 	return;
2374 
2375 queue_full:
2376 	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2377 		" data_direction: %d\n", cmd, cmd->data_direction);
2378 
2379 	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2380 }
2381 
2382 void target_free_sgl(struct scatterlist *sgl, int nents)
2383 {
2384 	sgl_free_n_order(sgl, nents, 0);
2385 }
2386 EXPORT_SYMBOL(target_free_sgl);
2387 
2388 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2389 {
2390 	/*
2391 	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2392 	 * emulation, and free + reset pointers if necessary..
2393 	 */
2394 	if (!cmd->t_data_sg_orig)
2395 		return;
2396 
2397 	kfree(cmd->t_data_sg);
2398 	cmd->t_data_sg = cmd->t_data_sg_orig;
2399 	cmd->t_data_sg_orig = NULL;
2400 	cmd->t_data_nents = cmd->t_data_nents_orig;
2401 	cmd->t_data_nents_orig = 0;
2402 }
2403 
2404 static inline void transport_free_pages(struct se_cmd *cmd)
2405 {
2406 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2407 		target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2408 		cmd->t_prot_sg = NULL;
2409 		cmd->t_prot_nents = 0;
2410 	}
2411 
2412 	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2413 		/*
2414 		 * Release special case READ buffer payload required for
2415 		 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2416 		 */
2417 		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2418 			target_free_sgl(cmd->t_bidi_data_sg,
2419 					   cmd->t_bidi_data_nents);
2420 			cmd->t_bidi_data_sg = NULL;
2421 			cmd->t_bidi_data_nents = 0;
2422 		}
2423 		transport_reset_sgl_orig(cmd);
2424 		return;
2425 	}
2426 	transport_reset_sgl_orig(cmd);
2427 
2428 	target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2429 	cmd->t_data_sg = NULL;
2430 	cmd->t_data_nents = 0;
2431 
2432 	target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2433 	cmd->t_bidi_data_sg = NULL;
2434 	cmd->t_bidi_data_nents = 0;
2435 }
2436 
2437 void *transport_kmap_data_sg(struct se_cmd *cmd)
2438 {
2439 	struct scatterlist *sg = cmd->t_data_sg;
2440 	struct page **pages;
2441 	int i;
2442 
2443 	/*
2444 	 * We need to take into account a possible offset here for fabrics like
2445 	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2446 	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2447 	 */
2448 	if (!cmd->t_data_nents)
2449 		return NULL;
2450 
2451 	BUG_ON(!sg);
2452 	if (cmd->t_data_nents == 1)
2453 		return kmap(sg_page(sg)) + sg->offset;
2454 
2455 	/* >1 page. use vmap */
2456 	pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2457 	if (!pages)
2458 		return NULL;
2459 
2460 	/* convert sg[] to pages[] */
2461 	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2462 		pages[i] = sg_page(sg);
2463 	}
2464 
2465 	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2466 	kfree(pages);
2467 	if (!cmd->t_data_vmap)
2468 		return NULL;
2469 
2470 	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2471 }
2472 EXPORT_SYMBOL(transport_kmap_data_sg);
2473 
2474 void transport_kunmap_data_sg(struct se_cmd *cmd)
2475 {
2476 	if (!cmd->t_data_nents) {
2477 		return;
2478 	} else if (cmd->t_data_nents == 1) {
2479 		kunmap(sg_page(cmd->t_data_sg));
2480 		return;
2481 	}
2482 
2483 	vunmap(cmd->t_data_vmap);
2484 	cmd->t_data_vmap = NULL;
2485 }
2486 EXPORT_SYMBOL(transport_kunmap_data_sg);
2487 
2488 int
2489 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2490 		 bool zero_page, bool chainable)
2491 {
2492 	gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2493 
2494 	*sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
2495 	return *sgl ? 0 : -ENOMEM;
2496 }
2497 EXPORT_SYMBOL(target_alloc_sgl);
2498 
2499 /*
2500  * Allocate any required resources to execute the command.  For writes we
2501  * might not have the payload yet, so notify the fabric via a call to
2502  * ->write_pending instead. Otherwise place it on the execution queue.
2503  */
2504 sense_reason_t
2505 transport_generic_new_cmd(struct se_cmd *cmd)
2506 {
2507 	unsigned long flags;
2508 	int ret = 0;
2509 	bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2510 
2511 	if (cmd->prot_op != TARGET_PROT_NORMAL &&
2512 	    !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2513 		ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2514 				       cmd->prot_length, true, false);
2515 		if (ret < 0)
2516 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2517 	}
2518 
2519 	/*
2520 	 * Determine if the TCM fabric module has already allocated physical
2521 	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2522 	 * beforehand.
2523 	 */
2524 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2525 	    cmd->data_length) {
2526 
2527 		if ((cmd->se_cmd_flags & SCF_BIDI) ||
2528 		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2529 			u32 bidi_length;
2530 
2531 			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2532 				bidi_length = cmd->t_task_nolb *
2533 					      cmd->se_dev->dev_attrib.block_size;
2534 			else
2535 				bidi_length = cmd->data_length;
2536 
2537 			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2538 					       &cmd->t_bidi_data_nents,
2539 					       bidi_length, zero_flag, false);
2540 			if (ret < 0)
2541 				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2542 		}
2543 
2544 		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2545 				       cmd->data_length, zero_flag, false);
2546 		if (ret < 0)
2547 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2548 	} else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2549 		    cmd->data_length) {
2550 		/*
2551 		 * Special case for COMPARE_AND_WRITE with fabrics
2552 		 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2553 		 */
2554 		u32 caw_length = cmd->t_task_nolb *
2555 				 cmd->se_dev->dev_attrib.block_size;
2556 
2557 		ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2558 				       &cmd->t_bidi_data_nents,
2559 				       caw_length, zero_flag, false);
2560 		if (ret < 0)
2561 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2562 	}
2563 	/*
2564 	 * If this command is not a write we can execute it right here,
2565 	 * for write buffers we need to notify the fabric driver first
2566 	 * and let it call back once the write buffers are ready.
2567 	 */
2568 	target_add_to_state_list(cmd);
2569 	if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2570 		target_execute_cmd(cmd);
2571 		return 0;
2572 	}
2573 
2574 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2575 	cmd->t_state = TRANSPORT_WRITE_PENDING;
2576 	/*
2577 	 * Determine if frontend context caller is requesting the stopping of
2578 	 * this command for frontend exceptions.
2579 	 */
2580 	if (cmd->transport_state & CMD_T_STOP &&
2581 	    !cmd->se_tfo->write_pending_must_be_called) {
2582 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2583 			 __func__, __LINE__, cmd->tag);
2584 
2585 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2586 
2587 		complete_all(&cmd->t_transport_stop_comp);
2588 		return 0;
2589 	}
2590 	cmd->transport_state &= ~CMD_T_ACTIVE;
2591 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2592 
2593 	ret = cmd->se_tfo->write_pending(cmd);
2594 	if (ret)
2595 		goto queue_full;
2596 
2597 	return 0;
2598 
2599 queue_full:
2600 	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2601 	transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2602 	return 0;
2603 }
2604 EXPORT_SYMBOL(transport_generic_new_cmd);
2605 
2606 static void transport_write_pending_qf(struct se_cmd *cmd)
2607 {
2608 	unsigned long flags;
2609 	int ret;
2610 	bool stop;
2611 
2612 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2613 	stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2614 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2615 
2616 	if (stop) {
2617 		pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2618 			__func__, __LINE__, cmd->tag);
2619 		complete_all(&cmd->t_transport_stop_comp);
2620 		return;
2621 	}
2622 
2623 	ret = cmd->se_tfo->write_pending(cmd);
2624 	if (ret) {
2625 		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2626 			 cmd);
2627 		transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2628 	}
2629 }
2630 
2631 static bool
2632 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2633 			   unsigned long *flags);
2634 
2635 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2636 {
2637 	unsigned long flags;
2638 
2639 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2640 	__transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2641 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2642 }
2643 
2644 /*
2645  * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
2646  * finished.
2647  */
2648 void target_put_cmd_and_wait(struct se_cmd *cmd)
2649 {
2650 	DECLARE_COMPLETION_ONSTACK(compl);
2651 
2652 	WARN_ON_ONCE(cmd->abrt_compl);
2653 	cmd->abrt_compl = &compl;
2654 	target_put_sess_cmd(cmd);
2655 	wait_for_completion(&compl);
2656 }
2657 
2658 /*
2659  * This function is called by frontend drivers after processing of a command
2660  * has finished.
2661  *
2662  * The protocol for ensuring that either the regular frontend command
2663  * processing flow or target_handle_abort() code drops one reference is as
2664  * follows:
2665  * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2666  *   the frontend driver to call this function synchronously or asynchronously.
2667  *   That will cause one reference to be dropped.
2668  * - During regular command processing the target core sets CMD_T_COMPLETE
2669  *   before invoking one of the .queue_*() functions.
2670  * - The code that aborts commands skips commands and TMFs for which
2671  *   CMD_T_COMPLETE has been set.
2672  * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2673  *   commands that will be aborted.
2674  * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2675  *   transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2676  * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2677  *   be called and will drop a reference.
2678  * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2679  *   will be called. target_handle_abort() will drop the final reference.
2680  */
2681 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2682 {
2683 	DECLARE_COMPLETION_ONSTACK(compl);
2684 	int ret = 0;
2685 	bool aborted = false, tas = false;
2686 
2687 	if (wait_for_tasks)
2688 		target_wait_free_cmd(cmd, &aborted, &tas);
2689 
2690 	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2691 		/*
2692 		 * Handle WRITE failure case where transport_generic_new_cmd()
2693 		 * has already added se_cmd to state_list, but fabric has
2694 		 * failed command before I/O submission.
2695 		 */
2696 		if (cmd->state_active)
2697 			target_remove_from_state_list(cmd);
2698 	}
2699 	if (aborted)
2700 		cmd->free_compl = &compl;
2701 	ret = target_put_sess_cmd(cmd);
2702 	if (aborted) {
2703 		pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2704 		wait_for_completion(&compl);
2705 		ret = 1;
2706 	}
2707 	return ret;
2708 }
2709 EXPORT_SYMBOL(transport_generic_free_cmd);
2710 
2711 /**
2712  * target_get_sess_cmd - Add command to active ->sess_cmd_list
2713  * @se_cmd:	command descriptor to add
2714  * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2715  */
2716 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2717 {
2718 	struct se_session *se_sess = se_cmd->se_sess;
2719 	unsigned long flags;
2720 	int ret = 0;
2721 
2722 	/*
2723 	 * Add a second kref if the fabric caller is expecting to handle
2724 	 * fabric acknowledgement that requires two target_put_sess_cmd()
2725 	 * invocations before se_cmd descriptor release.
2726 	 */
2727 	if (ack_kref) {
2728 		if (!kref_get_unless_zero(&se_cmd->cmd_kref))
2729 			return -EINVAL;
2730 
2731 		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2732 	}
2733 
2734 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2735 	if (se_sess->sess_tearing_down) {
2736 		ret = -ESHUTDOWN;
2737 		goto out;
2738 	}
2739 	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2740 	percpu_ref_get(&se_sess->cmd_count);
2741 out:
2742 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2743 
2744 	if (ret && ack_kref)
2745 		target_put_sess_cmd(se_cmd);
2746 
2747 	return ret;
2748 }
2749 EXPORT_SYMBOL(target_get_sess_cmd);
2750 
2751 static void target_free_cmd_mem(struct se_cmd *cmd)
2752 {
2753 	transport_free_pages(cmd);
2754 
2755 	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2756 		core_tmr_release_req(cmd->se_tmr_req);
2757 	if (cmd->t_task_cdb != cmd->__t_task_cdb)
2758 		kfree(cmd->t_task_cdb);
2759 }
2760 
2761 static void target_release_cmd_kref(struct kref *kref)
2762 {
2763 	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2764 	struct se_session *se_sess = se_cmd->se_sess;
2765 	struct completion *free_compl = se_cmd->free_compl;
2766 	struct completion *abrt_compl = se_cmd->abrt_compl;
2767 	unsigned long flags;
2768 
2769 	if (se_cmd->lun_ref_active)
2770 		percpu_ref_put(&se_cmd->se_lun->lun_ref);
2771 
2772 	if (se_sess) {
2773 		spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2774 		list_del_init(&se_cmd->se_cmd_list);
2775 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2776 	}
2777 
2778 	target_free_cmd_mem(se_cmd);
2779 	se_cmd->se_tfo->release_cmd(se_cmd);
2780 	if (free_compl)
2781 		complete(free_compl);
2782 	if (abrt_compl)
2783 		complete(abrt_compl);
2784 
2785 	percpu_ref_put(&se_sess->cmd_count);
2786 }
2787 
2788 /**
2789  * target_put_sess_cmd - decrease the command reference count
2790  * @se_cmd:	command to drop a reference from
2791  *
2792  * Returns 1 if and only if this target_put_sess_cmd() call caused the
2793  * refcount to drop to zero. Returns zero otherwise.
2794  */
2795 int target_put_sess_cmd(struct se_cmd *se_cmd)
2796 {
2797 	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2798 }
2799 EXPORT_SYMBOL(target_put_sess_cmd);
2800 
2801 static const char *data_dir_name(enum dma_data_direction d)
2802 {
2803 	switch (d) {
2804 	case DMA_BIDIRECTIONAL:	return "BIDI";
2805 	case DMA_TO_DEVICE:	return "WRITE";
2806 	case DMA_FROM_DEVICE:	return "READ";
2807 	case DMA_NONE:		return "NONE";
2808 	}
2809 
2810 	return "(?)";
2811 }
2812 
2813 static const char *cmd_state_name(enum transport_state_table t)
2814 {
2815 	switch (t) {
2816 	case TRANSPORT_NO_STATE:	return "NO_STATE";
2817 	case TRANSPORT_NEW_CMD:		return "NEW_CMD";
2818 	case TRANSPORT_WRITE_PENDING:	return "WRITE_PENDING";
2819 	case TRANSPORT_PROCESSING:	return "PROCESSING";
2820 	case TRANSPORT_COMPLETE:	return "COMPLETE";
2821 	case TRANSPORT_ISTATE_PROCESSING:
2822 					return "ISTATE_PROCESSING";
2823 	case TRANSPORT_COMPLETE_QF_WP:	return "COMPLETE_QF_WP";
2824 	case TRANSPORT_COMPLETE_QF_OK:	return "COMPLETE_QF_OK";
2825 	case TRANSPORT_COMPLETE_QF_ERR:	return "COMPLETE_QF_ERR";
2826 	}
2827 
2828 	return "(?)";
2829 }
2830 
2831 static void target_append_str(char **str, const char *txt)
2832 {
2833 	char *prev = *str;
2834 
2835 	*str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
2836 		kstrdup(txt, GFP_ATOMIC);
2837 	kfree(prev);
2838 }
2839 
2840 /*
2841  * Convert a transport state bitmask into a string. The caller is
2842  * responsible for freeing the returned pointer.
2843  */
2844 static char *target_ts_to_str(u32 ts)
2845 {
2846 	char *str = NULL;
2847 
2848 	if (ts & CMD_T_ABORTED)
2849 		target_append_str(&str, "aborted");
2850 	if (ts & CMD_T_ACTIVE)
2851 		target_append_str(&str, "active");
2852 	if (ts & CMD_T_COMPLETE)
2853 		target_append_str(&str, "complete");
2854 	if (ts & CMD_T_SENT)
2855 		target_append_str(&str, "sent");
2856 	if (ts & CMD_T_STOP)
2857 		target_append_str(&str, "stop");
2858 	if (ts & CMD_T_FABRIC_STOP)
2859 		target_append_str(&str, "fabric_stop");
2860 
2861 	return str;
2862 }
2863 
2864 static const char *target_tmf_name(enum tcm_tmreq_table tmf)
2865 {
2866 	switch (tmf) {
2867 	case TMR_ABORT_TASK:		return "ABORT_TASK";
2868 	case TMR_ABORT_TASK_SET:	return "ABORT_TASK_SET";
2869 	case TMR_CLEAR_ACA:		return "CLEAR_ACA";
2870 	case TMR_CLEAR_TASK_SET:	return "CLEAR_TASK_SET";
2871 	case TMR_LUN_RESET:		return "LUN_RESET";
2872 	case TMR_TARGET_WARM_RESET:	return "TARGET_WARM_RESET";
2873 	case TMR_TARGET_COLD_RESET:	return "TARGET_COLD_RESET";
2874 	case TMR_UNKNOWN:		break;
2875 	}
2876 	return "(?)";
2877 }
2878 
2879 void target_show_cmd(const char *pfx, struct se_cmd *cmd)
2880 {
2881 	char *ts_str = target_ts_to_str(cmd->transport_state);
2882 	const u8 *cdb = cmd->t_task_cdb;
2883 	struct se_tmr_req *tmf = cmd->se_tmr_req;
2884 
2885 	if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2886 		pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
2887 			 pfx, cdb[0], cdb[1], cmd->tag,
2888 			 data_dir_name(cmd->data_direction),
2889 			 cmd->se_tfo->get_cmd_state(cmd),
2890 			 cmd_state_name(cmd->t_state), cmd->data_length,
2891 			 kref_read(&cmd->cmd_kref), ts_str);
2892 	} else {
2893 		pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
2894 			 pfx, target_tmf_name(tmf->function), cmd->tag,
2895 			 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
2896 			 cmd_state_name(cmd->t_state),
2897 			 kref_read(&cmd->cmd_kref), ts_str);
2898 	}
2899 	kfree(ts_str);
2900 }
2901 EXPORT_SYMBOL(target_show_cmd);
2902 
2903 /**
2904  * target_sess_cmd_list_set_waiting - Set sess_tearing_down so no new commands are queued.
2905  * @se_sess:	session to flag
2906  */
2907 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2908 {
2909 	unsigned long flags;
2910 
2911 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2912 	se_sess->sess_tearing_down = 1;
2913 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2914 
2915 	percpu_ref_kill(&se_sess->cmd_count);
2916 }
2917 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2918 
2919 /**
2920  * target_wait_for_sess_cmds - Wait for outstanding commands
2921  * @se_sess:    session to wait for active I/O
2922  */
2923 void target_wait_for_sess_cmds(struct se_session *se_sess)
2924 {
2925 	struct se_cmd *cmd;
2926 	int ret;
2927 
2928 	WARN_ON_ONCE(!se_sess->sess_tearing_down);
2929 
2930 	do {
2931 		ret = wait_event_timeout(se_sess->cmd_list_wq,
2932 				percpu_ref_is_zero(&se_sess->cmd_count),
2933 				180 * HZ);
2934 		list_for_each_entry(cmd, &se_sess->sess_cmd_list, se_cmd_list)
2935 			target_show_cmd("session shutdown: still waiting for ",
2936 					cmd);
2937 	} while (ret <= 0);
2938 }
2939 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2940 
2941 /*
2942  * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
2943  * all references to the LUN have been released. Called during LUN shutdown.
2944  */
2945 void transport_clear_lun_ref(struct se_lun *lun)
2946 {
2947 	percpu_ref_kill(&lun->lun_ref);
2948 	wait_for_completion(&lun->lun_shutdown_comp);
2949 }
2950 
2951 static bool
2952 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2953 			   bool *aborted, bool *tas, unsigned long *flags)
2954 	__releases(&cmd->t_state_lock)
2955 	__acquires(&cmd->t_state_lock)
2956 {
2957 
2958 	assert_spin_locked(&cmd->t_state_lock);
2959 	WARN_ON_ONCE(!irqs_disabled());
2960 
2961 	if (fabric_stop)
2962 		cmd->transport_state |= CMD_T_FABRIC_STOP;
2963 
2964 	if (cmd->transport_state & CMD_T_ABORTED)
2965 		*aborted = true;
2966 
2967 	if (cmd->transport_state & CMD_T_TAS)
2968 		*tas = true;
2969 
2970 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2971 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2972 		return false;
2973 
2974 	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2975 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2976 		return false;
2977 
2978 	if (!(cmd->transport_state & CMD_T_ACTIVE))
2979 		return false;
2980 
2981 	if (fabric_stop && *aborted)
2982 		return false;
2983 
2984 	cmd->transport_state |= CMD_T_STOP;
2985 
2986 	target_show_cmd("wait_for_tasks: Stopping ", cmd);
2987 
2988 	spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2989 
2990 	while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
2991 					    180 * HZ))
2992 		target_show_cmd("wait for tasks: ", cmd);
2993 
2994 	spin_lock_irqsave(&cmd->t_state_lock, *flags);
2995 	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2996 
2997 	pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2998 		 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2999 
3000 	return true;
3001 }
3002 
3003 /**
3004  * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3005  * @cmd: command to wait on
3006  */
3007 bool transport_wait_for_tasks(struct se_cmd *cmd)
3008 {
3009 	unsigned long flags;
3010 	bool ret, aborted = false, tas = false;
3011 
3012 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3013 	ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3014 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3015 
3016 	return ret;
3017 }
3018 EXPORT_SYMBOL(transport_wait_for_tasks);
3019 
3020 struct sense_info {
3021 	u8 key;
3022 	u8 asc;
3023 	u8 ascq;
3024 	bool add_sector_info;
3025 };
3026 
3027 static const struct sense_info sense_info_table[] = {
3028 	[TCM_NO_SENSE] = {
3029 		.key = NOT_READY
3030 	},
3031 	[TCM_NON_EXISTENT_LUN] = {
3032 		.key = ILLEGAL_REQUEST,
3033 		.asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3034 	},
3035 	[TCM_UNSUPPORTED_SCSI_OPCODE] = {
3036 		.key = ILLEGAL_REQUEST,
3037 		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3038 	},
3039 	[TCM_SECTOR_COUNT_TOO_MANY] = {
3040 		.key = ILLEGAL_REQUEST,
3041 		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3042 	},
3043 	[TCM_UNKNOWN_MODE_PAGE] = {
3044 		.key = ILLEGAL_REQUEST,
3045 		.asc = 0x24, /* INVALID FIELD IN CDB */
3046 	},
3047 	[TCM_CHECK_CONDITION_ABORT_CMD] = {
3048 		.key = ABORTED_COMMAND,
3049 		.asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3050 		.ascq = 0x03,
3051 	},
3052 	[TCM_INCORRECT_AMOUNT_OF_DATA] = {
3053 		.key = ABORTED_COMMAND,
3054 		.asc = 0x0c, /* WRITE ERROR */
3055 		.ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3056 	},
3057 	[TCM_INVALID_CDB_FIELD] = {
3058 		.key = ILLEGAL_REQUEST,
3059 		.asc = 0x24, /* INVALID FIELD IN CDB */
3060 	},
3061 	[TCM_INVALID_PARAMETER_LIST] = {
3062 		.key = ILLEGAL_REQUEST,
3063 		.asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3064 	},
3065 	[TCM_TOO_MANY_TARGET_DESCS] = {
3066 		.key = ILLEGAL_REQUEST,
3067 		.asc = 0x26,
3068 		.ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3069 	},
3070 	[TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3071 		.key = ILLEGAL_REQUEST,
3072 		.asc = 0x26,
3073 		.ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3074 	},
3075 	[TCM_TOO_MANY_SEGMENT_DESCS] = {
3076 		.key = ILLEGAL_REQUEST,
3077 		.asc = 0x26,
3078 		.ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3079 	},
3080 	[TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3081 		.key = ILLEGAL_REQUEST,
3082 		.asc = 0x26,
3083 		.ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3084 	},
3085 	[TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3086 		.key = ILLEGAL_REQUEST,
3087 		.asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3088 	},
3089 	[TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3090 		.key = ILLEGAL_REQUEST,
3091 		.asc = 0x0c, /* WRITE ERROR */
3092 		.ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3093 	},
3094 	[TCM_SERVICE_CRC_ERROR] = {
3095 		.key = ABORTED_COMMAND,
3096 		.asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3097 		.ascq = 0x05, /* N/A */
3098 	},
3099 	[TCM_SNACK_REJECTED] = {
3100 		.key = ABORTED_COMMAND,
3101 		.asc = 0x11, /* READ ERROR */
3102 		.ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3103 	},
3104 	[TCM_WRITE_PROTECTED] = {
3105 		.key = DATA_PROTECT,
3106 		.asc = 0x27, /* WRITE PROTECTED */
3107 	},
3108 	[TCM_ADDRESS_OUT_OF_RANGE] = {
3109 		.key = ILLEGAL_REQUEST,
3110 		.asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3111 	},
3112 	[TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3113 		.key = UNIT_ATTENTION,
3114 	},
3115 	[TCM_CHECK_CONDITION_NOT_READY] = {
3116 		.key = NOT_READY,
3117 	},
3118 	[TCM_MISCOMPARE_VERIFY] = {
3119 		.key = MISCOMPARE,
3120 		.asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3121 		.ascq = 0x00,
3122 	},
3123 	[TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3124 		.key = ABORTED_COMMAND,
3125 		.asc = 0x10,
3126 		.ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3127 		.add_sector_info = true,
3128 	},
3129 	[TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3130 		.key = ABORTED_COMMAND,
3131 		.asc = 0x10,
3132 		.ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3133 		.add_sector_info = true,
3134 	},
3135 	[TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3136 		.key = ABORTED_COMMAND,
3137 		.asc = 0x10,
3138 		.ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3139 		.add_sector_info = true,
3140 	},
3141 	[TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3142 		.key = COPY_ABORTED,
3143 		.asc = 0x0d,
3144 		.ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3145 
3146 	},
3147 	[TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3148 		/*
3149 		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3150 		 * Solaris initiators.  Returning NOT READY instead means the
3151 		 * operations will be retried a finite number of times and we
3152 		 * can survive intermittent errors.
3153 		 */
3154 		.key = NOT_READY,
3155 		.asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3156 	},
3157 	[TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
3158 		/*
3159 		 * From spc4r22 section5.7.7,5.7.8
3160 		 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3161 		 * or a REGISTER AND IGNORE EXISTING KEY service action or
3162 		 * REGISTER AND MOVE service actionis attempted,
3163 		 * but there are insufficient device server resources to complete the
3164 		 * operation, then the command shall be terminated with CHECK CONDITION
3165 		 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3166 		 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3167 		 */
3168 		.key = ILLEGAL_REQUEST,
3169 		.asc = 0x55,
3170 		.ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3171 	},
3172 };
3173 
3174 /**
3175  * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3176  * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3177  *   be stored.
3178  * @reason: LIO sense reason code. If this argument has the value
3179  *   TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3180  *   dequeuing a unit attention fails due to multiple commands being processed
3181  *   concurrently, set the command status to BUSY.
3182  *
3183  * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3184  */
3185 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3186 {
3187 	const struct sense_info *si;
3188 	u8 *buffer = cmd->sense_buffer;
3189 	int r = (__force int)reason;
3190 	u8 key, asc, ascq;
3191 	bool desc_format = target_sense_desc_format(cmd->se_dev);
3192 
3193 	if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
3194 		si = &sense_info_table[r];
3195 	else
3196 		si = &sense_info_table[(__force int)
3197 				       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3198 
3199 	key = si->key;
3200 	if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3201 		if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
3202 						       &ascq)) {
3203 			cmd->scsi_status = SAM_STAT_BUSY;
3204 			return;
3205 		}
3206 	} else if (si->asc == 0) {
3207 		WARN_ON_ONCE(cmd->scsi_asc == 0);
3208 		asc = cmd->scsi_asc;
3209 		ascq = cmd->scsi_ascq;
3210 	} else {
3211 		asc = si->asc;
3212 		ascq = si->ascq;
3213 	}
3214 
3215 	cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3216 	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3217 	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3218 	scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3219 	if (si->add_sector_info)
3220 		WARN_ON_ONCE(scsi_set_sense_information(buffer,
3221 							cmd->scsi_sense_length,
3222 							cmd->bad_sector) < 0);
3223 }
3224 
3225 int
3226 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3227 		sense_reason_t reason, int from_transport)
3228 {
3229 	unsigned long flags;
3230 
3231 	WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3232 
3233 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3234 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3235 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3236 		return 0;
3237 	}
3238 	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3239 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3240 
3241 	if (!from_transport)
3242 		translate_sense_reason(cmd, reason);
3243 
3244 	trace_target_cmd_complete(cmd);
3245 	return cmd->se_tfo->queue_status(cmd);
3246 }
3247 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3248 
3249 /**
3250  * target_send_busy - Send SCSI BUSY status back to the initiator
3251  * @cmd: SCSI command for which to send a BUSY reply.
3252  *
3253  * Note: Only call this function if target_submit_cmd*() failed.
3254  */
3255 int target_send_busy(struct se_cmd *cmd)
3256 {
3257 	WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3258 
3259 	cmd->scsi_status = SAM_STAT_BUSY;
3260 	trace_target_cmd_complete(cmd);
3261 	return cmd->se_tfo->queue_status(cmd);
3262 }
3263 EXPORT_SYMBOL(target_send_busy);
3264 
3265 static void target_tmr_work(struct work_struct *work)
3266 {
3267 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3268 	struct se_device *dev = cmd->se_dev;
3269 	struct se_tmr_req *tmr = cmd->se_tmr_req;
3270 	int ret;
3271 
3272 	if (cmd->transport_state & CMD_T_ABORTED)
3273 		goto aborted;
3274 
3275 	switch (tmr->function) {
3276 	case TMR_ABORT_TASK:
3277 		core_tmr_abort_task(dev, tmr, cmd->se_sess);
3278 		break;
3279 	case TMR_ABORT_TASK_SET:
3280 	case TMR_CLEAR_ACA:
3281 	case TMR_CLEAR_TASK_SET:
3282 		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3283 		break;
3284 	case TMR_LUN_RESET:
3285 		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3286 		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3287 					 TMR_FUNCTION_REJECTED;
3288 		if (tmr->response == TMR_FUNCTION_COMPLETE) {
3289 			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3290 					       cmd->orig_fe_lun, 0x29,
3291 					       ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3292 		}
3293 		break;
3294 	case TMR_TARGET_WARM_RESET:
3295 		tmr->response = TMR_FUNCTION_REJECTED;
3296 		break;
3297 	case TMR_TARGET_COLD_RESET:
3298 		tmr->response = TMR_FUNCTION_REJECTED;
3299 		break;
3300 	default:
3301 		pr_err("Unknown TMR function: 0x%02x.\n",
3302 				tmr->function);
3303 		tmr->response = TMR_FUNCTION_REJECTED;
3304 		break;
3305 	}
3306 
3307 	if (cmd->transport_state & CMD_T_ABORTED)
3308 		goto aborted;
3309 
3310 	cmd->se_tfo->queue_tm_rsp(cmd);
3311 
3312 	transport_cmd_check_stop_to_fabric(cmd);
3313 	return;
3314 
3315 aborted:
3316 	target_handle_abort(cmd);
3317 }
3318 
3319 int transport_generic_handle_tmr(
3320 	struct se_cmd *cmd)
3321 {
3322 	unsigned long flags;
3323 	bool aborted = false;
3324 
3325 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3326 	if (cmd->transport_state & CMD_T_ABORTED) {
3327 		aborted = true;
3328 	} else {
3329 		cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3330 		cmd->transport_state |= CMD_T_ACTIVE;
3331 	}
3332 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3333 
3334 	if (aborted) {
3335 		pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
3336 				    cmd->se_tmr_req->function,
3337 				    cmd->se_tmr_req->ref_task_tag, cmd->tag);
3338 		target_handle_abort(cmd);
3339 		return 0;
3340 	}
3341 
3342 	INIT_WORK(&cmd->work, target_tmr_work);
3343 	schedule_work(&cmd->work);
3344 	return 0;
3345 }
3346 EXPORT_SYMBOL(transport_generic_handle_tmr);
3347 
3348 bool
3349 target_check_wce(struct se_device *dev)
3350 {
3351 	bool wce = false;
3352 
3353 	if (dev->transport->get_write_cache)
3354 		wce = dev->transport->get_write_cache(dev);
3355 	else if (dev->dev_attrib.emulate_write_cache > 0)
3356 		wce = true;
3357 
3358 	return wce;
3359 }
3360 
3361 bool
3362 target_check_fua(struct se_device *dev)
3363 {
3364 	return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3365 }
3366