1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /******************************************************************************* 3 * Filename: target_core_transport.c 4 * 5 * This file contains the Generic Target Engine Core. 6 * 7 * (c) Copyright 2002-2013 Datera, Inc. 8 * 9 * Nicholas A. Bellinger <nab@kernel.org> 10 * 11 ******************************************************************************/ 12 13 #include <linux/net.h> 14 #include <linux/delay.h> 15 #include <linux/string.h> 16 #include <linux/timer.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/kthread.h> 20 #include <linux/in.h> 21 #include <linux/cdrom.h> 22 #include <linux/module.h> 23 #include <linux/ratelimit.h> 24 #include <linux/vmalloc.h> 25 #include <asm/unaligned.h> 26 #include <net/sock.h> 27 #include <net/tcp.h> 28 #include <scsi/scsi_proto.h> 29 #include <scsi/scsi_common.h> 30 31 #include <target/target_core_base.h> 32 #include <target/target_core_backend.h> 33 #include <target/target_core_fabric.h> 34 35 #include "target_core_internal.h" 36 #include "target_core_alua.h" 37 #include "target_core_pr.h" 38 #include "target_core_ua.h" 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/target.h> 42 43 static struct workqueue_struct *target_completion_wq; 44 static struct kmem_cache *se_sess_cache; 45 struct kmem_cache *se_ua_cache; 46 struct kmem_cache *t10_pr_reg_cache; 47 struct kmem_cache *t10_alua_lu_gp_cache; 48 struct kmem_cache *t10_alua_lu_gp_mem_cache; 49 struct kmem_cache *t10_alua_tg_pt_gp_cache; 50 struct kmem_cache *t10_alua_lba_map_cache; 51 struct kmem_cache *t10_alua_lba_map_mem_cache; 52 53 static void transport_complete_task_attr(struct se_cmd *cmd); 54 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason); 55 static void transport_handle_queue_full(struct se_cmd *cmd, 56 struct se_device *dev, int err, bool write_pending); 57 static void target_complete_ok_work(struct work_struct *work); 58 59 int init_se_kmem_caches(void) 60 { 61 se_sess_cache = kmem_cache_create("se_sess_cache", 62 sizeof(struct se_session), __alignof__(struct se_session), 63 0, NULL); 64 if (!se_sess_cache) { 65 pr_err("kmem_cache_create() for struct se_session" 66 " failed\n"); 67 goto out; 68 } 69 se_ua_cache = kmem_cache_create("se_ua_cache", 70 sizeof(struct se_ua), __alignof__(struct se_ua), 71 0, NULL); 72 if (!se_ua_cache) { 73 pr_err("kmem_cache_create() for struct se_ua failed\n"); 74 goto out_free_sess_cache; 75 } 76 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 77 sizeof(struct t10_pr_registration), 78 __alignof__(struct t10_pr_registration), 0, NULL); 79 if (!t10_pr_reg_cache) { 80 pr_err("kmem_cache_create() for struct t10_pr_registration" 81 " failed\n"); 82 goto out_free_ua_cache; 83 } 84 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 85 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 86 0, NULL); 87 if (!t10_alua_lu_gp_cache) { 88 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 89 " failed\n"); 90 goto out_free_pr_reg_cache; 91 } 92 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 93 sizeof(struct t10_alua_lu_gp_member), 94 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 95 if (!t10_alua_lu_gp_mem_cache) { 96 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 97 "cache failed\n"); 98 goto out_free_lu_gp_cache; 99 } 100 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 101 sizeof(struct t10_alua_tg_pt_gp), 102 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 103 if (!t10_alua_tg_pt_gp_cache) { 104 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 105 "cache failed\n"); 106 goto out_free_lu_gp_mem_cache; 107 } 108 t10_alua_lba_map_cache = kmem_cache_create( 109 "t10_alua_lba_map_cache", 110 sizeof(struct t10_alua_lba_map), 111 __alignof__(struct t10_alua_lba_map), 0, NULL); 112 if (!t10_alua_lba_map_cache) { 113 pr_err("kmem_cache_create() for t10_alua_lba_map_" 114 "cache failed\n"); 115 goto out_free_tg_pt_gp_cache; 116 } 117 t10_alua_lba_map_mem_cache = kmem_cache_create( 118 "t10_alua_lba_map_mem_cache", 119 sizeof(struct t10_alua_lba_map_member), 120 __alignof__(struct t10_alua_lba_map_member), 0, NULL); 121 if (!t10_alua_lba_map_mem_cache) { 122 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_" 123 "cache failed\n"); 124 goto out_free_lba_map_cache; 125 } 126 127 target_completion_wq = alloc_workqueue("target_completion", 128 WQ_MEM_RECLAIM, 0); 129 if (!target_completion_wq) 130 goto out_free_lba_map_mem_cache; 131 132 return 0; 133 134 out_free_lba_map_mem_cache: 135 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 136 out_free_lba_map_cache: 137 kmem_cache_destroy(t10_alua_lba_map_cache); 138 out_free_tg_pt_gp_cache: 139 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 140 out_free_lu_gp_mem_cache: 141 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 142 out_free_lu_gp_cache: 143 kmem_cache_destroy(t10_alua_lu_gp_cache); 144 out_free_pr_reg_cache: 145 kmem_cache_destroy(t10_pr_reg_cache); 146 out_free_ua_cache: 147 kmem_cache_destroy(se_ua_cache); 148 out_free_sess_cache: 149 kmem_cache_destroy(se_sess_cache); 150 out: 151 return -ENOMEM; 152 } 153 154 void release_se_kmem_caches(void) 155 { 156 destroy_workqueue(target_completion_wq); 157 kmem_cache_destroy(se_sess_cache); 158 kmem_cache_destroy(se_ua_cache); 159 kmem_cache_destroy(t10_pr_reg_cache); 160 kmem_cache_destroy(t10_alua_lu_gp_cache); 161 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 162 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 163 kmem_cache_destroy(t10_alua_lba_map_cache); 164 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 165 } 166 167 /* This code ensures unique mib indexes are handed out. */ 168 static DEFINE_SPINLOCK(scsi_mib_index_lock); 169 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 170 171 /* 172 * Allocate a new row index for the entry type specified 173 */ 174 u32 scsi_get_new_index(scsi_index_t type) 175 { 176 u32 new_index; 177 178 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 179 180 spin_lock(&scsi_mib_index_lock); 181 new_index = ++scsi_mib_index[type]; 182 spin_unlock(&scsi_mib_index_lock); 183 184 return new_index; 185 } 186 187 void transport_subsystem_check_init(void) 188 { 189 int ret; 190 static int sub_api_initialized; 191 192 if (sub_api_initialized) 193 return; 194 195 ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock"); 196 if (ret != 0) 197 pr_err("Unable to load target_core_iblock\n"); 198 199 ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file"); 200 if (ret != 0) 201 pr_err("Unable to load target_core_file\n"); 202 203 ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi"); 204 if (ret != 0) 205 pr_err("Unable to load target_core_pscsi\n"); 206 207 ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user"); 208 if (ret != 0) 209 pr_err("Unable to load target_core_user\n"); 210 211 sub_api_initialized = 1; 212 } 213 214 static void target_release_sess_cmd_refcnt(struct percpu_ref *ref) 215 { 216 struct se_session *sess = container_of(ref, typeof(*sess), cmd_count); 217 218 wake_up(&sess->cmd_count_wq); 219 } 220 221 /** 222 * transport_init_session - initialize a session object 223 * @se_sess: Session object pointer. 224 * 225 * The caller must have zero-initialized @se_sess before calling this function. 226 */ 227 int transport_init_session(struct se_session *se_sess) 228 { 229 INIT_LIST_HEAD(&se_sess->sess_list); 230 INIT_LIST_HEAD(&se_sess->sess_acl_list); 231 spin_lock_init(&se_sess->sess_cmd_lock); 232 init_waitqueue_head(&se_sess->cmd_count_wq); 233 init_completion(&se_sess->stop_done); 234 atomic_set(&se_sess->stopped, 0); 235 return percpu_ref_init(&se_sess->cmd_count, 236 target_release_sess_cmd_refcnt, 0, GFP_KERNEL); 237 } 238 EXPORT_SYMBOL(transport_init_session); 239 240 void transport_uninit_session(struct se_session *se_sess) 241 { 242 /* 243 * Drivers like iscsi and loop do not call target_stop_session 244 * during session shutdown so we have to drop the ref taken at init 245 * time here. 246 */ 247 if (!atomic_read(&se_sess->stopped)) 248 percpu_ref_put(&se_sess->cmd_count); 249 250 percpu_ref_exit(&se_sess->cmd_count); 251 } 252 253 /** 254 * transport_alloc_session - allocate a session object and initialize it 255 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported. 256 */ 257 struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops) 258 { 259 struct se_session *se_sess; 260 int ret; 261 262 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 263 if (!se_sess) { 264 pr_err("Unable to allocate struct se_session from" 265 " se_sess_cache\n"); 266 return ERR_PTR(-ENOMEM); 267 } 268 ret = transport_init_session(se_sess); 269 if (ret < 0) { 270 kmem_cache_free(se_sess_cache, se_sess); 271 return ERR_PTR(ret); 272 } 273 se_sess->sup_prot_ops = sup_prot_ops; 274 275 return se_sess; 276 } 277 EXPORT_SYMBOL(transport_alloc_session); 278 279 /** 280 * transport_alloc_session_tags - allocate target driver private data 281 * @se_sess: Session pointer. 282 * @tag_num: Maximum number of in-flight commands between initiator and target. 283 * @tag_size: Size in bytes of the private data a target driver associates with 284 * each command. 285 */ 286 int transport_alloc_session_tags(struct se_session *se_sess, 287 unsigned int tag_num, unsigned int tag_size) 288 { 289 int rc; 290 291 se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num, 292 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 293 if (!se_sess->sess_cmd_map) { 294 pr_err("Unable to allocate se_sess->sess_cmd_map\n"); 295 return -ENOMEM; 296 } 297 298 rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1, 299 false, GFP_KERNEL, NUMA_NO_NODE); 300 if (rc < 0) { 301 pr_err("Unable to init se_sess->sess_tag_pool," 302 " tag_num: %u\n", tag_num); 303 kvfree(se_sess->sess_cmd_map); 304 se_sess->sess_cmd_map = NULL; 305 return -ENOMEM; 306 } 307 308 return 0; 309 } 310 EXPORT_SYMBOL(transport_alloc_session_tags); 311 312 /** 313 * transport_init_session_tags - allocate a session and target driver private data 314 * @tag_num: Maximum number of in-flight commands between initiator and target. 315 * @tag_size: Size in bytes of the private data a target driver associates with 316 * each command. 317 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported. 318 */ 319 static struct se_session * 320 transport_init_session_tags(unsigned int tag_num, unsigned int tag_size, 321 enum target_prot_op sup_prot_ops) 322 { 323 struct se_session *se_sess; 324 int rc; 325 326 if (tag_num != 0 && !tag_size) { 327 pr_err("init_session_tags called with percpu-ida tag_num:" 328 " %u, but zero tag_size\n", tag_num); 329 return ERR_PTR(-EINVAL); 330 } 331 if (!tag_num && tag_size) { 332 pr_err("init_session_tags called with percpu-ida tag_size:" 333 " %u, but zero tag_num\n", tag_size); 334 return ERR_PTR(-EINVAL); 335 } 336 337 se_sess = transport_alloc_session(sup_prot_ops); 338 if (IS_ERR(se_sess)) 339 return se_sess; 340 341 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size); 342 if (rc < 0) { 343 transport_free_session(se_sess); 344 return ERR_PTR(-ENOMEM); 345 } 346 347 return se_sess; 348 } 349 350 /* 351 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 352 */ 353 void __transport_register_session( 354 struct se_portal_group *se_tpg, 355 struct se_node_acl *se_nacl, 356 struct se_session *se_sess, 357 void *fabric_sess_ptr) 358 { 359 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo; 360 unsigned char buf[PR_REG_ISID_LEN]; 361 unsigned long flags; 362 363 se_sess->se_tpg = se_tpg; 364 se_sess->fabric_sess_ptr = fabric_sess_ptr; 365 /* 366 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 367 * 368 * Only set for struct se_session's that will actually be moving I/O. 369 * eg: *NOT* discovery sessions. 370 */ 371 if (se_nacl) { 372 /* 373 * 374 * Determine if fabric allows for T10-PI feature bits exposed to 375 * initiators for device backends with !dev->dev_attrib.pi_prot_type. 376 * 377 * If so, then always save prot_type on a per se_node_acl node 378 * basis and re-instate the previous sess_prot_type to avoid 379 * disabling PI from below any previously initiator side 380 * registered LUNs. 381 */ 382 if (se_nacl->saved_prot_type) 383 se_sess->sess_prot_type = se_nacl->saved_prot_type; 384 else if (tfo->tpg_check_prot_fabric_only) 385 se_sess->sess_prot_type = se_nacl->saved_prot_type = 386 tfo->tpg_check_prot_fabric_only(se_tpg); 387 /* 388 * If the fabric module supports an ISID based TransportID, 389 * save this value in binary from the fabric I_T Nexus now. 390 */ 391 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 392 memset(&buf[0], 0, PR_REG_ISID_LEN); 393 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 394 &buf[0], PR_REG_ISID_LEN); 395 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 396 } 397 398 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 399 /* 400 * The se_nacl->nacl_sess pointer will be set to the 401 * last active I_T Nexus for each struct se_node_acl. 402 */ 403 se_nacl->nacl_sess = se_sess; 404 405 list_add_tail(&se_sess->sess_acl_list, 406 &se_nacl->acl_sess_list); 407 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 408 } 409 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 410 411 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 412 se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr); 413 } 414 EXPORT_SYMBOL(__transport_register_session); 415 416 void transport_register_session( 417 struct se_portal_group *se_tpg, 418 struct se_node_acl *se_nacl, 419 struct se_session *se_sess, 420 void *fabric_sess_ptr) 421 { 422 unsigned long flags; 423 424 spin_lock_irqsave(&se_tpg->session_lock, flags); 425 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 426 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 427 } 428 EXPORT_SYMBOL(transport_register_session); 429 430 struct se_session * 431 target_setup_session(struct se_portal_group *tpg, 432 unsigned int tag_num, unsigned int tag_size, 433 enum target_prot_op prot_op, 434 const char *initiatorname, void *private, 435 int (*callback)(struct se_portal_group *, 436 struct se_session *, void *)) 437 { 438 struct se_session *sess; 439 440 /* 441 * If the fabric driver is using percpu-ida based pre allocation 442 * of I/O descriptor tags, go ahead and perform that setup now.. 443 */ 444 if (tag_num != 0) 445 sess = transport_init_session_tags(tag_num, tag_size, prot_op); 446 else 447 sess = transport_alloc_session(prot_op); 448 449 if (IS_ERR(sess)) 450 return sess; 451 452 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg, 453 (unsigned char *)initiatorname); 454 if (!sess->se_node_acl) { 455 transport_free_session(sess); 456 return ERR_PTR(-EACCES); 457 } 458 /* 459 * Go ahead and perform any remaining fabric setup that is 460 * required before transport_register_session(). 461 */ 462 if (callback != NULL) { 463 int rc = callback(tpg, sess, private); 464 if (rc) { 465 transport_free_session(sess); 466 return ERR_PTR(rc); 467 } 468 } 469 470 transport_register_session(tpg, sess->se_node_acl, sess, private); 471 return sess; 472 } 473 EXPORT_SYMBOL(target_setup_session); 474 475 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page) 476 { 477 struct se_session *se_sess; 478 ssize_t len = 0; 479 480 spin_lock_bh(&se_tpg->session_lock); 481 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) { 482 if (!se_sess->se_node_acl) 483 continue; 484 if (!se_sess->se_node_acl->dynamic_node_acl) 485 continue; 486 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE) 487 break; 488 489 len += snprintf(page + len, PAGE_SIZE - len, "%s\n", 490 se_sess->se_node_acl->initiatorname); 491 len += 1; /* Include NULL terminator */ 492 } 493 spin_unlock_bh(&se_tpg->session_lock); 494 495 return len; 496 } 497 EXPORT_SYMBOL(target_show_dynamic_sessions); 498 499 static void target_complete_nacl(struct kref *kref) 500 { 501 struct se_node_acl *nacl = container_of(kref, 502 struct se_node_acl, acl_kref); 503 struct se_portal_group *se_tpg = nacl->se_tpg; 504 505 if (!nacl->dynamic_stop) { 506 complete(&nacl->acl_free_comp); 507 return; 508 } 509 510 mutex_lock(&se_tpg->acl_node_mutex); 511 list_del_init(&nacl->acl_list); 512 mutex_unlock(&se_tpg->acl_node_mutex); 513 514 core_tpg_wait_for_nacl_pr_ref(nacl); 515 core_free_device_list_for_node(nacl, se_tpg); 516 kfree(nacl); 517 } 518 519 void target_put_nacl(struct se_node_acl *nacl) 520 { 521 kref_put(&nacl->acl_kref, target_complete_nacl); 522 } 523 EXPORT_SYMBOL(target_put_nacl); 524 525 void transport_deregister_session_configfs(struct se_session *se_sess) 526 { 527 struct se_node_acl *se_nacl; 528 unsigned long flags; 529 /* 530 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 531 */ 532 se_nacl = se_sess->se_node_acl; 533 if (se_nacl) { 534 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 535 if (!list_empty(&se_sess->sess_acl_list)) 536 list_del_init(&se_sess->sess_acl_list); 537 /* 538 * If the session list is empty, then clear the pointer. 539 * Otherwise, set the struct se_session pointer from the tail 540 * element of the per struct se_node_acl active session list. 541 */ 542 if (list_empty(&se_nacl->acl_sess_list)) 543 se_nacl->nacl_sess = NULL; 544 else { 545 se_nacl->nacl_sess = container_of( 546 se_nacl->acl_sess_list.prev, 547 struct se_session, sess_acl_list); 548 } 549 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 550 } 551 } 552 EXPORT_SYMBOL(transport_deregister_session_configfs); 553 554 void transport_free_session(struct se_session *se_sess) 555 { 556 struct se_node_acl *se_nacl = se_sess->se_node_acl; 557 558 /* 559 * Drop the se_node_acl->nacl_kref obtained from within 560 * core_tpg_get_initiator_node_acl(). 561 */ 562 if (se_nacl) { 563 struct se_portal_group *se_tpg = se_nacl->se_tpg; 564 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo; 565 unsigned long flags; 566 567 se_sess->se_node_acl = NULL; 568 569 /* 570 * Also determine if we need to drop the extra ->cmd_kref if 571 * it had been previously dynamically generated, and 572 * the endpoint is not caching dynamic ACLs. 573 */ 574 mutex_lock(&se_tpg->acl_node_mutex); 575 if (se_nacl->dynamic_node_acl && 576 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 577 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 578 if (list_empty(&se_nacl->acl_sess_list)) 579 se_nacl->dynamic_stop = true; 580 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 581 582 if (se_nacl->dynamic_stop) 583 list_del_init(&se_nacl->acl_list); 584 } 585 mutex_unlock(&se_tpg->acl_node_mutex); 586 587 if (se_nacl->dynamic_stop) 588 target_put_nacl(se_nacl); 589 590 target_put_nacl(se_nacl); 591 } 592 if (se_sess->sess_cmd_map) { 593 sbitmap_queue_free(&se_sess->sess_tag_pool); 594 kvfree(se_sess->sess_cmd_map); 595 } 596 transport_uninit_session(se_sess); 597 kmem_cache_free(se_sess_cache, se_sess); 598 } 599 EXPORT_SYMBOL(transport_free_session); 600 601 static int target_release_res(struct se_device *dev, void *data) 602 { 603 struct se_session *sess = data; 604 605 if (dev->reservation_holder == sess) 606 target_release_reservation(dev); 607 return 0; 608 } 609 610 void transport_deregister_session(struct se_session *se_sess) 611 { 612 struct se_portal_group *se_tpg = se_sess->se_tpg; 613 unsigned long flags; 614 615 if (!se_tpg) { 616 transport_free_session(se_sess); 617 return; 618 } 619 620 spin_lock_irqsave(&se_tpg->session_lock, flags); 621 list_del(&se_sess->sess_list); 622 se_sess->se_tpg = NULL; 623 se_sess->fabric_sess_ptr = NULL; 624 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 625 626 /* 627 * Since the session is being removed, release SPC-2 628 * reservations held by the session that is disappearing. 629 */ 630 target_for_each_device(target_release_res, se_sess); 631 632 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 633 se_tpg->se_tpg_tfo->fabric_name); 634 /* 635 * If last kref is dropping now for an explicit NodeACL, awake sleeping 636 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 637 * removal context from within transport_free_session() code. 638 * 639 * For dynamic ACL, target_put_nacl() uses target_complete_nacl() 640 * to release all remaining generate_node_acl=1 created ACL resources. 641 */ 642 643 transport_free_session(se_sess); 644 } 645 EXPORT_SYMBOL(transport_deregister_session); 646 647 void target_remove_session(struct se_session *se_sess) 648 { 649 transport_deregister_session_configfs(se_sess); 650 transport_deregister_session(se_sess); 651 } 652 EXPORT_SYMBOL(target_remove_session); 653 654 static void target_remove_from_state_list(struct se_cmd *cmd) 655 { 656 struct se_device *dev = cmd->se_dev; 657 unsigned long flags; 658 659 if (!dev) 660 return; 661 662 spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags); 663 if (cmd->state_active) { 664 list_del(&cmd->state_list); 665 cmd->state_active = false; 666 } 667 spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags); 668 } 669 670 /* 671 * This function is called by the target core after the target core has 672 * finished processing a SCSI command or SCSI TMF. Both the regular command 673 * processing code and the code for aborting commands can call this 674 * function. CMD_T_STOP is set if and only if another thread is waiting 675 * inside transport_wait_for_tasks() for t_transport_stop_comp. 676 */ 677 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 678 { 679 unsigned long flags; 680 681 target_remove_from_state_list(cmd); 682 683 /* 684 * Clear struct se_cmd->se_lun before the handoff to FE. 685 */ 686 cmd->se_lun = NULL; 687 688 spin_lock_irqsave(&cmd->t_state_lock, flags); 689 /* 690 * Determine if frontend context caller is requesting the stopping of 691 * this command for frontend exceptions. 692 */ 693 if (cmd->transport_state & CMD_T_STOP) { 694 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 695 __func__, __LINE__, cmd->tag); 696 697 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 698 699 complete_all(&cmd->t_transport_stop_comp); 700 return 1; 701 } 702 cmd->transport_state &= ~CMD_T_ACTIVE; 703 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 704 705 /* 706 * Some fabric modules like tcm_loop can release their internally 707 * allocated I/O reference and struct se_cmd now. 708 * 709 * Fabric modules are expected to return '1' here if the se_cmd being 710 * passed is released at this point, or zero if not being released. 711 */ 712 return cmd->se_tfo->check_stop_free(cmd); 713 } 714 715 static void transport_lun_remove_cmd(struct se_cmd *cmd) 716 { 717 struct se_lun *lun = cmd->se_lun; 718 719 if (!lun) 720 return; 721 722 if (cmpxchg(&cmd->lun_ref_active, true, false)) 723 percpu_ref_put(&lun->lun_ref); 724 } 725 726 static void target_complete_failure_work(struct work_struct *work) 727 { 728 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 729 730 transport_generic_request_failure(cmd, 731 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 732 } 733 734 /* 735 * Used when asking transport to copy Sense Data from the underlying 736 * Linux/SCSI struct scsi_cmnd 737 */ 738 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 739 { 740 struct se_device *dev = cmd->se_dev; 741 742 WARN_ON(!cmd->se_lun); 743 744 if (!dev) 745 return NULL; 746 747 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 748 return NULL; 749 750 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 751 752 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 753 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 754 return cmd->sense_buffer; 755 } 756 757 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense) 758 { 759 unsigned char *cmd_sense_buf; 760 unsigned long flags; 761 762 spin_lock_irqsave(&cmd->t_state_lock, flags); 763 cmd_sense_buf = transport_get_sense_buffer(cmd); 764 if (!cmd_sense_buf) { 765 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 766 return; 767 } 768 769 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE; 770 memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length); 771 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 772 } 773 EXPORT_SYMBOL(transport_copy_sense_to_cmd); 774 775 static void target_handle_abort(struct se_cmd *cmd) 776 { 777 bool tas = cmd->transport_state & CMD_T_TAS; 778 bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF; 779 int ret; 780 781 pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas); 782 783 if (tas) { 784 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 785 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 786 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n", 787 cmd->t_task_cdb[0], cmd->tag); 788 trace_target_cmd_complete(cmd); 789 ret = cmd->se_tfo->queue_status(cmd); 790 if (ret) { 791 transport_handle_queue_full(cmd, cmd->se_dev, 792 ret, false); 793 return; 794 } 795 } else { 796 cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED; 797 cmd->se_tfo->queue_tm_rsp(cmd); 798 } 799 } else { 800 /* 801 * Allow the fabric driver to unmap any resources before 802 * releasing the descriptor via TFO->release_cmd(). 803 */ 804 cmd->se_tfo->aborted_task(cmd); 805 if (ack_kref) 806 WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0); 807 /* 808 * To do: establish a unit attention condition on the I_T 809 * nexus associated with cmd. See also the paragraph "Aborting 810 * commands" in SAM. 811 */ 812 } 813 814 WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0); 815 816 transport_lun_remove_cmd(cmd); 817 818 transport_cmd_check_stop_to_fabric(cmd); 819 } 820 821 static void target_abort_work(struct work_struct *work) 822 { 823 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 824 825 target_handle_abort(cmd); 826 } 827 828 static bool target_cmd_interrupted(struct se_cmd *cmd) 829 { 830 int post_ret; 831 832 if (cmd->transport_state & CMD_T_ABORTED) { 833 if (cmd->transport_complete_callback) 834 cmd->transport_complete_callback(cmd, false, &post_ret); 835 INIT_WORK(&cmd->work, target_abort_work); 836 queue_work(target_completion_wq, &cmd->work); 837 return true; 838 } else if (cmd->transport_state & CMD_T_STOP) { 839 if (cmd->transport_complete_callback) 840 cmd->transport_complete_callback(cmd, false, &post_ret); 841 complete_all(&cmd->t_transport_stop_comp); 842 return true; 843 } 844 845 return false; 846 } 847 848 /* May be called from interrupt context so must not sleep. */ 849 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 850 { 851 int success; 852 unsigned long flags; 853 854 if (target_cmd_interrupted(cmd)) 855 return; 856 857 cmd->scsi_status = scsi_status; 858 859 spin_lock_irqsave(&cmd->t_state_lock, flags); 860 switch (cmd->scsi_status) { 861 case SAM_STAT_CHECK_CONDITION: 862 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 863 success = 1; 864 else 865 success = 0; 866 break; 867 default: 868 success = 1; 869 break; 870 } 871 872 cmd->t_state = TRANSPORT_COMPLETE; 873 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 874 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 875 876 INIT_WORK(&cmd->work, success ? target_complete_ok_work : 877 target_complete_failure_work); 878 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work); 879 } 880 EXPORT_SYMBOL(target_complete_cmd); 881 882 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length) 883 { 884 if ((scsi_status == SAM_STAT_GOOD || 885 cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) && 886 length < cmd->data_length) { 887 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 888 cmd->residual_count += cmd->data_length - length; 889 } else { 890 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 891 cmd->residual_count = cmd->data_length - length; 892 } 893 894 cmd->data_length = length; 895 } 896 897 target_complete_cmd(cmd, scsi_status); 898 } 899 EXPORT_SYMBOL(target_complete_cmd_with_length); 900 901 static void target_add_to_state_list(struct se_cmd *cmd) 902 { 903 struct se_device *dev = cmd->se_dev; 904 unsigned long flags; 905 906 spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags); 907 if (!cmd->state_active) { 908 list_add_tail(&cmd->state_list, 909 &dev->queues[cmd->cpuid].state_list); 910 cmd->state_active = true; 911 } 912 spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags); 913 } 914 915 /* 916 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 917 */ 918 static void transport_write_pending_qf(struct se_cmd *cmd); 919 static void transport_complete_qf(struct se_cmd *cmd); 920 921 void target_qf_do_work(struct work_struct *work) 922 { 923 struct se_device *dev = container_of(work, struct se_device, 924 qf_work_queue); 925 LIST_HEAD(qf_cmd_list); 926 struct se_cmd *cmd, *cmd_tmp; 927 928 spin_lock_irq(&dev->qf_cmd_lock); 929 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 930 spin_unlock_irq(&dev->qf_cmd_lock); 931 932 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 933 list_del(&cmd->se_qf_node); 934 atomic_dec_mb(&dev->dev_qf_count); 935 936 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 937 " context: %s\n", cmd->se_tfo->fabric_name, cmd, 938 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 939 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 940 : "UNKNOWN"); 941 942 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 943 transport_write_pending_qf(cmd); 944 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK || 945 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) 946 transport_complete_qf(cmd); 947 } 948 } 949 950 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 951 { 952 switch (cmd->data_direction) { 953 case DMA_NONE: 954 return "NONE"; 955 case DMA_FROM_DEVICE: 956 return "READ"; 957 case DMA_TO_DEVICE: 958 return "WRITE"; 959 case DMA_BIDIRECTIONAL: 960 return "BIDI"; 961 default: 962 break; 963 } 964 965 return "UNKNOWN"; 966 } 967 968 void transport_dump_dev_state( 969 struct se_device *dev, 970 char *b, 971 int *bl) 972 { 973 *bl += sprintf(b + *bl, "Status: "); 974 if (dev->export_count) 975 *bl += sprintf(b + *bl, "ACTIVATED"); 976 else 977 *bl += sprintf(b + *bl, "DEACTIVATED"); 978 979 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 980 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 981 dev->dev_attrib.block_size, 982 dev->dev_attrib.hw_max_sectors); 983 *bl += sprintf(b + *bl, " "); 984 } 985 986 void transport_dump_vpd_proto_id( 987 struct t10_vpd *vpd, 988 unsigned char *p_buf, 989 int p_buf_len) 990 { 991 unsigned char buf[VPD_TMP_BUF_SIZE]; 992 int len; 993 994 memset(buf, 0, VPD_TMP_BUF_SIZE); 995 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 996 997 switch (vpd->protocol_identifier) { 998 case 0x00: 999 sprintf(buf+len, "Fibre Channel\n"); 1000 break; 1001 case 0x10: 1002 sprintf(buf+len, "Parallel SCSI\n"); 1003 break; 1004 case 0x20: 1005 sprintf(buf+len, "SSA\n"); 1006 break; 1007 case 0x30: 1008 sprintf(buf+len, "IEEE 1394\n"); 1009 break; 1010 case 0x40: 1011 sprintf(buf+len, "SCSI Remote Direct Memory Access" 1012 " Protocol\n"); 1013 break; 1014 case 0x50: 1015 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 1016 break; 1017 case 0x60: 1018 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 1019 break; 1020 case 0x70: 1021 sprintf(buf+len, "Automation/Drive Interface Transport" 1022 " Protocol\n"); 1023 break; 1024 case 0x80: 1025 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 1026 break; 1027 default: 1028 sprintf(buf+len, "Unknown 0x%02x\n", 1029 vpd->protocol_identifier); 1030 break; 1031 } 1032 1033 if (p_buf) 1034 strncpy(p_buf, buf, p_buf_len); 1035 else 1036 pr_debug("%s", buf); 1037 } 1038 1039 void 1040 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 1041 { 1042 /* 1043 * Check if the Protocol Identifier Valid (PIV) bit is set.. 1044 * 1045 * from spc3r23.pdf section 7.5.1 1046 */ 1047 if (page_83[1] & 0x80) { 1048 vpd->protocol_identifier = (page_83[0] & 0xf0); 1049 vpd->protocol_identifier_set = 1; 1050 transport_dump_vpd_proto_id(vpd, NULL, 0); 1051 } 1052 } 1053 EXPORT_SYMBOL(transport_set_vpd_proto_id); 1054 1055 int transport_dump_vpd_assoc( 1056 struct t10_vpd *vpd, 1057 unsigned char *p_buf, 1058 int p_buf_len) 1059 { 1060 unsigned char buf[VPD_TMP_BUF_SIZE]; 1061 int ret = 0; 1062 int len; 1063 1064 memset(buf, 0, VPD_TMP_BUF_SIZE); 1065 len = sprintf(buf, "T10 VPD Identifier Association: "); 1066 1067 switch (vpd->association) { 1068 case 0x00: 1069 sprintf(buf+len, "addressed logical unit\n"); 1070 break; 1071 case 0x10: 1072 sprintf(buf+len, "target port\n"); 1073 break; 1074 case 0x20: 1075 sprintf(buf+len, "SCSI target device\n"); 1076 break; 1077 default: 1078 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 1079 ret = -EINVAL; 1080 break; 1081 } 1082 1083 if (p_buf) 1084 strncpy(p_buf, buf, p_buf_len); 1085 else 1086 pr_debug("%s", buf); 1087 1088 return ret; 1089 } 1090 1091 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 1092 { 1093 /* 1094 * The VPD identification association.. 1095 * 1096 * from spc3r23.pdf Section 7.6.3.1 Table 297 1097 */ 1098 vpd->association = (page_83[1] & 0x30); 1099 return transport_dump_vpd_assoc(vpd, NULL, 0); 1100 } 1101 EXPORT_SYMBOL(transport_set_vpd_assoc); 1102 1103 int transport_dump_vpd_ident_type( 1104 struct t10_vpd *vpd, 1105 unsigned char *p_buf, 1106 int p_buf_len) 1107 { 1108 unsigned char buf[VPD_TMP_BUF_SIZE]; 1109 int ret = 0; 1110 int len; 1111 1112 memset(buf, 0, VPD_TMP_BUF_SIZE); 1113 len = sprintf(buf, "T10 VPD Identifier Type: "); 1114 1115 switch (vpd->device_identifier_type) { 1116 case 0x00: 1117 sprintf(buf+len, "Vendor specific\n"); 1118 break; 1119 case 0x01: 1120 sprintf(buf+len, "T10 Vendor ID based\n"); 1121 break; 1122 case 0x02: 1123 sprintf(buf+len, "EUI-64 based\n"); 1124 break; 1125 case 0x03: 1126 sprintf(buf+len, "NAA\n"); 1127 break; 1128 case 0x04: 1129 sprintf(buf+len, "Relative target port identifier\n"); 1130 break; 1131 case 0x08: 1132 sprintf(buf+len, "SCSI name string\n"); 1133 break; 1134 default: 1135 sprintf(buf+len, "Unsupported: 0x%02x\n", 1136 vpd->device_identifier_type); 1137 ret = -EINVAL; 1138 break; 1139 } 1140 1141 if (p_buf) { 1142 if (p_buf_len < strlen(buf)+1) 1143 return -EINVAL; 1144 strncpy(p_buf, buf, p_buf_len); 1145 } else { 1146 pr_debug("%s", buf); 1147 } 1148 1149 return ret; 1150 } 1151 1152 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 1153 { 1154 /* 1155 * The VPD identifier type.. 1156 * 1157 * from spc3r23.pdf Section 7.6.3.1 Table 298 1158 */ 1159 vpd->device_identifier_type = (page_83[1] & 0x0f); 1160 return transport_dump_vpd_ident_type(vpd, NULL, 0); 1161 } 1162 EXPORT_SYMBOL(transport_set_vpd_ident_type); 1163 1164 int transport_dump_vpd_ident( 1165 struct t10_vpd *vpd, 1166 unsigned char *p_buf, 1167 int p_buf_len) 1168 { 1169 unsigned char buf[VPD_TMP_BUF_SIZE]; 1170 int ret = 0; 1171 1172 memset(buf, 0, VPD_TMP_BUF_SIZE); 1173 1174 switch (vpd->device_identifier_code_set) { 1175 case 0x01: /* Binary */ 1176 snprintf(buf, sizeof(buf), 1177 "T10 VPD Binary Device Identifier: %s\n", 1178 &vpd->device_identifier[0]); 1179 break; 1180 case 0x02: /* ASCII */ 1181 snprintf(buf, sizeof(buf), 1182 "T10 VPD ASCII Device Identifier: %s\n", 1183 &vpd->device_identifier[0]); 1184 break; 1185 case 0x03: /* UTF-8 */ 1186 snprintf(buf, sizeof(buf), 1187 "T10 VPD UTF-8 Device Identifier: %s\n", 1188 &vpd->device_identifier[0]); 1189 break; 1190 default: 1191 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 1192 " 0x%02x", vpd->device_identifier_code_set); 1193 ret = -EINVAL; 1194 break; 1195 } 1196 1197 if (p_buf) 1198 strncpy(p_buf, buf, p_buf_len); 1199 else 1200 pr_debug("%s", buf); 1201 1202 return ret; 1203 } 1204 1205 int 1206 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 1207 { 1208 static const char hex_str[] = "0123456789abcdef"; 1209 int j = 0, i = 4; /* offset to start of the identifier */ 1210 1211 /* 1212 * The VPD Code Set (encoding) 1213 * 1214 * from spc3r23.pdf Section 7.6.3.1 Table 296 1215 */ 1216 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 1217 switch (vpd->device_identifier_code_set) { 1218 case 0x01: /* Binary */ 1219 vpd->device_identifier[j++] = 1220 hex_str[vpd->device_identifier_type]; 1221 while (i < (4 + page_83[3])) { 1222 vpd->device_identifier[j++] = 1223 hex_str[(page_83[i] & 0xf0) >> 4]; 1224 vpd->device_identifier[j++] = 1225 hex_str[page_83[i] & 0x0f]; 1226 i++; 1227 } 1228 break; 1229 case 0x02: /* ASCII */ 1230 case 0x03: /* UTF-8 */ 1231 while (i < (4 + page_83[3])) 1232 vpd->device_identifier[j++] = page_83[i++]; 1233 break; 1234 default: 1235 break; 1236 } 1237 1238 return transport_dump_vpd_ident(vpd, NULL, 0); 1239 } 1240 EXPORT_SYMBOL(transport_set_vpd_ident); 1241 1242 static sense_reason_t 1243 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev, 1244 unsigned int size) 1245 { 1246 u32 mtl; 1247 1248 if (!cmd->se_tfo->max_data_sg_nents) 1249 return TCM_NO_SENSE; 1250 /* 1251 * Check if fabric enforced maximum SGL entries per I/O descriptor 1252 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT + 1253 * residual_count and reduce original cmd->data_length to maximum 1254 * length based on single PAGE_SIZE entry scatter-lists. 1255 */ 1256 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE); 1257 if (cmd->data_length > mtl) { 1258 /* 1259 * If an existing CDB overflow is present, calculate new residual 1260 * based on CDB size minus fabric maximum transfer length. 1261 * 1262 * If an existing CDB underflow is present, calculate new residual 1263 * based on original cmd->data_length minus fabric maximum transfer 1264 * length. 1265 * 1266 * Otherwise, set the underflow residual based on cmd->data_length 1267 * minus fabric maximum transfer length. 1268 */ 1269 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1270 cmd->residual_count = (size - mtl); 1271 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 1272 u32 orig_dl = size + cmd->residual_count; 1273 cmd->residual_count = (orig_dl - mtl); 1274 } else { 1275 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1276 cmd->residual_count = (cmd->data_length - mtl); 1277 } 1278 cmd->data_length = mtl; 1279 /* 1280 * Reset sbc_check_prot() calculated protection payload 1281 * length based upon the new smaller MTL. 1282 */ 1283 if (cmd->prot_length) { 1284 u32 sectors = (mtl / dev->dev_attrib.block_size); 1285 cmd->prot_length = dev->prot_length * sectors; 1286 } 1287 } 1288 return TCM_NO_SENSE; 1289 } 1290 1291 /** 1292 * target_cmd_size_check - Check whether there will be a residual. 1293 * @cmd: SCSI command. 1294 * @size: Data buffer size derived from CDB. The data buffer size provided by 1295 * the SCSI transport driver is available in @cmd->data_length. 1296 * 1297 * Compare the data buffer size from the CDB with the data buffer limit from the transport 1298 * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary. 1299 * 1300 * Note: target drivers set @cmd->data_length by calling transport_init_se_cmd(). 1301 * 1302 * Return: TCM_NO_SENSE 1303 */ 1304 sense_reason_t 1305 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 1306 { 1307 struct se_device *dev = cmd->se_dev; 1308 1309 if (cmd->unknown_data_length) { 1310 cmd->data_length = size; 1311 } else if (size != cmd->data_length) { 1312 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:" 1313 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 1314 " 0x%02x\n", cmd->se_tfo->fabric_name, 1315 cmd->data_length, size, cmd->t_task_cdb[0]); 1316 1317 if (cmd->data_direction == DMA_TO_DEVICE) { 1318 if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) { 1319 pr_err_ratelimited("Rejecting underflow/overflow" 1320 " for WRITE data CDB\n"); 1321 return TCM_INVALID_CDB_FIELD; 1322 } 1323 /* 1324 * Some fabric drivers like iscsi-target still expect to 1325 * always reject overflow writes. Reject this case until 1326 * full fabric driver level support for overflow writes 1327 * is introduced tree-wide. 1328 */ 1329 if (size > cmd->data_length) { 1330 pr_err_ratelimited("Rejecting overflow for" 1331 " WRITE control CDB\n"); 1332 return TCM_INVALID_CDB_FIELD; 1333 } 1334 } 1335 /* 1336 * Reject READ_* or WRITE_* with overflow/underflow for 1337 * type SCF_SCSI_DATA_CDB. 1338 */ 1339 if (dev->dev_attrib.block_size != 512) { 1340 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 1341 " CDB on non 512-byte sector setup subsystem" 1342 " plugin: %s\n", dev->transport->name); 1343 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 1344 return TCM_INVALID_CDB_FIELD; 1345 } 1346 /* 1347 * For the overflow case keep the existing fabric provided 1348 * ->data_length. Otherwise for the underflow case, reset 1349 * ->data_length to the smaller SCSI expected data transfer 1350 * length. 1351 */ 1352 if (size > cmd->data_length) { 1353 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1354 cmd->residual_count = (size - cmd->data_length); 1355 } else { 1356 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1357 cmd->residual_count = (cmd->data_length - size); 1358 cmd->data_length = size; 1359 } 1360 } 1361 1362 return target_check_max_data_sg_nents(cmd, dev, size); 1363 1364 } 1365 1366 /* 1367 * Used by fabric modules containing a local struct se_cmd within their 1368 * fabric dependent per I/O descriptor. 1369 * 1370 * Preserves the value of @cmd->tag. 1371 */ 1372 void transport_init_se_cmd( 1373 struct se_cmd *cmd, 1374 const struct target_core_fabric_ops *tfo, 1375 struct se_session *se_sess, 1376 u32 data_length, 1377 int data_direction, 1378 int task_attr, 1379 unsigned char *sense_buffer, u64 unpacked_lun) 1380 { 1381 INIT_LIST_HEAD(&cmd->se_delayed_node); 1382 INIT_LIST_HEAD(&cmd->se_qf_node); 1383 INIT_LIST_HEAD(&cmd->se_cmd_list); 1384 INIT_LIST_HEAD(&cmd->state_list); 1385 init_completion(&cmd->t_transport_stop_comp); 1386 cmd->free_compl = NULL; 1387 cmd->abrt_compl = NULL; 1388 spin_lock_init(&cmd->t_state_lock); 1389 INIT_WORK(&cmd->work, NULL); 1390 kref_init(&cmd->cmd_kref); 1391 1392 cmd->se_tfo = tfo; 1393 cmd->se_sess = se_sess; 1394 cmd->data_length = data_length; 1395 cmd->data_direction = data_direction; 1396 cmd->sam_task_attr = task_attr; 1397 cmd->sense_buffer = sense_buffer; 1398 cmd->orig_fe_lun = unpacked_lun; 1399 1400 if (!(cmd->se_cmd_flags & SCF_USE_CPUID)) 1401 cmd->cpuid = smp_processor_id(); 1402 1403 cmd->state_active = false; 1404 } 1405 EXPORT_SYMBOL(transport_init_se_cmd); 1406 1407 static sense_reason_t 1408 transport_check_alloc_task_attr(struct se_cmd *cmd) 1409 { 1410 struct se_device *dev = cmd->se_dev; 1411 1412 /* 1413 * Check if SAM Task Attribute emulation is enabled for this 1414 * struct se_device storage object 1415 */ 1416 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1417 return 0; 1418 1419 if (cmd->sam_task_attr == TCM_ACA_TAG) { 1420 pr_debug("SAM Task Attribute ACA" 1421 " emulation is not supported\n"); 1422 return TCM_INVALID_CDB_FIELD; 1423 } 1424 1425 return 0; 1426 } 1427 1428 sense_reason_t 1429 target_cmd_init_cdb(struct se_cmd *cmd, unsigned char *cdb) 1430 { 1431 sense_reason_t ret; 1432 1433 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1434 /* 1435 * Ensure that the received CDB is less than the max (252 + 8) bytes 1436 * for VARIABLE_LENGTH_CMD 1437 */ 1438 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1439 pr_err("Received SCSI CDB with command_size: %d that" 1440 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1441 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1442 ret = TCM_INVALID_CDB_FIELD; 1443 goto err; 1444 } 1445 /* 1446 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1447 * allocate the additional extended CDB buffer now.. Otherwise 1448 * setup the pointer from __t_task_cdb to t_task_cdb. 1449 */ 1450 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1451 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1452 GFP_KERNEL); 1453 if (!cmd->t_task_cdb) { 1454 pr_err("Unable to allocate cmd->t_task_cdb" 1455 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1456 scsi_command_size(cdb), 1457 (unsigned long)sizeof(cmd->__t_task_cdb)); 1458 ret = TCM_OUT_OF_RESOURCES; 1459 goto err; 1460 } 1461 } 1462 /* 1463 * Copy the original CDB into cmd-> 1464 */ 1465 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1466 1467 trace_target_sequencer_start(cmd); 1468 return 0; 1469 1470 err: 1471 /* 1472 * Copy the CDB here to allow trace_target_cmd_complete() to 1473 * print the cdb to the trace buffers. 1474 */ 1475 memcpy(cmd->t_task_cdb, cdb, min(scsi_command_size(cdb), 1476 (unsigned int)TCM_MAX_COMMAND_SIZE)); 1477 return ret; 1478 } 1479 EXPORT_SYMBOL(target_cmd_init_cdb); 1480 1481 sense_reason_t 1482 target_cmd_parse_cdb(struct se_cmd *cmd) 1483 { 1484 struct se_device *dev = cmd->se_dev; 1485 sense_reason_t ret; 1486 1487 ret = dev->transport->parse_cdb(cmd); 1488 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE) 1489 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n", 1490 cmd->se_tfo->fabric_name, 1491 cmd->se_sess->se_node_acl->initiatorname, 1492 cmd->t_task_cdb[0]); 1493 if (ret) 1494 return ret; 1495 1496 ret = transport_check_alloc_task_attr(cmd); 1497 if (ret) 1498 return ret; 1499 1500 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1501 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus); 1502 return 0; 1503 } 1504 EXPORT_SYMBOL(target_cmd_parse_cdb); 1505 1506 /* 1507 * Used by fabric module frontends to queue tasks directly. 1508 * May only be used from process context. 1509 */ 1510 int transport_handle_cdb_direct( 1511 struct se_cmd *cmd) 1512 { 1513 sense_reason_t ret; 1514 1515 if (!cmd->se_lun) { 1516 dump_stack(); 1517 pr_err("cmd->se_lun is NULL\n"); 1518 return -EINVAL; 1519 } 1520 if (in_interrupt()) { 1521 dump_stack(); 1522 pr_err("transport_generic_handle_cdb cannot be called" 1523 " from interrupt context\n"); 1524 return -EINVAL; 1525 } 1526 /* 1527 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1528 * outstanding descriptors are handled correctly during shutdown via 1529 * transport_wait_for_tasks() 1530 * 1531 * Also, we don't take cmd->t_state_lock here as we only expect 1532 * this to be called for initial descriptor submission. 1533 */ 1534 cmd->t_state = TRANSPORT_NEW_CMD; 1535 cmd->transport_state |= CMD_T_ACTIVE; 1536 1537 /* 1538 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1539 * so follow TRANSPORT_NEW_CMD processing thread context usage 1540 * and call transport_generic_request_failure() if necessary.. 1541 */ 1542 ret = transport_generic_new_cmd(cmd); 1543 if (ret) 1544 transport_generic_request_failure(cmd, ret); 1545 return 0; 1546 } 1547 EXPORT_SYMBOL(transport_handle_cdb_direct); 1548 1549 sense_reason_t 1550 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1551 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1552 { 1553 if (!sgl || !sgl_count) 1554 return 0; 1555 1556 /* 1557 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1558 * scatterlists already have been set to follow what the fabric 1559 * passes for the original expected data transfer length. 1560 */ 1561 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1562 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1563 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1564 return TCM_INVALID_CDB_FIELD; 1565 } 1566 1567 cmd->t_data_sg = sgl; 1568 cmd->t_data_nents = sgl_count; 1569 cmd->t_bidi_data_sg = sgl_bidi; 1570 cmd->t_bidi_data_nents = sgl_bidi_count; 1571 1572 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1573 return 0; 1574 } 1575 1576 /** 1577 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized 1578 * se_cmd + use pre-allocated SGL memory. 1579 * 1580 * @se_cmd: command descriptor to submit 1581 * @se_sess: associated se_sess for endpoint 1582 * @cdb: pointer to SCSI CDB 1583 * @sense: pointer to SCSI sense buffer 1584 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1585 * @data_length: fabric expected data transfer length 1586 * @task_attr: SAM task attribute 1587 * @data_dir: DMA data direction 1588 * @flags: flags for command submission from target_sc_flags_tables 1589 * @sgl: struct scatterlist memory for unidirectional mapping 1590 * @sgl_count: scatterlist count for unidirectional mapping 1591 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1592 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1593 * @sgl_prot: struct scatterlist memory protection information 1594 * @sgl_prot_count: scatterlist count for protection information 1595 * 1596 * Task tags are supported if the caller has set @se_cmd->tag. 1597 * 1598 * Returns non zero to signal active I/O shutdown failure. All other 1599 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1600 * but still return zero here. 1601 * 1602 * This may only be called from process context, and also currently 1603 * assumes internal allocation of fabric payload buffer by target-core. 1604 */ 1605 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, 1606 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1607 u32 data_length, int task_attr, int data_dir, int flags, 1608 struct scatterlist *sgl, u32 sgl_count, 1609 struct scatterlist *sgl_bidi, u32 sgl_bidi_count, 1610 struct scatterlist *sgl_prot, u32 sgl_prot_count) 1611 { 1612 struct se_portal_group *se_tpg; 1613 sense_reason_t rc; 1614 int ret; 1615 1616 se_tpg = se_sess->se_tpg; 1617 BUG_ON(!se_tpg); 1618 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1619 BUG_ON(in_interrupt()); 1620 1621 if (flags & TARGET_SCF_USE_CPUID) 1622 se_cmd->se_cmd_flags |= SCF_USE_CPUID; 1623 /* 1624 * Initialize se_cmd for target operation. From this point 1625 * exceptions are handled by sending exception status via 1626 * target_core_fabric_ops->queue_status() callback 1627 */ 1628 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1629 data_length, data_dir, task_attr, sense, 1630 unpacked_lun); 1631 1632 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1633 se_cmd->unknown_data_length = 1; 1634 /* 1635 * Obtain struct se_cmd->cmd_kref reference. A second kref_get here is 1636 * necessary for fabrics using TARGET_SCF_ACK_KREF that expect a second 1637 * kref_put() to happen during fabric packet acknowledgement. 1638 */ 1639 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1640 if (ret) 1641 return ret; 1642 /* 1643 * Signal bidirectional data payloads to target-core 1644 */ 1645 if (flags & TARGET_SCF_BIDI_OP) 1646 se_cmd->se_cmd_flags |= SCF_BIDI; 1647 1648 rc = target_cmd_init_cdb(se_cmd, cdb); 1649 if (rc) { 1650 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1651 target_put_sess_cmd(se_cmd); 1652 return 0; 1653 } 1654 1655 /* 1656 * Locate se_lun pointer and attach it to struct se_cmd 1657 */ 1658 rc = transport_lookup_cmd_lun(se_cmd); 1659 if (rc) { 1660 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1661 target_put_sess_cmd(se_cmd); 1662 return 0; 1663 } 1664 1665 rc = target_cmd_parse_cdb(se_cmd); 1666 if (rc != 0) { 1667 transport_generic_request_failure(se_cmd, rc); 1668 return 0; 1669 } 1670 1671 /* 1672 * Save pointers for SGLs containing protection information, 1673 * if present. 1674 */ 1675 if (sgl_prot_count) { 1676 se_cmd->t_prot_sg = sgl_prot; 1677 se_cmd->t_prot_nents = sgl_prot_count; 1678 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC; 1679 } 1680 1681 /* 1682 * When a non zero sgl_count has been passed perform SGL passthrough 1683 * mapping for pre-allocated fabric memory instead of having target 1684 * core perform an internal SGL allocation.. 1685 */ 1686 if (sgl_count != 0) { 1687 BUG_ON(!sgl); 1688 1689 /* 1690 * A work-around for tcm_loop as some userspace code via 1691 * scsi-generic do not memset their associated read buffers, 1692 * so go ahead and do that here for type non-data CDBs. Also 1693 * note that this is currently guaranteed to be a single SGL 1694 * for this case by target core in target_setup_cmd_from_cdb() 1695 * -> transport_generic_cmd_sequencer(). 1696 */ 1697 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1698 se_cmd->data_direction == DMA_FROM_DEVICE) { 1699 unsigned char *buf = NULL; 1700 1701 if (sgl) 1702 buf = kmap(sg_page(sgl)) + sgl->offset; 1703 1704 if (buf) { 1705 memset(buf, 0, sgl->length); 1706 kunmap(sg_page(sgl)); 1707 } 1708 } 1709 1710 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1711 sgl_bidi, sgl_bidi_count); 1712 if (rc != 0) { 1713 transport_generic_request_failure(se_cmd, rc); 1714 return 0; 1715 } 1716 } 1717 1718 /* 1719 * Check if we need to delay processing because of ALUA 1720 * Active/NonOptimized primary access state.. 1721 */ 1722 core_alua_check_nonop_delay(se_cmd); 1723 1724 transport_handle_cdb_direct(se_cmd); 1725 return 0; 1726 } 1727 EXPORT_SYMBOL(target_submit_cmd_map_sgls); 1728 1729 /** 1730 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1731 * 1732 * @se_cmd: command descriptor to submit 1733 * @se_sess: associated se_sess for endpoint 1734 * @cdb: pointer to SCSI CDB 1735 * @sense: pointer to SCSI sense buffer 1736 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1737 * @data_length: fabric expected data transfer length 1738 * @task_attr: SAM task attribute 1739 * @data_dir: DMA data direction 1740 * @flags: flags for command submission from target_sc_flags_tables 1741 * 1742 * Task tags are supported if the caller has set @se_cmd->tag. 1743 * 1744 * Returns non zero to signal active I/O shutdown failure. All other 1745 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1746 * but still return zero here. 1747 * 1748 * This may only be called from process context, and also currently 1749 * assumes internal allocation of fabric payload buffer by target-core. 1750 * 1751 * It also assumes interal target core SGL memory allocation. 1752 */ 1753 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1754 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1755 u32 data_length, int task_attr, int data_dir, int flags) 1756 { 1757 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, 1758 unpacked_lun, data_length, task_attr, data_dir, 1759 flags, NULL, 0, NULL, 0, NULL, 0); 1760 } 1761 EXPORT_SYMBOL(target_submit_cmd); 1762 1763 static void target_complete_tmr_failure(struct work_struct *work) 1764 { 1765 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1766 1767 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1768 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1769 1770 transport_lun_remove_cmd(se_cmd); 1771 transport_cmd_check_stop_to_fabric(se_cmd); 1772 } 1773 1774 /** 1775 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1776 * for TMR CDBs 1777 * 1778 * @se_cmd: command descriptor to submit 1779 * @se_sess: associated se_sess for endpoint 1780 * @sense: pointer to SCSI sense buffer 1781 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1782 * @fabric_tmr_ptr: fabric context for TMR req 1783 * @tm_type: Type of TM request 1784 * @gfp: gfp type for caller 1785 * @tag: referenced task tag for TMR_ABORT_TASK 1786 * @flags: submit cmd flags 1787 * 1788 * Callable from all contexts. 1789 **/ 1790 1791 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1792 unsigned char *sense, u64 unpacked_lun, 1793 void *fabric_tmr_ptr, unsigned char tm_type, 1794 gfp_t gfp, u64 tag, int flags) 1795 { 1796 struct se_portal_group *se_tpg; 1797 int ret; 1798 1799 se_tpg = se_sess->se_tpg; 1800 BUG_ON(!se_tpg); 1801 1802 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1803 0, DMA_NONE, TCM_SIMPLE_TAG, sense, unpacked_lun); 1804 /* 1805 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1806 * allocation failure. 1807 */ 1808 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1809 if (ret < 0) 1810 return -ENOMEM; 1811 1812 if (tm_type == TMR_ABORT_TASK) 1813 se_cmd->se_tmr_req->ref_task_tag = tag; 1814 1815 /* See target_submit_cmd for commentary */ 1816 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1817 if (ret) { 1818 core_tmr_release_req(se_cmd->se_tmr_req); 1819 return ret; 1820 } 1821 1822 ret = transport_lookup_tmr_lun(se_cmd); 1823 if (ret) 1824 goto failure; 1825 1826 transport_generic_handle_tmr(se_cmd); 1827 return 0; 1828 1829 /* 1830 * For callback during failure handling, push this work off 1831 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1832 */ 1833 failure: 1834 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1835 schedule_work(&se_cmd->work); 1836 return 0; 1837 } 1838 EXPORT_SYMBOL(target_submit_tmr); 1839 1840 /* 1841 * Handle SAM-esque emulation for generic transport request failures. 1842 */ 1843 void transport_generic_request_failure(struct se_cmd *cmd, 1844 sense_reason_t sense_reason) 1845 { 1846 int ret = 0, post_ret; 1847 1848 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n", 1849 sense_reason); 1850 target_show_cmd("-----[ ", cmd); 1851 1852 /* 1853 * For SAM Task Attribute emulation for failed struct se_cmd 1854 */ 1855 transport_complete_task_attr(cmd); 1856 1857 if (cmd->transport_complete_callback) 1858 cmd->transport_complete_callback(cmd, false, &post_ret); 1859 1860 if (cmd->transport_state & CMD_T_ABORTED) { 1861 INIT_WORK(&cmd->work, target_abort_work); 1862 queue_work(target_completion_wq, &cmd->work); 1863 return; 1864 } 1865 1866 switch (sense_reason) { 1867 case TCM_NON_EXISTENT_LUN: 1868 case TCM_UNSUPPORTED_SCSI_OPCODE: 1869 case TCM_INVALID_CDB_FIELD: 1870 case TCM_INVALID_PARAMETER_LIST: 1871 case TCM_PARAMETER_LIST_LENGTH_ERROR: 1872 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1873 case TCM_UNKNOWN_MODE_PAGE: 1874 case TCM_WRITE_PROTECTED: 1875 case TCM_ADDRESS_OUT_OF_RANGE: 1876 case TCM_CHECK_CONDITION_ABORT_CMD: 1877 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1878 case TCM_CHECK_CONDITION_NOT_READY: 1879 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 1880 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 1881 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 1882 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE: 1883 case TCM_TOO_MANY_TARGET_DESCS: 1884 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE: 1885 case TCM_TOO_MANY_SEGMENT_DESCS: 1886 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE: 1887 break; 1888 case TCM_OUT_OF_RESOURCES: 1889 cmd->scsi_status = SAM_STAT_TASK_SET_FULL; 1890 goto queue_status; 1891 case TCM_LUN_BUSY: 1892 cmd->scsi_status = SAM_STAT_BUSY; 1893 goto queue_status; 1894 case TCM_RESERVATION_CONFLICT: 1895 /* 1896 * No SENSE Data payload for this case, set SCSI Status 1897 * and queue the response to $FABRIC_MOD. 1898 * 1899 * Uses linux/include/scsi/scsi.h SAM status codes defs 1900 */ 1901 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1902 /* 1903 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1904 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1905 * CONFLICT STATUS. 1906 * 1907 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1908 */ 1909 if (cmd->se_sess && 1910 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl 1911 == TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) { 1912 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 1913 cmd->orig_fe_lun, 0x2C, 1914 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1915 } 1916 1917 goto queue_status; 1918 default: 1919 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1920 cmd->t_task_cdb[0], sense_reason); 1921 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1922 break; 1923 } 1924 1925 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 1926 if (ret) 1927 goto queue_full; 1928 1929 check_stop: 1930 transport_lun_remove_cmd(cmd); 1931 transport_cmd_check_stop_to_fabric(cmd); 1932 return; 1933 1934 queue_status: 1935 trace_target_cmd_complete(cmd); 1936 ret = cmd->se_tfo->queue_status(cmd); 1937 if (!ret) 1938 goto check_stop; 1939 queue_full: 1940 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 1941 } 1942 EXPORT_SYMBOL(transport_generic_request_failure); 1943 1944 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks) 1945 { 1946 sense_reason_t ret; 1947 1948 if (!cmd->execute_cmd) { 1949 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1950 goto err; 1951 } 1952 if (do_checks) { 1953 /* 1954 * Check for an existing UNIT ATTENTION condition after 1955 * target_handle_task_attr() has done SAM task attr 1956 * checking, and possibly have already defered execution 1957 * out to target_restart_delayed_cmds() context. 1958 */ 1959 ret = target_scsi3_ua_check(cmd); 1960 if (ret) 1961 goto err; 1962 1963 ret = target_alua_state_check(cmd); 1964 if (ret) 1965 goto err; 1966 1967 ret = target_check_reservation(cmd); 1968 if (ret) { 1969 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1970 goto err; 1971 } 1972 } 1973 1974 ret = cmd->execute_cmd(cmd); 1975 if (!ret) 1976 return; 1977 err: 1978 spin_lock_irq(&cmd->t_state_lock); 1979 cmd->transport_state &= ~CMD_T_SENT; 1980 spin_unlock_irq(&cmd->t_state_lock); 1981 1982 transport_generic_request_failure(cmd, ret); 1983 } 1984 1985 static int target_write_prot_action(struct se_cmd *cmd) 1986 { 1987 u32 sectors; 1988 /* 1989 * Perform WRITE_INSERT of PI using software emulation when backend 1990 * device has PI enabled, if the transport has not already generated 1991 * PI using hardware WRITE_INSERT offload. 1992 */ 1993 switch (cmd->prot_op) { 1994 case TARGET_PROT_DOUT_INSERT: 1995 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT)) 1996 sbc_dif_generate(cmd); 1997 break; 1998 case TARGET_PROT_DOUT_STRIP: 1999 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP) 2000 break; 2001 2002 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size); 2003 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 2004 sectors, 0, cmd->t_prot_sg, 0); 2005 if (unlikely(cmd->pi_err)) { 2006 spin_lock_irq(&cmd->t_state_lock); 2007 cmd->transport_state &= ~CMD_T_SENT; 2008 spin_unlock_irq(&cmd->t_state_lock); 2009 transport_generic_request_failure(cmd, cmd->pi_err); 2010 return -1; 2011 } 2012 break; 2013 default: 2014 break; 2015 } 2016 2017 return 0; 2018 } 2019 2020 static bool target_handle_task_attr(struct se_cmd *cmd) 2021 { 2022 struct se_device *dev = cmd->se_dev; 2023 2024 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 2025 return false; 2026 2027 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET; 2028 2029 /* 2030 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 2031 * to allow the passed struct se_cmd list of tasks to the front of the list. 2032 */ 2033 switch (cmd->sam_task_attr) { 2034 case TCM_HEAD_TAG: 2035 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n", 2036 cmd->t_task_cdb[0]); 2037 return false; 2038 case TCM_ORDERED_TAG: 2039 atomic_inc_mb(&dev->dev_ordered_sync); 2040 2041 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n", 2042 cmd->t_task_cdb[0]); 2043 2044 /* 2045 * Execute an ORDERED command if no other older commands 2046 * exist that need to be completed first. 2047 */ 2048 if (!atomic_read(&dev->simple_cmds)) 2049 return false; 2050 break; 2051 default: 2052 /* 2053 * For SIMPLE and UNTAGGED Task Attribute commands 2054 */ 2055 atomic_inc_mb(&dev->simple_cmds); 2056 break; 2057 } 2058 2059 if (atomic_read(&dev->dev_ordered_sync) == 0) 2060 return false; 2061 2062 spin_lock(&dev->delayed_cmd_lock); 2063 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 2064 spin_unlock(&dev->delayed_cmd_lock); 2065 2066 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn", 2067 cmd->t_task_cdb[0], cmd->sam_task_attr); 2068 return true; 2069 } 2070 2071 void target_execute_cmd(struct se_cmd *cmd) 2072 { 2073 /* 2074 * Determine if frontend context caller is requesting the stopping of 2075 * this command for frontend exceptions. 2076 * 2077 * If the received CDB has already been aborted stop processing it here. 2078 */ 2079 if (target_cmd_interrupted(cmd)) 2080 return; 2081 2082 spin_lock_irq(&cmd->t_state_lock); 2083 cmd->t_state = TRANSPORT_PROCESSING; 2084 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT; 2085 spin_unlock_irq(&cmd->t_state_lock); 2086 2087 if (target_write_prot_action(cmd)) 2088 return; 2089 2090 if (target_handle_task_attr(cmd)) { 2091 spin_lock_irq(&cmd->t_state_lock); 2092 cmd->transport_state &= ~CMD_T_SENT; 2093 spin_unlock_irq(&cmd->t_state_lock); 2094 return; 2095 } 2096 2097 __target_execute_cmd(cmd, true); 2098 } 2099 EXPORT_SYMBOL(target_execute_cmd); 2100 2101 /* 2102 * Process all commands up to the last received ORDERED task attribute which 2103 * requires another blocking boundary 2104 */ 2105 static void target_restart_delayed_cmds(struct se_device *dev) 2106 { 2107 for (;;) { 2108 struct se_cmd *cmd; 2109 2110 spin_lock(&dev->delayed_cmd_lock); 2111 if (list_empty(&dev->delayed_cmd_list)) { 2112 spin_unlock(&dev->delayed_cmd_lock); 2113 break; 2114 } 2115 2116 cmd = list_entry(dev->delayed_cmd_list.next, 2117 struct se_cmd, se_delayed_node); 2118 list_del(&cmd->se_delayed_node); 2119 spin_unlock(&dev->delayed_cmd_lock); 2120 2121 cmd->transport_state |= CMD_T_SENT; 2122 2123 __target_execute_cmd(cmd, true); 2124 2125 if (cmd->sam_task_attr == TCM_ORDERED_TAG) 2126 break; 2127 } 2128 } 2129 2130 /* 2131 * Called from I/O completion to determine which dormant/delayed 2132 * and ordered cmds need to have their tasks added to the execution queue. 2133 */ 2134 static void transport_complete_task_attr(struct se_cmd *cmd) 2135 { 2136 struct se_device *dev = cmd->se_dev; 2137 2138 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 2139 return; 2140 2141 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET)) 2142 goto restart; 2143 2144 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) { 2145 atomic_dec_mb(&dev->simple_cmds); 2146 dev->dev_cur_ordered_id++; 2147 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) { 2148 dev->dev_cur_ordered_id++; 2149 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n", 2150 dev->dev_cur_ordered_id); 2151 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) { 2152 atomic_dec_mb(&dev->dev_ordered_sync); 2153 2154 dev->dev_cur_ordered_id++; 2155 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n", 2156 dev->dev_cur_ordered_id); 2157 } 2158 cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET; 2159 2160 restart: 2161 target_restart_delayed_cmds(dev); 2162 } 2163 2164 static void transport_complete_qf(struct se_cmd *cmd) 2165 { 2166 int ret = 0; 2167 2168 transport_complete_task_attr(cmd); 2169 /* 2170 * If a fabric driver ->write_pending() or ->queue_data_in() callback 2171 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and 2172 * the same callbacks should not be retried. Return CHECK_CONDITION 2173 * if a scsi_status is not already set. 2174 * 2175 * If a fabric driver ->queue_status() has returned non zero, always 2176 * keep retrying no matter what.. 2177 */ 2178 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) { 2179 if (cmd->scsi_status) 2180 goto queue_status; 2181 2182 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 2183 goto queue_status; 2184 } 2185 2186 /* 2187 * Check if we need to send a sense buffer from 2188 * the struct se_cmd in question. We do NOT want 2189 * to take this path of the IO has been marked as 2190 * needing to be treated like a "normal read". This 2191 * is the case if it's a tape read, and either the 2192 * FM, EOM, or ILI bits are set, but there is no 2193 * sense data. 2194 */ 2195 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) && 2196 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 2197 goto queue_status; 2198 2199 switch (cmd->data_direction) { 2200 case DMA_FROM_DEVICE: 2201 /* queue status if not treating this as a normal read */ 2202 if (cmd->scsi_status && 2203 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL)) 2204 goto queue_status; 2205 2206 trace_target_cmd_complete(cmd); 2207 ret = cmd->se_tfo->queue_data_in(cmd); 2208 break; 2209 case DMA_TO_DEVICE: 2210 if (cmd->se_cmd_flags & SCF_BIDI) { 2211 ret = cmd->se_tfo->queue_data_in(cmd); 2212 break; 2213 } 2214 fallthrough; 2215 case DMA_NONE: 2216 queue_status: 2217 trace_target_cmd_complete(cmd); 2218 ret = cmd->se_tfo->queue_status(cmd); 2219 break; 2220 default: 2221 break; 2222 } 2223 2224 if (ret < 0) { 2225 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 2226 return; 2227 } 2228 transport_lun_remove_cmd(cmd); 2229 transport_cmd_check_stop_to_fabric(cmd); 2230 } 2231 2232 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev, 2233 int err, bool write_pending) 2234 { 2235 /* 2236 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or 2237 * ->queue_data_in() callbacks from new process context. 2238 * 2239 * Otherwise for other errors, transport_complete_qf() will send 2240 * CHECK_CONDITION via ->queue_status() instead of attempting to 2241 * retry associated fabric driver data-transfer callbacks. 2242 */ 2243 if (err == -EAGAIN || err == -ENOMEM) { 2244 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP : 2245 TRANSPORT_COMPLETE_QF_OK; 2246 } else { 2247 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err); 2248 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR; 2249 } 2250 2251 spin_lock_irq(&dev->qf_cmd_lock); 2252 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 2253 atomic_inc_mb(&dev->dev_qf_count); 2254 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 2255 2256 schedule_work(&cmd->se_dev->qf_work_queue); 2257 } 2258 2259 static bool target_read_prot_action(struct se_cmd *cmd) 2260 { 2261 switch (cmd->prot_op) { 2262 case TARGET_PROT_DIN_STRIP: 2263 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) { 2264 u32 sectors = cmd->data_length >> 2265 ilog2(cmd->se_dev->dev_attrib.block_size); 2266 2267 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 2268 sectors, 0, cmd->t_prot_sg, 2269 0); 2270 if (cmd->pi_err) 2271 return true; 2272 } 2273 break; 2274 case TARGET_PROT_DIN_INSERT: 2275 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT) 2276 break; 2277 2278 sbc_dif_generate(cmd); 2279 break; 2280 default: 2281 break; 2282 } 2283 2284 return false; 2285 } 2286 2287 static void target_complete_ok_work(struct work_struct *work) 2288 { 2289 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2290 int ret; 2291 2292 /* 2293 * Check if we need to move delayed/dormant tasks from cmds on the 2294 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 2295 * Attribute. 2296 */ 2297 transport_complete_task_attr(cmd); 2298 2299 /* 2300 * Check to schedule QUEUE_FULL work, or execute an existing 2301 * cmd->transport_qf_callback() 2302 */ 2303 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 2304 schedule_work(&cmd->se_dev->qf_work_queue); 2305 2306 /* 2307 * Check if we need to send a sense buffer from 2308 * the struct se_cmd in question. We do NOT want 2309 * to take this path of the IO has been marked as 2310 * needing to be treated like a "normal read". This 2311 * is the case if it's a tape read, and either the 2312 * FM, EOM, or ILI bits are set, but there is no 2313 * sense data. 2314 */ 2315 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) && 2316 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 2317 WARN_ON(!cmd->scsi_status); 2318 ret = transport_send_check_condition_and_sense( 2319 cmd, 0, 1); 2320 if (ret) 2321 goto queue_full; 2322 2323 transport_lun_remove_cmd(cmd); 2324 transport_cmd_check_stop_to_fabric(cmd); 2325 return; 2326 } 2327 /* 2328 * Check for a callback, used by amongst other things 2329 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation. 2330 */ 2331 if (cmd->transport_complete_callback) { 2332 sense_reason_t rc; 2333 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE); 2334 bool zero_dl = !(cmd->data_length); 2335 int post_ret = 0; 2336 2337 rc = cmd->transport_complete_callback(cmd, true, &post_ret); 2338 if (!rc && !post_ret) { 2339 if (caw && zero_dl) 2340 goto queue_rsp; 2341 2342 return; 2343 } else if (rc) { 2344 ret = transport_send_check_condition_and_sense(cmd, 2345 rc, 0); 2346 if (ret) 2347 goto queue_full; 2348 2349 transport_lun_remove_cmd(cmd); 2350 transport_cmd_check_stop_to_fabric(cmd); 2351 return; 2352 } 2353 } 2354 2355 queue_rsp: 2356 switch (cmd->data_direction) { 2357 case DMA_FROM_DEVICE: 2358 /* 2359 * if this is a READ-type IO, but SCSI status 2360 * is set, then skip returning data and just 2361 * return the status -- unless this IO is marked 2362 * as needing to be treated as a normal read, 2363 * in which case we want to go ahead and return 2364 * the data. This happens, for example, for tape 2365 * reads with the FM, EOM, or ILI bits set, with 2366 * no sense data. 2367 */ 2368 if (cmd->scsi_status && 2369 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL)) 2370 goto queue_status; 2371 2372 atomic_long_add(cmd->data_length, 2373 &cmd->se_lun->lun_stats.tx_data_octets); 2374 /* 2375 * Perform READ_STRIP of PI using software emulation when 2376 * backend had PI enabled, if the transport will not be 2377 * performing hardware READ_STRIP offload. 2378 */ 2379 if (target_read_prot_action(cmd)) { 2380 ret = transport_send_check_condition_and_sense(cmd, 2381 cmd->pi_err, 0); 2382 if (ret) 2383 goto queue_full; 2384 2385 transport_lun_remove_cmd(cmd); 2386 transport_cmd_check_stop_to_fabric(cmd); 2387 return; 2388 } 2389 2390 trace_target_cmd_complete(cmd); 2391 ret = cmd->se_tfo->queue_data_in(cmd); 2392 if (ret) 2393 goto queue_full; 2394 break; 2395 case DMA_TO_DEVICE: 2396 atomic_long_add(cmd->data_length, 2397 &cmd->se_lun->lun_stats.rx_data_octets); 2398 /* 2399 * Check if we need to send READ payload for BIDI-COMMAND 2400 */ 2401 if (cmd->se_cmd_flags & SCF_BIDI) { 2402 atomic_long_add(cmd->data_length, 2403 &cmd->se_lun->lun_stats.tx_data_octets); 2404 ret = cmd->se_tfo->queue_data_in(cmd); 2405 if (ret) 2406 goto queue_full; 2407 break; 2408 } 2409 fallthrough; 2410 case DMA_NONE: 2411 queue_status: 2412 trace_target_cmd_complete(cmd); 2413 ret = cmd->se_tfo->queue_status(cmd); 2414 if (ret) 2415 goto queue_full; 2416 break; 2417 default: 2418 break; 2419 } 2420 2421 transport_lun_remove_cmd(cmd); 2422 transport_cmd_check_stop_to_fabric(cmd); 2423 return; 2424 2425 queue_full: 2426 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 2427 " data_direction: %d\n", cmd, cmd->data_direction); 2428 2429 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 2430 } 2431 2432 void target_free_sgl(struct scatterlist *sgl, int nents) 2433 { 2434 sgl_free_n_order(sgl, nents, 0); 2435 } 2436 EXPORT_SYMBOL(target_free_sgl); 2437 2438 static inline void transport_reset_sgl_orig(struct se_cmd *cmd) 2439 { 2440 /* 2441 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE 2442 * emulation, and free + reset pointers if necessary.. 2443 */ 2444 if (!cmd->t_data_sg_orig) 2445 return; 2446 2447 kfree(cmd->t_data_sg); 2448 cmd->t_data_sg = cmd->t_data_sg_orig; 2449 cmd->t_data_sg_orig = NULL; 2450 cmd->t_data_nents = cmd->t_data_nents_orig; 2451 cmd->t_data_nents_orig = 0; 2452 } 2453 2454 static inline void transport_free_pages(struct se_cmd *cmd) 2455 { 2456 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2457 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents); 2458 cmd->t_prot_sg = NULL; 2459 cmd->t_prot_nents = 0; 2460 } 2461 2462 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) { 2463 /* 2464 * Release special case READ buffer payload required for 2465 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE 2466 */ 2467 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) { 2468 target_free_sgl(cmd->t_bidi_data_sg, 2469 cmd->t_bidi_data_nents); 2470 cmd->t_bidi_data_sg = NULL; 2471 cmd->t_bidi_data_nents = 0; 2472 } 2473 transport_reset_sgl_orig(cmd); 2474 return; 2475 } 2476 transport_reset_sgl_orig(cmd); 2477 2478 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 2479 cmd->t_data_sg = NULL; 2480 cmd->t_data_nents = 0; 2481 2482 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 2483 cmd->t_bidi_data_sg = NULL; 2484 cmd->t_bidi_data_nents = 0; 2485 } 2486 2487 void *transport_kmap_data_sg(struct se_cmd *cmd) 2488 { 2489 struct scatterlist *sg = cmd->t_data_sg; 2490 struct page **pages; 2491 int i; 2492 2493 /* 2494 * We need to take into account a possible offset here for fabrics like 2495 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2496 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2497 */ 2498 if (!cmd->t_data_nents) 2499 return NULL; 2500 2501 BUG_ON(!sg); 2502 if (cmd->t_data_nents == 1) 2503 return kmap(sg_page(sg)) + sg->offset; 2504 2505 /* >1 page. use vmap */ 2506 pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL); 2507 if (!pages) 2508 return NULL; 2509 2510 /* convert sg[] to pages[] */ 2511 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2512 pages[i] = sg_page(sg); 2513 } 2514 2515 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2516 kfree(pages); 2517 if (!cmd->t_data_vmap) 2518 return NULL; 2519 2520 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2521 } 2522 EXPORT_SYMBOL(transport_kmap_data_sg); 2523 2524 void transport_kunmap_data_sg(struct se_cmd *cmd) 2525 { 2526 if (!cmd->t_data_nents) { 2527 return; 2528 } else if (cmd->t_data_nents == 1) { 2529 kunmap(sg_page(cmd->t_data_sg)); 2530 return; 2531 } 2532 2533 vunmap(cmd->t_data_vmap); 2534 cmd->t_data_vmap = NULL; 2535 } 2536 EXPORT_SYMBOL(transport_kunmap_data_sg); 2537 2538 int 2539 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length, 2540 bool zero_page, bool chainable) 2541 { 2542 gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0); 2543 2544 *sgl = sgl_alloc_order(length, 0, chainable, gfp, nents); 2545 return *sgl ? 0 : -ENOMEM; 2546 } 2547 EXPORT_SYMBOL(target_alloc_sgl); 2548 2549 /* 2550 * Allocate any required resources to execute the command. For writes we 2551 * might not have the payload yet, so notify the fabric via a call to 2552 * ->write_pending instead. Otherwise place it on the execution queue. 2553 */ 2554 sense_reason_t 2555 transport_generic_new_cmd(struct se_cmd *cmd) 2556 { 2557 unsigned long flags; 2558 int ret = 0; 2559 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB); 2560 2561 if (cmd->prot_op != TARGET_PROT_NORMAL && 2562 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2563 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents, 2564 cmd->prot_length, true, false); 2565 if (ret < 0) 2566 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2567 } 2568 2569 /* 2570 * Determine if the TCM fabric module has already allocated physical 2571 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2572 * beforehand. 2573 */ 2574 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2575 cmd->data_length) { 2576 2577 if ((cmd->se_cmd_flags & SCF_BIDI) || 2578 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) { 2579 u32 bidi_length; 2580 2581 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) 2582 bidi_length = cmd->t_task_nolb * 2583 cmd->se_dev->dev_attrib.block_size; 2584 else 2585 bidi_length = cmd->data_length; 2586 2587 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2588 &cmd->t_bidi_data_nents, 2589 bidi_length, zero_flag, false); 2590 if (ret < 0) 2591 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2592 } 2593 2594 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents, 2595 cmd->data_length, zero_flag, false); 2596 if (ret < 0) 2597 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2598 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 2599 cmd->data_length) { 2600 /* 2601 * Special case for COMPARE_AND_WRITE with fabrics 2602 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC. 2603 */ 2604 u32 caw_length = cmd->t_task_nolb * 2605 cmd->se_dev->dev_attrib.block_size; 2606 2607 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2608 &cmd->t_bidi_data_nents, 2609 caw_length, zero_flag, false); 2610 if (ret < 0) 2611 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2612 } 2613 /* 2614 * If this command is not a write we can execute it right here, 2615 * for write buffers we need to notify the fabric driver first 2616 * and let it call back once the write buffers are ready. 2617 */ 2618 target_add_to_state_list(cmd); 2619 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) { 2620 target_execute_cmd(cmd); 2621 return 0; 2622 } 2623 2624 spin_lock_irqsave(&cmd->t_state_lock, flags); 2625 cmd->t_state = TRANSPORT_WRITE_PENDING; 2626 /* 2627 * Determine if frontend context caller is requesting the stopping of 2628 * this command for frontend exceptions. 2629 */ 2630 if (cmd->transport_state & CMD_T_STOP && 2631 !cmd->se_tfo->write_pending_must_be_called) { 2632 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 2633 __func__, __LINE__, cmd->tag); 2634 2635 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2636 2637 complete_all(&cmd->t_transport_stop_comp); 2638 return 0; 2639 } 2640 cmd->transport_state &= ~CMD_T_ACTIVE; 2641 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2642 2643 ret = cmd->se_tfo->write_pending(cmd); 2644 if (ret) 2645 goto queue_full; 2646 2647 return 0; 2648 2649 queue_full: 2650 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2651 transport_handle_queue_full(cmd, cmd->se_dev, ret, true); 2652 return 0; 2653 } 2654 EXPORT_SYMBOL(transport_generic_new_cmd); 2655 2656 static void transport_write_pending_qf(struct se_cmd *cmd) 2657 { 2658 unsigned long flags; 2659 int ret; 2660 bool stop; 2661 2662 spin_lock_irqsave(&cmd->t_state_lock, flags); 2663 stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED)); 2664 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2665 2666 if (stop) { 2667 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n", 2668 __func__, __LINE__, cmd->tag); 2669 complete_all(&cmd->t_transport_stop_comp); 2670 return; 2671 } 2672 2673 ret = cmd->se_tfo->write_pending(cmd); 2674 if (ret) { 2675 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2676 cmd); 2677 transport_handle_queue_full(cmd, cmd->se_dev, ret, true); 2678 } 2679 } 2680 2681 static bool 2682 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *, 2683 unsigned long *flags); 2684 2685 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas) 2686 { 2687 unsigned long flags; 2688 2689 spin_lock_irqsave(&cmd->t_state_lock, flags); 2690 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags); 2691 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2692 } 2693 2694 /* 2695 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has 2696 * finished. 2697 */ 2698 void target_put_cmd_and_wait(struct se_cmd *cmd) 2699 { 2700 DECLARE_COMPLETION_ONSTACK(compl); 2701 2702 WARN_ON_ONCE(cmd->abrt_compl); 2703 cmd->abrt_compl = &compl; 2704 target_put_sess_cmd(cmd); 2705 wait_for_completion(&compl); 2706 } 2707 2708 /* 2709 * This function is called by frontend drivers after processing of a command 2710 * has finished. 2711 * 2712 * The protocol for ensuring that either the regular frontend command 2713 * processing flow or target_handle_abort() code drops one reference is as 2714 * follows: 2715 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause 2716 * the frontend driver to call this function synchronously or asynchronously. 2717 * That will cause one reference to be dropped. 2718 * - During regular command processing the target core sets CMD_T_COMPLETE 2719 * before invoking one of the .queue_*() functions. 2720 * - The code that aborts commands skips commands and TMFs for which 2721 * CMD_T_COMPLETE has been set. 2722 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for 2723 * commands that will be aborted. 2724 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set 2725 * transport_generic_free_cmd() skips its call to target_put_sess_cmd(). 2726 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will 2727 * be called and will drop a reference. 2728 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task() 2729 * will be called. target_handle_abort() will drop the final reference. 2730 */ 2731 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2732 { 2733 DECLARE_COMPLETION_ONSTACK(compl); 2734 int ret = 0; 2735 bool aborted = false, tas = false; 2736 2737 if (wait_for_tasks) 2738 target_wait_free_cmd(cmd, &aborted, &tas); 2739 2740 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) { 2741 /* 2742 * Handle WRITE failure case where transport_generic_new_cmd() 2743 * has already added se_cmd to state_list, but fabric has 2744 * failed command before I/O submission. 2745 */ 2746 if (cmd->state_active) 2747 target_remove_from_state_list(cmd); 2748 2749 if (cmd->se_lun) 2750 transport_lun_remove_cmd(cmd); 2751 } 2752 if (aborted) 2753 cmd->free_compl = &compl; 2754 ret = target_put_sess_cmd(cmd); 2755 if (aborted) { 2756 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag); 2757 wait_for_completion(&compl); 2758 ret = 1; 2759 } 2760 return ret; 2761 } 2762 EXPORT_SYMBOL(transport_generic_free_cmd); 2763 2764 /** 2765 * target_get_sess_cmd - Verify the session is accepting cmds and take ref 2766 * @se_cmd: command descriptor to add 2767 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2768 */ 2769 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref) 2770 { 2771 struct se_session *se_sess = se_cmd->se_sess; 2772 int ret = 0; 2773 2774 /* 2775 * Add a second kref if the fabric caller is expecting to handle 2776 * fabric acknowledgement that requires two target_put_sess_cmd() 2777 * invocations before se_cmd descriptor release. 2778 */ 2779 if (ack_kref) { 2780 if (!kref_get_unless_zero(&se_cmd->cmd_kref)) 2781 return -EINVAL; 2782 2783 se_cmd->se_cmd_flags |= SCF_ACK_KREF; 2784 } 2785 2786 if (!percpu_ref_tryget_live(&se_sess->cmd_count)) 2787 ret = -ESHUTDOWN; 2788 2789 if (ret && ack_kref) 2790 target_put_sess_cmd(se_cmd); 2791 2792 return ret; 2793 } 2794 EXPORT_SYMBOL(target_get_sess_cmd); 2795 2796 static void target_free_cmd_mem(struct se_cmd *cmd) 2797 { 2798 transport_free_pages(cmd); 2799 2800 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 2801 core_tmr_release_req(cmd->se_tmr_req); 2802 if (cmd->t_task_cdb != cmd->__t_task_cdb) 2803 kfree(cmd->t_task_cdb); 2804 } 2805 2806 static void target_release_cmd_kref(struct kref *kref) 2807 { 2808 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2809 struct se_session *se_sess = se_cmd->se_sess; 2810 struct completion *free_compl = se_cmd->free_compl; 2811 struct completion *abrt_compl = se_cmd->abrt_compl; 2812 2813 target_free_cmd_mem(se_cmd); 2814 se_cmd->se_tfo->release_cmd(se_cmd); 2815 if (free_compl) 2816 complete(free_compl); 2817 if (abrt_compl) 2818 complete(abrt_compl); 2819 2820 percpu_ref_put(&se_sess->cmd_count); 2821 } 2822 2823 /** 2824 * target_put_sess_cmd - decrease the command reference count 2825 * @se_cmd: command to drop a reference from 2826 * 2827 * Returns 1 if and only if this target_put_sess_cmd() call caused the 2828 * refcount to drop to zero. Returns zero otherwise. 2829 */ 2830 int target_put_sess_cmd(struct se_cmd *se_cmd) 2831 { 2832 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref); 2833 } 2834 EXPORT_SYMBOL(target_put_sess_cmd); 2835 2836 static const char *data_dir_name(enum dma_data_direction d) 2837 { 2838 switch (d) { 2839 case DMA_BIDIRECTIONAL: return "BIDI"; 2840 case DMA_TO_DEVICE: return "WRITE"; 2841 case DMA_FROM_DEVICE: return "READ"; 2842 case DMA_NONE: return "NONE"; 2843 } 2844 2845 return "(?)"; 2846 } 2847 2848 static const char *cmd_state_name(enum transport_state_table t) 2849 { 2850 switch (t) { 2851 case TRANSPORT_NO_STATE: return "NO_STATE"; 2852 case TRANSPORT_NEW_CMD: return "NEW_CMD"; 2853 case TRANSPORT_WRITE_PENDING: return "WRITE_PENDING"; 2854 case TRANSPORT_PROCESSING: return "PROCESSING"; 2855 case TRANSPORT_COMPLETE: return "COMPLETE"; 2856 case TRANSPORT_ISTATE_PROCESSING: 2857 return "ISTATE_PROCESSING"; 2858 case TRANSPORT_COMPLETE_QF_WP: return "COMPLETE_QF_WP"; 2859 case TRANSPORT_COMPLETE_QF_OK: return "COMPLETE_QF_OK"; 2860 case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR"; 2861 } 2862 2863 return "(?)"; 2864 } 2865 2866 static void target_append_str(char **str, const char *txt) 2867 { 2868 char *prev = *str; 2869 2870 *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) : 2871 kstrdup(txt, GFP_ATOMIC); 2872 kfree(prev); 2873 } 2874 2875 /* 2876 * Convert a transport state bitmask into a string. The caller is 2877 * responsible for freeing the returned pointer. 2878 */ 2879 static char *target_ts_to_str(u32 ts) 2880 { 2881 char *str = NULL; 2882 2883 if (ts & CMD_T_ABORTED) 2884 target_append_str(&str, "aborted"); 2885 if (ts & CMD_T_ACTIVE) 2886 target_append_str(&str, "active"); 2887 if (ts & CMD_T_COMPLETE) 2888 target_append_str(&str, "complete"); 2889 if (ts & CMD_T_SENT) 2890 target_append_str(&str, "sent"); 2891 if (ts & CMD_T_STOP) 2892 target_append_str(&str, "stop"); 2893 if (ts & CMD_T_FABRIC_STOP) 2894 target_append_str(&str, "fabric_stop"); 2895 2896 return str; 2897 } 2898 2899 static const char *target_tmf_name(enum tcm_tmreq_table tmf) 2900 { 2901 switch (tmf) { 2902 case TMR_ABORT_TASK: return "ABORT_TASK"; 2903 case TMR_ABORT_TASK_SET: return "ABORT_TASK_SET"; 2904 case TMR_CLEAR_ACA: return "CLEAR_ACA"; 2905 case TMR_CLEAR_TASK_SET: return "CLEAR_TASK_SET"; 2906 case TMR_LUN_RESET: return "LUN_RESET"; 2907 case TMR_TARGET_WARM_RESET: return "TARGET_WARM_RESET"; 2908 case TMR_TARGET_COLD_RESET: return "TARGET_COLD_RESET"; 2909 case TMR_LUN_RESET_PRO: return "LUN_RESET_PRO"; 2910 case TMR_UNKNOWN: break; 2911 } 2912 return "(?)"; 2913 } 2914 2915 void target_show_cmd(const char *pfx, struct se_cmd *cmd) 2916 { 2917 char *ts_str = target_ts_to_str(cmd->transport_state); 2918 const u8 *cdb = cmd->t_task_cdb; 2919 struct se_tmr_req *tmf = cmd->se_tmr_req; 2920 2921 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2922 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n", 2923 pfx, cdb[0], cdb[1], cmd->tag, 2924 data_dir_name(cmd->data_direction), 2925 cmd->se_tfo->get_cmd_state(cmd), 2926 cmd_state_name(cmd->t_state), cmd->data_length, 2927 kref_read(&cmd->cmd_kref), ts_str); 2928 } else { 2929 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n", 2930 pfx, target_tmf_name(tmf->function), cmd->tag, 2931 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd), 2932 cmd_state_name(cmd->t_state), 2933 kref_read(&cmd->cmd_kref), ts_str); 2934 } 2935 kfree(ts_str); 2936 } 2937 EXPORT_SYMBOL(target_show_cmd); 2938 2939 static void target_stop_session_confirm(struct percpu_ref *ref) 2940 { 2941 struct se_session *se_sess = container_of(ref, struct se_session, 2942 cmd_count); 2943 complete_all(&se_sess->stop_done); 2944 } 2945 2946 /** 2947 * target_stop_session - Stop new IO from being queued on the session. 2948 * @se_sess: session to stop 2949 */ 2950 void target_stop_session(struct se_session *se_sess) 2951 { 2952 pr_debug("Stopping session queue.\n"); 2953 if (atomic_cmpxchg(&se_sess->stopped, 0, 1) == 0) 2954 percpu_ref_kill_and_confirm(&se_sess->cmd_count, 2955 target_stop_session_confirm); 2956 } 2957 EXPORT_SYMBOL(target_stop_session); 2958 2959 /** 2960 * target_wait_for_sess_cmds - Wait for outstanding commands 2961 * @se_sess: session to wait for active I/O 2962 */ 2963 void target_wait_for_sess_cmds(struct se_session *se_sess) 2964 { 2965 int ret; 2966 2967 WARN_ON_ONCE(!atomic_read(&se_sess->stopped)); 2968 2969 do { 2970 pr_debug("Waiting for running cmds to complete.\n"); 2971 ret = wait_event_timeout(se_sess->cmd_count_wq, 2972 percpu_ref_is_zero(&se_sess->cmd_count), 2973 180 * HZ); 2974 } while (ret <= 0); 2975 2976 wait_for_completion(&se_sess->stop_done); 2977 pr_debug("Waiting for cmds done.\n"); 2978 } 2979 EXPORT_SYMBOL(target_wait_for_sess_cmds); 2980 2981 /* 2982 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until 2983 * all references to the LUN have been released. Called during LUN shutdown. 2984 */ 2985 void transport_clear_lun_ref(struct se_lun *lun) 2986 { 2987 percpu_ref_kill(&lun->lun_ref); 2988 wait_for_completion(&lun->lun_shutdown_comp); 2989 } 2990 2991 static bool 2992 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop, 2993 bool *aborted, bool *tas, unsigned long *flags) 2994 __releases(&cmd->t_state_lock) 2995 __acquires(&cmd->t_state_lock) 2996 { 2997 2998 assert_spin_locked(&cmd->t_state_lock); 2999 WARN_ON_ONCE(!irqs_disabled()); 3000 3001 if (fabric_stop) 3002 cmd->transport_state |= CMD_T_FABRIC_STOP; 3003 3004 if (cmd->transport_state & CMD_T_ABORTED) 3005 *aborted = true; 3006 3007 if (cmd->transport_state & CMD_T_TAS) 3008 *tas = true; 3009 3010 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 3011 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 3012 return false; 3013 3014 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 3015 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 3016 return false; 3017 3018 if (!(cmd->transport_state & CMD_T_ACTIVE)) 3019 return false; 3020 3021 if (fabric_stop && *aborted) 3022 return false; 3023 3024 cmd->transport_state |= CMD_T_STOP; 3025 3026 target_show_cmd("wait_for_tasks: Stopping ", cmd); 3027 3028 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 3029 3030 while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp, 3031 180 * HZ)) 3032 target_show_cmd("wait for tasks: ", cmd); 3033 3034 spin_lock_irqsave(&cmd->t_state_lock, *flags); 3035 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 3036 3037 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->" 3038 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag); 3039 3040 return true; 3041 } 3042 3043 /** 3044 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp 3045 * @cmd: command to wait on 3046 */ 3047 bool transport_wait_for_tasks(struct se_cmd *cmd) 3048 { 3049 unsigned long flags; 3050 bool ret, aborted = false, tas = false; 3051 3052 spin_lock_irqsave(&cmd->t_state_lock, flags); 3053 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags); 3054 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3055 3056 return ret; 3057 } 3058 EXPORT_SYMBOL(transport_wait_for_tasks); 3059 3060 struct sense_detail { 3061 u8 key; 3062 u8 asc; 3063 u8 ascq; 3064 bool add_sense_info; 3065 }; 3066 3067 static const struct sense_detail sense_detail_table[] = { 3068 [TCM_NO_SENSE] = { 3069 .key = NOT_READY 3070 }, 3071 [TCM_NON_EXISTENT_LUN] = { 3072 .key = ILLEGAL_REQUEST, 3073 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */ 3074 }, 3075 [TCM_UNSUPPORTED_SCSI_OPCODE] = { 3076 .key = ILLEGAL_REQUEST, 3077 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 3078 }, 3079 [TCM_SECTOR_COUNT_TOO_MANY] = { 3080 .key = ILLEGAL_REQUEST, 3081 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 3082 }, 3083 [TCM_UNKNOWN_MODE_PAGE] = { 3084 .key = ILLEGAL_REQUEST, 3085 .asc = 0x24, /* INVALID FIELD IN CDB */ 3086 }, 3087 [TCM_CHECK_CONDITION_ABORT_CMD] = { 3088 .key = ABORTED_COMMAND, 3089 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */ 3090 .ascq = 0x03, 3091 }, 3092 [TCM_INCORRECT_AMOUNT_OF_DATA] = { 3093 .key = ABORTED_COMMAND, 3094 .asc = 0x0c, /* WRITE ERROR */ 3095 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */ 3096 }, 3097 [TCM_INVALID_CDB_FIELD] = { 3098 .key = ILLEGAL_REQUEST, 3099 .asc = 0x24, /* INVALID FIELD IN CDB */ 3100 }, 3101 [TCM_INVALID_PARAMETER_LIST] = { 3102 .key = ILLEGAL_REQUEST, 3103 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */ 3104 }, 3105 [TCM_TOO_MANY_TARGET_DESCS] = { 3106 .key = ILLEGAL_REQUEST, 3107 .asc = 0x26, 3108 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */ 3109 }, 3110 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = { 3111 .key = ILLEGAL_REQUEST, 3112 .asc = 0x26, 3113 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */ 3114 }, 3115 [TCM_TOO_MANY_SEGMENT_DESCS] = { 3116 .key = ILLEGAL_REQUEST, 3117 .asc = 0x26, 3118 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */ 3119 }, 3120 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = { 3121 .key = ILLEGAL_REQUEST, 3122 .asc = 0x26, 3123 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */ 3124 }, 3125 [TCM_PARAMETER_LIST_LENGTH_ERROR] = { 3126 .key = ILLEGAL_REQUEST, 3127 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */ 3128 }, 3129 [TCM_UNEXPECTED_UNSOLICITED_DATA] = { 3130 .key = ILLEGAL_REQUEST, 3131 .asc = 0x0c, /* WRITE ERROR */ 3132 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */ 3133 }, 3134 [TCM_SERVICE_CRC_ERROR] = { 3135 .key = ABORTED_COMMAND, 3136 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */ 3137 .ascq = 0x05, /* N/A */ 3138 }, 3139 [TCM_SNACK_REJECTED] = { 3140 .key = ABORTED_COMMAND, 3141 .asc = 0x11, /* READ ERROR */ 3142 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */ 3143 }, 3144 [TCM_WRITE_PROTECTED] = { 3145 .key = DATA_PROTECT, 3146 .asc = 0x27, /* WRITE PROTECTED */ 3147 }, 3148 [TCM_ADDRESS_OUT_OF_RANGE] = { 3149 .key = ILLEGAL_REQUEST, 3150 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 3151 }, 3152 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = { 3153 .key = UNIT_ATTENTION, 3154 }, 3155 [TCM_CHECK_CONDITION_NOT_READY] = { 3156 .key = NOT_READY, 3157 }, 3158 [TCM_MISCOMPARE_VERIFY] = { 3159 .key = MISCOMPARE, 3160 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */ 3161 .ascq = 0x00, 3162 .add_sense_info = true, 3163 }, 3164 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = { 3165 .key = ABORTED_COMMAND, 3166 .asc = 0x10, 3167 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */ 3168 .add_sense_info = true, 3169 }, 3170 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = { 3171 .key = ABORTED_COMMAND, 3172 .asc = 0x10, 3173 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */ 3174 .add_sense_info = true, 3175 }, 3176 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = { 3177 .key = ABORTED_COMMAND, 3178 .asc = 0x10, 3179 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */ 3180 .add_sense_info = true, 3181 }, 3182 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = { 3183 .key = COPY_ABORTED, 3184 .asc = 0x0d, 3185 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */ 3186 3187 }, 3188 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = { 3189 /* 3190 * Returning ILLEGAL REQUEST would cause immediate IO errors on 3191 * Solaris initiators. Returning NOT READY instead means the 3192 * operations will be retried a finite number of times and we 3193 * can survive intermittent errors. 3194 */ 3195 .key = NOT_READY, 3196 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */ 3197 }, 3198 [TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = { 3199 /* 3200 * From spc4r22 section5.7.7,5.7.8 3201 * If a PERSISTENT RESERVE OUT command with a REGISTER service action 3202 * or a REGISTER AND IGNORE EXISTING KEY service action or 3203 * REGISTER AND MOVE service actionis attempted, 3204 * but there are insufficient device server resources to complete the 3205 * operation, then the command shall be terminated with CHECK CONDITION 3206 * status, with the sense key set to ILLEGAL REQUEST,and the additonal 3207 * sense code set to INSUFFICIENT REGISTRATION RESOURCES. 3208 */ 3209 .key = ILLEGAL_REQUEST, 3210 .asc = 0x55, 3211 .ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */ 3212 }, 3213 }; 3214 3215 /** 3216 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq 3217 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will 3218 * be stored. 3219 * @reason: LIO sense reason code. If this argument has the value 3220 * TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If 3221 * dequeuing a unit attention fails due to multiple commands being processed 3222 * concurrently, set the command status to BUSY. 3223 * 3224 * Return: 0 upon success or -EINVAL if the sense buffer is too small. 3225 */ 3226 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason) 3227 { 3228 const struct sense_detail *sd; 3229 u8 *buffer = cmd->sense_buffer; 3230 int r = (__force int)reason; 3231 u8 key, asc, ascq; 3232 bool desc_format = target_sense_desc_format(cmd->se_dev); 3233 3234 if (r < ARRAY_SIZE(sense_detail_table) && sense_detail_table[r].key) 3235 sd = &sense_detail_table[r]; 3236 else 3237 sd = &sense_detail_table[(__force int) 3238 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE]; 3239 3240 key = sd->key; 3241 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) { 3242 if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc, 3243 &ascq)) { 3244 cmd->scsi_status = SAM_STAT_BUSY; 3245 return; 3246 } 3247 } else if (sd->asc == 0) { 3248 WARN_ON_ONCE(cmd->scsi_asc == 0); 3249 asc = cmd->scsi_asc; 3250 ascq = cmd->scsi_ascq; 3251 } else { 3252 asc = sd->asc; 3253 ascq = sd->ascq; 3254 } 3255 3256 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 3257 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 3258 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 3259 scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq); 3260 if (sd->add_sense_info) 3261 WARN_ON_ONCE(scsi_set_sense_information(buffer, 3262 cmd->scsi_sense_length, 3263 cmd->sense_info) < 0); 3264 } 3265 3266 int 3267 transport_send_check_condition_and_sense(struct se_cmd *cmd, 3268 sense_reason_t reason, int from_transport) 3269 { 3270 unsigned long flags; 3271 3272 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB); 3273 3274 spin_lock_irqsave(&cmd->t_state_lock, flags); 3275 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 3276 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3277 return 0; 3278 } 3279 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 3280 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3281 3282 if (!from_transport) 3283 translate_sense_reason(cmd, reason); 3284 3285 trace_target_cmd_complete(cmd); 3286 return cmd->se_tfo->queue_status(cmd); 3287 } 3288 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 3289 3290 /** 3291 * target_send_busy - Send SCSI BUSY status back to the initiator 3292 * @cmd: SCSI command for which to send a BUSY reply. 3293 * 3294 * Note: Only call this function if target_submit_cmd*() failed. 3295 */ 3296 int target_send_busy(struct se_cmd *cmd) 3297 { 3298 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB); 3299 3300 cmd->scsi_status = SAM_STAT_BUSY; 3301 trace_target_cmd_complete(cmd); 3302 return cmd->se_tfo->queue_status(cmd); 3303 } 3304 EXPORT_SYMBOL(target_send_busy); 3305 3306 static void target_tmr_work(struct work_struct *work) 3307 { 3308 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 3309 struct se_device *dev = cmd->se_dev; 3310 struct se_tmr_req *tmr = cmd->se_tmr_req; 3311 int ret; 3312 3313 if (cmd->transport_state & CMD_T_ABORTED) 3314 goto aborted; 3315 3316 switch (tmr->function) { 3317 case TMR_ABORT_TASK: 3318 core_tmr_abort_task(dev, tmr, cmd->se_sess); 3319 break; 3320 case TMR_ABORT_TASK_SET: 3321 case TMR_CLEAR_ACA: 3322 case TMR_CLEAR_TASK_SET: 3323 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 3324 break; 3325 case TMR_LUN_RESET: 3326 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 3327 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 3328 TMR_FUNCTION_REJECTED; 3329 if (tmr->response == TMR_FUNCTION_COMPLETE) { 3330 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 3331 cmd->orig_fe_lun, 0x29, 3332 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED); 3333 } 3334 break; 3335 case TMR_TARGET_WARM_RESET: 3336 tmr->response = TMR_FUNCTION_REJECTED; 3337 break; 3338 case TMR_TARGET_COLD_RESET: 3339 tmr->response = TMR_FUNCTION_REJECTED; 3340 break; 3341 default: 3342 pr_err("Unknown TMR function: 0x%02x.\n", 3343 tmr->function); 3344 tmr->response = TMR_FUNCTION_REJECTED; 3345 break; 3346 } 3347 3348 if (cmd->transport_state & CMD_T_ABORTED) 3349 goto aborted; 3350 3351 cmd->se_tfo->queue_tm_rsp(cmd); 3352 3353 transport_lun_remove_cmd(cmd); 3354 transport_cmd_check_stop_to_fabric(cmd); 3355 return; 3356 3357 aborted: 3358 target_handle_abort(cmd); 3359 } 3360 3361 int transport_generic_handle_tmr( 3362 struct se_cmd *cmd) 3363 { 3364 unsigned long flags; 3365 bool aborted = false; 3366 3367 spin_lock_irqsave(&cmd->t_state_lock, flags); 3368 if (cmd->transport_state & CMD_T_ABORTED) { 3369 aborted = true; 3370 } else { 3371 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 3372 cmd->transport_state |= CMD_T_ACTIVE; 3373 } 3374 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3375 3376 if (aborted) { 3377 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n", 3378 cmd->se_tmr_req->function, 3379 cmd->se_tmr_req->ref_task_tag, cmd->tag); 3380 target_handle_abort(cmd); 3381 return 0; 3382 } 3383 3384 INIT_WORK(&cmd->work, target_tmr_work); 3385 schedule_work(&cmd->work); 3386 return 0; 3387 } 3388 EXPORT_SYMBOL(transport_generic_handle_tmr); 3389 3390 bool 3391 target_check_wce(struct se_device *dev) 3392 { 3393 bool wce = false; 3394 3395 if (dev->transport->get_write_cache) 3396 wce = dev->transport->get_write_cache(dev); 3397 else if (dev->dev_attrib.emulate_write_cache > 0) 3398 wce = true; 3399 3400 return wce; 3401 } 3402 3403 bool 3404 target_check_fua(struct se_device *dev) 3405 { 3406 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0; 3407 } 3408