1 /******************************************************************************* 2 * Filename: target_core_transport.c 3 * 4 * This file contains the Generic Target Engine Core. 5 * 6 * (c) Copyright 2002-2013 Datera, Inc. 7 * 8 * Nicholas A. Bellinger <nab@kernel.org> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 23 * 24 ******************************************************************************/ 25 26 #include <linux/net.h> 27 #include <linux/delay.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/slab.h> 31 #include <linux/spinlock.h> 32 #include <linux/kthread.h> 33 #include <linux/in.h> 34 #include <linux/cdrom.h> 35 #include <linux/module.h> 36 #include <linux/ratelimit.h> 37 #include <linux/vmalloc.h> 38 #include <asm/unaligned.h> 39 #include <net/sock.h> 40 #include <net/tcp.h> 41 #include <scsi/scsi_proto.h> 42 #include <scsi/scsi_common.h> 43 44 #include <target/target_core_base.h> 45 #include <target/target_core_backend.h> 46 #include <target/target_core_fabric.h> 47 48 #include "target_core_internal.h" 49 #include "target_core_alua.h" 50 #include "target_core_pr.h" 51 #include "target_core_ua.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/target.h> 55 56 static struct workqueue_struct *target_completion_wq; 57 static struct kmem_cache *se_sess_cache; 58 struct kmem_cache *se_ua_cache; 59 struct kmem_cache *t10_pr_reg_cache; 60 struct kmem_cache *t10_alua_lu_gp_cache; 61 struct kmem_cache *t10_alua_lu_gp_mem_cache; 62 struct kmem_cache *t10_alua_tg_pt_gp_cache; 63 struct kmem_cache *t10_alua_lba_map_cache; 64 struct kmem_cache *t10_alua_lba_map_mem_cache; 65 66 static void transport_complete_task_attr(struct se_cmd *cmd); 67 static void transport_handle_queue_full(struct se_cmd *cmd, 68 struct se_device *dev); 69 static int transport_put_cmd(struct se_cmd *cmd); 70 static void target_complete_ok_work(struct work_struct *work); 71 72 int init_se_kmem_caches(void) 73 { 74 se_sess_cache = kmem_cache_create("se_sess_cache", 75 sizeof(struct se_session), __alignof__(struct se_session), 76 0, NULL); 77 if (!se_sess_cache) { 78 pr_err("kmem_cache_create() for struct se_session" 79 " failed\n"); 80 goto out; 81 } 82 se_ua_cache = kmem_cache_create("se_ua_cache", 83 sizeof(struct se_ua), __alignof__(struct se_ua), 84 0, NULL); 85 if (!se_ua_cache) { 86 pr_err("kmem_cache_create() for struct se_ua failed\n"); 87 goto out_free_sess_cache; 88 } 89 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 90 sizeof(struct t10_pr_registration), 91 __alignof__(struct t10_pr_registration), 0, NULL); 92 if (!t10_pr_reg_cache) { 93 pr_err("kmem_cache_create() for struct t10_pr_registration" 94 " failed\n"); 95 goto out_free_ua_cache; 96 } 97 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 98 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 99 0, NULL); 100 if (!t10_alua_lu_gp_cache) { 101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 102 " failed\n"); 103 goto out_free_pr_reg_cache; 104 } 105 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 106 sizeof(struct t10_alua_lu_gp_member), 107 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 108 if (!t10_alua_lu_gp_mem_cache) { 109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 110 "cache failed\n"); 111 goto out_free_lu_gp_cache; 112 } 113 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 114 sizeof(struct t10_alua_tg_pt_gp), 115 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 116 if (!t10_alua_tg_pt_gp_cache) { 117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 118 "cache failed\n"); 119 goto out_free_lu_gp_mem_cache; 120 } 121 t10_alua_lba_map_cache = kmem_cache_create( 122 "t10_alua_lba_map_cache", 123 sizeof(struct t10_alua_lba_map), 124 __alignof__(struct t10_alua_lba_map), 0, NULL); 125 if (!t10_alua_lba_map_cache) { 126 pr_err("kmem_cache_create() for t10_alua_lba_map_" 127 "cache failed\n"); 128 goto out_free_tg_pt_gp_cache; 129 } 130 t10_alua_lba_map_mem_cache = kmem_cache_create( 131 "t10_alua_lba_map_mem_cache", 132 sizeof(struct t10_alua_lba_map_member), 133 __alignof__(struct t10_alua_lba_map_member), 0, NULL); 134 if (!t10_alua_lba_map_mem_cache) { 135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_" 136 "cache failed\n"); 137 goto out_free_lba_map_cache; 138 } 139 140 target_completion_wq = alloc_workqueue("target_completion", 141 WQ_MEM_RECLAIM, 0); 142 if (!target_completion_wq) 143 goto out_free_lba_map_mem_cache; 144 145 return 0; 146 147 out_free_lba_map_mem_cache: 148 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 149 out_free_lba_map_cache: 150 kmem_cache_destroy(t10_alua_lba_map_cache); 151 out_free_tg_pt_gp_cache: 152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 153 out_free_lu_gp_mem_cache: 154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 155 out_free_lu_gp_cache: 156 kmem_cache_destroy(t10_alua_lu_gp_cache); 157 out_free_pr_reg_cache: 158 kmem_cache_destroy(t10_pr_reg_cache); 159 out_free_ua_cache: 160 kmem_cache_destroy(se_ua_cache); 161 out_free_sess_cache: 162 kmem_cache_destroy(se_sess_cache); 163 out: 164 return -ENOMEM; 165 } 166 167 void release_se_kmem_caches(void) 168 { 169 destroy_workqueue(target_completion_wq); 170 kmem_cache_destroy(se_sess_cache); 171 kmem_cache_destroy(se_ua_cache); 172 kmem_cache_destroy(t10_pr_reg_cache); 173 kmem_cache_destroy(t10_alua_lu_gp_cache); 174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 176 kmem_cache_destroy(t10_alua_lba_map_cache); 177 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 178 } 179 180 /* This code ensures unique mib indexes are handed out. */ 181 static DEFINE_SPINLOCK(scsi_mib_index_lock); 182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 183 184 /* 185 * Allocate a new row index for the entry type specified 186 */ 187 u32 scsi_get_new_index(scsi_index_t type) 188 { 189 u32 new_index; 190 191 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 192 193 spin_lock(&scsi_mib_index_lock); 194 new_index = ++scsi_mib_index[type]; 195 spin_unlock(&scsi_mib_index_lock); 196 197 return new_index; 198 } 199 200 void transport_subsystem_check_init(void) 201 { 202 int ret; 203 static int sub_api_initialized; 204 205 if (sub_api_initialized) 206 return; 207 208 ret = request_module("target_core_iblock"); 209 if (ret != 0) 210 pr_err("Unable to load target_core_iblock\n"); 211 212 ret = request_module("target_core_file"); 213 if (ret != 0) 214 pr_err("Unable to load target_core_file\n"); 215 216 ret = request_module("target_core_pscsi"); 217 if (ret != 0) 218 pr_err("Unable to load target_core_pscsi\n"); 219 220 ret = request_module("target_core_user"); 221 if (ret != 0) 222 pr_err("Unable to load target_core_user\n"); 223 224 sub_api_initialized = 1; 225 } 226 227 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops) 228 { 229 struct se_session *se_sess; 230 231 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 232 if (!se_sess) { 233 pr_err("Unable to allocate struct se_session from" 234 " se_sess_cache\n"); 235 return ERR_PTR(-ENOMEM); 236 } 237 INIT_LIST_HEAD(&se_sess->sess_list); 238 INIT_LIST_HEAD(&se_sess->sess_acl_list); 239 INIT_LIST_HEAD(&se_sess->sess_cmd_list); 240 INIT_LIST_HEAD(&se_sess->sess_wait_list); 241 spin_lock_init(&se_sess->sess_cmd_lock); 242 se_sess->sup_prot_ops = sup_prot_ops; 243 244 return se_sess; 245 } 246 EXPORT_SYMBOL(transport_init_session); 247 248 int transport_alloc_session_tags(struct se_session *se_sess, 249 unsigned int tag_num, unsigned int tag_size) 250 { 251 int rc; 252 253 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size, 254 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 255 if (!se_sess->sess_cmd_map) { 256 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size); 257 if (!se_sess->sess_cmd_map) { 258 pr_err("Unable to allocate se_sess->sess_cmd_map\n"); 259 return -ENOMEM; 260 } 261 } 262 263 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num); 264 if (rc < 0) { 265 pr_err("Unable to init se_sess->sess_tag_pool," 266 " tag_num: %u\n", tag_num); 267 kvfree(se_sess->sess_cmd_map); 268 se_sess->sess_cmd_map = NULL; 269 return -ENOMEM; 270 } 271 272 return 0; 273 } 274 EXPORT_SYMBOL(transport_alloc_session_tags); 275 276 struct se_session *transport_init_session_tags(unsigned int tag_num, 277 unsigned int tag_size, 278 enum target_prot_op sup_prot_ops) 279 { 280 struct se_session *se_sess; 281 int rc; 282 283 if (tag_num != 0 && !tag_size) { 284 pr_err("init_session_tags called with percpu-ida tag_num:" 285 " %u, but zero tag_size\n", tag_num); 286 return ERR_PTR(-EINVAL); 287 } 288 if (!tag_num && tag_size) { 289 pr_err("init_session_tags called with percpu-ida tag_size:" 290 " %u, but zero tag_num\n", tag_size); 291 return ERR_PTR(-EINVAL); 292 } 293 294 se_sess = transport_init_session(sup_prot_ops); 295 if (IS_ERR(se_sess)) 296 return se_sess; 297 298 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size); 299 if (rc < 0) { 300 transport_free_session(se_sess); 301 return ERR_PTR(-ENOMEM); 302 } 303 304 return se_sess; 305 } 306 EXPORT_SYMBOL(transport_init_session_tags); 307 308 /* 309 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 310 */ 311 void __transport_register_session( 312 struct se_portal_group *se_tpg, 313 struct se_node_acl *se_nacl, 314 struct se_session *se_sess, 315 void *fabric_sess_ptr) 316 { 317 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo; 318 unsigned char buf[PR_REG_ISID_LEN]; 319 320 se_sess->se_tpg = se_tpg; 321 se_sess->fabric_sess_ptr = fabric_sess_ptr; 322 /* 323 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 324 * 325 * Only set for struct se_session's that will actually be moving I/O. 326 * eg: *NOT* discovery sessions. 327 */ 328 if (se_nacl) { 329 /* 330 * 331 * Determine if fabric allows for T10-PI feature bits exposed to 332 * initiators for device backends with !dev->dev_attrib.pi_prot_type. 333 * 334 * If so, then always save prot_type on a per se_node_acl node 335 * basis and re-instate the previous sess_prot_type to avoid 336 * disabling PI from below any previously initiator side 337 * registered LUNs. 338 */ 339 if (se_nacl->saved_prot_type) 340 se_sess->sess_prot_type = se_nacl->saved_prot_type; 341 else if (tfo->tpg_check_prot_fabric_only) 342 se_sess->sess_prot_type = se_nacl->saved_prot_type = 343 tfo->tpg_check_prot_fabric_only(se_tpg); 344 /* 345 * If the fabric module supports an ISID based TransportID, 346 * save this value in binary from the fabric I_T Nexus now. 347 */ 348 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 349 memset(&buf[0], 0, PR_REG_ISID_LEN); 350 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 351 &buf[0], PR_REG_ISID_LEN); 352 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 353 } 354 355 spin_lock_irq(&se_nacl->nacl_sess_lock); 356 /* 357 * The se_nacl->nacl_sess pointer will be set to the 358 * last active I_T Nexus for each struct se_node_acl. 359 */ 360 se_nacl->nacl_sess = se_sess; 361 362 list_add_tail(&se_sess->sess_acl_list, 363 &se_nacl->acl_sess_list); 364 spin_unlock_irq(&se_nacl->nacl_sess_lock); 365 } 366 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 367 368 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 369 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr); 370 } 371 EXPORT_SYMBOL(__transport_register_session); 372 373 void transport_register_session( 374 struct se_portal_group *se_tpg, 375 struct se_node_acl *se_nacl, 376 struct se_session *se_sess, 377 void *fabric_sess_ptr) 378 { 379 unsigned long flags; 380 381 spin_lock_irqsave(&se_tpg->session_lock, flags); 382 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 383 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 384 } 385 EXPORT_SYMBOL(transport_register_session); 386 387 struct se_session * 388 target_alloc_session(struct se_portal_group *tpg, 389 unsigned int tag_num, unsigned int tag_size, 390 enum target_prot_op prot_op, 391 const char *initiatorname, void *private, 392 int (*callback)(struct se_portal_group *, 393 struct se_session *, void *)) 394 { 395 struct se_session *sess; 396 397 /* 398 * If the fabric driver is using percpu-ida based pre allocation 399 * of I/O descriptor tags, go ahead and perform that setup now.. 400 */ 401 if (tag_num != 0) 402 sess = transport_init_session_tags(tag_num, tag_size, prot_op); 403 else 404 sess = transport_init_session(prot_op); 405 406 if (IS_ERR(sess)) 407 return sess; 408 409 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg, 410 (unsigned char *)initiatorname); 411 if (!sess->se_node_acl) { 412 transport_free_session(sess); 413 return ERR_PTR(-EACCES); 414 } 415 /* 416 * Go ahead and perform any remaining fabric setup that is 417 * required before transport_register_session(). 418 */ 419 if (callback != NULL) { 420 int rc = callback(tpg, sess, private); 421 if (rc) { 422 transport_free_session(sess); 423 return ERR_PTR(rc); 424 } 425 } 426 427 transport_register_session(tpg, sess->se_node_acl, sess, private); 428 return sess; 429 } 430 EXPORT_SYMBOL(target_alloc_session); 431 432 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page) 433 { 434 struct se_session *se_sess; 435 ssize_t len = 0; 436 437 spin_lock_bh(&se_tpg->session_lock); 438 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) { 439 if (!se_sess->se_node_acl) 440 continue; 441 if (!se_sess->se_node_acl->dynamic_node_acl) 442 continue; 443 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE) 444 break; 445 446 len += snprintf(page + len, PAGE_SIZE - len, "%s\n", 447 se_sess->se_node_acl->initiatorname); 448 len += 1; /* Include NULL terminator */ 449 } 450 spin_unlock_bh(&se_tpg->session_lock); 451 452 return len; 453 } 454 EXPORT_SYMBOL(target_show_dynamic_sessions); 455 456 static void target_complete_nacl(struct kref *kref) 457 { 458 struct se_node_acl *nacl = container_of(kref, 459 struct se_node_acl, acl_kref); 460 461 complete(&nacl->acl_free_comp); 462 } 463 464 void target_put_nacl(struct se_node_acl *nacl) 465 { 466 kref_put(&nacl->acl_kref, target_complete_nacl); 467 } 468 EXPORT_SYMBOL(target_put_nacl); 469 470 void transport_deregister_session_configfs(struct se_session *se_sess) 471 { 472 struct se_node_acl *se_nacl; 473 unsigned long flags; 474 /* 475 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 476 */ 477 se_nacl = se_sess->se_node_acl; 478 if (se_nacl) { 479 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 480 if (!list_empty(&se_sess->sess_acl_list)) 481 list_del_init(&se_sess->sess_acl_list); 482 /* 483 * If the session list is empty, then clear the pointer. 484 * Otherwise, set the struct se_session pointer from the tail 485 * element of the per struct se_node_acl active session list. 486 */ 487 if (list_empty(&se_nacl->acl_sess_list)) 488 se_nacl->nacl_sess = NULL; 489 else { 490 se_nacl->nacl_sess = container_of( 491 se_nacl->acl_sess_list.prev, 492 struct se_session, sess_acl_list); 493 } 494 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 495 } 496 } 497 EXPORT_SYMBOL(transport_deregister_session_configfs); 498 499 void transport_free_session(struct se_session *se_sess) 500 { 501 struct se_node_acl *se_nacl = se_sess->se_node_acl; 502 /* 503 * Drop the se_node_acl->nacl_kref obtained from within 504 * core_tpg_get_initiator_node_acl(). 505 */ 506 if (se_nacl) { 507 se_sess->se_node_acl = NULL; 508 target_put_nacl(se_nacl); 509 } 510 if (se_sess->sess_cmd_map) { 511 percpu_ida_destroy(&se_sess->sess_tag_pool); 512 kvfree(se_sess->sess_cmd_map); 513 } 514 kmem_cache_free(se_sess_cache, se_sess); 515 } 516 EXPORT_SYMBOL(transport_free_session); 517 518 void transport_deregister_session(struct se_session *se_sess) 519 { 520 struct se_portal_group *se_tpg = se_sess->se_tpg; 521 const struct target_core_fabric_ops *se_tfo; 522 struct se_node_acl *se_nacl; 523 unsigned long flags; 524 bool drop_nacl = false; 525 526 if (!se_tpg) { 527 transport_free_session(se_sess); 528 return; 529 } 530 se_tfo = se_tpg->se_tpg_tfo; 531 532 spin_lock_irqsave(&se_tpg->session_lock, flags); 533 list_del(&se_sess->sess_list); 534 se_sess->se_tpg = NULL; 535 se_sess->fabric_sess_ptr = NULL; 536 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 537 538 /* 539 * Determine if we need to do extra work for this initiator node's 540 * struct se_node_acl if it had been previously dynamically generated. 541 */ 542 se_nacl = se_sess->se_node_acl; 543 544 mutex_lock(&se_tpg->acl_node_mutex); 545 if (se_nacl && se_nacl->dynamic_node_acl) { 546 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 547 list_del(&se_nacl->acl_list); 548 drop_nacl = true; 549 } 550 } 551 mutex_unlock(&se_tpg->acl_node_mutex); 552 553 if (drop_nacl) { 554 core_tpg_wait_for_nacl_pr_ref(se_nacl); 555 core_free_device_list_for_node(se_nacl, se_tpg); 556 se_sess->se_node_acl = NULL; 557 kfree(se_nacl); 558 } 559 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 560 se_tpg->se_tpg_tfo->get_fabric_name()); 561 /* 562 * If last kref is dropping now for an explicit NodeACL, awake sleeping 563 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 564 * removal context from within transport_free_session() code. 565 */ 566 567 transport_free_session(se_sess); 568 } 569 EXPORT_SYMBOL(transport_deregister_session); 570 571 static void target_remove_from_state_list(struct se_cmd *cmd) 572 { 573 struct se_device *dev = cmd->se_dev; 574 unsigned long flags; 575 576 if (!dev) 577 return; 578 579 if (cmd->transport_state & CMD_T_BUSY) 580 return; 581 582 spin_lock_irqsave(&dev->execute_task_lock, flags); 583 if (cmd->state_active) { 584 list_del(&cmd->state_list); 585 cmd->state_active = false; 586 } 587 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 588 } 589 590 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists, 591 bool write_pending) 592 { 593 unsigned long flags; 594 595 if (remove_from_lists) { 596 target_remove_from_state_list(cmd); 597 598 /* 599 * Clear struct se_cmd->se_lun before the handoff to FE. 600 */ 601 cmd->se_lun = NULL; 602 } 603 604 spin_lock_irqsave(&cmd->t_state_lock, flags); 605 if (write_pending) 606 cmd->t_state = TRANSPORT_WRITE_PENDING; 607 608 /* 609 * Determine if frontend context caller is requesting the stopping of 610 * this command for frontend exceptions. 611 */ 612 if (cmd->transport_state & CMD_T_STOP) { 613 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 614 __func__, __LINE__, cmd->tag); 615 616 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 617 618 complete_all(&cmd->t_transport_stop_comp); 619 return 1; 620 } 621 622 cmd->transport_state &= ~CMD_T_ACTIVE; 623 if (remove_from_lists) { 624 /* 625 * Some fabric modules like tcm_loop can release 626 * their internally allocated I/O reference now and 627 * struct se_cmd now. 628 * 629 * Fabric modules are expected to return '1' here if the 630 * se_cmd being passed is released at this point, 631 * or zero if not being released. 632 */ 633 if (cmd->se_tfo->check_stop_free != NULL) { 634 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 635 return cmd->se_tfo->check_stop_free(cmd); 636 } 637 } 638 639 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 640 return 0; 641 } 642 643 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 644 { 645 return transport_cmd_check_stop(cmd, true, false); 646 } 647 648 static void transport_lun_remove_cmd(struct se_cmd *cmd) 649 { 650 struct se_lun *lun = cmd->se_lun; 651 652 if (!lun) 653 return; 654 655 if (cmpxchg(&cmd->lun_ref_active, true, false)) 656 percpu_ref_put(&lun->lun_ref); 657 } 658 659 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove) 660 { 661 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF); 662 663 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) 664 transport_lun_remove_cmd(cmd); 665 /* 666 * Allow the fabric driver to unmap any resources before 667 * releasing the descriptor via TFO->release_cmd() 668 */ 669 if (remove) 670 cmd->se_tfo->aborted_task(cmd); 671 672 if (transport_cmd_check_stop_to_fabric(cmd)) 673 return; 674 if (remove && ack_kref) 675 transport_put_cmd(cmd); 676 } 677 678 static void target_complete_failure_work(struct work_struct *work) 679 { 680 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 681 682 transport_generic_request_failure(cmd, 683 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 684 } 685 686 /* 687 * Used when asking transport to copy Sense Data from the underlying 688 * Linux/SCSI struct scsi_cmnd 689 */ 690 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 691 { 692 struct se_device *dev = cmd->se_dev; 693 694 WARN_ON(!cmd->se_lun); 695 696 if (!dev) 697 return NULL; 698 699 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 700 return NULL; 701 702 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 703 704 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 705 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 706 return cmd->sense_buffer; 707 } 708 709 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 710 { 711 struct se_device *dev = cmd->se_dev; 712 int success = scsi_status == GOOD; 713 unsigned long flags; 714 715 cmd->scsi_status = scsi_status; 716 717 718 spin_lock_irqsave(&cmd->t_state_lock, flags); 719 cmd->transport_state &= ~CMD_T_BUSY; 720 721 if (dev && dev->transport->transport_complete) { 722 dev->transport->transport_complete(cmd, 723 cmd->t_data_sg, 724 transport_get_sense_buffer(cmd)); 725 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 726 success = 1; 727 } 728 729 /* 730 * Check for case where an explicit ABORT_TASK has been received 731 * and transport_wait_for_tasks() will be waiting for completion.. 732 */ 733 if (cmd->transport_state & CMD_T_ABORTED || 734 cmd->transport_state & CMD_T_STOP) { 735 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 736 complete_all(&cmd->t_transport_stop_comp); 737 return; 738 } else if (!success) { 739 INIT_WORK(&cmd->work, target_complete_failure_work); 740 } else { 741 INIT_WORK(&cmd->work, target_complete_ok_work); 742 } 743 744 cmd->t_state = TRANSPORT_COMPLETE; 745 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 746 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 747 748 if (cmd->se_cmd_flags & SCF_USE_CPUID) 749 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work); 750 else 751 queue_work(target_completion_wq, &cmd->work); 752 } 753 EXPORT_SYMBOL(target_complete_cmd); 754 755 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length) 756 { 757 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) { 758 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 759 cmd->residual_count += cmd->data_length - length; 760 } else { 761 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 762 cmd->residual_count = cmd->data_length - length; 763 } 764 765 cmd->data_length = length; 766 } 767 768 target_complete_cmd(cmd, scsi_status); 769 } 770 EXPORT_SYMBOL(target_complete_cmd_with_length); 771 772 static void target_add_to_state_list(struct se_cmd *cmd) 773 { 774 struct se_device *dev = cmd->se_dev; 775 unsigned long flags; 776 777 spin_lock_irqsave(&dev->execute_task_lock, flags); 778 if (!cmd->state_active) { 779 list_add_tail(&cmd->state_list, &dev->state_list); 780 cmd->state_active = true; 781 } 782 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 783 } 784 785 /* 786 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 787 */ 788 static void transport_write_pending_qf(struct se_cmd *cmd); 789 static void transport_complete_qf(struct se_cmd *cmd); 790 791 void target_qf_do_work(struct work_struct *work) 792 { 793 struct se_device *dev = container_of(work, struct se_device, 794 qf_work_queue); 795 LIST_HEAD(qf_cmd_list); 796 struct se_cmd *cmd, *cmd_tmp; 797 798 spin_lock_irq(&dev->qf_cmd_lock); 799 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 800 spin_unlock_irq(&dev->qf_cmd_lock); 801 802 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 803 list_del(&cmd->se_qf_node); 804 atomic_dec_mb(&dev->dev_qf_count); 805 806 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 807 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd, 808 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 809 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 810 : "UNKNOWN"); 811 812 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 813 transport_write_pending_qf(cmd); 814 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) 815 transport_complete_qf(cmd); 816 } 817 } 818 819 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 820 { 821 switch (cmd->data_direction) { 822 case DMA_NONE: 823 return "NONE"; 824 case DMA_FROM_DEVICE: 825 return "READ"; 826 case DMA_TO_DEVICE: 827 return "WRITE"; 828 case DMA_BIDIRECTIONAL: 829 return "BIDI"; 830 default: 831 break; 832 } 833 834 return "UNKNOWN"; 835 } 836 837 void transport_dump_dev_state( 838 struct se_device *dev, 839 char *b, 840 int *bl) 841 { 842 *bl += sprintf(b + *bl, "Status: "); 843 if (dev->export_count) 844 *bl += sprintf(b + *bl, "ACTIVATED"); 845 else 846 *bl += sprintf(b + *bl, "DEACTIVATED"); 847 848 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 849 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 850 dev->dev_attrib.block_size, 851 dev->dev_attrib.hw_max_sectors); 852 *bl += sprintf(b + *bl, " "); 853 } 854 855 void transport_dump_vpd_proto_id( 856 struct t10_vpd *vpd, 857 unsigned char *p_buf, 858 int p_buf_len) 859 { 860 unsigned char buf[VPD_TMP_BUF_SIZE]; 861 int len; 862 863 memset(buf, 0, VPD_TMP_BUF_SIZE); 864 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 865 866 switch (vpd->protocol_identifier) { 867 case 0x00: 868 sprintf(buf+len, "Fibre Channel\n"); 869 break; 870 case 0x10: 871 sprintf(buf+len, "Parallel SCSI\n"); 872 break; 873 case 0x20: 874 sprintf(buf+len, "SSA\n"); 875 break; 876 case 0x30: 877 sprintf(buf+len, "IEEE 1394\n"); 878 break; 879 case 0x40: 880 sprintf(buf+len, "SCSI Remote Direct Memory Access" 881 " Protocol\n"); 882 break; 883 case 0x50: 884 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 885 break; 886 case 0x60: 887 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 888 break; 889 case 0x70: 890 sprintf(buf+len, "Automation/Drive Interface Transport" 891 " Protocol\n"); 892 break; 893 case 0x80: 894 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 895 break; 896 default: 897 sprintf(buf+len, "Unknown 0x%02x\n", 898 vpd->protocol_identifier); 899 break; 900 } 901 902 if (p_buf) 903 strncpy(p_buf, buf, p_buf_len); 904 else 905 pr_debug("%s", buf); 906 } 907 908 void 909 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 910 { 911 /* 912 * Check if the Protocol Identifier Valid (PIV) bit is set.. 913 * 914 * from spc3r23.pdf section 7.5.1 915 */ 916 if (page_83[1] & 0x80) { 917 vpd->protocol_identifier = (page_83[0] & 0xf0); 918 vpd->protocol_identifier_set = 1; 919 transport_dump_vpd_proto_id(vpd, NULL, 0); 920 } 921 } 922 EXPORT_SYMBOL(transport_set_vpd_proto_id); 923 924 int transport_dump_vpd_assoc( 925 struct t10_vpd *vpd, 926 unsigned char *p_buf, 927 int p_buf_len) 928 { 929 unsigned char buf[VPD_TMP_BUF_SIZE]; 930 int ret = 0; 931 int len; 932 933 memset(buf, 0, VPD_TMP_BUF_SIZE); 934 len = sprintf(buf, "T10 VPD Identifier Association: "); 935 936 switch (vpd->association) { 937 case 0x00: 938 sprintf(buf+len, "addressed logical unit\n"); 939 break; 940 case 0x10: 941 sprintf(buf+len, "target port\n"); 942 break; 943 case 0x20: 944 sprintf(buf+len, "SCSI target device\n"); 945 break; 946 default: 947 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 948 ret = -EINVAL; 949 break; 950 } 951 952 if (p_buf) 953 strncpy(p_buf, buf, p_buf_len); 954 else 955 pr_debug("%s", buf); 956 957 return ret; 958 } 959 960 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 961 { 962 /* 963 * The VPD identification association.. 964 * 965 * from spc3r23.pdf Section 7.6.3.1 Table 297 966 */ 967 vpd->association = (page_83[1] & 0x30); 968 return transport_dump_vpd_assoc(vpd, NULL, 0); 969 } 970 EXPORT_SYMBOL(transport_set_vpd_assoc); 971 972 int transport_dump_vpd_ident_type( 973 struct t10_vpd *vpd, 974 unsigned char *p_buf, 975 int p_buf_len) 976 { 977 unsigned char buf[VPD_TMP_BUF_SIZE]; 978 int ret = 0; 979 int len; 980 981 memset(buf, 0, VPD_TMP_BUF_SIZE); 982 len = sprintf(buf, "T10 VPD Identifier Type: "); 983 984 switch (vpd->device_identifier_type) { 985 case 0x00: 986 sprintf(buf+len, "Vendor specific\n"); 987 break; 988 case 0x01: 989 sprintf(buf+len, "T10 Vendor ID based\n"); 990 break; 991 case 0x02: 992 sprintf(buf+len, "EUI-64 based\n"); 993 break; 994 case 0x03: 995 sprintf(buf+len, "NAA\n"); 996 break; 997 case 0x04: 998 sprintf(buf+len, "Relative target port identifier\n"); 999 break; 1000 case 0x08: 1001 sprintf(buf+len, "SCSI name string\n"); 1002 break; 1003 default: 1004 sprintf(buf+len, "Unsupported: 0x%02x\n", 1005 vpd->device_identifier_type); 1006 ret = -EINVAL; 1007 break; 1008 } 1009 1010 if (p_buf) { 1011 if (p_buf_len < strlen(buf)+1) 1012 return -EINVAL; 1013 strncpy(p_buf, buf, p_buf_len); 1014 } else { 1015 pr_debug("%s", buf); 1016 } 1017 1018 return ret; 1019 } 1020 1021 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 1022 { 1023 /* 1024 * The VPD identifier type.. 1025 * 1026 * from spc3r23.pdf Section 7.6.3.1 Table 298 1027 */ 1028 vpd->device_identifier_type = (page_83[1] & 0x0f); 1029 return transport_dump_vpd_ident_type(vpd, NULL, 0); 1030 } 1031 EXPORT_SYMBOL(transport_set_vpd_ident_type); 1032 1033 int transport_dump_vpd_ident( 1034 struct t10_vpd *vpd, 1035 unsigned char *p_buf, 1036 int p_buf_len) 1037 { 1038 unsigned char buf[VPD_TMP_BUF_SIZE]; 1039 int ret = 0; 1040 1041 memset(buf, 0, VPD_TMP_BUF_SIZE); 1042 1043 switch (vpd->device_identifier_code_set) { 1044 case 0x01: /* Binary */ 1045 snprintf(buf, sizeof(buf), 1046 "T10 VPD Binary Device Identifier: %s\n", 1047 &vpd->device_identifier[0]); 1048 break; 1049 case 0x02: /* ASCII */ 1050 snprintf(buf, sizeof(buf), 1051 "T10 VPD ASCII Device Identifier: %s\n", 1052 &vpd->device_identifier[0]); 1053 break; 1054 case 0x03: /* UTF-8 */ 1055 snprintf(buf, sizeof(buf), 1056 "T10 VPD UTF-8 Device Identifier: %s\n", 1057 &vpd->device_identifier[0]); 1058 break; 1059 default: 1060 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 1061 " 0x%02x", vpd->device_identifier_code_set); 1062 ret = -EINVAL; 1063 break; 1064 } 1065 1066 if (p_buf) 1067 strncpy(p_buf, buf, p_buf_len); 1068 else 1069 pr_debug("%s", buf); 1070 1071 return ret; 1072 } 1073 1074 int 1075 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 1076 { 1077 static const char hex_str[] = "0123456789abcdef"; 1078 int j = 0, i = 4; /* offset to start of the identifier */ 1079 1080 /* 1081 * The VPD Code Set (encoding) 1082 * 1083 * from spc3r23.pdf Section 7.6.3.1 Table 296 1084 */ 1085 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 1086 switch (vpd->device_identifier_code_set) { 1087 case 0x01: /* Binary */ 1088 vpd->device_identifier[j++] = 1089 hex_str[vpd->device_identifier_type]; 1090 while (i < (4 + page_83[3])) { 1091 vpd->device_identifier[j++] = 1092 hex_str[(page_83[i] & 0xf0) >> 4]; 1093 vpd->device_identifier[j++] = 1094 hex_str[page_83[i] & 0x0f]; 1095 i++; 1096 } 1097 break; 1098 case 0x02: /* ASCII */ 1099 case 0x03: /* UTF-8 */ 1100 while (i < (4 + page_83[3])) 1101 vpd->device_identifier[j++] = page_83[i++]; 1102 break; 1103 default: 1104 break; 1105 } 1106 1107 return transport_dump_vpd_ident(vpd, NULL, 0); 1108 } 1109 EXPORT_SYMBOL(transport_set_vpd_ident); 1110 1111 static sense_reason_t 1112 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev, 1113 unsigned int size) 1114 { 1115 u32 mtl; 1116 1117 if (!cmd->se_tfo->max_data_sg_nents) 1118 return TCM_NO_SENSE; 1119 /* 1120 * Check if fabric enforced maximum SGL entries per I/O descriptor 1121 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT + 1122 * residual_count and reduce original cmd->data_length to maximum 1123 * length based on single PAGE_SIZE entry scatter-lists. 1124 */ 1125 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE); 1126 if (cmd->data_length > mtl) { 1127 /* 1128 * If an existing CDB overflow is present, calculate new residual 1129 * based on CDB size minus fabric maximum transfer length. 1130 * 1131 * If an existing CDB underflow is present, calculate new residual 1132 * based on original cmd->data_length minus fabric maximum transfer 1133 * length. 1134 * 1135 * Otherwise, set the underflow residual based on cmd->data_length 1136 * minus fabric maximum transfer length. 1137 */ 1138 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1139 cmd->residual_count = (size - mtl); 1140 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 1141 u32 orig_dl = size + cmd->residual_count; 1142 cmd->residual_count = (orig_dl - mtl); 1143 } else { 1144 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1145 cmd->residual_count = (cmd->data_length - mtl); 1146 } 1147 cmd->data_length = mtl; 1148 /* 1149 * Reset sbc_check_prot() calculated protection payload 1150 * length based upon the new smaller MTL. 1151 */ 1152 if (cmd->prot_length) { 1153 u32 sectors = (mtl / dev->dev_attrib.block_size); 1154 cmd->prot_length = dev->prot_length * sectors; 1155 } 1156 } 1157 return TCM_NO_SENSE; 1158 } 1159 1160 sense_reason_t 1161 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 1162 { 1163 struct se_device *dev = cmd->se_dev; 1164 1165 if (cmd->unknown_data_length) { 1166 cmd->data_length = size; 1167 } else if (size != cmd->data_length) { 1168 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:" 1169 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 1170 " 0x%02x\n", cmd->se_tfo->get_fabric_name(), 1171 cmd->data_length, size, cmd->t_task_cdb[0]); 1172 1173 if (cmd->data_direction == DMA_TO_DEVICE && 1174 cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) { 1175 pr_err("Rejecting underflow/overflow WRITE data\n"); 1176 return TCM_INVALID_CDB_FIELD; 1177 } 1178 /* 1179 * Reject READ_* or WRITE_* with overflow/underflow for 1180 * type SCF_SCSI_DATA_CDB. 1181 */ 1182 if (dev->dev_attrib.block_size != 512) { 1183 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 1184 " CDB on non 512-byte sector setup subsystem" 1185 " plugin: %s\n", dev->transport->name); 1186 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 1187 return TCM_INVALID_CDB_FIELD; 1188 } 1189 /* 1190 * For the overflow case keep the existing fabric provided 1191 * ->data_length. Otherwise for the underflow case, reset 1192 * ->data_length to the smaller SCSI expected data transfer 1193 * length. 1194 */ 1195 if (size > cmd->data_length) { 1196 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1197 cmd->residual_count = (size - cmd->data_length); 1198 } else { 1199 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1200 cmd->residual_count = (cmd->data_length - size); 1201 cmd->data_length = size; 1202 } 1203 } 1204 1205 return target_check_max_data_sg_nents(cmd, dev, size); 1206 1207 } 1208 1209 /* 1210 * Used by fabric modules containing a local struct se_cmd within their 1211 * fabric dependent per I/O descriptor. 1212 * 1213 * Preserves the value of @cmd->tag. 1214 */ 1215 void transport_init_se_cmd( 1216 struct se_cmd *cmd, 1217 const struct target_core_fabric_ops *tfo, 1218 struct se_session *se_sess, 1219 u32 data_length, 1220 int data_direction, 1221 int task_attr, 1222 unsigned char *sense_buffer) 1223 { 1224 INIT_LIST_HEAD(&cmd->se_delayed_node); 1225 INIT_LIST_HEAD(&cmd->se_qf_node); 1226 INIT_LIST_HEAD(&cmd->se_cmd_list); 1227 INIT_LIST_HEAD(&cmd->state_list); 1228 init_completion(&cmd->t_transport_stop_comp); 1229 init_completion(&cmd->cmd_wait_comp); 1230 spin_lock_init(&cmd->t_state_lock); 1231 kref_init(&cmd->cmd_kref); 1232 cmd->transport_state = CMD_T_DEV_ACTIVE; 1233 1234 cmd->se_tfo = tfo; 1235 cmd->se_sess = se_sess; 1236 cmd->data_length = data_length; 1237 cmd->data_direction = data_direction; 1238 cmd->sam_task_attr = task_attr; 1239 cmd->sense_buffer = sense_buffer; 1240 1241 cmd->state_active = false; 1242 } 1243 EXPORT_SYMBOL(transport_init_se_cmd); 1244 1245 static sense_reason_t 1246 transport_check_alloc_task_attr(struct se_cmd *cmd) 1247 { 1248 struct se_device *dev = cmd->se_dev; 1249 1250 /* 1251 * Check if SAM Task Attribute emulation is enabled for this 1252 * struct se_device storage object 1253 */ 1254 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1255 return 0; 1256 1257 if (cmd->sam_task_attr == TCM_ACA_TAG) { 1258 pr_debug("SAM Task Attribute ACA" 1259 " emulation is not supported\n"); 1260 return TCM_INVALID_CDB_FIELD; 1261 } 1262 1263 return 0; 1264 } 1265 1266 sense_reason_t 1267 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb) 1268 { 1269 struct se_device *dev = cmd->se_dev; 1270 sense_reason_t ret; 1271 1272 /* 1273 * Ensure that the received CDB is less than the max (252 + 8) bytes 1274 * for VARIABLE_LENGTH_CMD 1275 */ 1276 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1277 pr_err("Received SCSI CDB with command_size: %d that" 1278 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1279 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1280 return TCM_INVALID_CDB_FIELD; 1281 } 1282 /* 1283 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1284 * allocate the additional extended CDB buffer now.. Otherwise 1285 * setup the pointer from __t_task_cdb to t_task_cdb. 1286 */ 1287 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1288 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1289 GFP_KERNEL); 1290 if (!cmd->t_task_cdb) { 1291 pr_err("Unable to allocate cmd->t_task_cdb" 1292 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1293 scsi_command_size(cdb), 1294 (unsigned long)sizeof(cmd->__t_task_cdb)); 1295 return TCM_OUT_OF_RESOURCES; 1296 } 1297 } else 1298 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1299 /* 1300 * Copy the original CDB into cmd-> 1301 */ 1302 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1303 1304 trace_target_sequencer_start(cmd); 1305 1306 /* 1307 * Check for an existing UNIT ATTENTION condition 1308 */ 1309 ret = target_scsi3_ua_check(cmd); 1310 if (ret) 1311 return ret; 1312 1313 ret = target_alua_state_check(cmd); 1314 if (ret) 1315 return ret; 1316 1317 ret = target_check_reservation(cmd); 1318 if (ret) { 1319 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1320 return ret; 1321 } 1322 1323 ret = dev->transport->parse_cdb(cmd); 1324 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE) 1325 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n", 1326 cmd->se_tfo->get_fabric_name(), 1327 cmd->se_sess->se_node_acl->initiatorname, 1328 cmd->t_task_cdb[0]); 1329 if (ret) 1330 return ret; 1331 1332 ret = transport_check_alloc_task_attr(cmd); 1333 if (ret) 1334 return ret; 1335 1336 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1337 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus); 1338 return 0; 1339 } 1340 EXPORT_SYMBOL(target_setup_cmd_from_cdb); 1341 1342 /* 1343 * Used by fabric module frontends to queue tasks directly. 1344 * May only be used from process context. 1345 */ 1346 int transport_handle_cdb_direct( 1347 struct se_cmd *cmd) 1348 { 1349 sense_reason_t ret; 1350 1351 if (!cmd->se_lun) { 1352 dump_stack(); 1353 pr_err("cmd->se_lun is NULL\n"); 1354 return -EINVAL; 1355 } 1356 if (in_interrupt()) { 1357 dump_stack(); 1358 pr_err("transport_generic_handle_cdb cannot be called" 1359 " from interrupt context\n"); 1360 return -EINVAL; 1361 } 1362 /* 1363 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1364 * outstanding descriptors are handled correctly during shutdown via 1365 * transport_wait_for_tasks() 1366 * 1367 * Also, we don't take cmd->t_state_lock here as we only expect 1368 * this to be called for initial descriptor submission. 1369 */ 1370 cmd->t_state = TRANSPORT_NEW_CMD; 1371 cmd->transport_state |= CMD_T_ACTIVE; 1372 1373 /* 1374 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1375 * so follow TRANSPORT_NEW_CMD processing thread context usage 1376 * and call transport_generic_request_failure() if necessary.. 1377 */ 1378 ret = transport_generic_new_cmd(cmd); 1379 if (ret) 1380 transport_generic_request_failure(cmd, ret); 1381 return 0; 1382 } 1383 EXPORT_SYMBOL(transport_handle_cdb_direct); 1384 1385 sense_reason_t 1386 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1387 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1388 { 1389 if (!sgl || !sgl_count) 1390 return 0; 1391 1392 /* 1393 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1394 * scatterlists already have been set to follow what the fabric 1395 * passes for the original expected data transfer length. 1396 */ 1397 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1398 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1399 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1400 return TCM_INVALID_CDB_FIELD; 1401 } 1402 1403 cmd->t_data_sg = sgl; 1404 cmd->t_data_nents = sgl_count; 1405 cmd->t_bidi_data_sg = sgl_bidi; 1406 cmd->t_bidi_data_nents = sgl_bidi_count; 1407 1408 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1409 return 0; 1410 } 1411 1412 /* 1413 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized 1414 * se_cmd + use pre-allocated SGL memory. 1415 * 1416 * @se_cmd: command descriptor to submit 1417 * @se_sess: associated se_sess for endpoint 1418 * @cdb: pointer to SCSI CDB 1419 * @sense: pointer to SCSI sense buffer 1420 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1421 * @data_length: fabric expected data transfer length 1422 * @task_addr: SAM task attribute 1423 * @data_dir: DMA data direction 1424 * @flags: flags for command submission from target_sc_flags_tables 1425 * @sgl: struct scatterlist memory for unidirectional mapping 1426 * @sgl_count: scatterlist count for unidirectional mapping 1427 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1428 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1429 * @sgl_prot: struct scatterlist memory protection information 1430 * @sgl_prot_count: scatterlist count for protection information 1431 * 1432 * Task tags are supported if the caller has set @se_cmd->tag. 1433 * 1434 * Returns non zero to signal active I/O shutdown failure. All other 1435 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1436 * but still return zero here. 1437 * 1438 * This may only be called from process context, and also currently 1439 * assumes internal allocation of fabric payload buffer by target-core. 1440 */ 1441 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, 1442 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1443 u32 data_length, int task_attr, int data_dir, int flags, 1444 struct scatterlist *sgl, u32 sgl_count, 1445 struct scatterlist *sgl_bidi, u32 sgl_bidi_count, 1446 struct scatterlist *sgl_prot, u32 sgl_prot_count) 1447 { 1448 struct se_portal_group *se_tpg; 1449 sense_reason_t rc; 1450 int ret; 1451 1452 se_tpg = se_sess->se_tpg; 1453 BUG_ON(!se_tpg); 1454 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1455 BUG_ON(in_interrupt()); 1456 /* 1457 * Initialize se_cmd for target operation. From this point 1458 * exceptions are handled by sending exception status via 1459 * target_core_fabric_ops->queue_status() callback 1460 */ 1461 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1462 data_length, data_dir, task_attr, sense); 1463 1464 if (flags & TARGET_SCF_USE_CPUID) 1465 se_cmd->se_cmd_flags |= SCF_USE_CPUID; 1466 else 1467 se_cmd->cpuid = WORK_CPU_UNBOUND; 1468 1469 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1470 se_cmd->unknown_data_length = 1; 1471 /* 1472 * Obtain struct se_cmd->cmd_kref reference and add new cmd to 1473 * se_sess->sess_cmd_list. A second kref_get here is necessary 1474 * for fabrics using TARGET_SCF_ACK_KREF that expect a second 1475 * kref_put() to happen during fabric packet acknowledgement. 1476 */ 1477 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1478 if (ret) 1479 return ret; 1480 /* 1481 * Signal bidirectional data payloads to target-core 1482 */ 1483 if (flags & TARGET_SCF_BIDI_OP) 1484 se_cmd->se_cmd_flags |= SCF_BIDI; 1485 /* 1486 * Locate se_lun pointer and attach it to struct se_cmd 1487 */ 1488 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun); 1489 if (rc) { 1490 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1491 target_put_sess_cmd(se_cmd); 1492 return 0; 1493 } 1494 1495 rc = target_setup_cmd_from_cdb(se_cmd, cdb); 1496 if (rc != 0) { 1497 transport_generic_request_failure(se_cmd, rc); 1498 return 0; 1499 } 1500 1501 /* 1502 * Save pointers for SGLs containing protection information, 1503 * if present. 1504 */ 1505 if (sgl_prot_count) { 1506 se_cmd->t_prot_sg = sgl_prot; 1507 se_cmd->t_prot_nents = sgl_prot_count; 1508 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC; 1509 } 1510 1511 /* 1512 * When a non zero sgl_count has been passed perform SGL passthrough 1513 * mapping for pre-allocated fabric memory instead of having target 1514 * core perform an internal SGL allocation.. 1515 */ 1516 if (sgl_count != 0) { 1517 BUG_ON(!sgl); 1518 1519 /* 1520 * A work-around for tcm_loop as some userspace code via 1521 * scsi-generic do not memset their associated read buffers, 1522 * so go ahead and do that here for type non-data CDBs. Also 1523 * note that this is currently guaranteed to be a single SGL 1524 * for this case by target core in target_setup_cmd_from_cdb() 1525 * -> transport_generic_cmd_sequencer(). 1526 */ 1527 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1528 se_cmd->data_direction == DMA_FROM_DEVICE) { 1529 unsigned char *buf = NULL; 1530 1531 if (sgl) 1532 buf = kmap(sg_page(sgl)) + sgl->offset; 1533 1534 if (buf) { 1535 memset(buf, 0, sgl->length); 1536 kunmap(sg_page(sgl)); 1537 } 1538 } 1539 1540 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1541 sgl_bidi, sgl_bidi_count); 1542 if (rc != 0) { 1543 transport_generic_request_failure(se_cmd, rc); 1544 return 0; 1545 } 1546 } 1547 1548 /* 1549 * Check if we need to delay processing because of ALUA 1550 * Active/NonOptimized primary access state.. 1551 */ 1552 core_alua_check_nonop_delay(se_cmd); 1553 1554 transport_handle_cdb_direct(se_cmd); 1555 return 0; 1556 } 1557 EXPORT_SYMBOL(target_submit_cmd_map_sgls); 1558 1559 /* 1560 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1561 * 1562 * @se_cmd: command descriptor to submit 1563 * @se_sess: associated se_sess for endpoint 1564 * @cdb: pointer to SCSI CDB 1565 * @sense: pointer to SCSI sense buffer 1566 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1567 * @data_length: fabric expected data transfer length 1568 * @task_addr: SAM task attribute 1569 * @data_dir: DMA data direction 1570 * @flags: flags for command submission from target_sc_flags_tables 1571 * 1572 * Task tags are supported if the caller has set @se_cmd->tag. 1573 * 1574 * Returns non zero to signal active I/O shutdown failure. All other 1575 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1576 * but still return zero here. 1577 * 1578 * This may only be called from process context, and also currently 1579 * assumes internal allocation of fabric payload buffer by target-core. 1580 * 1581 * It also assumes interal target core SGL memory allocation. 1582 */ 1583 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1584 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1585 u32 data_length, int task_attr, int data_dir, int flags) 1586 { 1587 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, 1588 unpacked_lun, data_length, task_attr, data_dir, 1589 flags, NULL, 0, NULL, 0, NULL, 0); 1590 } 1591 EXPORT_SYMBOL(target_submit_cmd); 1592 1593 static void target_complete_tmr_failure(struct work_struct *work) 1594 { 1595 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1596 1597 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1598 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1599 1600 transport_cmd_check_stop_to_fabric(se_cmd); 1601 } 1602 1603 /** 1604 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1605 * for TMR CDBs 1606 * 1607 * @se_cmd: command descriptor to submit 1608 * @se_sess: associated se_sess for endpoint 1609 * @sense: pointer to SCSI sense buffer 1610 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1611 * @fabric_context: fabric context for TMR req 1612 * @tm_type: Type of TM request 1613 * @gfp: gfp type for caller 1614 * @tag: referenced task tag for TMR_ABORT_TASK 1615 * @flags: submit cmd flags 1616 * 1617 * Callable from all contexts. 1618 **/ 1619 1620 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1621 unsigned char *sense, u64 unpacked_lun, 1622 void *fabric_tmr_ptr, unsigned char tm_type, 1623 gfp_t gfp, u64 tag, int flags) 1624 { 1625 struct se_portal_group *se_tpg; 1626 int ret; 1627 1628 se_tpg = se_sess->se_tpg; 1629 BUG_ON(!se_tpg); 1630 1631 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1632 0, DMA_NONE, TCM_SIMPLE_TAG, sense); 1633 /* 1634 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1635 * allocation failure. 1636 */ 1637 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1638 if (ret < 0) 1639 return -ENOMEM; 1640 1641 if (tm_type == TMR_ABORT_TASK) 1642 se_cmd->se_tmr_req->ref_task_tag = tag; 1643 1644 /* See target_submit_cmd for commentary */ 1645 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1646 if (ret) { 1647 core_tmr_release_req(se_cmd->se_tmr_req); 1648 return ret; 1649 } 1650 1651 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun); 1652 if (ret) { 1653 /* 1654 * For callback during failure handling, push this work off 1655 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1656 */ 1657 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1658 schedule_work(&se_cmd->work); 1659 return 0; 1660 } 1661 transport_generic_handle_tmr(se_cmd); 1662 return 0; 1663 } 1664 EXPORT_SYMBOL(target_submit_tmr); 1665 1666 /* 1667 * Handle SAM-esque emulation for generic transport request failures. 1668 */ 1669 void transport_generic_request_failure(struct se_cmd *cmd, 1670 sense_reason_t sense_reason) 1671 { 1672 int ret = 0, post_ret = 0; 1673 1674 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx" 1675 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]); 1676 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n", 1677 cmd->se_tfo->get_cmd_state(cmd), 1678 cmd->t_state, sense_reason); 1679 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n", 1680 (cmd->transport_state & CMD_T_ACTIVE) != 0, 1681 (cmd->transport_state & CMD_T_STOP) != 0, 1682 (cmd->transport_state & CMD_T_SENT) != 0); 1683 1684 /* 1685 * For SAM Task Attribute emulation for failed struct se_cmd 1686 */ 1687 transport_complete_task_attr(cmd); 1688 /* 1689 * Handle special case for COMPARE_AND_WRITE failure, where the 1690 * callback is expected to drop the per device ->caw_sem. 1691 */ 1692 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 1693 cmd->transport_complete_callback) 1694 cmd->transport_complete_callback(cmd, false, &post_ret); 1695 1696 switch (sense_reason) { 1697 case TCM_NON_EXISTENT_LUN: 1698 case TCM_UNSUPPORTED_SCSI_OPCODE: 1699 case TCM_INVALID_CDB_FIELD: 1700 case TCM_INVALID_PARAMETER_LIST: 1701 case TCM_PARAMETER_LIST_LENGTH_ERROR: 1702 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1703 case TCM_UNKNOWN_MODE_PAGE: 1704 case TCM_WRITE_PROTECTED: 1705 case TCM_ADDRESS_OUT_OF_RANGE: 1706 case TCM_CHECK_CONDITION_ABORT_CMD: 1707 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1708 case TCM_CHECK_CONDITION_NOT_READY: 1709 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 1710 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 1711 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 1712 break; 1713 case TCM_OUT_OF_RESOURCES: 1714 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1715 break; 1716 case TCM_RESERVATION_CONFLICT: 1717 /* 1718 * No SENSE Data payload for this case, set SCSI Status 1719 * and queue the response to $FABRIC_MOD. 1720 * 1721 * Uses linux/include/scsi/scsi.h SAM status codes defs 1722 */ 1723 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1724 /* 1725 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1726 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1727 * CONFLICT STATUS. 1728 * 1729 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1730 */ 1731 if (cmd->se_sess && 1732 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) { 1733 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 1734 cmd->orig_fe_lun, 0x2C, 1735 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1736 } 1737 trace_target_cmd_complete(cmd); 1738 ret = cmd->se_tfo->queue_status(cmd); 1739 if (ret == -EAGAIN || ret == -ENOMEM) 1740 goto queue_full; 1741 goto check_stop; 1742 default: 1743 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1744 cmd->t_task_cdb[0], sense_reason); 1745 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1746 break; 1747 } 1748 1749 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 1750 if (ret == -EAGAIN || ret == -ENOMEM) 1751 goto queue_full; 1752 1753 check_stop: 1754 transport_lun_remove_cmd(cmd); 1755 transport_cmd_check_stop_to_fabric(cmd); 1756 return; 1757 1758 queue_full: 1759 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 1760 transport_handle_queue_full(cmd, cmd->se_dev); 1761 } 1762 EXPORT_SYMBOL(transport_generic_request_failure); 1763 1764 void __target_execute_cmd(struct se_cmd *cmd) 1765 { 1766 sense_reason_t ret; 1767 1768 if (cmd->execute_cmd) { 1769 ret = cmd->execute_cmd(cmd); 1770 if (ret) { 1771 spin_lock_irq(&cmd->t_state_lock); 1772 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT); 1773 spin_unlock_irq(&cmd->t_state_lock); 1774 1775 transport_generic_request_failure(cmd, ret); 1776 } 1777 } 1778 } 1779 1780 static int target_write_prot_action(struct se_cmd *cmd) 1781 { 1782 u32 sectors; 1783 /* 1784 * Perform WRITE_INSERT of PI using software emulation when backend 1785 * device has PI enabled, if the transport has not already generated 1786 * PI using hardware WRITE_INSERT offload. 1787 */ 1788 switch (cmd->prot_op) { 1789 case TARGET_PROT_DOUT_INSERT: 1790 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT)) 1791 sbc_dif_generate(cmd); 1792 break; 1793 case TARGET_PROT_DOUT_STRIP: 1794 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP) 1795 break; 1796 1797 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size); 1798 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 1799 sectors, 0, cmd->t_prot_sg, 0); 1800 if (unlikely(cmd->pi_err)) { 1801 spin_lock_irq(&cmd->t_state_lock); 1802 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT); 1803 spin_unlock_irq(&cmd->t_state_lock); 1804 transport_generic_request_failure(cmd, cmd->pi_err); 1805 return -1; 1806 } 1807 break; 1808 default: 1809 break; 1810 } 1811 1812 return 0; 1813 } 1814 1815 static bool target_handle_task_attr(struct se_cmd *cmd) 1816 { 1817 struct se_device *dev = cmd->se_dev; 1818 1819 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1820 return false; 1821 1822 /* 1823 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 1824 * to allow the passed struct se_cmd list of tasks to the front of the list. 1825 */ 1826 switch (cmd->sam_task_attr) { 1827 case TCM_HEAD_TAG: 1828 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n", 1829 cmd->t_task_cdb[0]); 1830 return false; 1831 case TCM_ORDERED_TAG: 1832 atomic_inc_mb(&dev->dev_ordered_sync); 1833 1834 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n", 1835 cmd->t_task_cdb[0]); 1836 1837 /* 1838 * Execute an ORDERED command if no other older commands 1839 * exist that need to be completed first. 1840 */ 1841 if (!atomic_read(&dev->simple_cmds)) 1842 return false; 1843 break; 1844 default: 1845 /* 1846 * For SIMPLE and UNTAGGED Task Attribute commands 1847 */ 1848 atomic_inc_mb(&dev->simple_cmds); 1849 break; 1850 } 1851 1852 if (atomic_read(&dev->dev_ordered_sync) == 0) 1853 return false; 1854 1855 spin_lock(&dev->delayed_cmd_lock); 1856 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 1857 spin_unlock(&dev->delayed_cmd_lock); 1858 1859 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn", 1860 cmd->t_task_cdb[0], cmd->sam_task_attr); 1861 return true; 1862 } 1863 1864 static int __transport_check_aborted_status(struct se_cmd *, int); 1865 1866 void target_execute_cmd(struct se_cmd *cmd) 1867 { 1868 /* 1869 * Determine if frontend context caller is requesting the stopping of 1870 * this command for frontend exceptions. 1871 * 1872 * If the received CDB has aleady been aborted stop processing it here. 1873 */ 1874 spin_lock_irq(&cmd->t_state_lock); 1875 if (__transport_check_aborted_status(cmd, 1)) { 1876 spin_unlock_irq(&cmd->t_state_lock); 1877 return; 1878 } 1879 if (cmd->transport_state & CMD_T_STOP) { 1880 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 1881 __func__, __LINE__, cmd->tag); 1882 1883 spin_unlock_irq(&cmd->t_state_lock); 1884 complete_all(&cmd->t_transport_stop_comp); 1885 return; 1886 } 1887 1888 cmd->t_state = TRANSPORT_PROCESSING; 1889 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT; 1890 spin_unlock_irq(&cmd->t_state_lock); 1891 1892 if (target_write_prot_action(cmd)) 1893 return; 1894 1895 if (target_handle_task_attr(cmd)) { 1896 spin_lock_irq(&cmd->t_state_lock); 1897 cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT); 1898 spin_unlock_irq(&cmd->t_state_lock); 1899 return; 1900 } 1901 1902 __target_execute_cmd(cmd); 1903 } 1904 EXPORT_SYMBOL(target_execute_cmd); 1905 1906 /* 1907 * Process all commands up to the last received ORDERED task attribute which 1908 * requires another blocking boundary 1909 */ 1910 static void target_restart_delayed_cmds(struct se_device *dev) 1911 { 1912 for (;;) { 1913 struct se_cmd *cmd; 1914 1915 spin_lock(&dev->delayed_cmd_lock); 1916 if (list_empty(&dev->delayed_cmd_list)) { 1917 spin_unlock(&dev->delayed_cmd_lock); 1918 break; 1919 } 1920 1921 cmd = list_entry(dev->delayed_cmd_list.next, 1922 struct se_cmd, se_delayed_node); 1923 list_del(&cmd->se_delayed_node); 1924 spin_unlock(&dev->delayed_cmd_lock); 1925 1926 __target_execute_cmd(cmd); 1927 1928 if (cmd->sam_task_attr == TCM_ORDERED_TAG) 1929 break; 1930 } 1931 } 1932 1933 /* 1934 * Called from I/O completion to determine which dormant/delayed 1935 * and ordered cmds need to have their tasks added to the execution queue. 1936 */ 1937 static void transport_complete_task_attr(struct se_cmd *cmd) 1938 { 1939 struct se_device *dev = cmd->se_dev; 1940 1941 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1942 return; 1943 1944 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) { 1945 atomic_dec_mb(&dev->simple_cmds); 1946 dev->dev_cur_ordered_id++; 1947 pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n", 1948 dev->dev_cur_ordered_id); 1949 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) { 1950 dev->dev_cur_ordered_id++; 1951 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n", 1952 dev->dev_cur_ordered_id); 1953 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) { 1954 atomic_dec_mb(&dev->dev_ordered_sync); 1955 1956 dev->dev_cur_ordered_id++; 1957 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n", 1958 dev->dev_cur_ordered_id); 1959 } 1960 1961 target_restart_delayed_cmds(dev); 1962 } 1963 1964 static void transport_complete_qf(struct se_cmd *cmd) 1965 { 1966 int ret = 0; 1967 1968 transport_complete_task_attr(cmd); 1969 1970 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 1971 trace_target_cmd_complete(cmd); 1972 ret = cmd->se_tfo->queue_status(cmd); 1973 goto out; 1974 } 1975 1976 switch (cmd->data_direction) { 1977 case DMA_FROM_DEVICE: 1978 if (cmd->scsi_status) 1979 goto queue_status; 1980 1981 trace_target_cmd_complete(cmd); 1982 ret = cmd->se_tfo->queue_data_in(cmd); 1983 break; 1984 case DMA_TO_DEVICE: 1985 if (cmd->se_cmd_flags & SCF_BIDI) { 1986 ret = cmd->se_tfo->queue_data_in(cmd); 1987 break; 1988 } 1989 /* Fall through for DMA_TO_DEVICE */ 1990 case DMA_NONE: 1991 queue_status: 1992 trace_target_cmd_complete(cmd); 1993 ret = cmd->se_tfo->queue_status(cmd); 1994 break; 1995 default: 1996 break; 1997 } 1998 1999 out: 2000 if (ret < 0) { 2001 transport_handle_queue_full(cmd, cmd->se_dev); 2002 return; 2003 } 2004 transport_lun_remove_cmd(cmd); 2005 transport_cmd_check_stop_to_fabric(cmd); 2006 } 2007 2008 static void transport_handle_queue_full( 2009 struct se_cmd *cmd, 2010 struct se_device *dev) 2011 { 2012 spin_lock_irq(&dev->qf_cmd_lock); 2013 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 2014 atomic_inc_mb(&dev->dev_qf_count); 2015 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 2016 2017 schedule_work(&cmd->se_dev->qf_work_queue); 2018 } 2019 2020 static bool target_read_prot_action(struct se_cmd *cmd) 2021 { 2022 switch (cmd->prot_op) { 2023 case TARGET_PROT_DIN_STRIP: 2024 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) { 2025 u32 sectors = cmd->data_length >> 2026 ilog2(cmd->se_dev->dev_attrib.block_size); 2027 2028 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 2029 sectors, 0, cmd->t_prot_sg, 2030 0); 2031 if (cmd->pi_err) 2032 return true; 2033 } 2034 break; 2035 case TARGET_PROT_DIN_INSERT: 2036 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT) 2037 break; 2038 2039 sbc_dif_generate(cmd); 2040 break; 2041 default: 2042 break; 2043 } 2044 2045 return false; 2046 } 2047 2048 static void target_complete_ok_work(struct work_struct *work) 2049 { 2050 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2051 int ret; 2052 2053 /* 2054 * Check if we need to move delayed/dormant tasks from cmds on the 2055 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 2056 * Attribute. 2057 */ 2058 transport_complete_task_attr(cmd); 2059 2060 /* 2061 * Check to schedule QUEUE_FULL work, or execute an existing 2062 * cmd->transport_qf_callback() 2063 */ 2064 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 2065 schedule_work(&cmd->se_dev->qf_work_queue); 2066 2067 /* 2068 * Check if we need to send a sense buffer from 2069 * the struct se_cmd in question. 2070 */ 2071 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 2072 WARN_ON(!cmd->scsi_status); 2073 ret = transport_send_check_condition_and_sense( 2074 cmd, 0, 1); 2075 if (ret == -EAGAIN || ret == -ENOMEM) 2076 goto queue_full; 2077 2078 transport_lun_remove_cmd(cmd); 2079 transport_cmd_check_stop_to_fabric(cmd); 2080 return; 2081 } 2082 /* 2083 * Check for a callback, used by amongst other things 2084 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation. 2085 */ 2086 if (cmd->transport_complete_callback) { 2087 sense_reason_t rc; 2088 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE); 2089 bool zero_dl = !(cmd->data_length); 2090 int post_ret = 0; 2091 2092 rc = cmd->transport_complete_callback(cmd, true, &post_ret); 2093 if (!rc && !post_ret) { 2094 if (caw && zero_dl) 2095 goto queue_rsp; 2096 2097 return; 2098 } else if (rc) { 2099 ret = transport_send_check_condition_and_sense(cmd, 2100 rc, 0); 2101 if (ret == -EAGAIN || ret == -ENOMEM) 2102 goto queue_full; 2103 2104 transport_lun_remove_cmd(cmd); 2105 transport_cmd_check_stop_to_fabric(cmd); 2106 return; 2107 } 2108 } 2109 2110 queue_rsp: 2111 switch (cmd->data_direction) { 2112 case DMA_FROM_DEVICE: 2113 if (cmd->scsi_status) 2114 goto queue_status; 2115 2116 atomic_long_add(cmd->data_length, 2117 &cmd->se_lun->lun_stats.tx_data_octets); 2118 /* 2119 * Perform READ_STRIP of PI using software emulation when 2120 * backend had PI enabled, if the transport will not be 2121 * performing hardware READ_STRIP offload. 2122 */ 2123 if (target_read_prot_action(cmd)) { 2124 ret = transport_send_check_condition_and_sense(cmd, 2125 cmd->pi_err, 0); 2126 if (ret == -EAGAIN || ret == -ENOMEM) 2127 goto queue_full; 2128 2129 transport_lun_remove_cmd(cmd); 2130 transport_cmd_check_stop_to_fabric(cmd); 2131 return; 2132 } 2133 2134 trace_target_cmd_complete(cmd); 2135 ret = cmd->se_tfo->queue_data_in(cmd); 2136 if (ret == -EAGAIN || ret == -ENOMEM) 2137 goto queue_full; 2138 break; 2139 case DMA_TO_DEVICE: 2140 atomic_long_add(cmd->data_length, 2141 &cmd->se_lun->lun_stats.rx_data_octets); 2142 /* 2143 * Check if we need to send READ payload for BIDI-COMMAND 2144 */ 2145 if (cmd->se_cmd_flags & SCF_BIDI) { 2146 atomic_long_add(cmd->data_length, 2147 &cmd->se_lun->lun_stats.tx_data_octets); 2148 ret = cmd->se_tfo->queue_data_in(cmd); 2149 if (ret == -EAGAIN || ret == -ENOMEM) 2150 goto queue_full; 2151 break; 2152 } 2153 /* Fall through for DMA_TO_DEVICE */ 2154 case DMA_NONE: 2155 queue_status: 2156 trace_target_cmd_complete(cmd); 2157 ret = cmd->se_tfo->queue_status(cmd); 2158 if (ret == -EAGAIN || ret == -ENOMEM) 2159 goto queue_full; 2160 break; 2161 default: 2162 break; 2163 } 2164 2165 transport_lun_remove_cmd(cmd); 2166 transport_cmd_check_stop_to_fabric(cmd); 2167 return; 2168 2169 queue_full: 2170 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 2171 " data_direction: %d\n", cmd, cmd->data_direction); 2172 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 2173 transport_handle_queue_full(cmd, cmd->se_dev); 2174 } 2175 2176 void target_free_sgl(struct scatterlist *sgl, int nents) 2177 { 2178 struct scatterlist *sg; 2179 int count; 2180 2181 for_each_sg(sgl, sg, nents, count) 2182 __free_page(sg_page(sg)); 2183 2184 kfree(sgl); 2185 } 2186 EXPORT_SYMBOL(target_free_sgl); 2187 2188 static inline void transport_reset_sgl_orig(struct se_cmd *cmd) 2189 { 2190 /* 2191 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE 2192 * emulation, and free + reset pointers if necessary.. 2193 */ 2194 if (!cmd->t_data_sg_orig) 2195 return; 2196 2197 kfree(cmd->t_data_sg); 2198 cmd->t_data_sg = cmd->t_data_sg_orig; 2199 cmd->t_data_sg_orig = NULL; 2200 cmd->t_data_nents = cmd->t_data_nents_orig; 2201 cmd->t_data_nents_orig = 0; 2202 } 2203 2204 static inline void transport_free_pages(struct se_cmd *cmd) 2205 { 2206 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2207 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents); 2208 cmd->t_prot_sg = NULL; 2209 cmd->t_prot_nents = 0; 2210 } 2211 2212 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) { 2213 /* 2214 * Release special case READ buffer payload required for 2215 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE 2216 */ 2217 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) { 2218 target_free_sgl(cmd->t_bidi_data_sg, 2219 cmd->t_bidi_data_nents); 2220 cmd->t_bidi_data_sg = NULL; 2221 cmd->t_bidi_data_nents = 0; 2222 } 2223 transport_reset_sgl_orig(cmd); 2224 return; 2225 } 2226 transport_reset_sgl_orig(cmd); 2227 2228 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 2229 cmd->t_data_sg = NULL; 2230 cmd->t_data_nents = 0; 2231 2232 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 2233 cmd->t_bidi_data_sg = NULL; 2234 cmd->t_bidi_data_nents = 0; 2235 } 2236 2237 /** 2238 * transport_put_cmd - release a reference to a command 2239 * @cmd: command to release 2240 * 2241 * This routine releases our reference to the command and frees it if possible. 2242 */ 2243 static int transport_put_cmd(struct se_cmd *cmd) 2244 { 2245 BUG_ON(!cmd->se_tfo); 2246 /* 2247 * If this cmd has been setup with target_get_sess_cmd(), drop 2248 * the kref and call ->release_cmd() in kref callback. 2249 */ 2250 return target_put_sess_cmd(cmd); 2251 } 2252 2253 void *transport_kmap_data_sg(struct se_cmd *cmd) 2254 { 2255 struct scatterlist *sg = cmd->t_data_sg; 2256 struct page **pages; 2257 int i; 2258 2259 /* 2260 * We need to take into account a possible offset here for fabrics like 2261 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2262 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2263 */ 2264 if (!cmd->t_data_nents) 2265 return NULL; 2266 2267 BUG_ON(!sg); 2268 if (cmd->t_data_nents == 1) 2269 return kmap(sg_page(sg)) + sg->offset; 2270 2271 /* >1 page. use vmap */ 2272 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL); 2273 if (!pages) 2274 return NULL; 2275 2276 /* convert sg[] to pages[] */ 2277 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2278 pages[i] = sg_page(sg); 2279 } 2280 2281 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2282 kfree(pages); 2283 if (!cmd->t_data_vmap) 2284 return NULL; 2285 2286 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2287 } 2288 EXPORT_SYMBOL(transport_kmap_data_sg); 2289 2290 void transport_kunmap_data_sg(struct se_cmd *cmd) 2291 { 2292 if (!cmd->t_data_nents) { 2293 return; 2294 } else if (cmd->t_data_nents == 1) { 2295 kunmap(sg_page(cmd->t_data_sg)); 2296 return; 2297 } 2298 2299 vunmap(cmd->t_data_vmap); 2300 cmd->t_data_vmap = NULL; 2301 } 2302 EXPORT_SYMBOL(transport_kunmap_data_sg); 2303 2304 int 2305 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length, 2306 bool zero_page, bool chainable) 2307 { 2308 struct scatterlist *sg; 2309 struct page *page; 2310 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0; 2311 unsigned int nalloc, nent; 2312 int i = 0; 2313 2314 nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE); 2315 if (chainable) 2316 nalloc++; 2317 sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL); 2318 if (!sg) 2319 return -ENOMEM; 2320 2321 sg_init_table(sg, nalloc); 2322 2323 while (length) { 2324 u32 page_len = min_t(u32, length, PAGE_SIZE); 2325 page = alloc_page(GFP_KERNEL | zero_flag); 2326 if (!page) 2327 goto out; 2328 2329 sg_set_page(&sg[i], page, page_len, 0); 2330 length -= page_len; 2331 i++; 2332 } 2333 *sgl = sg; 2334 *nents = nent; 2335 return 0; 2336 2337 out: 2338 while (i > 0) { 2339 i--; 2340 __free_page(sg_page(&sg[i])); 2341 } 2342 kfree(sg); 2343 return -ENOMEM; 2344 } 2345 EXPORT_SYMBOL(target_alloc_sgl); 2346 2347 /* 2348 * Allocate any required resources to execute the command. For writes we 2349 * might not have the payload yet, so notify the fabric via a call to 2350 * ->write_pending instead. Otherwise place it on the execution queue. 2351 */ 2352 sense_reason_t 2353 transport_generic_new_cmd(struct se_cmd *cmd) 2354 { 2355 int ret = 0; 2356 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB); 2357 2358 if (cmd->prot_op != TARGET_PROT_NORMAL && 2359 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2360 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents, 2361 cmd->prot_length, true, false); 2362 if (ret < 0) 2363 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2364 } 2365 2366 /* 2367 * Determine is the TCM fabric module has already allocated physical 2368 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2369 * beforehand. 2370 */ 2371 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2372 cmd->data_length) { 2373 2374 if ((cmd->se_cmd_flags & SCF_BIDI) || 2375 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) { 2376 u32 bidi_length; 2377 2378 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) 2379 bidi_length = cmd->t_task_nolb * 2380 cmd->se_dev->dev_attrib.block_size; 2381 else 2382 bidi_length = cmd->data_length; 2383 2384 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2385 &cmd->t_bidi_data_nents, 2386 bidi_length, zero_flag, false); 2387 if (ret < 0) 2388 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2389 } 2390 2391 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents, 2392 cmd->data_length, zero_flag, false); 2393 if (ret < 0) 2394 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2395 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 2396 cmd->data_length) { 2397 /* 2398 * Special case for COMPARE_AND_WRITE with fabrics 2399 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC. 2400 */ 2401 u32 caw_length = cmd->t_task_nolb * 2402 cmd->se_dev->dev_attrib.block_size; 2403 2404 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2405 &cmd->t_bidi_data_nents, 2406 caw_length, zero_flag, false); 2407 if (ret < 0) 2408 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2409 } 2410 /* 2411 * If this command is not a write we can execute it right here, 2412 * for write buffers we need to notify the fabric driver first 2413 * and let it call back once the write buffers are ready. 2414 */ 2415 target_add_to_state_list(cmd); 2416 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) { 2417 target_execute_cmd(cmd); 2418 return 0; 2419 } 2420 transport_cmd_check_stop(cmd, false, true); 2421 2422 ret = cmd->se_tfo->write_pending(cmd); 2423 if (ret == -EAGAIN || ret == -ENOMEM) 2424 goto queue_full; 2425 2426 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */ 2427 WARN_ON(ret); 2428 2429 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2430 2431 queue_full: 2432 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2433 cmd->t_state = TRANSPORT_COMPLETE_QF_WP; 2434 transport_handle_queue_full(cmd, cmd->se_dev); 2435 return 0; 2436 } 2437 EXPORT_SYMBOL(transport_generic_new_cmd); 2438 2439 static void transport_write_pending_qf(struct se_cmd *cmd) 2440 { 2441 int ret; 2442 2443 ret = cmd->se_tfo->write_pending(cmd); 2444 if (ret == -EAGAIN || ret == -ENOMEM) { 2445 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2446 cmd); 2447 transport_handle_queue_full(cmd, cmd->se_dev); 2448 } 2449 } 2450 2451 static bool 2452 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *, 2453 unsigned long *flags); 2454 2455 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas) 2456 { 2457 unsigned long flags; 2458 2459 spin_lock_irqsave(&cmd->t_state_lock, flags); 2460 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags); 2461 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2462 } 2463 2464 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2465 { 2466 int ret = 0; 2467 bool aborted = false, tas = false; 2468 2469 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) { 2470 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2471 target_wait_free_cmd(cmd, &aborted, &tas); 2472 2473 if (!aborted || tas) 2474 ret = transport_put_cmd(cmd); 2475 } else { 2476 if (wait_for_tasks) 2477 target_wait_free_cmd(cmd, &aborted, &tas); 2478 /* 2479 * Handle WRITE failure case where transport_generic_new_cmd() 2480 * has already added se_cmd to state_list, but fabric has 2481 * failed command before I/O submission. 2482 */ 2483 if (cmd->state_active) 2484 target_remove_from_state_list(cmd); 2485 2486 if (cmd->se_lun) 2487 transport_lun_remove_cmd(cmd); 2488 2489 if (!aborted || tas) 2490 ret = transport_put_cmd(cmd); 2491 } 2492 /* 2493 * If the task has been internally aborted due to TMR ABORT_TASK 2494 * or LUN_RESET, target_core_tmr.c is responsible for performing 2495 * the remaining calls to target_put_sess_cmd(), and not the 2496 * callers of this function. 2497 */ 2498 if (aborted) { 2499 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag); 2500 wait_for_completion(&cmd->cmd_wait_comp); 2501 cmd->se_tfo->release_cmd(cmd); 2502 ret = 1; 2503 } 2504 return ret; 2505 } 2506 EXPORT_SYMBOL(transport_generic_free_cmd); 2507 2508 /* target_get_sess_cmd - Add command to active ->sess_cmd_list 2509 * @se_cmd: command descriptor to add 2510 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2511 */ 2512 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref) 2513 { 2514 struct se_session *se_sess = se_cmd->se_sess; 2515 unsigned long flags; 2516 int ret = 0; 2517 2518 /* 2519 * Add a second kref if the fabric caller is expecting to handle 2520 * fabric acknowledgement that requires two target_put_sess_cmd() 2521 * invocations before se_cmd descriptor release. 2522 */ 2523 if (ack_kref) 2524 kref_get(&se_cmd->cmd_kref); 2525 2526 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2527 if (se_sess->sess_tearing_down) { 2528 ret = -ESHUTDOWN; 2529 goto out; 2530 } 2531 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); 2532 out: 2533 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2534 2535 if (ret && ack_kref) 2536 target_put_sess_cmd(se_cmd); 2537 2538 return ret; 2539 } 2540 EXPORT_SYMBOL(target_get_sess_cmd); 2541 2542 static void target_free_cmd_mem(struct se_cmd *cmd) 2543 { 2544 transport_free_pages(cmd); 2545 2546 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 2547 core_tmr_release_req(cmd->se_tmr_req); 2548 if (cmd->t_task_cdb != cmd->__t_task_cdb) 2549 kfree(cmd->t_task_cdb); 2550 } 2551 2552 static void target_release_cmd_kref(struct kref *kref) 2553 { 2554 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2555 struct se_session *se_sess = se_cmd->se_sess; 2556 unsigned long flags; 2557 bool fabric_stop; 2558 2559 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2560 if (list_empty(&se_cmd->se_cmd_list)) { 2561 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2562 target_free_cmd_mem(se_cmd); 2563 se_cmd->se_tfo->release_cmd(se_cmd); 2564 return; 2565 } 2566 2567 spin_lock(&se_cmd->t_state_lock); 2568 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP); 2569 spin_unlock(&se_cmd->t_state_lock); 2570 2571 if (se_cmd->cmd_wait_set || fabric_stop) { 2572 list_del_init(&se_cmd->se_cmd_list); 2573 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2574 target_free_cmd_mem(se_cmd); 2575 complete(&se_cmd->cmd_wait_comp); 2576 return; 2577 } 2578 list_del_init(&se_cmd->se_cmd_list); 2579 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2580 2581 target_free_cmd_mem(se_cmd); 2582 se_cmd->se_tfo->release_cmd(se_cmd); 2583 } 2584 2585 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put 2586 * @se_cmd: command descriptor to drop 2587 */ 2588 int target_put_sess_cmd(struct se_cmd *se_cmd) 2589 { 2590 struct se_session *se_sess = se_cmd->se_sess; 2591 2592 if (!se_sess) { 2593 target_free_cmd_mem(se_cmd); 2594 se_cmd->se_tfo->release_cmd(se_cmd); 2595 return 1; 2596 } 2597 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref); 2598 } 2599 EXPORT_SYMBOL(target_put_sess_cmd); 2600 2601 /* target_sess_cmd_list_set_waiting - Flag all commands in 2602 * sess_cmd_list to complete cmd_wait_comp. Set 2603 * sess_tearing_down so no more commands are queued. 2604 * @se_sess: session to flag 2605 */ 2606 void target_sess_cmd_list_set_waiting(struct se_session *se_sess) 2607 { 2608 struct se_cmd *se_cmd; 2609 unsigned long flags; 2610 int rc; 2611 2612 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2613 if (se_sess->sess_tearing_down) { 2614 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2615 return; 2616 } 2617 se_sess->sess_tearing_down = 1; 2618 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list); 2619 2620 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) { 2621 rc = kref_get_unless_zero(&se_cmd->cmd_kref); 2622 if (rc) { 2623 se_cmd->cmd_wait_set = 1; 2624 spin_lock(&se_cmd->t_state_lock); 2625 se_cmd->transport_state |= CMD_T_FABRIC_STOP; 2626 spin_unlock(&se_cmd->t_state_lock); 2627 } 2628 } 2629 2630 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2631 } 2632 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting); 2633 2634 /* target_wait_for_sess_cmds - Wait for outstanding descriptors 2635 * @se_sess: session to wait for active I/O 2636 */ 2637 void target_wait_for_sess_cmds(struct se_session *se_sess) 2638 { 2639 struct se_cmd *se_cmd, *tmp_cmd; 2640 unsigned long flags; 2641 bool tas; 2642 2643 list_for_each_entry_safe(se_cmd, tmp_cmd, 2644 &se_sess->sess_wait_list, se_cmd_list) { 2645 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:" 2646 " %d\n", se_cmd, se_cmd->t_state, 2647 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2648 2649 spin_lock_irqsave(&se_cmd->t_state_lock, flags); 2650 tas = (se_cmd->transport_state & CMD_T_TAS); 2651 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags); 2652 2653 if (!target_put_sess_cmd(se_cmd)) { 2654 if (tas) 2655 target_put_sess_cmd(se_cmd); 2656 } 2657 2658 wait_for_completion(&se_cmd->cmd_wait_comp); 2659 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d" 2660 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2661 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2662 2663 se_cmd->se_tfo->release_cmd(se_cmd); 2664 } 2665 2666 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2667 WARN_ON(!list_empty(&se_sess->sess_cmd_list)); 2668 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2669 2670 } 2671 EXPORT_SYMBOL(target_wait_for_sess_cmds); 2672 2673 void transport_clear_lun_ref(struct se_lun *lun) 2674 { 2675 percpu_ref_kill(&lun->lun_ref); 2676 wait_for_completion(&lun->lun_ref_comp); 2677 } 2678 2679 static bool 2680 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop, 2681 bool *aborted, bool *tas, unsigned long *flags) 2682 __releases(&cmd->t_state_lock) 2683 __acquires(&cmd->t_state_lock) 2684 { 2685 2686 assert_spin_locked(&cmd->t_state_lock); 2687 WARN_ON_ONCE(!irqs_disabled()); 2688 2689 if (fabric_stop) 2690 cmd->transport_state |= CMD_T_FABRIC_STOP; 2691 2692 if (cmd->transport_state & CMD_T_ABORTED) 2693 *aborted = true; 2694 2695 if (cmd->transport_state & CMD_T_TAS) 2696 *tas = true; 2697 2698 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 2699 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2700 return false; 2701 2702 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 2703 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2704 return false; 2705 2706 if (!(cmd->transport_state & CMD_T_ACTIVE)) 2707 return false; 2708 2709 if (fabric_stop && *aborted) 2710 return false; 2711 2712 cmd->transport_state |= CMD_T_STOP; 2713 2714 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d," 2715 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag, 2716 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2717 2718 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 2719 2720 wait_for_completion(&cmd->t_transport_stop_comp); 2721 2722 spin_lock_irqsave(&cmd->t_state_lock, *flags); 2723 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 2724 2725 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->" 2726 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag); 2727 2728 return true; 2729 } 2730 2731 /** 2732 * transport_wait_for_tasks - wait for completion to occur 2733 * @cmd: command to wait 2734 * 2735 * Called from frontend fabric context to wait for storage engine 2736 * to pause and/or release frontend generated struct se_cmd. 2737 */ 2738 bool transport_wait_for_tasks(struct se_cmd *cmd) 2739 { 2740 unsigned long flags; 2741 bool ret, aborted = false, tas = false; 2742 2743 spin_lock_irqsave(&cmd->t_state_lock, flags); 2744 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags); 2745 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2746 2747 return ret; 2748 } 2749 EXPORT_SYMBOL(transport_wait_for_tasks); 2750 2751 struct sense_info { 2752 u8 key; 2753 u8 asc; 2754 u8 ascq; 2755 bool add_sector_info; 2756 }; 2757 2758 static const struct sense_info sense_info_table[] = { 2759 [TCM_NO_SENSE] = { 2760 .key = NOT_READY 2761 }, 2762 [TCM_NON_EXISTENT_LUN] = { 2763 .key = ILLEGAL_REQUEST, 2764 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */ 2765 }, 2766 [TCM_UNSUPPORTED_SCSI_OPCODE] = { 2767 .key = ILLEGAL_REQUEST, 2768 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 2769 }, 2770 [TCM_SECTOR_COUNT_TOO_MANY] = { 2771 .key = ILLEGAL_REQUEST, 2772 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 2773 }, 2774 [TCM_UNKNOWN_MODE_PAGE] = { 2775 .key = ILLEGAL_REQUEST, 2776 .asc = 0x24, /* INVALID FIELD IN CDB */ 2777 }, 2778 [TCM_CHECK_CONDITION_ABORT_CMD] = { 2779 .key = ABORTED_COMMAND, 2780 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */ 2781 .ascq = 0x03, 2782 }, 2783 [TCM_INCORRECT_AMOUNT_OF_DATA] = { 2784 .key = ABORTED_COMMAND, 2785 .asc = 0x0c, /* WRITE ERROR */ 2786 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */ 2787 }, 2788 [TCM_INVALID_CDB_FIELD] = { 2789 .key = ILLEGAL_REQUEST, 2790 .asc = 0x24, /* INVALID FIELD IN CDB */ 2791 }, 2792 [TCM_INVALID_PARAMETER_LIST] = { 2793 .key = ILLEGAL_REQUEST, 2794 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */ 2795 }, 2796 [TCM_PARAMETER_LIST_LENGTH_ERROR] = { 2797 .key = ILLEGAL_REQUEST, 2798 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */ 2799 }, 2800 [TCM_UNEXPECTED_UNSOLICITED_DATA] = { 2801 .key = ILLEGAL_REQUEST, 2802 .asc = 0x0c, /* WRITE ERROR */ 2803 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */ 2804 }, 2805 [TCM_SERVICE_CRC_ERROR] = { 2806 .key = ABORTED_COMMAND, 2807 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */ 2808 .ascq = 0x05, /* N/A */ 2809 }, 2810 [TCM_SNACK_REJECTED] = { 2811 .key = ABORTED_COMMAND, 2812 .asc = 0x11, /* READ ERROR */ 2813 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */ 2814 }, 2815 [TCM_WRITE_PROTECTED] = { 2816 .key = DATA_PROTECT, 2817 .asc = 0x27, /* WRITE PROTECTED */ 2818 }, 2819 [TCM_ADDRESS_OUT_OF_RANGE] = { 2820 .key = ILLEGAL_REQUEST, 2821 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 2822 }, 2823 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = { 2824 .key = UNIT_ATTENTION, 2825 }, 2826 [TCM_CHECK_CONDITION_NOT_READY] = { 2827 .key = NOT_READY, 2828 }, 2829 [TCM_MISCOMPARE_VERIFY] = { 2830 .key = MISCOMPARE, 2831 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */ 2832 .ascq = 0x00, 2833 }, 2834 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = { 2835 .key = ABORTED_COMMAND, 2836 .asc = 0x10, 2837 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */ 2838 .add_sector_info = true, 2839 }, 2840 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = { 2841 .key = ABORTED_COMMAND, 2842 .asc = 0x10, 2843 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */ 2844 .add_sector_info = true, 2845 }, 2846 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = { 2847 .key = ABORTED_COMMAND, 2848 .asc = 0x10, 2849 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */ 2850 .add_sector_info = true, 2851 }, 2852 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = { 2853 /* 2854 * Returning ILLEGAL REQUEST would cause immediate IO errors on 2855 * Solaris initiators. Returning NOT READY instead means the 2856 * operations will be retried a finite number of times and we 2857 * can survive intermittent errors. 2858 */ 2859 .key = NOT_READY, 2860 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */ 2861 }, 2862 }; 2863 2864 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason) 2865 { 2866 const struct sense_info *si; 2867 u8 *buffer = cmd->sense_buffer; 2868 int r = (__force int)reason; 2869 u8 asc, ascq; 2870 bool desc_format = target_sense_desc_format(cmd->se_dev); 2871 2872 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key) 2873 si = &sense_info_table[r]; 2874 else 2875 si = &sense_info_table[(__force int) 2876 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE]; 2877 2878 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) { 2879 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); 2880 WARN_ON_ONCE(asc == 0); 2881 } else if (si->asc == 0) { 2882 WARN_ON_ONCE(cmd->scsi_asc == 0); 2883 asc = cmd->scsi_asc; 2884 ascq = cmd->scsi_ascq; 2885 } else { 2886 asc = si->asc; 2887 ascq = si->ascq; 2888 } 2889 2890 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq); 2891 if (si->add_sector_info) 2892 return scsi_set_sense_information(buffer, 2893 cmd->scsi_sense_length, 2894 cmd->bad_sector); 2895 2896 return 0; 2897 } 2898 2899 int 2900 transport_send_check_condition_and_sense(struct se_cmd *cmd, 2901 sense_reason_t reason, int from_transport) 2902 { 2903 unsigned long flags; 2904 2905 spin_lock_irqsave(&cmd->t_state_lock, flags); 2906 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 2907 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2908 return 0; 2909 } 2910 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 2911 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2912 2913 if (!from_transport) { 2914 int rc; 2915 2916 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 2917 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 2918 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 2919 rc = translate_sense_reason(cmd, reason); 2920 if (rc) 2921 return rc; 2922 } 2923 2924 trace_target_cmd_complete(cmd); 2925 return cmd->se_tfo->queue_status(cmd); 2926 } 2927 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 2928 2929 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status) 2930 __releases(&cmd->t_state_lock) 2931 __acquires(&cmd->t_state_lock) 2932 { 2933 assert_spin_locked(&cmd->t_state_lock); 2934 WARN_ON_ONCE(!irqs_disabled()); 2935 2936 if (!(cmd->transport_state & CMD_T_ABORTED)) 2937 return 0; 2938 /* 2939 * If cmd has been aborted but either no status is to be sent or it has 2940 * already been sent, just return 2941 */ 2942 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) { 2943 if (send_status) 2944 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS; 2945 return 1; 2946 } 2947 2948 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:" 2949 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag); 2950 2951 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS; 2952 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 2953 trace_target_cmd_complete(cmd); 2954 2955 spin_unlock_irq(&cmd->t_state_lock); 2956 cmd->se_tfo->queue_status(cmd); 2957 spin_lock_irq(&cmd->t_state_lock); 2958 2959 return 1; 2960 } 2961 2962 int transport_check_aborted_status(struct se_cmd *cmd, int send_status) 2963 { 2964 int ret; 2965 2966 spin_lock_irq(&cmd->t_state_lock); 2967 ret = __transport_check_aborted_status(cmd, send_status); 2968 spin_unlock_irq(&cmd->t_state_lock); 2969 2970 return ret; 2971 } 2972 EXPORT_SYMBOL(transport_check_aborted_status); 2973 2974 void transport_send_task_abort(struct se_cmd *cmd) 2975 { 2976 unsigned long flags; 2977 2978 spin_lock_irqsave(&cmd->t_state_lock, flags); 2979 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) { 2980 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2981 return; 2982 } 2983 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2984 2985 /* 2986 * If there are still expected incoming fabric WRITEs, we wait 2987 * until until they have completed before sending a TASK_ABORTED 2988 * response. This response with TASK_ABORTED status will be 2989 * queued back to fabric module by transport_check_aborted_status(). 2990 */ 2991 if (cmd->data_direction == DMA_TO_DEVICE) { 2992 if (cmd->se_tfo->write_pending_status(cmd) != 0) { 2993 spin_lock_irqsave(&cmd->t_state_lock, flags); 2994 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) { 2995 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2996 goto send_abort; 2997 } 2998 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS; 2999 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3000 return; 3001 } 3002 } 3003 send_abort: 3004 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 3005 3006 transport_lun_remove_cmd(cmd); 3007 3008 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n", 3009 cmd->t_task_cdb[0], cmd->tag); 3010 3011 trace_target_cmd_complete(cmd); 3012 cmd->se_tfo->queue_status(cmd); 3013 } 3014 3015 static void target_tmr_work(struct work_struct *work) 3016 { 3017 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 3018 struct se_device *dev = cmd->se_dev; 3019 struct se_tmr_req *tmr = cmd->se_tmr_req; 3020 unsigned long flags; 3021 int ret; 3022 3023 spin_lock_irqsave(&cmd->t_state_lock, flags); 3024 if (cmd->transport_state & CMD_T_ABORTED) { 3025 tmr->response = TMR_FUNCTION_REJECTED; 3026 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3027 goto check_stop; 3028 } 3029 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3030 3031 switch (tmr->function) { 3032 case TMR_ABORT_TASK: 3033 core_tmr_abort_task(dev, tmr, cmd->se_sess); 3034 break; 3035 case TMR_ABORT_TASK_SET: 3036 case TMR_CLEAR_ACA: 3037 case TMR_CLEAR_TASK_SET: 3038 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 3039 break; 3040 case TMR_LUN_RESET: 3041 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 3042 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 3043 TMR_FUNCTION_REJECTED; 3044 if (tmr->response == TMR_FUNCTION_COMPLETE) { 3045 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 3046 cmd->orig_fe_lun, 0x29, 3047 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED); 3048 } 3049 break; 3050 case TMR_TARGET_WARM_RESET: 3051 tmr->response = TMR_FUNCTION_REJECTED; 3052 break; 3053 case TMR_TARGET_COLD_RESET: 3054 tmr->response = TMR_FUNCTION_REJECTED; 3055 break; 3056 default: 3057 pr_err("Uknown TMR function: 0x%02x.\n", 3058 tmr->function); 3059 tmr->response = TMR_FUNCTION_REJECTED; 3060 break; 3061 } 3062 3063 spin_lock_irqsave(&cmd->t_state_lock, flags); 3064 if (cmd->transport_state & CMD_T_ABORTED) { 3065 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3066 goto check_stop; 3067 } 3068 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 3069 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3070 3071 cmd->se_tfo->queue_tm_rsp(cmd); 3072 3073 check_stop: 3074 transport_cmd_check_stop_to_fabric(cmd); 3075 } 3076 3077 int transport_generic_handle_tmr( 3078 struct se_cmd *cmd) 3079 { 3080 unsigned long flags; 3081 3082 spin_lock_irqsave(&cmd->t_state_lock, flags); 3083 cmd->transport_state |= CMD_T_ACTIVE; 3084 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3085 3086 INIT_WORK(&cmd->work, target_tmr_work); 3087 queue_work(cmd->se_dev->tmr_wq, &cmd->work); 3088 return 0; 3089 } 3090 EXPORT_SYMBOL(transport_generic_handle_tmr); 3091 3092 bool 3093 target_check_wce(struct se_device *dev) 3094 { 3095 bool wce = false; 3096 3097 if (dev->transport->get_write_cache) 3098 wce = dev->transport->get_write_cache(dev); 3099 else if (dev->dev_attrib.emulate_write_cache > 0) 3100 wce = true; 3101 3102 return wce; 3103 } 3104 3105 bool 3106 target_check_fua(struct se_device *dev) 3107 { 3108 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0; 3109 } 3110