1 /******************************************************************************* 2 * Filename: target_core_transport.c 3 * 4 * This file contains the Generic Target Engine Core. 5 * 6 * (c) Copyright 2002-2013 Datera, Inc. 7 * 8 * Nicholas A. Bellinger <nab@kernel.org> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 23 * 24 ******************************************************************************/ 25 26 #include <linux/net.h> 27 #include <linux/delay.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/slab.h> 31 #include <linux/spinlock.h> 32 #include <linux/kthread.h> 33 #include <linux/in.h> 34 #include <linux/cdrom.h> 35 #include <linux/module.h> 36 #include <linux/ratelimit.h> 37 #include <linux/vmalloc.h> 38 #include <asm/unaligned.h> 39 #include <net/sock.h> 40 #include <net/tcp.h> 41 #include <scsi/scsi_proto.h> 42 #include <scsi/scsi_common.h> 43 44 #include <target/target_core_base.h> 45 #include <target/target_core_backend.h> 46 #include <target/target_core_fabric.h> 47 48 #include "target_core_internal.h" 49 #include "target_core_alua.h" 50 #include "target_core_pr.h" 51 #include "target_core_ua.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/target.h> 55 56 static struct workqueue_struct *target_completion_wq; 57 static struct kmem_cache *se_sess_cache; 58 struct kmem_cache *se_ua_cache; 59 struct kmem_cache *t10_pr_reg_cache; 60 struct kmem_cache *t10_alua_lu_gp_cache; 61 struct kmem_cache *t10_alua_lu_gp_mem_cache; 62 struct kmem_cache *t10_alua_tg_pt_gp_cache; 63 struct kmem_cache *t10_alua_lba_map_cache; 64 struct kmem_cache *t10_alua_lba_map_mem_cache; 65 66 static void transport_complete_task_attr(struct se_cmd *cmd); 67 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason); 68 static void transport_handle_queue_full(struct se_cmd *cmd, 69 struct se_device *dev, int err, bool write_pending); 70 static int transport_put_cmd(struct se_cmd *cmd); 71 static void target_complete_ok_work(struct work_struct *work); 72 73 int init_se_kmem_caches(void) 74 { 75 se_sess_cache = kmem_cache_create("se_sess_cache", 76 sizeof(struct se_session), __alignof__(struct se_session), 77 0, NULL); 78 if (!se_sess_cache) { 79 pr_err("kmem_cache_create() for struct se_session" 80 " failed\n"); 81 goto out; 82 } 83 se_ua_cache = kmem_cache_create("se_ua_cache", 84 sizeof(struct se_ua), __alignof__(struct se_ua), 85 0, NULL); 86 if (!se_ua_cache) { 87 pr_err("kmem_cache_create() for struct se_ua failed\n"); 88 goto out_free_sess_cache; 89 } 90 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 91 sizeof(struct t10_pr_registration), 92 __alignof__(struct t10_pr_registration), 0, NULL); 93 if (!t10_pr_reg_cache) { 94 pr_err("kmem_cache_create() for struct t10_pr_registration" 95 " failed\n"); 96 goto out_free_ua_cache; 97 } 98 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 99 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 100 0, NULL); 101 if (!t10_alua_lu_gp_cache) { 102 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 103 " failed\n"); 104 goto out_free_pr_reg_cache; 105 } 106 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 107 sizeof(struct t10_alua_lu_gp_member), 108 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 109 if (!t10_alua_lu_gp_mem_cache) { 110 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 111 "cache failed\n"); 112 goto out_free_lu_gp_cache; 113 } 114 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 115 sizeof(struct t10_alua_tg_pt_gp), 116 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 117 if (!t10_alua_tg_pt_gp_cache) { 118 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 119 "cache failed\n"); 120 goto out_free_lu_gp_mem_cache; 121 } 122 t10_alua_lba_map_cache = kmem_cache_create( 123 "t10_alua_lba_map_cache", 124 sizeof(struct t10_alua_lba_map), 125 __alignof__(struct t10_alua_lba_map), 0, NULL); 126 if (!t10_alua_lba_map_cache) { 127 pr_err("kmem_cache_create() for t10_alua_lba_map_" 128 "cache failed\n"); 129 goto out_free_tg_pt_gp_cache; 130 } 131 t10_alua_lba_map_mem_cache = kmem_cache_create( 132 "t10_alua_lba_map_mem_cache", 133 sizeof(struct t10_alua_lba_map_member), 134 __alignof__(struct t10_alua_lba_map_member), 0, NULL); 135 if (!t10_alua_lba_map_mem_cache) { 136 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_" 137 "cache failed\n"); 138 goto out_free_lba_map_cache; 139 } 140 141 target_completion_wq = alloc_workqueue("target_completion", 142 WQ_MEM_RECLAIM, 0); 143 if (!target_completion_wq) 144 goto out_free_lba_map_mem_cache; 145 146 return 0; 147 148 out_free_lba_map_mem_cache: 149 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 150 out_free_lba_map_cache: 151 kmem_cache_destroy(t10_alua_lba_map_cache); 152 out_free_tg_pt_gp_cache: 153 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 154 out_free_lu_gp_mem_cache: 155 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 156 out_free_lu_gp_cache: 157 kmem_cache_destroy(t10_alua_lu_gp_cache); 158 out_free_pr_reg_cache: 159 kmem_cache_destroy(t10_pr_reg_cache); 160 out_free_ua_cache: 161 kmem_cache_destroy(se_ua_cache); 162 out_free_sess_cache: 163 kmem_cache_destroy(se_sess_cache); 164 out: 165 return -ENOMEM; 166 } 167 168 void release_se_kmem_caches(void) 169 { 170 destroy_workqueue(target_completion_wq); 171 kmem_cache_destroy(se_sess_cache); 172 kmem_cache_destroy(se_ua_cache); 173 kmem_cache_destroy(t10_pr_reg_cache); 174 kmem_cache_destroy(t10_alua_lu_gp_cache); 175 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 176 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 177 kmem_cache_destroy(t10_alua_lba_map_cache); 178 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 179 } 180 181 /* This code ensures unique mib indexes are handed out. */ 182 static DEFINE_SPINLOCK(scsi_mib_index_lock); 183 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 184 185 /* 186 * Allocate a new row index for the entry type specified 187 */ 188 u32 scsi_get_new_index(scsi_index_t type) 189 { 190 u32 new_index; 191 192 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 193 194 spin_lock(&scsi_mib_index_lock); 195 new_index = ++scsi_mib_index[type]; 196 spin_unlock(&scsi_mib_index_lock); 197 198 return new_index; 199 } 200 201 void transport_subsystem_check_init(void) 202 { 203 int ret; 204 static int sub_api_initialized; 205 206 if (sub_api_initialized) 207 return; 208 209 ret = request_module("target_core_iblock"); 210 if (ret != 0) 211 pr_err("Unable to load target_core_iblock\n"); 212 213 ret = request_module("target_core_file"); 214 if (ret != 0) 215 pr_err("Unable to load target_core_file\n"); 216 217 ret = request_module("target_core_pscsi"); 218 if (ret != 0) 219 pr_err("Unable to load target_core_pscsi\n"); 220 221 ret = request_module("target_core_user"); 222 if (ret != 0) 223 pr_err("Unable to load target_core_user\n"); 224 225 sub_api_initialized = 1; 226 } 227 228 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops) 229 { 230 struct se_session *se_sess; 231 232 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 233 if (!se_sess) { 234 pr_err("Unable to allocate struct se_session from" 235 " se_sess_cache\n"); 236 return ERR_PTR(-ENOMEM); 237 } 238 INIT_LIST_HEAD(&se_sess->sess_list); 239 INIT_LIST_HEAD(&se_sess->sess_acl_list); 240 INIT_LIST_HEAD(&se_sess->sess_cmd_list); 241 INIT_LIST_HEAD(&se_sess->sess_wait_list); 242 spin_lock_init(&se_sess->sess_cmd_lock); 243 se_sess->sup_prot_ops = sup_prot_ops; 244 245 return se_sess; 246 } 247 EXPORT_SYMBOL(transport_init_session); 248 249 int transport_alloc_session_tags(struct se_session *se_sess, 250 unsigned int tag_num, unsigned int tag_size) 251 { 252 int rc; 253 254 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size, 255 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 256 if (!se_sess->sess_cmd_map) { 257 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size); 258 if (!se_sess->sess_cmd_map) { 259 pr_err("Unable to allocate se_sess->sess_cmd_map\n"); 260 return -ENOMEM; 261 } 262 } 263 264 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num); 265 if (rc < 0) { 266 pr_err("Unable to init se_sess->sess_tag_pool," 267 " tag_num: %u\n", tag_num); 268 kvfree(se_sess->sess_cmd_map); 269 se_sess->sess_cmd_map = NULL; 270 return -ENOMEM; 271 } 272 273 return 0; 274 } 275 EXPORT_SYMBOL(transport_alloc_session_tags); 276 277 struct se_session *transport_init_session_tags(unsigned int tag_num, 278 unsigned int tag_size, 279 enum target_prot_op sup_prot_ops) 280 { 281 struct se_session *se_sess; 282 int rc; 283 284 if (tag_num != 0 && !tag_size) { 285 pr_err("init_session_tags called with percpu-ida tag_num:" 286 " %u, but zero tag_size\n", tag_num); 287 return ERR_PTR(-EINVAL); 288 } 289 if (!tag_num && tag_size) { 290 pr_err("init_session_tags called with percpu-ida tag_size:" 291 " %u, but zero tag_num\n", tag_size); 292 return ERR_PTR(-EINVAL); 293 } 294 295 se_sess = transport_init_session(sup_prot_ops); 296 if (IS_ERR(se_sess)) 297 return se_sess; 298 299 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size); 300 if (rc < 0) { 301 transport_free_session(se_sess); 302 return ERR_PTR(-ENOMEM); 303 } 304 305 return se_sess; 306 } 307 EXPORT_SYMBOL(transport_init_session_tags); 308 309 /* 310 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 311 */ 312 void __transport_register_session( 313 struct se_portal_group *se_tpg, 314 struct se_node_acl *se_nacl, 315 struct se_session *se_sess, 316 void *fabric_sess_ptr) 317 { 318 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo; 319 unsigned char buf[PR_REG_ISID_LEN]; 320 321 se_sess->se_tpg = se_tpg; 322 se_sess->fabric_sess_ptr = fabric_sess_ptr; 323 /* 324 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 325 * 326 * Only set for struct se_session's that will actually be moving I/O. 327 * eg: *NOT* discovery sessions. 328 */ 329 if (se_nacl) { 330 /* 331 * 332 * Determine if fabric allows for T10-PI feature bits exposed to 333 * initiators for device backends with !dev->dev_attrib.pi_prot_type. 334 * 335 * If so, then always save prot_type on a per se_node_acl node 336 * basis and re-instate the previous sess_prot_type to avoid 337 * disabling PI from below any previously initiator side 338 * registered LUNs. 339 */ 340 if (se_nacl->saved_prot_type) 341 se_sess->sess_prot_type = se_nacl->saved_prot_type; 342 else if (tfo->tpg_check_prot_fabric_only) 343 se_sess->sess_prot_type = se_nacl->saved_prot_type = 344 tfo->tpg_check_prot_fabric_only(se_tpg); 345 /* 346 * If the fabric module supports an ISID based TransportID, 347 * save this value in binary from the fabric I_T Nexus now. 348 */ 349 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 350 memset(&buf[0], 0, PR_REG_ISID_LEN); 351 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 352 &buf[0], PR_REG_ISID_LEN); 353 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 354 } 355 356 spin_lock_irq(&se_nacl->nacl_sess_lock); 357 /* 358 * The se_nacl->nacl_sess pointer will be set to the 359 * last active I_T Nexus for each struct se_node_acl. 360 */ 361 se_nacl->nacl_sess = se_sess; 362 363 list_add_tail(&se_sess->sess_acl_list, 364 &se_nacl->acl_sess_list); 365 spin_unlock_irq(&se_nacl->nacl_sess_lock); 366 } 367 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 368 369 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 370 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr); 371 } 372 EXPORT_SYMBOL(__transport_register_session); 373 374 void transport_register_session( 375 struct se_portal_group *se_tpg, 376 struct se_node_acl *se_nacl, 377 struct se_session *se_sess, 378 void *fabric_sess_ptr) 379 { 380 unsigned long flags; 381 382 spin_lock_irqsave(&se_tpg->session_lock, flags); 383 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 384 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 385 } 386 EXPORT_SYMBOL(transport_register_session); 387 388 struct se_session * 389 target_alloc_session(struct se_portal_group *tpg, 390 unsigned int tag_num, unsigned int tag_size, 391 enum target_prot_op prot_op, 392 const char *initiatorname, void *private, 393 int (*callback)(struct se_portal_group *, 394 struct se_session *, void *)) 395 { 396 struct se_session *sess; 397 398 /* 399 * If the fabric driver is using percpu-ida based pre allocation 400 * of I/O descriptor tags, go ahead and perform that setup now.. 401 */ 402 if (tag_num != 0) 403 sess = transport_init_session_tags(tag_num, tag_size, prot_op); 404 else 405 sess = transport_init_session(prot_op); 406 407 if (IS_ERR(sess)) 408 return sess; 409 410 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg, 411 (unsigned char *)initiatorname); 412 if (!sess->se_node_acl) { 413 transport_free_session(sess); 414 return ERR_PTR(-EACCES); 415 } 416 /* 417 * Go ahead and perform any remaining fabric setup that is 418 * required before transport_register_session(). 419 */ 420 if (callback != NULL) { 421 int rc = callback(tpg, sess, private); 422 if (rc) { 423 transport_free_session(sess); 424 return ERR_PTR(rc); 425 } 426 } 427 428 transport_register_session(tpg, sess->se_node_acl, sess, private); 429 return sess; 430 } 431 EXPORT_SYMBOL(target_alloc_session); 432 433 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page) 434 { 435 struct se_session *se_sess; 436 ssize_t len = 0; 437 438 spin_lock_bh(&se_tpg->session_lock); 439 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) { 440 if (!se_sess->se_node_acl) 441 continue; 442 if (!se_sess->se_node_acl->dynamic_node_acl) 443 continue; 444 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE) 445 break; 446 447 len += snprintf(page + len, PAGE_SIZE - len, "%s\n", 448 se_sess->se_node_acl->initiatorname); 449 len += 1; /* Include NULL terminator */ 450 } 451 spin_unlock_bh(&se_tpg->session_lock); 452 453 return len; 454 } 455 EXPORT_SYMBOL(target_show_dynamic_sessions); 456 457 static void target_complete_nacl(struct kref *kref) 458 { 459 struct se_node_acl *nacl = container_of(kref, 460 struct se_node_acl, acl_kref); 461 struct se_portal_group *se_tpg = nacl->se_tpg; 462 463 if (!nacl->dynamic_stop) { 464 complete(&nacl->acl_free_comp); 465 return; 466 } 467 468 mutex_lock(&se_tpg->acl_node_mutex); 469 list_del(&nacl->acl_list); 470 mutex_unlock(&se_tpg->acl_node_mutex); 471 472 core_tpg_wait_for_nacl_pr_ref(nacl); 473 core_free_device_list_for_node(nacl, se_tpg); 474 kfree(nacl); 475 } 476 477 void target_put_nacl(struct se_node_acl *nacl) 478 { 479 kref_put(&nacl->acl_kref, target_complete_nacl); 480 } 481 EXPORT_SYMBOL(target_put_nacl); 482 483 void transport_deregister_session_configfs(struct se_session *se_sess) 484 { 485 struct se_node_acl *se_nacl; 486 unsigned long flags; 487 /* 488 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 489 */ 490 se_nacl = se_sess->se_node_acl; 491 if (se_nacl) { 492 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 493 if (!list_empty(&se_sess->sess_acl_list)) 494 list_del_init(&se_sess->sess_acl_list); 495 /* 496 * If the session list is empty, then clear the pointer. 497 * Otherwise, set the struct se_session pointer from the tail 498 * element of the per struct se_node_acl active session list. 499 */ 500 if (list_empty(&se_nacl->acl_sess_list)) 501 se_nacl->nacl_sess = NULL; 502 else { 503 se_nacl->nacl_sess = container_of( 504 se_nacl->acl_sess_list.prev, 505 struct se_session, sess_acl_list); 506 } 507 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 508 } 509 } 510 EXPORT_SYMBOL(transport_deregister_session_configfs); 511 512 void transport_free_session(struct se_session *se_sess) 513 { 514 struct se_node_acl *se_nacl = se_sess->se_node_acl; 515 516 /* 517 * Drop the se_node_acl->nacl_kref obtained from within 518 * core_tpg_get_initiator_node_acl(). 519 */ 520 if (se_nacl) { 521 struct se_portal_group *se_tpg = se_nacl->se_tpg; 522 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo; 523 unsigned long flags; 524 525 se_sess->se_node_acl = NULL; 526 527 /* 528 * Also determine if we need to drop the extra ->cmd_kref if 529 * it had been previously dynamically generated, and 530 * the endpoint is not caching dynamic ACLs. 531 */ 532 mutex_lock(&se_tpg->acl_node_mutex); 533 if (se_nacl->dynamic_node_acl && 534 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 535 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 536 if (list_empty(&se_nacl->acl_sess_list)) 537 se_nacl->dynamic_stop = true; 538 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 539 540 if (se_nacl->dynamic_stop) 541 list_del(&se_nacl->acl_list); 542 } 543 mutex_unlock(&se_tpg->acl_node_mutex); 544 545 if (se_nacl->dynamic_stop) 546 target_put_nacl(se_nacl); 547 548 target_put_nacl(se_nacl); 549 } 550 if (se_sess->sess_cmd_map) { 551 percpu_ida_destroy(&se_sess->sess_tag_pool); 552 kvfree(se_sess->sess_cmd_map); 553 } 554 kmem_cache_free(se_sess_cache, se_sess); 555 } 556 EXPORT_SYMBOL(transport_free_session); 557 558 void transport_deregister_session(struct se_session *se_sess) 559 { 560 struct se_portal_group *se_tpg = se_sess->se_tpg; 561 unsigned long flags; 562 563 if (!se_tpg) { 564 transport_free_session(se_sess); 565 return; 566 } 567 568 spin_lock_irqsave(&se_tpg->session_lock, flags); 569 list_del(&se_sess->sess_list); 570 se_sess->se_tpg = NULL; 571 se_sess->fabric_sess_ptr = NULL; 572 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 573 574 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 575 se_tpg->se_tpg_tfo->get_fabric_name()); 576 /* 577 * If last kref is dropping now for an explicit NodeACL, awake sleeping 578 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 579 * removal context from within transport_free_session() code. 580 * 581 * For dynamic ACL, target_put_nacl() uses target_complete_nacl() 582 * to release all remaining generate_node_acl=1 created ACL resources. 583 */ 584 585 transport_free_session(se_sess); 586 } 587 EXPORT_SYMBOL(transport_deregister_session); 588 589 static void target_remove_from_state_list(struct se_cmd *cmd) 590 { 591 struct se_device *dev = cmd->se_dev; 592 unsigned long flags; 593 594 if (!dev) 595 return; 596 597 spin_lock_irqsave(&dev->execute_task_lock, flags); 598 if (cmd->state_active) { 599 list_del(&cmd->state_list); 600 cmd->state_active = false; 601 } 602 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 603 } 604 605 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 606 { 607 unsigned long flags; 608 609 target_remove_from_state_list(cmd); 610 611 /* 612 * Clear struct se_cmd->se_lun before the handoff to FE. 613 */ 614 cmd->se_lun = NULL; 615 616 spin_lock_irqsave(&cmd->t_state_lock, flags); 617 /* 618 * Determine if frontend context caller is requesting the stopping of 619 * this command for frontend exceptions. 620 */ 621 if (cmd->transport_state & CMD_T_STOP) { 622 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 623 __func__, __LINE__, cmd->tag); 624 625 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 626 627 complete_all(&cmd->t_transport_stop_comp); 628 return 1; 629 } 630 cmd->transport_state &= ~CMD_T_ACTIVE; 631 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 632 633 /* 634 * Some fabric modules like tcm_loop can release their internally 635 * allocated I/O reference and struct se_cmd now. 636 * 637 * Fabric modules are expected to return '1' here if the se_cmd being 638 * passed is released at this point, or zero if not being released. 639 */ 640 return cmd->se_tfo->check_stop_free(cmd); 641 } 642 643 static void transport_lun_remove_cmd(struct se_cmd *cmd) 644 { 645 struct se_lun *lun = cmd->se_lun; 646 647 if (!lun) 648 return; 649 650 if (cmpxchg(&cmd->lun_ref_active, true, false)) 651 percpu_ref_put(&lun->lun_ref); 652 } 653 654 int transport_cmd_finish_abort(struct se_cmd *cmd, int remove) 655 { 656 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF); 657 int ret = 0; 658 659 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) 660 transport_lun_remove_cmd(cmd); 661 /* 662 * Allow the fabric driver to unmap any resources before 663 * releasing the descriptor via TFO->release_cmd() 664 */ 665 if (remove) 666 cmd->se_tfo->aborted_task(cmd); 667 668 if (transport_cmd_check_stop_to_fabric(cmd)) 669 return 1; 670 if (remove && ack_kref) 671 ret = transport_put_cmd(cmd); 672 673 return ret; 674 } 675 676 static void target_complete_failure_work(struct work_struct *work) 677 { 678 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 679 680 transport_generic_request_failure(cmd, 681 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 682 } 683 684 /* 685 * Used when asking transport to copy Sense Data from the underlying 686 * Linux/SCSI struct scsi_cmnd 687 */ 688 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 689 { 690 struct se_device *dev = cmd->se_dev; 691 692 WARN_ON(!cmd->se_lun); 693 694 if (!dev) 695 return NULL; 696 697 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 698 return NULL; 699 700 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 701 702 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 703 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 704 return cmd->sense_buffer; 705 } 706 707 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 708 { 709 struct se_device *dev = cmd->se_dev; 710 int success = scsi_status == GOOD; 711 unsigned long flags; 712 713 cmd->scsi_status = scsi_status; 714 715 716 spin_lock_irqsave(&cmd->t_state_lock, flags); 717 718 if (dev && dev->transport->transport_complete) { 719 dev->transport->transport_complete(cmd, 720 cmd->t_data_sg, 721 transport_get_sense_buffer(cmd)); 722 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 723 success = 1; 724 } 725 726 /* 727 * Check for case where an explicit ABORT_TASK has been received 728 * and transport_wait_for_tasks() will be waiting for completion.. 729 */ 730 if (cmd->transport_state & CMD_T_ABORTED || 731 cmd->transport_state & CMD_T_STOP) { 732 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 733 complete_all(&cmd->t_transport_stop_comp); 734 return; 735 } else if (!success) { 736 INIT_WORK(&cmd->work, target_complete_failure_work); 737 } else { 738 INIT_WORK(&cmd->work, target_complete_ok_work); 739 } 740 741 cmd->t_state = TRANSPORT_COMPLETE; 742 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 743 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 744 745 if (cmd->se_cmd_flags & SCF_USE_CPUID) 746 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work); 747 else 748 queue_work(target_completion_wq, &cmd->work); 749 } 750 EXPORT_SYMBOL(target_complete_cmd); 751 752 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length) 753 { 754 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) { 755 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 756 cmd->residual_count += cmd->data_length - length; 757 } else { 758 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 759 cmd->residual_count = cmd->data_length - length; 760 } 761 762 cmd->data_length = length; 763 } 764 765 target_complete_cmd(cmd, scsi_status); 766 } 767 EXPORT_SYMBOL(target_complete_cmd_with_length); 768 769 static void target_add_to_state_list(struct se_cmd *cmd) 770 { 771 struct se_device *dev = cmd->se_dev; 772 unsigned long flags; 773 774 spin_lock_irqsave(&dev->execute_task_lock, flags); 775 if (!cmd->state_active) { 776 list_add_tail(&cmd->state_list, &dev->state_list); 777 cmd->state_active = true; 778 } 779 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 780 } 781 782 /* 783 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 784 */ 785 static void transport_write_pending_qf(struct se_cmd *cmd); 786 static void transport_complete_qf(struct se_cmd *cmd); 787 788 void target_qf_do_work(struct work_struct *work) 789 { 790 struct se_device *dev = container_of(work, struct se_device, 791 qf_work_queue); 792 LIST_HEAD(qf_cmd_list); 793 struct se_cmd *cmd, *cmd_tmp; 794 795 spin_lock_irq(&dev->qf_cmd_lock); 796 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 797 spin_unlock_irq(&dev->qf_cmd_lock); 798 799 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 800 list_del(&cmd->se_qf_node); 801 atomic_dec_mb(&dev->dev_qf_count); 802 803 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 804 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd, 805 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 806 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 807 : "UNKNOWN"); 808 809 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 810 transport_write_pending_qf(cmd); 811 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK || 812 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) 813 transport_complete_qf(cmd); 814 } 815 } 816 817 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 818 { 819 switch (cmd->data_direction) { 820 case DMA_NONE: 821 return "NONE"; 822 case DMA_FROM_DEVICE: 823 return "READ"; 824 case DMA_TO_DEVICE: 825 return "WRITE"; 826 case DMA_BIDIRECTIONAL: 827 return "BIDI"; 828 default: 829 break; 830 } 831 832 return "UNKNOWN"; 833 } 834 835 void transport_dump_dev_state( 836 struct se_device *dev, 837 char *b, 838 int *bl) 839 { 840 *bl += sprintf(b + *bl, "Status: "); 841 if (dev->export_count) 842 *bl += sprintf(b + *bl, "ACTIVATED"); 843 else 844 *bl += sprintf(b + *bl, "DEACTIVATED"); 845 846 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 847 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 848 dev->dev_attrib.block_size, 849 dev->dev_attrib.hw_max_sectors); 850 *bl += sprintf(b + *bl, " "); 851 } 852 853 void transport_dump_vpd_proto_id( 854 struct t10_vpd *vpd, 855 unsigned char *p_buf, 856 int p_buf_len) 857 { 858 unsigned char buf[VPD_TMP_BUF_SIZE]; 859 int len; 860 861 memset(buf, 0, VPD_TMP_BUF_SIZE); 862 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 863 864 switch (vpd->protocol_identifier) { 865 case 0x00: 866 sprintf(buf+len, "Fibre Channel\n"); 867 break; 868 case 0x10: 869 sprintf(buf+len, "Parallel SCSI\n"); 870 break; 871 case 0x20: 872 sprintf(buf+len, "SSA\n"); 873 break; 874 case 0x30: 875 sprintf(buf+len, "IEEE 1394\n"); 876 break; 877 case 0x40: 878 sprintf(buf+len, "SCSI Remote Direct Memory Access" 879 " Protocol\n"); 880 break; 881 case 0x50: 882 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 883 break; 884 case 0x60: 885 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 886 break; 887 case 0x70: 888 sprintf(buf+len, "Automation/Drive Interface Transport" 889 " Protocol\n"); 890 break; 891 case 0x80: 892 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 893 break; 894 default: 895 sprintf(buf+len, "Unknown 0x%02x\n", 896 vpd->protocol_identifier); 897 break; 898 } 899 900 if (p_buf) 901 strncpy(p_buf, buf, p_buf_len); 902 else 903 pr_debug("%s", buf); 904 } 905 906 void 907 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 908 { 909 /* 910 * Check if the Protocol Identifier Valid (PIV) bit is set.. 911 * 912 * from spc3r23.pdf section 7.5.1 913 */ 914 if (page_83[1] & 0x80) { 915 vpd->protocol_identifier = (page_83[0] & 0xf0); 916 vpd->protocol_identifier_set = 1; 917 transport_dump_vpd_proto_id(vpd, NULL, 0); 918 } 919 } 920 EXPORT_SYMBOL(transport_set_vpd_proto_id); 921 922 int transport_dump_vpd_assoc( 923 struct t10_vpd *vpd, 924 unsigned char *p_buf, 925 int p_buf_len) 926 { 927 unsigned char buf[VPD_TMP_BUF_SIZE]; 928 int ret = 0; 929 int len; 930 931 memset(buf, 0, VPD_TMP_BUF_SIZE); 932 len = sprintf(buf, "T10 VPD Identifier Association: "); 933 934 switch (vpd->association) { 935 case 0x00: 936 sprintf(buf+len, "addressed logical unit\n"); 937 break; 938 case 0x10: 939 sprintf(buf+len, "target port\n"); 940 break; 941 case 0x20: 942 sprintf(buf+len, "SCSI target device\n"); 943 break; 944 default: 945 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 946 ret = -EINVAL; 947 break; 948 } 949 950 if (p_buf) 951 strncpy(p_buf, buf, p_buf_len); 952 else 953 pr_debug("%s", buf); 954 955 return ret; 956 } 957 958 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 959 { 960 /* 961 * The VPD identification association.. 962 * 963 * from spc3r23.pdf Section 7.6.3.1 Table 297 964 */ 965 vpd->association = (page_83[1] & 0x30); 966 return transport_dump_vpd_assoc(vpd, NULL, 0); 967 } 968 EXPORT_SYMBOL(transport_set_vpd_assoc); 969 970 int transport_dump_vpd_ident_type( 971 struct t10_vpd *vpd, 972 unsigned char *p_buf, 973 int p_buf_len) 974 { 975 unsigned char buf[VPD_TMP_BUF_SIZE]; 976 int ret = 0; 977 int len; 978 979 memset(buf, 0, VPD_TMP_BUF_SIZE); 980 len = sprintf(buf, "T10 VPD Identifier Type: "); 981 982 switch (vpd->device_identifier_type) { 983 case 0x00: 984 sprintf(buf+len, "Vendor specific\n"); 985 break; 986 case 0x01: 987 sprintf(buf+len, "T10 Vendor ID based\n"); 988 break; 989 case 0x02: 990 sprintf(buf+len, "EUI-64 based\n"); 991 break; 992 case 0x03: 993 sprintf(buf+len, "NAA\n"); 994 break; 995 case 0x04: 996 sprintf(buf+len, "Relative target port identifier\n"); 997 break; 998 case 0x08: 999 sprintf(buf+len, "SCSI name string\n"); 1000 break; 1001 default: 1002 sprintf(buf+len, "Unsupported: 0x%02x\n", 1003 vpd->device_identifier_type); 1004 ret = -EINVAL; 1005 break; 1006 } 1007 1008 if (p_buf) { 1009 if (p_buf_len < strlen(buf)+1) 1010 return -EINVAL; 1011 strncpy(p_buf, buf, p_buf_len); 1012 } else { 1013 pr_debug("%s", buf); 1014 } 1015 1016 return ret; 1017 } 1018 1019 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 1020 { 1021 /* 1022 * The VPD identifier type.. 1023 * 1024 * from spc3r23.pdf Section 7.6.3.1 Table 298 1025 */ 1026 vpd->device_identifier_type = (page_83[1] & 0x0f); 1027 return transport_dump_vpd_ident_type(vpd, NULL, 0); 1028 } 1029 EXPORT_SYMBOL(transport_set_vpd_ident_type); 1030 1031 int transport_dump_vpd_ident( 1032 struct t10_vpd *vpd, 1033 unsigned char *p_buf, 1034 int p_buf_len) 1035 { 1036 unsigned char buf[VPD_TMP_BUF_SIZE]; 1037 int ret = 0; 1038 1039 memset(buf, 0, VPD_TMP_BUF_SIZE); 1040 1041 switch (vpd->device_identifier_code_set) { 1042 case 0x01: /* Binary */ 1043 snprintf(buf, sizeof(buf), 1044 "T10 VPD Binary Device Identifier: %s\n", 1045 &vpd->device_identifier[0]); 1046 break; 1047 case 0x02: /* ASCII */ 1048 snprintf(buf, sizeof(buf), 1049 "T10 VPD ASCII Device Identifier: %s\n", 1050 &vpd->device_identifier[0]); 1051 break; 1052 case 0x03: /* UTF-8 */ 1053 snprintf(buf, sizeof(buf), 1054 "T10 VPD UTF-8 Device Identifier: %s\n", 1055 &vpd->device_identifier[0]); 1056 break; 1057 default: 1058 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 1059 " 0x%02x", vpd->device_identifier_code_set); 1060 ret = -EINVAL; 1061 break; 1062 } 1063 1064 if (p_buf) 1065 strncpy(p_buf, buf, p_buf_len); 1066 else 1067 pr_debug("%s", buf); 1068 1069 return ret; 1070 } 1071 1072 int 1073 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 1074 { 1075 static const char hex_str[] = "0123456789abcdef"; 1076 int j = 0, i = 4; /* offset to start of the identifier */ 1077 1078 /* 1079 * The VPD Code Set (encoding) 1080 * 1081 * from spc3r23.pdf Section 7.6.3.1 Table 296 1082 */ 1083 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 1084 switch (vpd->device_identifier_code_set) { 1085 case 0x01: /* Binary */ 1086 vpd->device_identifier[j++] = 1087 hex_str[vpd->device_identifier_type]; 1088 while (i < (4 + page_83[3])) { 1089 vpd->device_identifier[j++] = 1090 hex_str[(page_83[i] & 0xf0) >> 4]; 1091 vpd->device_identifier[j++] = 1092 hex_str[page_83[i] & 0x0f]; 1093 i++; 1094 } 1095 break; 1096 case 0x02: /* ASCII */ 1097 case 0x03: /* UTF-8 */ 1098 while (i < (4 + page_83[3])) 1099 vpd->device_identifier[j++] = page_83[i++]; 1100 break; 1101 default: 1102 break; 1103 } 1104 1105 return transport_dump_vpd_ident(vpd, NULL, 0); 1106 } 1107 EXPORT_SYMBOL(transport_set_vpd_ident); 1108 1109 static sense_reason_t 1110 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev, 1111 unsigned int size) 1112 { 1113 u32 mtl; 1114 1115 if (!cmd->se_tfo->max_data_sg_nents) 1116 return TCM_NO_SENSE; 1117 /* 1118 * Check if fabric enforced maximum SGL entries per I/O descriptor 1119 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT + 1120 * residual_count and reduce original cmd->data_length to maximum 1121 * length based on single PAGE_SIZE entry scatter-lists. 1122 */ 1123 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE); 1124 if (cmd->data_length > mtl) { 1125 /* 1126 * If an existing CDB overflow is present, calculate new residual 1127 * based on CDB size minus fabric maximum transfer length. 1128 * 1129 * If an existing CDB underflow is present, calculate new residual 1130 * based on original cmd->data_length minus fabric maximum transfer 1131 * length. 1132 * 1133 * Otherwise, set the underflow residual based on cmd->data_length 1134 * minus fabric maximum transfer length. 1135 */ 1136 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1137 cmd->residual_count = (size - mtl); 1138 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 1139 u32 orig_dl = size + cmd->residual_count; 1140 cmd->residual_count = (orig_dl - mtl); 1141 } else { 1142 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1143 cmd->residual_count = (cmd->data_length - mtl); 1144 } 1145 cmd->data_length = mtl; 1146 /* 1147 * Reset sbc_check_prot() calculated protection payload 1148 * length based upon the new smaller MTL. 1149 */ 1150 if (cmd->prot_length) { 1151 u32 sectors = (mtl / dev->dev_attrib.block_size); 1152 cmd->prot_length = dev->prot_length * sectors; 1153 } 1154 } 1155 return TCM_NO_SENSE; 1156 } 1157 1158 sense_reason_t 1159 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 1160 { 1161 struct se_device *dev = cmd->se_dev; 1162 1163 if (cmd->unknown_data_length) { 1164 cmd->data_length = size; 1165 } else if (size != cmd->data_length) { 1166 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:" 1167 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 1168 " 0x%02x\n", cmd->se_tfo->get_fabric_name(), 1169 cmd->data_length, size, cmd->t_task_cdb[0]); 1170 1171 if (cmd->data_direction == DMA_TO_DEVICE) { 1172 if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) { 1173 pr_err_ratelimited("Rejecting underflow/overflow" 1174 " for WRITE data CDB\n"); 1175 return TCM_INVALID_CDB_FIELD; 1176 } 1177 /* 1178 * Some fabric drivers like iscsi-target still expect to 1179 * always reject overflow writes. Reject this case until 1180 * full fabric driver level support for overflow writes 1181 * is introduced tree-wide. 1182 */ 1183 if (size > cmd->data_length) { 1184 pr_err_ratelimited("Rejecting overflow for" 1185 " WRITE control CDB\n"); 1186 return TCM_INVALID_CDB_FIELD; 1187 } 1188 } 1189 /* 1190 * Reject READ_* or WRITE_* with overflow/underflow for 1191 * type SCF_SCSI_DATA_CDB. 1192 */ 1193 if (dev->dev_attrib.block_size != 512) { 1194 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 1195 " CDB on non 512-byte sector setup subsystem" 1196 " plugin: %s\n", dev->transport->name); 1197 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 1198 return TCM_INVALID_CDB_FIELD; 1199 } 1200 /* 1201 * For the overflow case keep the existing fabric provided 1202 * ->data_length. Otherwise for the underflow case, reset 1203 * ->data_length to the smaller SCSI expected data transfer 1204 * length. 1205 */ 1206 if (size > cmd->data_length) { 1207 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1208 cmd->residual_count = (size - cmd->data_length); 1209 } else { 1210 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1211 cmd->residual_count = (cmd->data_length - size); 1212 cmd->data_length = size; 1213 } 1214 } 1215 1216 return target_check_max_data_sg_nents(cmd, dev, size); 1217 1218 } 1219 1220 /* 1221 * Used by fabric modules containing a local struct se_cmd within their 1222 * fabric dependent per I/O descriptor. 1223 * 1224 * Preserves the value of @cmd->tag. 1225 */ 1226 void transport_init_se_cmd( 1227 struct se_cmd *cmd, 1228 const struct target_core_fabric_ops *tfo, 1229 struct se_session *se_sess, 1230 u32 data_length, 1231 int data_direction, 1232 int task_attr, 1233 unsigned char *sense_buffer) 1234 { 1235 INIT_LIST_HEAD(&cmd->se_delayed_node); 1236 INIT_LIST_HEAD(&cmd->se_qf_node); 1237 INIT_LIST_HEAD(&cmd->se_cmd_list); 1238 INIT_LIST_HEAD(&cmd->state_list); 1239 init_completion(&cmd->t_transport_stop_comp); 1240 init_completion(&cmd->cmd_wait_comp); 1241 spin_lock_init(&cmd->t_state_lock); 1242 kref_init(&cmd->cmd_kref); 1243 1244 cmd->se_tfo = tfo; 1245 cmd->se_sess = se_sess; 1246 cmd->data_length = data_length; 1247 cmd->data_direction = data_direction; 1248 cmd->sam_task_attr = task_attr; 1249 cmd->sense_buffer = sense_buffer; 1250 1251 cmd->state_active = false; 1252 } 1253 EXPORT_SYMBOL(transport_init_se_cmd); 1254 1255 static sense_reason_t 1256 transport_check_alloc_task_attr(struct se_cmd *cmd) 1257 { 1258 struct se_device *dev = cmd->se_dev; 1259 1260 /* 1261 * Check if SAM Task Attribute emulation is enabled for this 1262 * struct se_device storage object 1263 */ 1264 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1265 return 0; 1266 1267 if (cmd->sam_task_attr == TCM_ACA_TAG) { 1268 pr_debug("SAM Task Attribute ACA" 1269 " emulation is not supported\n"); 1270 return TCM_INVALID_CDB_FIELD; 1271 } 1272 1273 return 0; 1274 } 1275 1276 sense_reason_t 1277 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb) 1278 { 1279 struct se_device *dev = cmd->se_dev; 1280 sense_reason_t ret; 1281 1282 /* 1283 * Ensure that the received CDB is less than the max (252 + 8) bytes 1284 * for VARIABLE_LENGTH_CMD 1285 */ 1286 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1287 pr_err("Received SCSI CDB with command_size: %d that" 1288 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1289 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1290 return TCM_INVALID_CDB_FIELD; 1291 } 1292 /* 1293 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1294 * allocate the additional extended CDB buffer now.. Otherwise 1295 * setup the pointer from __t_task_cdb to t_task_cdb. 1296 */ 1297 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1298 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1299 GFP_KERNEL); 1300 if (!cmd->t_task_cdb) { 1301 pr_err("Unable to allocate cmd->t_task_cdb" 1302 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1303 scsi_command_size(cdb), 1304 (unsigned long)sizeof(cmd->__t_task_cdb)); 1305 return TCM_OUT_OF_RESOURCES; 1306 } 1307 } else 1308 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1309 /* 1310 * Copy the original CDB into cmd-> 1311 */ 1312 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1313 1314 trace_target_sequencer_start(cmd); 1315 1316 ret = dev->transport->parse_cdb(cmd); 1317 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE) 1318 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n", 1319 cmd->se_tfo->get_fabric_name(), 1320 cmd->se_sess->se_node_acl->initiatorname, 1321 cmd->t_task_cdb[0]); 1322 if (ret) 1323 return ret; 1324 1325 ret = transport_check_alloc_task_attr(cmd); 1326 if (ret) 1327 return ret; 1328 1329 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1330 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus); 1331 return 0; 1332 } 1333 EXPORT_SYMBOL(target_setup_cmd_from_cdb); 1334 1335 /* 1336 * Used by fabric module frontends to queue tasks directly. 1337 * May only be used from process context. 1338 */ 1339 int transport_handle_cdb_direct( 1340 struct se_cmd *cmd) 1341 { 1342 sense_reason_t ret; 1343 1344 if (!cmd->se_lun) { 1345 dump_stack(); 1346 pr_err("cmd->se_lun is NULL\n"); 1347 return -EINVAL; 1348 } 1349 if (in_interrupt()) { 1350 dump_stack(); 1351 pr_err("transport_generic_handle_cdb cannot be called" 1352 " from interrupt context\n"); 1353 return -EINVAL; 1354 } 1355 /* 1356 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1357 * outstanding descriptors are handled correctly during shutdown via 1358 * transport_wait_for_tasks() 1359 * 1360 * Also, we don't take cmd->t_state_lock here as we only expect 1361 * this to be called for initial descriptor submission. 1362 */ 1363 cmd->t_state = TRANSPORT_NEW_CMD; 1364 cmd->transport_state |= CMD_T_ACTIVE; 1365 1366 /* 1367 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1368 * so follow TRANSPORT_NEW_CMD processing thread context usage 1369 * and call transport_generic_request_failure() if necessary.. 1370 */ 1371 ret = transport_generic_new_cmd(cmd); 1372 if (ret) 1373 transport_generic_request_failure(cmd, ret); 1374 return 0; 1375 } 1376 EXPORT_SYMBOL(transport_handle_cdb_direct); 1377 1378 sense_reason_t 1379 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1380 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1381 { 1382 if (!sgl || !sgl_count) 1383 return 0; 1384 1385 /* 1386 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1387 * scatterlists already have been set to follow what the fabric 1388 * passes for the original expected data transfer length. 1389 */ 1390 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1391 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1392 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1393 return TCM_INVALID_CDB_FIELD; 1394 } 1395 1396 cmd->t_data_sg = sgl; 1397 cmd->t_data_nents = sgl_count; 1398 cmd->t_bidi_data_sg = sgl_bidi; 1399 cmd->t_bidi_data_nents = sgl_bidi_count; 1400 1401 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1402 return 0; 1403 } 1404 1405 /* 1406 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized 1407 * se_cmd + use pre-allocated SGL memory. 1408 * 1409 * @se_cmd: command descriptor to submit 1410 * @se_sess: associated se_sess for endpoint 1411 * @cdb: pointer to SCSI CDB 1412 * @sense: pointer to SCSI sense buffer 1413 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1414 * @data_length: fabric expected data transfer length 1415 * @task_addr: SAM task attribute 1416 * @data_dir: DMA data direction 1417 * @flags: flags for command submission from target_sc_flags_tables 1418 * @sgl: struct scatterlist memory for unidirectional mapping 1419 * @sgl_count: scatterlist count for unidirectional mapping 1420 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1421 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1422 * @sgl_prot: struct scatterlist memory protection information 1423 * @sgl_prot_count: scatterlist count for protection information 1424 * 1425 * Task tags are supported if the caller has set @se_cmd->tag. 1426 * 1427 * Returns non zero to signal active I/O shutdown failure. All other 1428 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1429 * but still return zero here. 1430 * 1431 * This may only be called from process context, and also currently 1432 * assumes internal allocation of fabric payload buffer by target-core. 1433 */ 1434 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, 1435 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1436 u32 data_length, int task_attr, int data_dir, int flags, 1437 struct scatterlist *sgl, u32 sgl_count, 1438 struct scatterlist *sgl_bidi, u32 sgl_bidi_count, 1439 struct scatterlist *sgl_prot, u32 sgl_prot_count) 1440 { 1441 struct se_portal_group *se_tpg; 1442 sense_reason_t rc; 1443 int ret; 1444 1445 se_tpg = se_sess->se_tpg; 1446 BUG_ON(!se_tpg); 1447 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1448 BUG_ON(in_interrupt()); 1449 /* 1450 * Initialize se_cmd for target operation. From this point 1451 * exceptions are handled by sending exception status via 1452 * target_core_fabric_ops->queue_status() callback 1453 */ 1454 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1455 data_length, data_dir, task_attr, sense); 1456 1457 if (flags & TARGET_SCF_USE_CPUID) 1458 se_cmd->se_cmd_flags |= SCF_USE_CPUID; 1459 else 1460 se_cmd->cpuid = WORK_CPU_UNBOUND; 1461 1462 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1463 se_cmd->unknown_data_length = 1; 1464 /* 1465 * Obtain struct se_cmd->cmd_kref reference and add new cmd to 1466 * se_sess->sess_cmd_list. A second kref_get here is necessary 1467 * for fabrics using TARGET_SCF_ACK_KREF that expect a second 1468 * kref_put() to happen during fabric packet acknowledgement. 1469 */ 1470 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1471 if (ret) 1472 return ret; 1473 /* 1474 * Signal bidirectional data payloads to target-core 1475 */ 1476 if (flags & TARGET_SCF_BIDI_OP) 1477 se_cmd->se_cmd_flags |= SCF_BIDI; 1478 /* 1479 * Locate se_lun pointer and attach it to struct se_cmd 1480 */ 1481 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun); 1482 if (rc) { 1483 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1484 target_put_sess_cmd(se_cmd); 1485 return 0; 1486 } 1487 1488 rc = target_setup_cmd_from_cdb(se_cmd, cdb); 1489 if (rc != 0) { 1490 transport_generic_request_failure(se_cmd, rc); 1491 return 0; 1492 } 1493 1494 /* 1495 * Save pointers for SGLs containing protection information, 1496 * if present. 1497 */ 1498 if (sgl_prot_count) { 1499 se_cmd->t_prot_sg = sgl_prot; 1500 se_cmd->t_prot_nents = sgl_prot_count; 1501 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC; 1502 } 1503 1504 /* 1505 * When a non zero sgl_count has been passed perform SGL passthrough 1506 * mapping for pre-allocated fabric memory instead of having target 1507 * core perform an internal SGL allocation.. 1508 */ 1509 if (sgl_count != 0) { 1510 BUG_ON(!sgl); 1511 1512 /* 1513 * A work-around for tcm_loop as some userspace code via 1514 * scsi-generic do not memset their associated read buffers, 1515 * so go ahead and do that here for type non-data CDBs. Also 1516 * note that this is currently guaranteed to be a single SGL 1517 * for this case by target core in target_setup_cmd_from_cdb() 1518 * -> transport_generic_cmd_sequencer(). 1519 */ 1520 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1521 se_cmd->data_direction == DMA_FROM_DEVICE) { 1522 unsigned char *buf = NULL; 1523 1524 if (sgl) 1525 buf = kmap(sg_page(sgl)) + sgl->offset; 1526 1527 if (buf) { 1528 memset(buf, 0, sgl->length); 1529 kunmap(sg_page(sgl)); 1530 } 1531 } 1532 1533 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1534 sgl_bidi, sgl_bidi_count); 1535 if (rc != 0) { 1536 transport_generic_request_failure(se_cmd, rc); 1537 return 0; 1538 } 1539 } 1540 1541 /* 1542 * Check if we need to delay processing because of ALUA 1543 * Active/NonOptimized primary access state.. 1544 */ 1545 core_alua_check_nonop_delay(se_cmd); 1546 1547 transport_handle_cdb_direct(se_cmd); 1548 return 0; 1549 } 1550 EXPORT_SYMBOL(target_submit_cmd_map_sgls); 1551 1552 /* 1553 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1554 * 1555 * @se_cmd: command descriptor to submit 1556 * @se_sess: associated se_sess for endpoint 1557 * @cdb: pointer to SCSI CDB 1558 * @sense: pointer to SCSI sense buffer 1559 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1560 * @data_length: fabric expected data transfer length 1561 * @task_addr: SAM task attribute 1562 * @data_dir: DMA data direction 1563 * @flags: flags for command submission from target_sc_flags_tables 1564 * 1565 * Task tags are supported if the caller has set @se_cmd->tag. 1566 * 1567 * Returns non zero to signal active I/O shutdown failure. All other 1568 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1569 * but still return zero here. 1570 * 1571 * This may only be called from process context, and also currently 1572 * assumes internal allocation of fabric payload buffer by target-core. 1573 * 1574 * It also assumes interal target core SGL memory allocation. 1575 */ 1576 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1577 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1578 u32 data_length, int task_attr, int data_dir, int flags) 1579 { 1580 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, 1581 unpacked_lun, data_length, task_attr, data_dir, 1582 flags, NULL, 0, NULL, 0, NULL, 0); 1583 } 1584 EXPORT_SYMBOL(target_submit_cmd); 1585 1586 static void target_complete_tmr_failure(struct work_struct *work) 1587 { 1588 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1589 1590 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1591 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1592 1593 transport_cmd_check_stop_to_fabric(se_cmd); 1594 } 1595 1596 /** 1597 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1598 * for TMR CDBs 1599 * 1600 * @se_cmd: command descriptor to submit 1601 * @se_sess: associated se_sess for endpoint 1602 * @sense: pointer to SCSI sense buffer 1603 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1604 * @fabric_context: fabric context for TMR req 1605 * @tm_type: Type of TM request 1606 * @gfp: gfp type for caller 1607 * @tag: referenced task tag for TMR_ABORT_TASK 1608 * @flags: submit cmd flags 1609 * 1610 * Callable from all contexts. 1611 **/ 1612 1613 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1614 unsigned char *sense, u64 unpacked_lun, 1615 void *fabric_tmr_ptr, unsigned char tm_type, 1616 gfp_t gfp, u64 tag, int flags) 1617 { 1618 struct se_portal_group *se_tpg; 1619 int ret; 1620 1621 se_tpg = se_sess->se_tpg; 1622 BUG_ON(!se_tpg); 1623 1624 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1625 0, DMA_NONE, TCM_SIMPLE_TAG, sense); 1626 /* 1627 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1628 * allocation failure. 1629 */ 1630 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1631 if (ret < 0) 1632 return -ENOMEM; 1633 1634 if (tm_type == TMR_ABORT_TASK) 1635 se_cmd->se_tmr_req->ref_task_tag = tag; 1636 1637 /* See target_submit_cmd for commentary */ 1638 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1639 if (ret) { 1640 core_tmr_release_req(se_cmd->se_tmr_req); 1641 return ret; 1642 } 1643 1644 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun); 1645 if (ret) { 1646 /* 1647 * For callback during failure handling, push this work off 1648 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1649 */ 1650 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1651 schedule_work(&se_cmd->work); 1652 return 0; 1653 } 1654 transport_generic_handle_tmr(se_cmd); 1655 return 0; 1656 } 1657 EXPORT_SYMBOL(target_submit_tmr); 1658 1659 /* 1660 * Handle SAM-esque emulation for generic transport request failures. 1661 */ 1662 void transport_generic_request_failure(struct se_cmd *cmd, 1663 sense_reason_t sense_reason) 1664 { 1665 int ret = 0, post_ret = 0; 1666 1667 if (transport_check_aborted_status(cmd, 1)) 1668 return; 1669 1670 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx" 1671 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]); 1672 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n", 1673 cmd->se_tfo->get_cmd_state(cmd), 1674 cmd->t_state, sense_reason); 1675 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n", 1676 (cmd->transport_state & CMD_T_ACTIVE) != 0, 1677 (cmd->transport_state & CMD_T_STOP) != 0, 1678 (cmd->transport_state & CMD_T_SENT) != 0); 1679 1680 /* 1681 * For SAM Task Attribute emulation for failed struct se_cmd 1682 */ 1683 transport_complete_task_attr(cmd); 1684 /* 1685 * Handle special case for COMPARE_AND_WRITE failure, where the 1686 * callback is expected to drop the per device ->caw_sem. 1687 */ 1688 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 1689 cmd->transport_complete_callback) 1690 cmd->transport_complete_callback(cmd, false, &post_ret); 1691 1692 switch (sense_reason) { 1693 case TCM_NON_EXISTENT_LUN: 1694 case TCM_UNSUPPORTED_SCSI_OPCODE: 1695 case TCM_INVALID_CDB_FIELD: 1696 case TCM_INVALID_PARAMETER_LIST: 1697 case TCM_PARAMETER_LIST_LENGTH_ERROR: 1698 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1699 case TCM_UNKNOWN_MODE_PAGE: 1700 case TCM_WRITE_PROTECTED: 1701 case TCM_ADDRESS_OUT_OF_RANGE: 1702 case TCM_CHECK_CONDITION_ABORT_CMD: 1703 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1704 case TCM_CHECK_CONDITION_NOT_READY: 1705 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 1706 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 1707 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 1708 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE: 1709 case TCM_TOO_MANY_TARGET_DESCS: 1710 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE: 1711 case TCM_TOO_MANY_SEGMENT_DESCS: 1712 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE: 1713 break; 1714 case TCM_OUT_OF_RESOURCES: 1715 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1716 break; 1717 case TCM_RESERVATION_CONFLICT: 1718 /* 1719 * No SENSE Data payload for this case, set SCSI Status 1720 * and queue the response to $FABRIC_MOD. 1721 * 1722 * Uses linux/include/scsi/scsi.h SAM status codes defs 1723 */ 1724 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1725 /* 1726 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1727 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1728 * CONFLICT STATUS. 1729 * 1730 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1731 */ 1732 if (cmd->se_sess && 1733 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) { 1734 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 1735 cmd->orig_fe_lun, 0x2C, 1736 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1737 } 1738 trace_target_cmd_complete(cmd); 1739 ret = cmd->se_tfo->queue_status(cmd); 1740 if (ret) 1741 goto queue_full; 1742 goto check_stop; 1743 default: 1744 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1745 cmd->t_task_cdb[0], sense_reason); 1746 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1747 break; 1748 } 1749 1750 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 1751 if (ret) 1752 goto queue_full; 1753 1754 check_stop: 1755 transport_lun_remove_cmd(cmd); 1756 transport_cmd_check_stop_to_fabric(cmd); 1757 return; 1758 1759 queue_full: 1760 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 1761 } 1762 EXPORT_SYMBOL(transport_generic_request_failure); 1763 1764 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks) 1765 { 1766 sense_reason_t ret; 1767 1768 if (!cmd->execute_cmd) { 1769 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1770 goto err; 1771 } 1772 if (do_checks) { 1773 /* 1774 * Check for an existing UNIT ATTENTION condition after 1775 * target_handle_task_attr() has done SAM task attr 1776 * checking, and possibly have already defered execution 1777 * out to target_restart_delayed_cmds() context. 1778 */ 1779 ret = target_scsi3_ua_check(cmd); 1780 if (ret) 1781 goto err; 1782 1783 ret = target_alua_state_check(cmd); 1784 if (ret) 1785 goto err; 1786 1787 ret = target_check_reservation(cmd); 1788 if (ret) { 1789 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1790 goto err; 1791 } 1792 } 1793 1794 ret = cmd->execute_cmd(cmd); 1795 if (!ret) 1796 return; 1797 err: 1798 spin_lock_irq(&cmd->t_state_lock); 1799 cmd->transport_state &= ~CMD_T_SENT; 1800 spin_unlock_irq(&cmd->t_state_lock); 1801 1802 transport_generic_request_failure(cmd, ret); 1803 } 1804 1805 static int target_write_prot_action(struct se_cmd *cmd) 1806 { 1807 u32 sectors; 1808 /* 1809 * Perform WRITE_INSERT of PI using software emulation when backend 1810 * device has PI enabled, if the transport has not already generated 1811 * PI using hardware WRITE_INSERT offload. 1812 */ 1813 switch (cmd->prot_op) { 1814 case TARGET_PROT_DOUT_INSERT: 1815 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT)) 1816 sbc_dif_generate(cmd); 1817 break; 1818 case TARGET_PROT_DOUT_STRIP: 1819 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP) 1820 break; 1821 1822 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size); 1823 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 1824 sectors, 0, cmd->t_prot_sg, 0); 1825 if (unlikely(cmd->pi_err)) { 1826 spin_lock_irq(&cmd->t_state_lock); 1827 cmd->transport_state &= ~CMD_T_SENT; 1828 spin_unlock_irq(&cmd->t_state_lock); 1829 transport_generic_request_failure(cmd, cmd->pi_err); 1830 return -1; 1831 } 1832 break; 1833 default: 1834 break; 1835 } 1836 1837 return 0; 1838 } 1839 1840 static bool target_handle_task_attr(struct se_cmd *cmd) 1841 { 1842 struct se_device *dev = cmd->se_dev; 1843 1844 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1845 return false; 1846 1847 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET; 1848 1849 /* 1850 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 1851 * to allow the passed struct se_cmd list of tasks to the front of the list. 1852 */ 1853 switch (cmd->sam_task_attr) { 1854 case TCM_HEAD_TAG: 1855 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n", 1856 cmd->t_task_cdb[0]); 1857 return false; 1858 case TCM_ORDERED_TAG: 1859 atomic_inc_mb(&dev->dev_ordered_sync); 1860 1861 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n", 1862 cmd->t_task_cdb[0]); 1863 1864 /* 1865 * Execute an ORDERED command if no other older commands 1866 * exist that need to be completed first. 1867 */ 1868 if (!atomic_read(&dev->simple_cmds)) 1869 return false; 1870 break; 1871 default: 1872 /* 1873 * For SIMPLE and UNTAGGED Task Attribute commands 1874 */ 1875 atomic_inc_mb(&dev->simple_cmds); 1876 break; 1877 } 1878 1879 if (atomic_read(&dev->dev_ordered_sync) == 0) 1880 return false; 1881 1882 spin_lock(&dev->delayed_cmd_lock); 1883 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 1884 spin_unlock(&dev->delayed_cmd_lock); 1885 1886 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn", 1887 cmd->t_task_cdb[0], cmd->sam_task_attr); 1888 return true; 1889 } 1890 1891 static int __transport_check_aborted_status(struct se_cmd *, int); 1892 1893 void target_execute_cmd(struct se_cmd *cmd) 1894 { 1895 /* 1896 * Determine if frontend context caller is requesting the stopping of 1897 * this command for frontend exceptions. 1898 * 1899 * If the received CDB has aleady been aborted stop processing it here. 1900 */ 1901 spin_lock_irq(&cmd->t_state_lock); 1902 if (__transport_check_aborted_status(cmd, 1)) { 1903 spin_unlock_irq(&cmd->t_state_lock); 1904 return; 1905 } 1906 if (cmd->transport_state & CMD_T_STOP) { 1907 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 1908 __func__, __LINE__, cmd->tag); 1909 1910 spin_unlock_irq(&cmd->t_state_lock); 1911 complete_all(&cmd->t_transport_stop_comp); 1912 return; 1913 } 1914 1915 cmd->t_state = TRANSPORT_PROCESSING; 1916 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT; 1917 spin_unlock_irq(&cmd->t_state_lock); 1918 1919 if (target_write_prot_action(cmd)) 1920 return; 1921 1922 if (target_handle_task_attr(cmd)) { 1923 spin_lock_irq(&cmd->t_state_lock); 1924 cmd->transport_state &= ~CMD_T_SENT; 1925 spin_unlock_irq(&cmd->t_state_lock); 1926 return; 1927 } 1928 1929 __target_execute_cmd(cmd, true); 1930 } 1931 EXPORT_SYMBOL(target_execute_cmd); 1932 1933 /* 1934 * Process all commands up to the last received ORDERED task attribute which 1935 * requires another blocking boundary 1936 */ 1937 static void target_restart_delayed_cmds(struct se_device *dev) 1938 { 1939 for (;;) { 1940 struct se_cmd *cmd; 1941 1942 spin_lock(&dev->delayed_cmd_lock); 1943 if (list_empty(&dev->delayed_cmd_list)) { 1944 spin_unlock(&dev->delayed_cmd_lock); 1945 break; 1946 } 1947 1948 cmd = list_entry(dev->delayed_cmd_list.next, 1949 struct se_cmd, se_delayed_node); 1950 list_del(&cmd->se_delayed_node); 1951 spin_unlock(&dev->delayed_cmd_lock); 1952 1953 __target_execute_cmd(cmd, true); 1954 1955 if (cmd->sam_task_attr == TCM_ORDERED_TAG) 1956 break; 1957 } 1958 } 1959 1960 /* 1961 * Called from I/O completion to determine which dormant/delayed 1962 * and ordered cmds need to have their tasks added to the execution queue. 1963 */ 1964 static void transport_complete_task_attr(struct se_cmd *cmd) 1965 { 1966 struct se_device *dev = cmd->se_dev; 1967 1968 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1969 return; 1970 1971 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET)) 1972 goto restart; 1973 1974 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) { 1975 atomic_dec_mb(&dev->simple_cmds); 1976 dev->dev_cur_ordered_id++; 1977 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) { 1978 dev->dev_cur_ordered_id++; 1979 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n", 1980 dev->dev_cur_ordered_id); 1981 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) { 1982 atomic_dec_mb(&dev->dev_ordered_sync); 1983 1984 dev->dev_cur_ordered_id++; 1985 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n", 1986 dev->dev_cur_ordered_id); 1987 } 1988 restart: 1989 target_restart_delayed_cmds(dev); 1990 } 1991 1992 static void transport_complete_qf(struct se_cmd *cmd) 1993 { 1994 int ret = 0; 1995 1996 transport_complete_task_attr(cmd); 1997 /* 1998 * If a fabric driver ->write_pending() or ->queue_data_in() callback 1999 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and 2000 * the same callbacks should not be retried. Return CHECK_CONDITION 2001 * if a scsi_status is not already set. 2002 * 2003 * If a fabric driver ->queue_status() has returned non zero, always 2004 * keep retrying no matter what.. 2005 */ 2006 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) { 2007 if (cmd->scsi_status) 2008 goto queue_status; 2009 2010 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 2011 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 2012 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 2013 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 2014 goto queue_status; 2015 } 2016 2017 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 2018 goto queue_status; 2019 2020 switch (cmd->data_direction) { 2021 case DMA_FROM_DEVICE: 2022 if (cmd->scsi_status) 2023 goto queue_status; 2024 2025 trace_target_cmd_complete(cmd); 2026 ret = cmd->se_tfo->queue_data_in(cmd); 2027 break; 2028 case DMA_TO_DEVICE: 2029 if (cmd->se_cmd_flags & SCF_BIDI) { 2030 ret = cmd->se_tfo->queue_data_in(cmd); 2031 break; 2032 } 2033 /* Fall through for DMA_TO_DEVICE */ 2034 case DMA_NONE: 2035 queue_status: 2036 trace_target_cmd_complete(cmd); 2037 ret = cmd->se_tfo->queue_status(cmd); 2038 break; 2039 default: 2040 break; 2041 } 2042 2043 if (ret < 0) { 2044 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 2045 return; 2046 } 2047 transport_lun_remove_cmd(cmd); 2048 transport_cmd_check_stop_to_fabric(cmd); 2049 } 2050 2051 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev, 2052 int err, bool write_pending) 2053 { 2054 /* 2055 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or 2056 * ->queue_data_in() callbacks from new process context. 2057 * 2058 * Otherwise for other errors, transport_complete_qf() will send 2059 * CHECK_CONDITION via ->queue_status() instead of attempting to 2060 * retry associated fabric driver data-transfer callbacks. 2061 */ 2062 if (err == -EAGAIN || err == -ENOMEM) { 2063 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP : 2064 TRANSPORT_COMPLETE_QF_OK; 2065 } else { 2066 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err); 2067 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR; 2068 } 2069 2070 spin_lock_irq(&dev->qf_cmd_lock); 2071 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 2072 atomic_inc_mb(&dev->dev_qf_count); 2073 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 2074 2075 schedule_work(&cmd->se_dev->qf_work_queue); 2076 } 2077 2078 static bool target_read_prot_action(struct se_cmd *cmd) 2079 { 2080 switch (cmd->prot_op) { 2081 case TARGET_PROT_DIN_STRIP: 2082 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) { 2083 u32 sectors = cmd->data_length >> 2084 ilog2(cmd->se_dev->dev_attrib.block_size); 2085 2086 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 2087 sectors, 0, cmd->t_prot_sg, 2088 0); 2089 if (cmd->pi_err) 2090 return true; 2091 } 2092 break; 2093 case TARGET_PROT_DIN_INSERT: 2094 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT) 2095 break; 2096 2097 sbc_dif_generate(cmd); 2098 break; 2099 default: 2100 break; 2101 } 2102 2103 return false; 2104 } 2105 2106 static void target_complete_ok_work(struct work_struct *work) 2107 { 2108 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2109 int ret; 2110 2111 /* 2112 * Check if we need to move delayed/dormant tasks from cmds on the 2113 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 2114 * Attribute. 2115 */ 2116 transport_complete_task_attr(cmd); 2117 2118 /* 2119 * Check to schedule QUEUE_FULL work, or execute an existing 2120 * cmd->transport_qf_callback() 2121 */ 2122 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 2123 schedule_work(&cmd->se_dev->qf_work_queue); 2124 2125 /* 2126 * Check if we need to send a sense buffer from 2127 * the struct se_cmd in question. 2128 */ 2129 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 2130 WARN_ON(!cmd->scsi_status); 2131 ret = transport_send_check_condition_and_sense( 2132 cmd, 0, 1); 2133 if (ret) 2134 goto queue_full; 2135 2136 transport_lun_remove_cmd(cmd); 2137 transport_cmd_check_stop_to_fabric(cmd); 2138 return; 2139 } 2140 /* 2141 * Check for a callback, used by amongst other things 2142 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation. 2143 */ 2144 if (cmd->transport_complete_callback) { 2145 sense_reason_t rc; 2146 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE); 2147 bool zero_dl = !(cmd->data_length); 2148 int post_ret = 0; 2149 2150 rc = cmd->transport_complete_callback(cmd, true, &post_ret); 2151 if (!rc && !post_ret) { 2152 if (caw && zero_dl) 2153 goto queue_rsp; 2154 2155 return; 2156 } else if (rc) { 2157 ret = transport_send_check_condition_and_sense(cmd, 2158 rc, 0); 2159 if (ret) 2160 goto queue_full; 2161 2162 transport_lun_remove_cmd(cmd); 2163 transport_cmd_check_stop_to_fabric(cmd); 2164 return; 2165 } 2166 } 2167 2168 queue_rsp: 2169 switch (cmd->data_direction) { 2170 case DMA_FROM_DEVICE: 2171 if (cmd->scsi_status) 2172 goto queue_status; 2173 2174 atomic_long_add(cmd->data_length, 2175 &cmd->se_lun->lun_stats.tx_data_octets); 2176 /* 2177 * Perform READ_STRIP of PI using software emulation when 2178 * backend had PI enabled, if the transport will not be 2179 * performing hardware READ_STRIP offload. 2180 */ 2181 if (target_read_prot_action(cmd)) { 2182 ret = transport_send_check_condition_and_sense(cmd, 2183 cmd->pi_err, 0); 2184 if (ret) 2185 goto queue_full; 2186 2187 transport_lun_remove_cmd(cmd); 2188 transport_cmd_check_stop_to_fabric(cmd); 2189 return; 2190 } 2191 2192 trace_target_cmd_complete(cmd); 2193 ret = cmd->se_tfo->queue_data_in(cmd); 2194 if (ret) 2195 goto queue_full; 2196 break; 2197 case DMA_TO_DEVICE: 2198 atomic_long_add(cmd->data_length, 2199 &cmd->se_lun->lun_stats.rx_data_octets); 2200 /* 2201 * Check if we need to send READ payload for BIDI-COMMAND 2202 */ 2203 if (cmd->se_cmd_flags & SCF_BIDI) { 2204 atomic_long_add(cmd->data_length, 2205 &cmd->se_lun->lun_stats.tx_data_octets); 2206 ret = cmd->se_tfo->queue_data_in(cmd); 2207 if (ret) 2208 goto queue_full; 2209 break; 2210 } 2211 /* Fall through for DMA_TO_DEVICE */ 2212 case DMA_NONE: 2213 queue_status: 2214 trace_target_cmd_complete(cmd); 2215 ret = cmd->se_tfo->queue_status(cmd); 2216 if (ret) 2217 goto queue_full; 2218 break; 2219 default: 2220 break; 2221 } 2222 2223 transport_lun_remove_cmd(cmd); 2224 transport_cmd_check_stop_to_fabric(cmd); 2225 return; 2226 2227 queue_full: 2228 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 2229 " data_direction: %d\n", cmd, cmd->data_direction); 2230 2231 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 2232 } 2233 2234 void target_free_sgl(struct scatterlist *sgl, int nents) 2235 { 2236 struct scatterlist *sg; 2237 int count; 2238 2239 for_each_sg(sgl, sg, nents, count) 2240 __free_page(sg_page(sg)); 2241 2242 kfree(sgl); 2243 } 2244 EXPORT_SYMBOL(target_free_sgl); 2245 2246 static inline void transport_reset_sgl_orig(struct se_cmd *cmd) 2247 { 2248 /* 2249 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE 2250 * emulation, and free + reset pointers if necessary.. 2251 */ 2252 if (!cmd->t_data_sg_orig) 2253 return; 2254 2255 kfree(cmd->t_data_sg); 2256 cmd->t_data_sg = cmd->t_data_sg_orig; 2257 cmd->t_data_sg_orig = NULL; 2258 cmd->t_data_nents = cmd->t_data_nents_orig; 2259 cmd->t_data_nents_orig = 0; 2260 } 2261 2262 static inline void transport_free_pages(struct se_cmd *cmd) 2263 { 2264 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2265 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents); 2266 cmd->t_prot_sg = NULL; 2267 cmd->t_prot_nents = 0; 2268 } 2269 2270 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) { 2271 /* 2272 * Release special case READ buffer payload required for 2273 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE 2274 */ 2275 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) { 2276 target_free_sgl(cmd->t_bidi_data_sg, 2277 cmd->t_bidi_data_nents); 2278 cmd->t_bidi_data_sg = NULL; 2279 cmd->t_bidi_data_nents = 0; 2280 } 2281 transport_reset_sgl_orig(cmd); 2282 return; 2283 } 2284 transport_reset_sgl_orig(cmd); 2285 2286 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 2287 cmd->t_data_sg = NULL; 2288 cmd->t_data_nents = 0; 2289 2290 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 2291 cmd->t_bidi_data_sg = NULL; 2292 cmd->t_bidi_data_nents = 0; 2293 } 2294 2295 /** 2296 * transport_put_cmd - release a reference to a command 2297 * @cmd: command to release 2298 * 2299 * This routine releases our reference to the command and frees it if possible. 2300 */ 2301 static int transport_put_cmd(struct se_cmd *cmd) 2302 { 2303 BUG_ON(!cmd->se_tfo); 2304 /* 2305 * If this cmd has been setup with target_get_sess_cmd(), drop 2306 * the kref and call ->release_cmd() in kref callback. 2307 */ 2308 return target_put_sess_cmd(cmd); 2309 } 2310 2311 void *transport_kmap_data_sg(struct se_cmd *cmd) 2312 { 2313 struct scatterlist *sg = cmd->t_data_sg; 2314 struct page **pages; 2315 int i; 2316 2317 /* 2318 * We need to take into account a possible offset here for fabrics like 2319 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2320 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2321 */ 2322 if (!cmd->t_data_nents) 2323 return NULL; 2324 2325 BUG_ON(!sg); 2326 if (cmd->t_data_nents == 1) 2327 return kmap(sg_page(sg)) + sg->offset; 2328 2329 /* >1 page. use vmap */ 2330 pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL); 2331 if (!pages) 2332 return NULL; 2333 2334 /* convert sg[] to pages[] */ 2335 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2336 pages[i] = sg_page(sg); 2337 } 2338 2339 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2340 kfree(pages); 2341 if (!cmd->t_data_vmap) 2342 return NULL; 2343 2344 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2345 } 2346 EXPORT_SYMBOL(transport_kmap_data_sg); 2347 2348 void transport_kunmap_data_sg(struct se_cmd *cmd) 2349 { 2350 if (!cmd->t_data_nents) { 2351 return; 2352 } else if (cmd->t_data_nents == 1) { 2353 kunmap(sg_page(cmd->t_data_sg)); 2354 return; 2355 } 2356 2357 vunmap(cmd->t_data_vmap); 2358 cmd->t_data_vmap = NULL; 2359 } 2360 EXPORT_SYMBOL(transport_kunmap_data_sg); 2361 2362 int 2363 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length, 2364 bool zero_page, bool chainable) 2365 { 2366 struct scatterlist *sg; 2367 struct page *page; 2368 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0; 2369 unsigned int nalloc, nent; 2370 int i = 0; 2371 2372 nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE); 2373 if (chainable) 2374 nalloc++; 2375 sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL); 2376 if (!sg) 2377 return -ENOMEM; 2378 2379 sg_init_table(sg, nalloc); 2380 2381 while (length) { 2382 u32 page_len = min_t(u32, length, PAGE_SIZE); 2383 page = alloc_page(GFP_KERNEL | zero_flag); 2384 if (!page) 2385 goto out; 2386 2387 sg_set_page(&sg[i], page, page_len, 0); 2388 length -= page_len; 2389 i++; 2390 } 2391 *sgl = sg; 2392 *nents = nent; 2393 return 0; 2394 2395 out: 2396 while (i > 0) { 2397 i--; 2398 __free_page(sg_page(&sg[i])); 2399 } 2400 kfree(sg); 2401 return -ENOMEM; 2402 } 2403 EXPORT_SYMBOL(target_alloc_sgl); 2404 2405 /* 2406 * Allocate any required resources to execute the command. For writes we 2407 * might not have the payload yet, so notify the fabric via a call to 2408 * ->write_pending instead. Otherwise place it on the execution queue. 2409 */ 2410 sense_reason_t 2411 transport_generic_new_cmd(struct se_cmd *cmd) 2412 { 2413 unsigned long flags; 2414 int ret = 0; 2415 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB); 2416 2417 if (cmd->prot_op != TARGET_PROT_NORMAL && 2418 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2419 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents, 2420 cmd->prot_length, true, false); 2421 if (ret < 0) 2422 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2423 } 2424 2425 /* 2426 * Determine is the TCM fabric module has already allocated physical 2427 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2428 * beforehand. 2429 */ 2430 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2431 cmd->data_length) { 2432 2433 if ((cmd->se_cmd_flags & SCF_BIDI) || 2434 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) { 2435 u32 bidi_length; 2436 2437 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) 2438 bidi_length = cmd->t_task_nolb * 2439 cmd->se_dev->dev_attrib.block_size; 2440 else 2441 bidi_length = cmd->data_length; 2442 2443 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2444 &cmd->t_bidi_data_nents, 2445 bidi_length, zero_flag, false); 2446 if (ret < 0) 2447 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2448 } 2449 2450 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents, 2451 cmd->data_length, zero_flag, false); 2452 if (ret < 0) 2453 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2454 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 2455 cmd->data_length) { 2456 /* 2457 * Special case for COMPARE_AND_WRITE with fabrics 2458 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC. 2459 */ 2460 u32 caw_length = cmd->t_task_nolb * 2461 cmd->se_dev->dev_attrib.block_size; 2462 2463 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2464 &cmd->t_bidi_data_nents, 2465 caw_length, zero_flag, false); 2466 if (ret < 0) 2467 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2468 } 2469 /* 2470 * If this command is not a write we can execute it right here, 2471 * for write buffers we need to notify the fabric driver first 2472 * and let it call back once the write buffers are ready. 2473 */ 2474 target_add_to_state_list(cmd); 2475 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) { 2476 target_execute_cmd(cmd); 2477 return 0; 2478 } 2479 2480 spin_lock_irqsave(&cmd->t_state_lock, flags); 2481 cmd->t_state = TRANSPORT_WRITE_PENDING; 2482 /* 2483 * Determine if frontend context caller is requesting the stopping of 2484 * this command for frontend exceptions. 2485 */ 2486 if (cmd->transport_state & CMD_T_STOP) { 2487 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 2488 __func__, __LINE__, cmd->tag); 2489 2490 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2491 2492 complete_all(&cmd->t_transport_stop_comp); 2493 return 0; 2494 } 2495 cmd->transport_state &= ~CMD_T_ACTIVE; 2496 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2497 2498 ret = cmd->se_tfo->write_pending(cmd); 2499 if (ret) 2500 goto queue_full; 2501 2502 return 0; 2503 2504 queue_full: 2505 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2506 transport_handle_queue_full(cmd, cmd->se_dev, ret, true); 2507 return 0; 2508 } 2509 EXPORT_SYMBOL(transport_generic_new_cmd); 2510 2511 static void transport_write_pending_qf(struct se_cmd *cmd) 2512 { 2513 int ret; 2514 2515 ret = cmd->se_tfo->write_pending(cmd); 2516 if (ret) { 2517 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2518 cmd); 2519 transport_handle_queue_full(cmd, cmd->se_dev, ret, true); 2520 } 2521 } 2522 2523 static bool 2524 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *, 2525 unsigned long *flags); 2526 2527 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas) 2528 { 2529 unsigned long flags; 2530 2531 spin_lock_irqsave(&cmd->t_state_lock, flags); 2532 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags); 2533 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2534 } 2535 2536 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2537 { 2538 int ret = 0; 2539 bool aborted = false, tas = false; 2540 2541 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) { 2542 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2543 target_wait_free_cmd(cmd, &aborted, &tas); 2544 2545 if (!aborted || tas) 2546 ret = transport_put_cmd(cmd); 2547 } else { 2548 if (wait_for_tasks) 2549 target_wait_free_cmd(cmd, &aborted, &tas); 2550 /* 2551 * Handle WRITE failure case where transport_generic_new_cmd() 2552 * has already added se_cmd to state_list, but fabric has 2553 * failed command before I/O submission. 2554 */ 2555 if (cmd->state_active) 2556 target_remove_from_state_list(cmd); 2557 2558 if (cmd->se_lun) 2559 transport_lun_remove_cmd(cmd); 2560 2561 if (!aborted || tas) 2562 ret = transport_put_cmd(cmd); 2563 } 2564 /* 2565 * If the task has been internally aborted due to TMR ABORT_TASK 2566 * or LUN_RESET, target_core_tmr.c is responsible for performing 2567 * the remaining calls to target_put_sess_cmd(), and not the 2568 * callers of this function. 2569 */ 2570 if (aborted) { 2571 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag); 2572 wait_for_completion(&cmd->cmd_wait_comp); 2573 cmd->se_tfo->release_cmd(cmd); 2574 ret = 1; 2575 } 2576 return ret; 2577 } 2578 EXPORT_SYMBOL(transport_generic_free_cmd); 2579 2580 /* target_get_sess_cmd - Add command to active ->sess_cmd_list 2581 * @se_cmd: command descriptor to add 2582 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2583 */ 2584 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref) 2585 { 2586 struct se_session *se_sess = se_cmd->se_sess; 2587 unsigned long flags; 2588 int ret = 0; 2589 2590 /* 2591 * Add a second kref if the fabric caller is expecting to handle 2592 * fabric acknowledgement that requires two target_put_sess_cmd() 2593 * invocations before se_cmd descriptor release. 2594 */ 2595 if (ack_kref) { 2596 if (!kref_get_unless_zero(&se_cmd->cmd_kref)) 2597 return -EINVAL; 2598 2599 se_cmd->se_cmd_flags |= SCF_ACK_KREF; 2600 } 2601 2602 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2603 if (se_sess->sess_tearing_down) { 2604 ret = -ESHUTDOWN; 2605 goto out; 2606 } 2607 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); 2608 out: 2609 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2610 2611 if (ret && ack_kref) 2612 target_put_sess_cmd(se_cmd); 2613 2614 return ret; 2615 } 2616 EXPORT_SYMBOL(target_get_sess_cmd); 2617 2618 static void target_free_cmd_mem(struct se_cmd *cmd) 2619 { 2620 transport_free_pages(cmd); 2621 2622 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 2623 core_tmr_release_req(cmd->se_tmr_req); 2624 if (cmd->t_task_cdb != cmd->__t_task_cdb) 2625 kfree(cmd->t_task_cdb); 2626 } 2627 2628 static void target_release_cmd_kref(struct kref *kref) 2629 { 2630 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2631 struct se_session *se_sess = se_cmd->se_sess; 2632 unsigned long flags; 2633 bool fabric_stop; 2634 2635 if (se_sess) { 2636 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2637 2638 spin_lock(&se_cmd->t_state_lock); 2639 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) && 2640 (se_cmd->transport_state & CMD_T_ABORTED); 2641 spin_unlock(&se_cmd->t_state_lock); 2642 2643 if (se_cmd->cmd_wait_set || fabric_stop) { 2644 list_del_init(&se_cmd->se_cmd_list); 2645 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2646 target_free_cmd_mem(se_cmd); 2647 complete(&se_cmd->cmd_wait_comp); 2648 return; 2649 } 2650 list_del_init(&se_cmd->se_cmd_list); 2651 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2652 } 2653 2654 target_free_cmd_mem(se_cmd); 2655 se_cmd->se_tfo->release_cmd(se_cmd); 2656 } 2657 2658 /** 2659 * target_put_sess_cmd - decrease the command reference count 2660 * @se_cmd: command to drop a reference from 2661 * 2662 * Returns 1 if and only if this target_put_sess_cmd() call caused the 2663 * refcount to drop to zero. Returns zero otherwise. 2664 */ 2665 int target_put_sess_cmd(struct se_cmd *se_cmd) 2666 { 2667 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref); 2668 } 2669 EXPORT_SYMBOL(target_put_sess_cmd); 2670 2671 /* target_sess_cmd_list_set_waiting - Flag all commands in 2672 * sess_cmd_list to complete cmd_wait_comp. Set 2673 * sess_tearing_down so no more commands are queued. 2674 * @se_sess: session to flag 2675 */ 2676 void target_sess_cmd_list_set_waiting(struct se_session *se_sess) 2677 { 2678 struct se_cmd *se_cmd, *tmp_cmd; 2679 unsigned long flags; 2680 int rc; 2681 2682 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2683 if (se_sess->sess_tearing_down) { 2684 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2685 return; 2686 } 2687 se_sess->sess_tearing_down = 1; 2688 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list); 2689 2690 list_for_each_entry_safe(se_cmd, tmp_cmd, 2691 &se_sess->sess_wait_list, se_cmd_list) { 2692 rc = kref_get_unless_zero(&se_cmd->cmd_kref); 2693 if (rc) { 2694 se_cmd->cmd_wait_set = 1; 2695 spin_lock(&se_cmd->t_state_lock); 2696 se_cmd->transport_state |= CMD_T_FABRIC_STOP; 2697 spin_unlock(&se_cmd->t_state_lock); 2698 } else 2699 list_del_init(&se_cmd->se_cmd_list); 2700 } 2701 2702 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2703 } 2704 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting); 2705 2706 /* target_wait_for_sess_cmds - Wait for outstanding descriptors 2707 * @se_sess: session to wait for active I/O 2708 */ 2709 void target_wait_for_sess_cmds(struct se_session *se_sess) 2710 { 2711 struct se_cmd *se_cmd, *tmp_cmd; 2712 unsigned long flags; 2713 bool tas; 2714 2715 list_for_each_entry_safe(se_cmd, tmp_cmd, 2716 &se_sess->sess_wait_list, se_cmd_list) { 2717 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:" 2718 " %d\n", se_cmd, se_cmd->t_state, 2719 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2720 2721 spin_lock_irqsave(&se_cmd->t_state_lock, flags); 2722 tas = (se_cmd->transport_state & CMD_T_TAS); 2723 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags); 2724 2725 if (!target_put_sess_cmd(se_cmd)) { 2726 if (tas) 2727 target_put_sess_cmd(se_cmd); 2728 } 2729 2730 wait_for_completion(&se_cmd->cmd_wait_comp); 2731 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d" 2732 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2733 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2734 2735 se_cmd->se_tfo->release_cmd(se_cmd); 2736 } 2737 2738 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2739 WARN_ON(!list_empty(&se_sess->sess_cmd_list)); 2740 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2741 2742 } 2743 EXPORT_SYMBOL(target_wait_for_sess_cmds); 2744 2745 static void target_lun_confirm(struct percpu_ref *ref) 2746 { 2747 struct se_lun *lun = container_of(ref, struct se_lun, lun_ref); 2748 2749 complete(&lun->lun_ref_comp); 2750 } 2751 2752 void transport_clear_lun_ref(struct se_lun *lun) 2753 { 2754 /* 2755 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop 2756 * the initial reference and schedule confirm kill to be 2757 * executed after one full RCU grace period has completed. 2758 */ 2759 percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm); 2760 /* 2761 * The first completion waits for percpu_ref_switch_to_atomic_rcu() 2762 * to call target_lun_confirm after lun->lun_ref has been marked 2763 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t 2764 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref 2765 * fails for all new incoming I/O. 2766 */ 2767 wait_for_completion(&lun->lun_ref_comp); 2768 /* 2769 * The second completion waits for percpu_ref_put_many() to 2770 * invoke ->release() after lun->lun_ref has switched to 2771 * atomic_t mode, and lun->lun_ref.count has reached zero. 2772 * 2773 * At this point all target-core lun->lun_ref references have 2774 * been dropped via transport_lun_remove_cmd(), and it's safe 2775 * to proceed with the remaining LUN shutdown. 2776 */ 2777 wait_for_completion(&lun->lun_shutdown_comp); 2778 } 2779 2780 static bool 2781 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop, 2782 bool *aborted, bool *tas, unsigned long *flags) 2783 __releases(&cmd->t_state_lock) 2784 __acquires(&cmd->t_state_lock) 2785 { 2786 2787 assert_spin_locked(&cmd->t_state_lock); 2788 WARN_ON_ONCE(!irqs_disabled()); 2789 2790 if (fabric_stop) 2791 cmd->transport_state |= CMD_T_FABRIC_STOP; 2792 2793 if (cmd->transport_state & CMD_T_ABORTED) 2794 *aborted = true; 2795 2796 if (cmd->transport_state & CMD_T_TAS) 2797 *tas = true; 2798 2799 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 2800 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2801 return false; 2802 2803 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 2804 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2805 return false; 2806 2807 if (!(cmd->transport_state & CMD_T_ACTIVE)) 2808 return false; 2809 2810 if (fabric_stop && *aborted) 2811 return false; 2812 2813 cmd->transport_state |= CMD_T_STOP; 2814 2815 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d," 2816 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag, 2817 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2818 2819 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 2820 2821 wait_for_completion(&cmd->t_transport_stop_comp); 2822 2823 spin_lock_irqsave(&cmd->t_state_lock, *flags); 2824 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 2825 2826 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->" 2827 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag); 2828 2829 return true; 2830 } 2831 2832 /** 2833 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp 2834 * @cmd: command to wait on 2835 */ 2836 bool transport_wait_for_tasks(struct se_cmd *cmd) 2837 { 2838 unsigned long flags; 2839 bool ret, aborted = false, tas = false; 2840 2841 spin_lock_irqsave(&cmd->t_state_lock, flags); 2842 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags); 2843 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2844 2845 return ret; 2846 } 2847 EXPORT_SYMBOL(transport_wait_for_tasks); 2848 2849 struct sense_info { 2850 u8 key; 2851 u8 asc; 2852 u8 ascq; 2853 bool add_sector_info; 2854 }; 2855 2856 static const struct sense_info sense_info_table[] = { 2857 [TCM_NO_SENSE] = { 2858 .key = NOT_READY 2859 }, 2860 [TCM_NON_EXISTENT_LUN] = { 2861 .key = ILLEGAL_REQUEST, 2862 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */ 2863 }, 2864 [TCM_UNSUPPORTED_SCSI_OPCODE] = { 2865 .key = ILLEGAL_REQUEST, 2866 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 2867 }, 2868 [TCM_SECTOR_COUNT_TOO_MANY] = { 2869 .key = ILLEGAL_REQUEST, 2870 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 2871 }, 2872 [TCM_UNKNOWN_MODE_PAGE] = { 2873 .key = ILLEGAL_REQUEST, 2874 .asc = 0x24, /* INVALID FIELD IN CDB */ 2875 }, 2876 [TCM_CHECK_CONDITION_ABORT_CMD] = { 2877 .key = ABORTED_COMMAND, 2878 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */ 2879 .ascq = 0x03, 2880 }, 2881 [TCM_INCORRECT_AMOUNT_OF_DATA] = { 2882 .key = ABORTED_COMMAND, 2883 .asc = 0x0c, /* WRITE ERROR */ 2884 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */ 2885 }, 2886 [TCM_INVALID_CDB_FIELD] = { 2887 .key = ILLEGAL_REQUEST, 2888 .asc = 0x24, /* INVALID FIELD IN CDB */ 2889 }, 2890 [TCM_INVALID_PARAMETER_LIST] = { 2891 .key = ILLEGAL_REQUEST, 2892 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */ 2893 }, 2894 [TCM_TOO_MANY_TARGET_DESCS] = { 2895 .key = ILLEGAL_REQUEST, 2896 .asc = 0x26, 2897 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */ 2898 }, 2899 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = { 2900 .key = ILLEGAL_REQUEST, 2901 .asc = 0x26, 2902 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */ 2903 }, 2904 [TCM_TOO_MANY_SEGMENT_DESCS] = { 2905 .key = ILLEGAL_REQUEST, 2906 .asc = 0x26, 2907 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */ 2908 }, 2909 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = { 2910 .key = ILLEGAL_REQUEST, 2911 .asc = 0x26, 2912 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */ 2913 }, 2914 [TCM_PARAMETER_LIST_LENGTH_ERROR] = { 2915 .key = ILLEGAL_REQUEST, 2916 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */ 2917 }, 2918 [TCM_UNEXPECTED_UNSOLICITED_DATA] = { 2919 .key = ILLEGAL_REQUEST, 2920 .asc = 0x0c, /* WRITE ERROR */ 2921 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */ 2922 }, 2923 [TCM_SERVICE_CRC_ERROR] = { 2924 .key = ABORTED_COMMAND, 2925 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */ 2926 .ascq = 0x05, /* N/A */ 2927 }, 2928 [TCM_SNACK_REJECTED] = { 2929 .key = ABORTED_COMMAND, 2930 .asc = 0x11, /* READ ERROR */ 2931 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */ 2932 }, 2933 [TCM_WRITE_PROTECTED] = { 2934 .key = DATA_PROTECT, 2935 .asc = 0x27, /* WRITE PROTECTED */ 2936 }, 2937 [TCM_ADDRESS_OUT_OF_RANGE] = { 2938 .key = ILLEGAL_REQUEST, 2939 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 2940 }, 2941 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = { 2942 .key = UNIT_ATTENTION, 2943 }, 2944 [TCM_CHECK_CONDITION_NOT_READY] = { 2945 .key = NOT_READY, 2946 }, 2947 [TCM_MISCOMPARE_VERIFY] = { 2948 .key = MISCOMPARE, 2949 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */ 2950 .ascq = 0x00, 2951 }, 2952 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = { 2953 .key = ABORTED_COMMAND, 2954 .asc = 0x10, 2955 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */ 2956 .add_sector_info = true, 2957 }, 2958 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = { 2959 .key = ABORTED_COMMAND, 2960 .asc = 0x10, 2961 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */ 2962 .add_sector_info = true, 2963 }, 2964 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = { 2965 .key = ABORTED_COMMAND, 2966 .asc = 0x10, 2967 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */ 2968 .add_sector_info = true, 2969 }, 2970 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = { 2971 .key = COPY_ABORTED, 2972 .asc = 0x0d, 2973 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */ 2974 2975 }, 2976 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = { 2977 /* 2978 * Returning ILLEGAL REQUEST would cause immediate IO errors on 2979 * Solaris initiators. Returning NOT READY instead means the 2980 * operations will be retried a finite number of times and we 2981 * can survive intermittent errors. 2982 */ 2983 .key = NOT_READY, 2984 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */ 2985 }, 2986 }; 2987 2988 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason) 2989 { 2990 const struct sense_info *si; 2991 u8 *buffer = cmd->sense_buffer; 2992 int r = (__force int)reason; 2993 u8 asc, ascq; 2994 bool desc_format = target_sense_desc_format(cmd->se_dev); 2995 2996 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key) 2997 si = &sense_info_table[r]; 2998 else 2999 si = &sense_info_table[(__force int) 3000 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE]; 3001 3002 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) { 3003 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); 3004 WARN_ON_ONCE(asc == 0); 3005 } else if (si->asc == 0) { 3006 WARN_ON_ONCE(cmd->scsi_asc == 0); 3007 asc = cmd->scsi_asc; 3008 ascq = cmd->scsi_ascq; 3009 } else { 3010 asc = si->asc; 3011 ascq = si->ascq; 3012 } 3013 3014 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq); 3015 if (si->add_sector_info) 3016 return scsi_set_sense_information(buffer, 3017 cmd->scsi_sense_length, 3018 cmd->bad_sector); 3019 3020 return 0; 3021 } 3022 3023 int 3024 transport_send_check_condition_and_sense(struct se_cmd *cmd, 3025 sense_reason_t reason, int from_transport) 3026 { 3027 unsigned long flags; 3028 3029 spin_lock_irqsave(&cmd->t_state_lock, flags); 3030 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 3031 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3032 return 0; 3033 } 3034 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 3035 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3036 3037 if (!from_transport) { 3038 int rc; 3039 3040 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 3041 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 3042 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 3043 rc = translate_sense_reason(cmd, reason); 3044 if (rc) 3045 return rc; 3046 } 3047 3048 trace_target_cmd_complete(cmd); 3049 return cmd->se_tfo->queue_status(cmd); 3050 } 3051 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 3052 3053 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status) 3054 __releases(&cmd->t_state_lock) 3055 __acquires(&cmd->t_state_lock) 3056 { 3057 int ret; 3058 3059 assert_spin_locked(&cmd->t_state_lock); 3060 WARN_ON_ONCE(!irqs_disabled()); 3061 3062 if (!(cmd->transport_state & CMD_T_ABORTED)) 3063 return 0; 3064 /* 3065 * If cmd has been aborted but either no status is to be sent or it has 3066 * already been sent, just return 3067 */ 3068 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) { 3069 if (send_status) 3070 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS; 3071 return 1; 3072 } 3073 3074 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:" 3075 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag); 3076 3077 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS; 3078 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 3079 trace_target_cmd_complete(cmd); 3080 3081 spin_unlock_irq(&cmd->t_state_lock); 3082 ret = cmd->se_tfo->queue_status(cmd); 3083 if (ret) 3084 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 3085 spin_lock_irq(&cmd->t_state_lock); 3086 3087 return 1; 3088 } 3089 3090 int transport_check_aborted_status(struct se_cmd *cmd, int send_status) 3091 { 3092 int ret; 3093 3094 spin_lock_irq(&cmd->t_state_lock); 3095 ret = __transport_check_aborted_status(cmd, send_status); 3096 spin_unlock_irq(&cmd->t_state_lock); 3097 3098 return ret; 3099 } 3100 EXPORT_SYMBOL(transport_check_aborted_status); 3101 3102 void transport_send_task_abort(struct se_cmd *cmd) 3103 { 3104 unsigned long flags; 3105 int ret; 3106 3107 spin_lock_irqsave(&cmd->t_state_lock, flags); 3108 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) { 3109 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3110 return; 3111 } 3112 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3113 3114 /* 3115 * If there are still expected incoming fabric WRITEs, we wait 3116 * until until they have completed before sending a TASK_ABORTED 3117 * response. This response with TASK_ABORTED status will be 3118 * queued back to fabric module by transport_check_aborted_status(). 3119 */ 3120 if (cmd->data_direction == DMA_TO_DEVICE) { 3121 if (cmd->se_tfo->write_pending_status(cmd) != 0) { 3122 spin_lock_irqsave(&cmd->t_state_lock, flags); 3123 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) { 3124 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3125 goto send_abort; 3126 } 3127 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS; 3128 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3129 return; 3130 } 3131 } 3132 send_abort: 3133 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 3134 3135 transport_lun_remove_cmd(cmd); 3136 3137 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n", 3138 cmd->t_task_cdb[0], cmd->tag); 3139 3140 trace_target_cmd_complete(cmd); 3141 ret = cmd->se_tfo->queue_status(cmd); 3142 if (ret) 3143 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 3144 } 3145 3146 static void target_tmr_work(struct work_struct *work) 3147 { 3148 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 3149 struct se_device *dev = cmd->se_dev; 3150 struct se_tmr_req *tmr = cmd->se_tmr_req; 3151 unsigned long flags; 3152 int ret; 3153 3154 spin_lock_irqsave(&cmd->t_state_lock, flags); 3155 if (cmd->transport_state & CMD_T_ABORTED) { 3156 tmr->response = TMR_FUNCTION_REJECTED; 3157 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3158 goto check_stop; 3159 } 3160 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3161 3162 switch (tmr->function) { 3163 case TMR_ABORT_TASK: 3164 core_tmr_abort_task(dev, tmr, cmd->se_sess); 3165 break; 3166 case TMR_ABORT_TASK_SET: 3167 case TMR_CLEAR_ACA: 3168 case TMR_CLEAR_TASK_SET: 3169 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 3170 break; 3171 case TMR_LUN_RESET: 3172 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 3173 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 3174 TMR_FUNCTION_REJECTED; 3175 if (tmr->response == TMR_FUNCTION_COMPLETE) { 3176 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 3177 cmd->orig_fe_lun, 0x29, 3178 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED); 3179 } 3180 break; 3181 case TMR_TARGET_WARM_RESET: 3182 tmr->response = TMR_FUNCTION_REJECTED; 3183 break; 3184 case TMR_TARGET_COLD_RESET: 3185 tmr->response = TMR_FUNCTION_REJECTED; 3186 break; 3187 default: 3188 pr_err("Uknown TMR function: 0x%02x.\n", 3189 tmr->function); 3190 tmr->response = TMR_FUNCTION_REJECTED; 3191 break; 3192 } 3193 3194 spin_lock_irqsave(&cmd->t_state_lock, flags); 3195 if (cmd->transport_state & CMD_T_ABORTED) { 3196 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3197 goto check_stop; 3198 } 3199 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3200 3201 cmd->se_tfo->queue_tm_rsp(cmd); 3202 3203 check_stop: 3204 transport_cmd_check_stop_to_fabric(cmd); 3205 } 3206 3207 int transport_generic_handle_tmr( 3208 struct se_cmd *cmd) 3209 { 3210 unsigned long flags; 3211 bool aborted = false; 3212 3213 spin_lock_irqsave(&cmd->t_state_lock, flags); 3214 if (cmd->transport_state & CMD_T_ABORTED) { 3215 aborted = true; 3216 } else { 3217 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 3218 cmd->transport_state |= CMD_T_ACTIVE; 3219 } 3220 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3221 3222 if (aborted) { 3223 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d" 3224 "ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function, 3225 cmd->se_tmr_req->ref_task_tag, cmd->tag); 3226 transport_cmd_check_stop_to_fabric(cmd); 3227 return 0; 3228 } 3229 3230 INIT_WORK(&cmd->work, target_tmr_work); 3231 queue_work(cmd->se_dev->tmr_wq, &cmd->work); 3232 return 0; 3233 } 3234 EXPORT_SYMBOL(transport_generic_handle_tmr); 3235 3236 bool 3237 target_check_wce(struct se_device *dev) 3238 { 3239 bool wce = false; 3240 3241 if (dev->transport->get_write_cache) 3242 wce = dev->transport->get_write_cache(dev); 3243 else if (dev->dev_attrib.emulate_write_cache > 0) 3244 wce = true; 3245 3246 return wce; 3247 } 3248 3249 bool 3250 target_check_fua(struct se_device *dev) 3251 { 3252 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0; 3253 } 3254