1 /******************************************************************************* 2 * Filename: target_core_rd.c 3 * 4 * This file contains the Storage Engine <-> Ramdisk transport 5 * specific functions. 6 * 7 * (c) Copyright 2003-2013 Datera, Inc. 8 * 9 * Nicholas A. Bellinger <nab@kernel.org> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2 of the License, or 14 * (at your option) any later version. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 24 * 25 ******************************************************************************/ 26 27 #include <linux/string.h> 28 #include <linux/parser.h> 29 #include <linux/timer.h> 30 #include <linux/slab.h> 31 #include <linux/spinlock.h> 32 #include <scsi/scsi.h> 33 #include <scsi/scsi_host.h> 34 35 #include <target/target_core_base.h> 36 #include <target/target_core_backend.h> 37 #include <target/target_core_backend_configfs.h> 38 39 #include "target_core_rd.h" 40 41 static inline struct rd_dev *RD_DEV(struct se_device *dev) 42 { 43 return container_of(dev, struct rd_dev, dev); 44 } 45 46 /* rd_attach_hba(): (Part of se_subsystem_api_t template) 47 * 48 * 49 */ 50 static int rd_attach_hba(struct se_hba *hba, u32 host_id) 51 { 52 struct rd_host *rd_host; 53 54 rd_host = kzalloc(sizeof(struct rd_host), GFP_KERNEL); 55 if (!rd_host) { 56 pr_err("Unable to allocate memory for struct rd_host\n"); 57 return -ENOMEM; 58 } 59 60 rd_host->rd_host_id = host_id; 61 62 hba->hba_ptr = rd_host; 63 64 pr_debug("CORE_HBA[%d] - TCM Ramdisk HBA Driver %s on" 65 " Generic Target Core Stack %s\n", hba->hba_id, 66 RD_HBA_VERSION, TARGET_CORE_MOD_VERSION); 67 68 return 0; 69 } 70 71 static void rd_detach_hba(struct se_hba *hba) 72 { 73 struct rd_host *rd_host = hba->hba_ptr; 74 75 pr_debug("CORE_HBA[%d] - Detached Ramdisk HBA: %u from" 76 " Generic Target Core\n", hba->hba_id, rd_host->rd_host_id); 77 78 kfree(rd_host); 79 hba->hba_ptr = NULL; 80 } 81 82 static u32 rd_release_sgl_table(struct rd_dev *rd_dev, struct rd_dev_sg_table *sg_table, 83 u32 sg_table_count) 84 { 85 struct page *pg; 86 struct scatterlist *sg; 87 u32 i, j, page_count = 0, sg_per_table; 88 89 for (i = 0; i < sg_table_count; i++) { 90 sg = sg_table[i].sg_table; 91 sg_per_table = sg_table[i].rd_sg_count; 92 93 for (j = 0; j < sg_per_table; j++) { 94 pg = sg_page(&sg[j]); 95 if (pg) { 96 __free_page(pg); 97 page_count++; 98 } 99 } 100 kfree(sg); 101 } 102 103 kfree(sg_table); 104 return page_count; 105 } 106 107 static void rd_release_device_space(struct rd_dev *rd_dev) 108 { 109 u32 page_count; 110 111 if (!rd_dev->sg_table_array || !rd_dev->sg_table_count) 112 return; 113 114 page_count = rd_release_sgl_table(rd_dev, rd_dev->sg_table_array, 115 rd_dev->sg_table_count); 116 117 pr_debug("CORE_RD[%u] - Released device space for Ramdisk" 118 " Device ID: %u, pages %u in %u tables total bytes %lu\n", 119 rd_dev->rd_host->rd_host_id, rd_dev->rd_dev_id, page_count, 120 rd_dev->sg_table_count, (unsigned long)page_count * PAGE_SIZE); 121 122 rd_dev->sg_table_array = NULL; 123 rd_dev->sg_table_count = 0; 124 } 125 126 127 /* rd_build_device_space(): 128 * 129 * 130 */ 131 static int rd_allocate_sgl_table(struct rd_dev *rd_dev, struct rd_dev_sg_table *sg_table, 132 u32 total_sg_needed, unsigned char init_payload) 133 { 134 u32 i = 0, j, page_offset = 0, sg_per_table; 135 u32 max_sg_per_table = (RD_MAX_ALLOCATION_SIZE / 136 sizeof(struct scatterlist)); 137 struct page *pg; 138 struct scatterlist *sg; 139 unsigned char *p; 140 141 while (total_sg_needed) { 142 sg_per_table = (total_sg_needed > max_sg_per_table) ? 143 max_sg_per_table : total_sg_needed; 144 145 sg = kzalloc(sg_per_table * sizeof(struct scatterlist), 146 GFP_KERNEL); 147 if (!sg) { 148 pr_err("Unable to allocate scatterlist array" 149 " for struct rd_dev\n"); 150 return -ENOMEM; 151 } 152 153 sg_init_table(sg, sg_per_table); 154 155 sg_table[i].sg_table = sg; 156 sg_table[i].rd_sg_count = sg_per_table; 157 sg_table[i].page_start_offset = page_offset; 158 sg_table[i++].page_end_offset = (page_offset + sg_per_table) 159 - 1; 160 161 for (j = 0; j < sg_per_table; j++) { 162 pg = alloc_pages(GFP_KERNEL, 0); 163 if (!pg) { 164 pr_err("Unable to allocate scatterlist" 165 " pages for struct rd_dev_sg_table\n"); 166 return -ENOMEM; 167 } 168 sg_assign_page(&sg[j], pg); 169 sg[j].length = PAGE_SIZE; 170 171 p = kmap(pg); 172 memset(p, init_payload, PAGE_SIZE); 173 kunmap(pg); 174 } 175 176 page_offset += sg_per_table; 177 total_sg_needed -= sg_per_table; 178 } 179 180 return 0; 181 } 182 183 static int rd_build_device_space(struct rd_dev *rd_dev) 184 { 185 struct rd_dev_sg_table *sg_table; 186 u32 sg_tables, total_sg_needed; 187 u32 max_sg_per_table = (RD_MAX_ALLOCATION_SIZE / 188 sizeof(struct scatterlist)); 189 int rc; 190 191 if (rd_dev->rd_page_count <= 0) { 192 pr_err("Illegal page count: %u for Ramdisk device\n", 193 rd_dev->rd_page_count); 194 return -EINVAL; 195 } 196 197 /* Don't need backing pages for NULLIO */ 198 if (rd_dev->rd_flags & RDF_NULLIO) 199 return 0; 200 201 total_sg_needed = rd_dev->rd_page_count; 202 203 sg_tables = (total_sg_needed / max_sg_per_table) + 1; 204 205 sg_table = kzalloc(sg_tables * sizeof(struct rd_dev_sg_table), GFP_KERNEL); 206 if (!sg_table) { 207 pr_err("Unable to allocate memory for Ramdisk" 208 " scatterlist tables\n"); 209 return -ENOMEM; 210 } 211 212 rd_dev->sg_table_array = sg_table; 213 rd_dev->sg_table_count = sg_tables; 214 215 rc = rd_allocate_sgl_table(rd_dev, sg_table, total_sg_needed, 0x00); 216 if (rc) 217 return rc; 218 219 pr_debug("CORE_RD[%u] - Built Ramdisk Device ID: %u space of" 220 " %u pages in %u tables\n", rd_dev->rd_host->rd_host_id, 221 rd_dev->rd_dev_id, rd_dev->rd_page_count, 222 rd_dev->sg_table_count); 223 224 return 0; 225 } 226 227 static void rd_release_prot_space(struct rd_dev *rd_dev) 228 { 229 u32 page_count; 230 231 if (!rd_dev->sg_prot_array || !rd_dev->sg_prot_count) 232 return; 233 234 page_count = rd_release_sgl_table(rd_dev, rd_dev->sg_prot_array, 235 rd_dev->sg_prot_count); 236 237 pr_debug("CORE_RD[%u] - Released protection space for Ramdisk" 238 " Device ID: %u, pages %u in %u tables total bytes %lu\n", 239 rd_dev->rd_host->rd_host_id, rd_dev->rd_dev_id, page_count, 240 rd_dev->sg_table_count, (unsigned long)page_count * PAGE_SIZE); 241 242 rd_dev->sg_prot_array = NULL; 243 rd_dev->sg_prot_count = 0; 244 } 245 246 static int rd_build_prot_space(struct rd_dev *rd_dev, int prot_length, int block_size) 247 { 248 struct rd_dev_sg_table *sg_table; 249 u32 total_sg_needed, sg_tables; 250 u32 max_sg_per_table = (RD_MAX_ALLOCATION_SIZE / 251 sizeof(struct scatterlist)); 252 int rc; 253 254 if (rd_dev->rd_flags & RDF_NULLIO) 255 return 0; 256 /* 257 * prot_length=8byte dif data 258 * tot sg needed = rd_page_count * (PGSZ/block_size) * 259 * (prot_length/block_size) + pad 260 * PGSZ canceled each other. 261 */ 262 total_sg_needed = (rd_dev->rd_page_count * prot_length / block_size) + 1; 263 264 sg_tables = (total_sg_needed / max_sg_per_table) + 1; 265 266 sg_table = kzalloc(sg_tables * sizeof(struct rd_dev_sg_table), GFP_KERNEL); 267 if (!sg_table) { 268 pr_err("Unable to allocate memory for Ramdisk protection" 269 " scatterlist tables\n"); 270 return -ENOMEM; 271 } 272 273 rd_dev->sg_prot_array = sg_table; 274 rd_dev->sg_prot_count = sg_tables; 275 276 rc = rd_allocate_sgl_table(rd_dev, sg_table, total_sg_needed, 0xff); 277 if (rc) 278 return rc; 279 280 pr_debug("CORE_RD[%u] - Built Ramdisk Device ID: %u prot space of" 281 " %u pages in %u tables\n", rd_dev->rd_host->rd_host_id, 282 rd_dev->rd_dev_id, total_sg_needed, rd_dev->sg_prot_count); 283 284 return 0; 285 } 286 287 static struct se_device *rd_alloc_device(struct se_hba *hba, const char *name) 288 { 289 struct rd_dev *rd_dev; 290 struct rd_host *rd_host = hba->hba_ptr; 291 292 rd_dev = kzalloc(sizeof(struct rd_dev), GFP_KERNEL); 293 if (!rd_dev) { 294 pr_err("Unable to allocate memory for struct rd_dev\n"); 295 return NULL; 296 } 297 298 rd_dev->rd_host = rd_host; 299 300 return &rd_dev->dev; 301 } 302 303 static int rd_configure_device(struct se_device *dev) 304 { 305 struct rd_dev *rd_dev = RD_DEV(dev); 306 struct rd_host *rd_host = dev->se_hba->hba_ptr; 307 int ret; 308 309 if (!(rd_dev->rd_flags & RDF_HAS_PAGE_COUNT)) { 310 pr_debug("Missing rd_pages= parameter\n"); 311 return -EINVAL; 312 } 313 314 ret = rd_build_device_space(rd_dev); 315 if (ret < 0) 316 goto fail; 317 318 dev->dev_attrib.hw_block_size = RD_BLOCKSIZE; 319 dev->dev_attrib.hw_max_sectors = UINT_MAX; 320 dev->dev_attrib.hw_queue_depth = RD_MAX_DEVICE_QUEUE_DEPTH; 321 322 rd_dev->rd_dev_id = rd_host->rd_host_dev_id_count++; 323 324 pr_debug("CORE_RD[%u] - Added TCM MEMCPY Ramdisk Device ID: %u of" 325 " %u pages in %u tables, %lu total bytes\n", 326 rd_host->rd_host_id, rd_dev->rd_dev_id, rd_dev->rd_page_count, 327 rd_dev->sg_table_count, 328 (unsigned long)(rd_dev->rd_page_count * PAGE_SIZE)); 329 330 return 0; 331 332 fail: 333 rd_release_device_space(rd_dev); 334 return ret; 335 } 336 337 static void rd_free_device(struct se_device *dev) 338 { 339 struct rd_dev *rd_dev = RD_DEV(dev); 340 341 rd_release_device_space(rd_dev); 342 kfree(rd_dev); 343 } 344 345 static struct rd_dev_sg_table *rd_get_sg_table(struct rd_dev *rd_dev, u32 page) 346 { 347 struct rd_dev_sg_table *sg_table; 348 u32 i, sg_per_table = (RD_MAX_ALLOCATION_SIZE / 349 sizeof(struct scatterlist)); 350 351 i = page / sg_per_table; 352 if (i < rd_dev->sg_table_count) { 353 sg_table = &rd_dev->sg_table_array[i]; 354 if ((sg_table->page_start_offset <= page) && 355 (sg_table->page_end_offset >= page)) 356 return sg_table; 357 } 358 359 pr_err("Unable to locate struct rd_dev_sg_table for page: %u\n", 360 page); 361 362 return NULL; 363 } 364 365 static struct rd_dev_sg_table *rd_get_prot_table(struct rd_dev *rd_dev, u32 page) 366 { 367 struct rd_dev_sg_table *sg_table; 368 u32 i, sg_per_table = (RD_MAX_ALLOCATION_SIZE / 369 sizeof(struct scatterlist)); 370 371 i = page / sg_per_table; 372 if (i < rd_dev->sg_prot_count) { 373 sg_table = &rd_dev->sg_prot_array[i]; 374 if ((sg_table->page_start_offset <= page) && 375 (sg_table->page_end_offset >= page)) 376 return sg_table; 377 } 378 379 pr_err("Unable to locate struct prot rd_dev_sg_table for page: %u\n", 380 page); 381 382 return NULL; 383 } 384 385 static sense_reason_t 386 rd_execute_rw(struct se_cmd *cmd, struct scatterlist *sgl, u32 sgl_nents, 387 enum dma_data_direction data_direction) 388 { 389 struct se_device *se_dev = cmd->se_dev; 390 struct rd_dev *dev = RD_DEV(se_dev); 391 struct rd_dev_sg_table *table; 392 struct scatterlist *rd_sg; 393 struct sg_mapping_iter m; 394 u32 rd_offset; 395 u32 rd_size; 396 u32 rd_page; 397 u32 src_len; 398 u64 tmp; 399 sense_reason_t rc; 400 401 if (dev->rd_flags & RDF_NULLIO) { 402 target_complete_cmd(cmd, SAM_STAT_GOOD); 403 return 0; 404 } 405 406 tmp = cmd->t_task_lba * se_dev->dev_attrib.block_size; 407 rd_offset = do_div(tmp, PAGE_SIZE); 408 rd_page = tmp; 409 rd_size = cmd->data_length; 410 411 table = rd_get_sg_table(dev, rd_page); 412 if (!table) 413 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 414 415 rd_sg = &table->sg_table[rd_page - table->page_start_offset]; 416 417 pr_debug("RD[%u]: %s LBA: %llu, Size: %u Page: %u, Offset: %u\n", 418 dev->rd_dev_id, 419 data_direction == DMA_FROM_DEVICE ? "Read" : "Write", 420 cmd->t_task_lba, rd_size, rd_page, rd_offset); 421 422 if (cmd->prot_type && data_direction == DMA_TO_DEVICE) { 423 struct rd_dev_sg_table *prot_table; 424 struct scatterlist *prot_sg; 425 u32 sectors = cmd->data_length / se_dev->dev_attrib.block_size; 426 u32 prot_offset, prot_page; 427 428 tmp = cmd->t_task_lba * se_dev->prot_length; 429 prot_offset = do_div(tmp, PAGE_SIZE); 430 prot_page = tmp; 431 432 prot_table = rd_get_prot_table(dev, prot_page); 433 if (!prot_table) 434 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 435 436 prot_sg = &prot_table->sg_table[prot_page - prot_table->page_start_offset]; 437 438 rc = sbc_dif_verify_write(cmd, cmd->t_task_lba, sectors, 0, 439 prot_sg, prot_offset); 440 if (rc) 441 return rc; 442 } 443 444 src_len = PAGE_SIZE - rd_offset; 445 sg_miter_start(&m, sgl, sgl_nents, 446 data_direction == DMA_FROM_DEVICE ? 447 SG_MITER_TO_SG : SG_MITER_FROM_SG); 448 while (rd_size) { 449 u32 len; 450 void *rd_addr; 451 452 sg_miter_next(&m); 453 if (!(u32)m.length) { 454 pr_debug("RD[%u]: invalid sgl %p len %zu\n", 455 dev->rd_dev_id, m.addr, m.length); 456 sg_miter_stop(&m); 457 return TCM_INCORRECT_AMOUNT_OF_DATA; 458 } 459 len = min((u32)m.length, src_len); 460 if (len > rd_size) { 461 pr_debug("RD[%u]: size underrun page %d offset %d " 462 "size %d\n", dev->rd_dev_id, 463 rd_page, rd_offset, rd_size); 464 len = rd_size; 465 } 466 m.consumed = len; 467 468 rd_addr = sg_virt(rd_sg) + rd_offset; 469 470 if (data_direction == DMA_FROM_DEVICE) 471 memcpy(m.addr, rd_addr, len); 472 else 473 memcpy(rd_addr, m.addr, len); 474 475 rd_size -= len; 476 if (!rd_size) 477 continue; 478 479 src_len -= len; 480 if (src_len) { 481 rd_offset += len; 482 continue; 483 } 484 485 /* rd page completed, next one please */ 486 rd_page++; 487 rd_offset = 0; 488 src_len = PAGE_SIZE; 489 if (rd_page <= table->page_end_offset) { 490 rd_sg++; 491 continue; 492 } 493 494 table = rd_get_sg_table(dev, rd_page); 495 if (!table) { 496 sg_miter_stop(&m); 497 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 498 } 499 500 /* since we increment, the first sg entry is correct */ 501 rd_sg = table->sg_table; 502 } 503 sg_miter_stop(&m); 504 505 if (cmd->prot_type && data_direction == DMA_FROM_DEVICE) { 506 struct rd_dev_sg_table *prot_table; 507 struct scatterlist *prot_sg; 508 u32 sectors = cmd->data_length / se_dev->dev_attrib.block_size; 509 u32 prot_offset, prot_page; 510 511 tmp = cmd->t_task_lba * se_dev->prot_length; 512 prot_offset = do_div(tmp, PAGE_SIZE); 513 prot_page = tmp; 514 515 prot_table = rd_get_prot_table(dev, prot_page); 516 if (!prot_table) 517 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 518 519 prot_sg = &prot_table->sg_table[prot_page - prot_table->page_start_offset]; 520 521 rc = sbc_dif_verify_read(cmd, cmd->t_task_lba, sectors, 0, 522 prot_sg, prot_offset); 523 if (rc) 524 return rc; 525 } 526 527 target_complete_cmd(cmd, SAM_STAT_GOOD); 528 return 0; 529 } 530 531 enum { 532 Opt_rd_pages, Opt_rd_nullio, Opt_err 533 }; 534 535 static match_table_t tokens = { 536 {Opt_rd_pages, "rd_pages=%d"}, 537 {Opt_rd_nullio, "rd_nullio=%d"}, 538 {Opt_err, NULL} 539 }; 540 541 static ssize_t rd_set_configfs_dev_params(struct se_device *dev, 542 const char *page, ssize_t count) 543 { 544 struct rd_dev *rd_dev = RD_DEV(dev); 545 char *orig, *ptr, *opts; 546 substring_t args[MAX_OPT_ARGS]; 547 int ret = 0, arg, token; 548 549 opts = kstrdup(page, GFP_KERNEL); 550 if (!opts) 551 return -ENOMEM; 552 553 orig = opts; 554 555 while ((ptr = strsep(&opts, ",\n")) != NULL) { 556 if (!*ptr) 557 continue; 558 559 token = match_token(ptr, tokens, args); 560 switch (token) { 561 case Opt_rd_pages: 562 match_int(args, &arg); 563 rd_dev->rd_page_count = arg; 564 pr_debug("RAMDISK: Referencing Page" 565 " Count: %u\n", rd_dev->rd_page_count); 566 rd_dev->rd_flags |= RDF_HAS_PAGE_COUNT; 567 break; 568 case Opt_rd_nullio: 569 match_int(args, &arg); 570 if (arg != 1) 571 break; 572 573 pr_debug("RAMDISK: Setting NULLIO flag: %d\n", arg); 574 rd_dev->rd_flags |= RDF_NULLIO; 575 break; 576 default: 577 break; 578 } 579 } 580 581 kfree(orig); 582 return (!ret) ? count : ret; 583 } 584 585 static ssize_t rd_show_configfs_dev_params(struct se_device *dev, char *b) 586 { 587 struct rd_dev *rd_dev = RD_DEV(dev); 588 589 ssize_t bl = sprintf(b, "TCM RamDisk ID: %u RamDisk Makeup: rd_mcp\n", 590 rd_dev->rd_dev_id); 591 bl += sprintf(b + bl, " PAGES/PAGE_SIZE: %u*%lu" 592 " SG_table_count: %u nullio: %d\n", rd_dev->rd_page_count, 593 PAGE_SIZE, rd_dev->sg_table_count, 594 !!(rd_dev->rd_flags & RDF_NULLIO)); 595 return bl; 596 } 597 598 static sector_t rd_get_blocks(struct se_device *dev) 599 { 600 struct rd_dev *rd_dev = RD_DEV(dev); 601 602 unsigned long long blocks_long = ((rd_dev->rd_page_count * PAGE_SIZE) / 603 dev->dev_attrib.block_size) - 1; 604 605 return blocks_long; 606 } 607 608 static int rd_init_prot(struct se_device *dev) 609 { 610 struct rd_dev *rd_dev = RD_DEV(dev); 611 612 if (!dev->dev_attrib.pi_prot_type) 613 return 0; 614 615 return rd_build_prot_space(rd_dev, dev->prot_length, 616 dev->dev_attrib.block_size); 617 } 618 619 static void rd_free_prot(struct se_device *dev) 620 { 621 struct rd_dev *rd_dev = RD_DEV(dev); 622 623 rd_release_prot_space(rd_dev); 624 } 625 626 static struct sbc_ops rd_sbc_ops = { 627 .execute_rw = rd_execute_rw, 628 }; 629 630 static sense_reason_t 631 rd_parse_cdb(struct se_cmd *cmd) 632 { 633 return sbc_parse_cdb(cmd, &rd_sbc_ops); 634 } 635 636 DEF_TB_DEFAULT_ATTRIBS(rd_mcp); 637 638 static struct configfs_attribute *rd_mcp_backend_dev_attrs[] = { 639 &rd_mcp_dev_attrib_emulate_model_alias.attr, 640 &rd_mcp_dev_attrib_emulate_dpo.attr, 641 &rd_mcp_dev_attrib_emulate_fua_write.attr, 642 &rd_mcp_dev_attrib_emulate_fua_read.attr, 643 &rd_mcp_dev_attrib_emulate_write_cache.attr, 644 &rd_mcp_dev_attrib_emulate_ua_intlck_ctrl.attr, 645 &rd_mcp_dev_attrib_emulate_tas.attr, 646 &rd_mcp_dev_attrib_emulate_tpu.attr, 647 &rd_mcp_dev_attrib_emulate_tpws.attr, 648 &rd_mcp_dev_attrib_emulate_caw.attr, 649 &rd_mcp_dev_attrib_emulate_3pc.attr, 650 &rd_mcp_dev_attrib_pi_prot_type.attr, 651 &rd_mcp_dev_attrib_hw_pi_prot_type.attr, 652 &rd_mcp_dev_attrib_pi_prot_format.attr, 653 &rd_mcp_dev_attrib_enforce_pr_isids.attr, 654 &rd_mcp_dev_attrib_is_nonrot.attr, 655 &rd_mcp_dev_attrib_emulate_rest_reord.attr, 656 &rd_mcp_dev_attrib_force_pr_aptpl.attr, 657 &rd_mcp_dev_attrib_hw_block_size.attr, 658 &rd_mcp_dev_attrib_block_size.attr, 659 &rd_mcp_dev_attrib_hw_max_sectors.attr, 660 &rd_mcp_dev_attrib_optimal_sectors.attr, 661 &rd_mcp_dev_attrib_hw_queue_depth.attr, 662 &rd_mcp_dev_attrib_queue_depth.attr, 663 &rd_mcp_dev_attrib_max_unmap_lba_count.attr, 664 &rd_mcp_dev_attrib_max_unmap_block_desc_count.attr, 665 &rd_mcp_dev_attrib_unmap_granularity.attr, 666 &rd_mcp_dev_attrib_unmap_granularity_alignment.attr, 667 &rd_mcp_dev_attrib_max_write_same_len.attr, 668 NULL, 669 }; 670 671 static struct se_subsystem_api rd_mcp_template = { 672 .name = "rd_mcp", 673 .inquiry_prod = "RAMDISK-MCP", 674 .inquiry_rev = RD_MCP_VERSION, 675 .transport_type = TRANSPORT_PLUGIN_VHBA_VDEV, 676 .attach_hba = rd_attach_hba, 677 .detach_hba = rd_detach_hba, 678 .alloc_device = rd_alloc_device, 679 .configure_device = rd_configure_device, 680 .free_device = rd_free_device, 681 .parse_cdb = rd_parse_cdb, 682 .set_configfs_dev_params = rd_set_configfs_dev_params, 683 .show_configfs_dev_params = rd_show_configfs_dev_params, 684 .get_device_type = sbc_get_device_type, 685 .get_blocks = rd_get_blocks, 686 .init_prot = rd_init_prot, 687 .free_prot = rd_free_prot, 688 }; 689 690 int __init rd_module_init(void) 691 { 692 struct target_backend_cits *tbc = &rd_mcp_template.tb_cits; 693 int ret; 694 695 target_core_setup_sub_cits(&rd_mcp_template); 696 tbc->tb_dev_attrib_cit.ct_attrs = rd_mcp_backend_dev_attrs; 697 698 ret = transport_subsystem_register(&rd_mcp_template); 699 if (ret < 0) { 700 return ret; 701 } 702 703 return 0; 704 } 705 706 void rd_module_exit(void) 707 { 708 transport_subsystem_release(&rd_mcp_template); 709 } 710