xref: /linux/drivers/ssb/driver_chipcommon_pmu.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * Sonics Silicon Backplane
3  * Broadcom ChipCommon Power Management Unit driver
4  *
5  * Copyright 2009, Michael Buesch <m@bues.ch>
6  * Copyright 2007, Broadcom Corporation
7  *
8  * Licensed under the GNU/GPL. See COPYING for details.
9  */
10 
11 #include <linux/ssb/ssb.h>
12 #include <linux/ssb/ssb_regs.h>
13 #include <linux/ssb/ssb_driver_chipcommon.h>
14 #include <linux/delay.h>
15 #include <linux/export.h>
16 
17 #include "ssb_private.h"
18 
19 static u32 ssb_chipco_pll_read(struct ssb_chipcommon *cc, u32 offset)
20 {
21 	chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset);
22 	return chipco_read32(cc, SSB_CHIPCO_PLLCTL_DATA);
23 }
24 
25 static void ssb_chipco_pll_write(struct ssb_chipcommon *cc,
26 				 u32 offset, u32 value)
27 {
28 	chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset);
29 	chipco_write32(cc, SSB_CHIPCO_PLLCTL_DATA, value);
30 }
31 
32 static void ssb_chipco_regctl_maskset(struct ssb_chipcommon *cc,
33 				   u32 offset, u32 mask, u32 set)
34 {
35 	u32 value;
36 
37 	chipco_read32(cc, SSB_CHIPCO_REGCTL_ADDR);
38 	chipco_write32(cc, SSB_CHIPCO_REGCTL_ADDR, offset);
39 	chipco_read32(cc, SSB_CHIPCO_REGCTL_ADDR);
40 	value = chipco_read32(cc, SSB_CHIPCO_REGCTL_DATA);
41 	value &= mask;
42 	value |= set;
43 	chipco_write32(cc, SSB_CHIPCO_REGCTL_DATA, value);
44 	chipco_read32(cc, SSB_CHIPCO_REGCTL_DATA);
45 }
46 
47 struct pmu0_plltab_entry {
48 	u16 freq;	/* Crystal frequency in kHz.*/
49 	u8 xf;		/* Crystal frequency value for PMU control */
50 	u8 wb_int;
51 	u32 wb_frac;
52 };
53 
54 static const struct pmu0_plltab_entry pmu0_plltab[] = {
55 	{ .freq = 12000, .xf =  1, .wb_int = 73, .wb_frac = 349525, },
56 	{ .freq = 13000, .xf =  2, .wb_int = 67, .wb_frac = 725937, },
57 	{ .freq = 14400, .xf =  3, .wb_int = 61, .wb_frac = 116508, },
58 	{ .freq = 15360, .xf =  4, .wb_int = 57, .wb_frac = 305834, },
59 	{ .freq = 16200, .xf =  5, .wb_int = 54, .wb_frac = 336579, },
60 	{ .freq = 16800, .xf =  6, .wb_int = 52, .wb_frac = 399457, },
61 	{ .freq = 19200, .xf =  7, .wb_int = 45, .wb_frac = 873813, },
62 	{ .freq = 19800, .xf =  8, .wb_int = 44, .wb_frac = 466033, },
63 	{ .freq = 20000, .xf =  9, .wb_int = 44, .wb_frac = 0,      },
64 	{ .freq = 25000, .xf = 10, .wb_int = 70, .wb_frac = 419430, },
65 	{ .freq = 26000, .xf = 11, .wb_int = 67, .wb_frac = 725937, },
66 	{ .freq = 30000, .xf = 12, .wb_int = 58, .wb_frac = 699050, },
67 	{ .freq = 38400, .xf = 13, .wb_int = 45, .wb_frac = 873813, },
68 	{ .freq = 40000, .xf = 14, .wb_int = 45, .wb_frac = 0,      },
69 };
70 #define SSB_PMU0_DEFAULT_XTALFREQ	20000
71 
72 static const struct pmu0_plltab_entry * pmu0_plltab_find_entry(u32 crystalfreq)
73 {
74 	const struct pmu0_plltab_entry *e;
75 	unsigned int i;
76 
77 	for (i = 0; i < ARRAY_SIZE(pmu0_plltab); i++) {
78 		e = &pmu0_plltab[i];
79 		if (e->freq == crystalfreq)
80 			return e;
81 	}
82 
83 	return NULL;
84 }
85 
86 /* Tune the PLL to the crystal speed. crystalfreq is in kHz. */
87 static void ssb_pmu0_pllinit_r0(struct ssb_chipcommon *cc,
88 				u32 crystalfreq)
89 {
90 	struct ssb_bus *bus = cc->dev->bus;
91 	const struct pmu0_plltab_entry *e = NULL;
92 	u32 pmuctl, tmp, pllctl;
93 	unsigned int i;
94 
95 	if ((bus->chip_id == 0x5354) && !crystalfreq) {
96 		/* The 5354 crystal freq is 25MHz */
97 		crystalfreq = 25000;
98 	}
99 	if (crystalfreq)
100 		e = pmu0_plltab_find_entry(crystalfreq);
101 	if (!e)
102 		e = pmu0_plltab_find_entry(SSB_PMU0_DEFAULT_XTALFREQ);
103 	BUG_ON(!e);
104 	crystalfreq = e->freq;
105 	cc->pmu.crystalfreq = e->freq;
106 
107 	/* Check if the PLL already is programmed to this frequency. */
108 	pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
109 	if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) {
110 		/* We're already there... */
111 		return;
112 	}
113 
114 	ssb_printk(KERN_INFO PFX "Programming PLL to %u.%03u MHz\n",
115 		   (crystalfreq / 1000), (crystalfreq % 1000));
116 
117 	/* First turn the PLL off. */
118 	switch (bus->chip_id) {
119 	case 0x4328:
120 		chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
121 			      ~(1 << SSB_PMURES_4328_BB_PLL_PU));
122 		chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
123 			      ~(1 << SSB_PMURES_4328_BB_PLL_PU));
124 		break;
125 	case 0x5354:
126 		chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
127 			      ~(1 << SSB_PMURES_5354_BB_PLL_PU));
128 		chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
129 			      ~(1 << SSB_PMURES_5354_BB_PLL_PU));
130 		break;
131 	default:
132 		SSB_WARN_ON(1);
133 	}
134 	for (i = 1500; i; i--) {
135 		tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
136 		if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT))
137 			break;
138 		udelay(10);
139 	}
140 	tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
141 	if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)
142 		ssb_printk(KERN_EMERG PFX "Failed to turn the PLL off!\n");
143 
144 	/* Set PDIV in PLL control 0. */
145 	pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL0);
146 	if (crystalfreq >= SSB_PMU0_PLLCTL0_PDIV_FREQ)
147 		pllctl |= SSB_PMU0_PLLCTL0_PDIV_MSK;
148 	else
149 		pllctl &= ~SSB_PMU0_PLLCTL0_PDIV_MSK;
150 	ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL0, pllctl);
151 
152 	/* Set WILD in PLL control 1. */
153 	pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL1);
154 	pllctl &= ~SSB_PMU0_PLLCTL1_STOPMOD;
155 	pllctl &= ~(SSB_PMU0_PLLCTL1_WILD_IMSK | SSB_PMU0_PLLCTL1_WILD_FMSK);
156 	pllctl |= ((u32)e->wb_int << SSB_PMU0_PLLCTL1_WILD_IMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_IMSK;
157 	pllctl |= ((u32)e->wb_frac << SSB_PMU0_PLLCTL1_WILD_FMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_FMSK;
158 	if (e->wb_frac == 0)
159 		pllctl |= SSB_PMU0_PLLCTL1_STOPMOD;
160 	ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL1, pllctl);
161 
162 	/* Set WILD in PLL control 2. */
163 	pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL2);
164 	pllctl &= ~SSB_PMU0_PLLCTL2_WILD_IMSKHI;
165 	pllctl |= (((u32)e->wb_int >> 4) << SSB_PMU0_PLLCTL2_WILD_IMSKHI_SHIFT) & SSB_PMU0_PLLCTL2_WILD_IMSKHI;
166 	ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL2, pllctl);
167 
168 	/* Set the crystalfrequency and the divisor. */
169 	pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
170 	pmuctl &= ~SSB_CHIPCO_PMU_CTL_ILP_DIV;
171 	pmuctl |= (((crystalfreq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT)
172 			& SSB_CHIPCO_PMU_CTL_ILP_DIV;
173 	pmuctl &= ~SSB_CHIPCO_PMU_CTL_XTALFREQ;
174 	pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ;
175 	chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl);
176 }
177 
178 struct pmu1_plltab_entry {
179 	u16 freq;	/* Crystal frequency in kHz.*/
180 	u8 xf;		/* Crystal frequency value for PMU control */
181 	u8 ndiv_int;
182 	u32 ndiv_frac;
183 	u8 p1div;
184 	u8 p2div;
185 };
186 
187 static const struct pmu1_plltab_entry pmu1_plltab[] = {
188 	{ .freq = 12000, .xf =  1, .p1div = 3, .p2div = 22, .ndiv_int =  0x9, .ndiv_frac = 0xFFFFEF, },
189 	{ .freq = 13000, .xf =  2, .p1div = 1, .p2div =  6, .ndiv_int =  0xb, .ndiv_frac = 0x483483, },
190 	{ .freq = 14400, .xf =  3, .p1div = 1, .p2div = 10, .ndiv_int =  0xa, .ndiv_frac = 0x1C71C7, },
191 	{ .freq = 15360, .xf =  4, .p1div = 1, .p2div =  5, .ndiv_int =  0xb, .ndiv_frac = 0x755555, },
192 	{ .freq = 16200, .xf =  5, .p1div = 1, .p2div = 10, .ndiv_int =  0x5, .ndiv_frac = 0x6E9E06, },
193 	{ .freq = 16800, .xf =  6, .p1div = 1, .p2div = 10, .ndiv_int =  0x5, .ndiv_frac = 0x3CF3CF, },
194 	{ .freq = 19200, .xf =  7, .p1div = 1, .p2div =  9, .ndiv_int =  0x5, .ndiv_frac = 0x17B425, },
195 	{ .freq = 19800, .xf =  8, .p1div = 1, .p2div = 11, .ndiv_int =  0x4, .ndiv_frac = 0xA57EB,  },
196 	{ .freq = 20000, .xf =  9, .p1div = 1, .p2div = 11, .ndiv_int =  0x4, .ndiv_frac = 0,        },
197 	{ .freq = 24000, .xf = 10, .p1div = 3, .p2div = 11, .ndiv_int =  0xa, .ndiv_frac = 0,        },
198 	{ .freq = 25000, .xf = 11, .p1div = 5, .p2div = 16, .ndiv_int =  0xb, .ndiv_frac = 0,        },
199 	{ .freq = 26000, .xf = 12, .p1div = 1, .p2div =  2, .ndiv_int = 0x10, .ndiv_frac = 0xEC4EC4, },
200 	{ .freq = 30000, .xf = 13, .p1div = 3, .p2div =  8, .ndiv_int =  0xb, .ndiv_frac = 0,        },
201 	{ .freq = 38400, .xf = 14, .p1div = 1, .p2div =  5, .ndiv_int =  0x4, .ndiv_frac = 0x955555, },
202 	{ .freq = 40000, .xf = 15, .p1div = 1, .p2div =  2, .ndiv_int =  0xb, .ndiv_frac = 0,        },
203 };
204 
205 #define SSB_PMU1_DEFAULT_XTALFREQ	15360
206 
207 static const struct pmu1_plltab_entry * pmu1_plltab_find_entry(u32 crystalfreq)
208 {
209 	const struct pmu1_plltab_entry *e;
210 	unsigned int i;
211 
212 	for (i = 0; i < ARRAY_SIZE(pmu1_plltab); i++) {
213 		e = &pmu1_plltab[i];
214 		if (e->freq == crystalfreq)
215 			return e;
216 	}
217 
218 	return NULL;
219 }
220 
221 /* Tune the PLL to the crystal speed. crystalfreq is in kHz. */
222 static void ssb_pmu1_pllinit_r0(struct ssb_chipcommon *cc,
223 				u32 crystalfreq)
224 {
225 	struct ssb_bus *bus = cc->dev->bus;
226 	const struct pmu1_plltab_entry *e = NULL;
227 	u32 buffer_strength = 0;
228 	u32 tmp, pllctl, pmuctl;
229 	unsigned int i;
230 
231 	if (bus->chip_id == 0x4312) {
232 		/* We do not touch the BCM4312 PLL and assume
233 		 * the default crystal settings work out-of-the-box. */
234 		cc->pmu.crystalfreq = 20000;
235 		return;
236 	}
237 
238 	if (crystalfreq)
239 		e = pmu1_plltab_find_entry(crystalfreq);
240 	if (!e)
241 		e = pmu1_plltab_find_entry(SSB_PMU1_DEFAULT_XTALFREQ);
242 	BUG_ON(!e);
243 	crystalfreq = e->freq;
244 	cc->pmu.crystalfreq = e->freq;
245 
246 	/* Check if the PLL already is programmed to this frequency. */
247 	pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
248 	if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) {
249 		/* We're already there... */
250 		return;
251 	}
252 
253 	ssb_printk(KERN_INFO PFX "Programming PLL to %u.%03u MHz\n",
254 		   (crystalfreq / 1000), (crystalfreq % 1000));
255 
256 	/* First turn the PLL off. */
257 	switch (bus->chip_id) {
258 	case 0x4325:
259 		chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
260 			      ~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) |
261 				(1 << SSB_PMURES_4325_HT_AVAIL)));
262 		chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
263 			      ~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) |
264 				(1 << SSB_PMURES_4325_HT_AVAIL)));
265 		/* Adjust the BBPLL to 2 on all channels later. */
266 		buffer_strength = 0x222222;
267 		break;
268 	default:
269 		SSB_WARN_ON(1);
270 	}
271 	for (i = 1500; i; i--) {
272 		tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
273 		if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT))
274 			break;
275 		udelay(10);
276 	}
277 	tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
278 	if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)
279 		ssb_printk(KERN_EMERG PFX "Failed to turn the PLL off!\n");
280 
281 	/* Set p1div and p2div. */
282 	pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL0);
283 	pllctl &= ~(SSB_PMU1_PLLCTL0_P1DIV | SSB_PMU1_PLLCTL0_P2DIV);
284 	pllctl |= ((u32)e->p1div << SSB_PMU1_PLLCTL0_P1DIV_SHIFT) & SSB_PMU1_PLLCTL0_P1DIV;
285 	pllctl |= ((u32)e->p2div << SSB_PMU1_PLLCTL0_P2DIV_SHIFT) & SSB_PMU1_PLLCTL0_P2DIV;
286 	ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, pllctl);
287 
288 	/* Set ndiv int and ndiv mode */
289 	pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL2);
290 	pllctl &= ~(SSB_PMU1_PLLCTL2_NDIVINT | SSB_PMU1_PLLCTL2_NDIVMODE);
291 	pllctl |= ((u32)e->ndiv_int << SSB_PMU1_PLLCTL2_NDIVINT_SHIFT) & SSB_PMU1_PLLCTL2_NDIVINT;
292 	pllctl |= (1 << SSB_PMU1_PLLCTL2_NDIVMODE_SHIFT) & SSB_PMU1_PLLCTL2_NDIVMODE;
293 	ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, pllctl);
294 
295 	/* Set ndiv frac */
296 	pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL3);
297 	pllctl &= ~SSB_PMU1_PLLCTL3_NDIVFRAC;
298 	pllctl |= ((u32)e->ndiv_frac << SSB_PMU1_PLLCTL3_NDIVFRAC_SHIFT) & SSB_PMU1_PLLCTL3_NDIVFRAC;
299 	ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL3, pllctl);
300 
301 	/* Change the drive strength, if required. */
302 	if (buffer_strength) {
303 		pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL5);
304 		pllctl &= ~SSB_PMU1_PLLCTL5_CLKDRV;
305 		pllctl |= (buffer_strength << SSB_PMU1_PLLCTL5_CLKDRV_SHIFT) & SSB_PMU1_PLLCTL5_CLKDRV;
306 		ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, pllctl);
307 	}
308 
309 	/* Tune the crystalfreq and the divisor. */
310 	pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
311 	pmuctl &= ~(SSB_CHIPCO_PMU_CTL_ILP_DIV | SSB_CHIPCO_PMU_CTL_XTALFREQ);
312 	pmuctl |= ((((u32)e->freq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT)
313 			& SSB_CHIPCO_PMU_CTL_ILP_DIV;
314 	pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ;
315 	chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl);
316 }
317 
318 static void ssb_pmu_pll_init(struct ssb_chipcommon *cc)
319 {
320 	struct ssb_bus *bus = cc->dev->bus;
321 	u32 crystalfreq = 0; /* in kHz. 0 = keep default freq. */
322 
323 	if (bus->bustype == SSB_BUSTYPE_SSB) {
324 		/* TODO: The user may override the crystal frequency. */
325 	}
326 
327 	switch (bus->chip_id) {
328 	case 0x4312:
329 	case 0x4325:
330 		ssb_pmu1_pllinit_r0(cc, crystalfreq);
331 		break;
332 	case 0x4328:
333 	case 0x5354:
334 		ssb_pmu0_pllinit_r0(cc, crystalfreq);
335 		break;
336 	case 0x4322:
337 		if (cc->pmu.rev == 2) {
338 			chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, 0x0000000A);
339 			chipco_write32(cc, SSB_CHIPCO_PLLCTL_DATA, 0x380005C0);
340 		}
341 		break;
342 	default:
343 		ssb_printk(KERN_ERR PFX
344 			   "ERROR: PLL init unknown for device %04X\n",
345 			   bus->chip_id);
346 	}
347 }
348 
349 struct pmu_res_updown_tab_entry {
350 	u8 resource;	/* The resource number */
351 	u16 updown;	/* The updown value */
352 };
353 
354 enum pmu_res_depend_tab_task {
355 	PMU_RES_DEP_SET = 1,
356 	PMU_RES_DEP_ADD,
357 	PMU_RES_DEP_REMOVE,
358 };
359 
360 struct pmu_res_depend_tab_entry {
361 	u8 resource;	/* The resource number */
362 	u8 task;	/* SET | ADD | REMOVE */
363 	u32 depend;	/* The depend mask */
364 };
365 
366 static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4328a0[] = {
367 	{ .resource = SSB_PMURES_4328_EXT_SWITCHER_PWM,		.updown = 0x0101, },
368 	{ .resource = SSB_PMURES_4328_BB_SWITCHER_PWM,		.updown = 0x1F01, },
369 	{ .resource = SSB_PMURES_4328_BB_SWITCHER_BURST,	.updown = 0x010F, },
370 	{ .resource = SSB_PMURES_4328_BB_EXT_SWITCHER_BURST,	.updown = 0x0101, },
371 	{ .resource = SSB_PMURES_4328_ILP_REQUEST,		.updown = 0x0202, },
372 	{ .resource = SSB_PMURES_4328_RADIO_SWITCHER_PWM,	.updown = 0x0F01, },
373 	{ .resource = SSB_PMURES_4328_RADIO_SWITCHER_BURST,	.updown = 0x0F01, },
374 	{ .resource = SSB_PMURES_4328_ROM_SWITCH,		.updown = 0x0101, },
375 	{ .resource = SSB_PMURES_4328_PA_REF_LDO,		.updown = 0x0F01, },
376 	{ .resource = SSB_PMURES_4328_RADIO_LDO,		.updown = 0x0F01, },
377 	{ .resource = SSB_PMURES_4328_AFE_LDO,			.updown = 0x0F01, },
378 	{ .resource = SSB_PMURES_4328_PLL_LDO,			.updown = 0x0F01, },
379 	{ .resource = SSB_PMURES_4328_BG_FILTBYP,		.updown = 0x0101, },
380 	{ .resource = SSB_PMURES_4328_TX_FILTBYP,		.updown = 0x0101, },
381 	{ .resource = SSB_PMURES_4328_RX_FILTBYP,		.updown = 0x0101, },
382 	{ .resource = SSB_PMURES_4328_XTAL_PU,			.updown = 0x0101, },
383 	{ .resource = SSB_PMURES_4328_XTAL_EN,			.updown = 0xA001, },
384 	{ .resource = SSB_PMURES_4328_BB_PLL_FILTBYP,		.updown = 0x0101, },
385 	{ .resource = SSB_PMURES_4328_RF_PLL_FILTBYP,		.updown = 0x0101, },
386 	{ .resource = SSB_PMURES_4328_BB_PLL_PU,		.updown = 0x0701, },
387 };
388 
389 static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4328a0[] = {
390 	{
391 		/* Adjust ILP Request to avoid forcing EXT/BB into burst mode. */
392 		.resource = SSB_PMURES_4328_ILP_REQUEST,
393 		.task = PMU_RES_DEP_SET,
394 		.depend = ((1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) |
395 			   (1 << SSB_PMURES_4328_BB_SWITCHER_PWM)),
396 	},
397 };
398 
399 static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4325a0[] = {
400 	{ .resource = SSB_PMURES_4325_XTAL_PU,			.updown = 0x1501, },
401 };
402 
403 static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4325a0[] = {
404 	{
405 		/* Adjust HT-Available dependencies. */
406 		.resource = SSB_PMURES_4325_HT_AVAIL,
407 		.task = PMU_RES_DEP_ADD,
408 		.depend = ((1 << SSB_PMURES_4325_RX_PWRSW_PU) |
409 			   (1 << SSB_PMURES_4325_TX_PWRSW_PU) |
410 			   (1 << SSB_PMURES_4325_LOGEN_PWRSW_PU) |
411 			   (1 << SSB_PMURES_4325_AFE_PWRSW_PU)),
412 	},
413 };
414 
415 static void ssb_pmu_resources_init(struct ssb_chipcommon *cc)
416 {
417 	struct ssb_bus *bus = cc->dev->bus;
418 	u32 min_msk = 0, max_msk = 0;
419 	unsigned int i;
420 	const struct pmu_res_updown_tab_entry *updown_tab = NULL;
421 	unsigned int updown_tab_size = 0;
422 	const struct pmu_res_depend_tab_entry *depend_tab = NULL;
423 	unsigned int depend_tab_size = 0;
424 
425 	switch (bus->chip_id) {
426 	case 0x4312:
427 		 min_msk = 0xCBB;
428 		 break;
429 	case 0x4322:
430 		/* We keep the default settings:
431 		 * min_msk = 0xCBB
432 		 * max_msk = 0x7FFFF
433 		 */
434 		break;
435 	case 0x4325:
436 		/* Power OTP down later. */
437 		min_msk = (1 << SSB_PMURES_4325_CBUCK_BURST) |
438 			  (1 << SSB_PMURES_4325_LNLDO2_PU);
439 		if (chipco_read32(cc, SSB_CHIPCO_CHIPSTAT) &
440 		    SSB_CHIPCO_CHST_4325_PMUTOP_2B)
441 			min_msk |= (1 << SSB_PMURES_4325_CLDO_CBUCK_BURST);
442 		/* The PLL may turn on, if it decides so. */
443 		max_msk = 0xFFFFF;
444 		updown_tab = pmu_res_updown_tab_4325a0;
445 		updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4325a0);
446 		depend_tab = pmu_res_depend_tab_4325a0;
447 		depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4325a0);
448 		break;
449 	case 0x4328:
450 		min_msk = (1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) |
451 			  (1 << SSB_PMURES_4328_BB_SWITCHER_PWM) |
452 			  (1 << SSB_PMURES_4328_XTAL_EN);
453 		/* The PLL may turn on, if it decides so. */
454 		max_msk = 0xFFFFF;
455 		updown_tab = pmu_res_updown_tab_4328a0;
456 		updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4328a0);
457 		depend_tab = pmu_res_depend_tab_4328a0;
458 		depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4328a0);
459 		break;
460 	case 0x5354:
461 		/* The PLL may turn on, if it decides so. */
462 		max_msk = 0xFFFFF;
463 		break;
464 	default:
465 		ssb_printk(KERN_ERR PFX
466 			   "ERROR: PMU resource config unknown for device %04X\n",
467 			   bus->chip_id);
468 	}
469 
470 	if (updown_tab) {
471 		for (i = 0; i < updown_tab_size; i++) {
472 			chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL,
473 				       updown_tab[i].resource);
474 			chipco_write32(cc, SSB_CHIPCO_PMU_RES_UPDNTM,
475 				       updown_tab[i].updown);
476 		}
477 	}
478 	if (depend_tab) {
479 		for (i = 0; i < depend_tab_size; i++) {
480 			chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL,
481 				       depend_tab[i].resource);
482 			switch (depend_tab[i].task) {
483 			case PMU_RES_DEP_SET:
484 				chipco_write32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
485 					       depend_tab[i].depend);
486 				break;
487 			case PMU_RES_DEP_ADD:
488 				chipco_set32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
489 					     depend_tab[i].depend);
490 				break;
491 			case PMU_RES_DEP_REMOVE:
492 				chipco_mask32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
493 					      ~(depend_tab[i].depend));
494 				break;
495 			default:
496 				SSB_WARN_ON(1);
497 			}
498 		}
499 	}
500 
501 	/* Set the resource masks. */
502 	if (min_msk)
503 		chipco_write32(cc, SSB_CHIPCO_PMU_MINRES_MSK, min_msk);
504 	if (max_msk)
505 		chipco_write32(cc, SSB_CHIPCO_PMU_MAXRES_MSK, max_msk);
506 }
507 
508 /* http://bcm-v4.sipsolutions.net/802.11/SSB/PmuInit */
509 void ssb_pmu_init(struct ssb_chipcommon *cc)
510 {
511 	u32 pmucap;
512 
513 	if (!(cc->capabilities & SSB_CHIPCO_CAP_PMU))
514 		return;
515 
516 	pmucap = chipco_read32(cc, SSB_CHIPCO_PMU_CAP);
517 	cc->pmu.rev = (pmucap & SSB_CHIPCO_PMU_CAP_REVISION);
518 
519 	ssb_dprintk(KERN_DEBUG PFX "Found rev %u PMU (capabilities 0x%08X)\n",
520 		    cc->pmu.rev, pmucap);
521 
522 	if (cc->pmu.rev == 1)
523 		chipco_mask32(cc, SSB_CHIPCO_PMU_CTL,
524 			      ~SSB_CHIPCO_PMU_CTL_NOILPONW);
525 	else
526 		chipco_set32(cc, SSB_CHIPCO_PMU_CTL,
527 			     SSB_CHIPCO_PMU_CTL_NOILPONW);
528 	ssb_pmu_pll_init(cc);
529 	ssb_pmu_resources_init(cc);
530 }
531 
532 void ssb_pmu_set_ldo_voltage(struct ssb_chipcommon *cc,
533 			     enum ssb_pmu_ldo_volt_id id, u32 voltage)
534 {
535 	struct ssb_bus *bus = cc->dev->bus;
536 	u32 addr, shift, mask;
537 
538 	switch (bus->chip_id) {
539 	case 0x4328:
540 	case 0x5354:
541 		switch (id) {
542 		case LDO_VOLT1:
543 			addr = 2;
544 			shift = 25;
545 			mask = 0xF;
546 			break;
547 		case LDO_VOLT2:
548 			addr = 3;
549 			shift = 1;
550 			mask = 0xF;
551 			break;
552 		case LDO_VOLT3:
553 			addr = 3;
554 			shift = 9;
555 			mask = 0xF;
556 			break;
557 		case LDO_PAREF:
558 			addr = 3;
559 			shift = 17;
560 			mask = 0x3F;
561 			break;
562 		default:
563 			SSB_WARN_ON(1);
564 			return;
565 		}
566 		break;
567 	case 0x4312:
568 		if (SSB_WARN_ON(id != LDO_PAREF))
569 			return;
570 		addr = 0;
571 		shift = 21;
572 		mask = 0x3F;
573 		break;
574 	default:
575 		return;
576 	}
577 
578 	ssb_chipco_regctl_maskset(cc, addr, ~(mask << shift),
579 				  (voltage & mask) << shift);
580 }
581 
582 void ssb_pmu_set_ldo_paref(struct ssb_chipcommon *cc, bool on)
583 {
584 	struct ssb_bus *bus = cc->dev->bus;
585 	int ldo;
586 
587 	switch (bus->chip_id) {
588 	case 0x4312:
589 		ldo = SSB_PMURES_4312_PA_REF_LDO;
590 		break;
591 	case 0x4328:
592 		ldo = SSB_PMURES_4328_PA_REF_LDO;
593 		break;
594 	case 0x5354:
595 		ldo = SSB_PMURES_5354_PA_REF_LDO;
596 		break;
597 	default:
598 		return;
599 	}
600 
601 	if (on)
602 		chipco_set32(cc, SSB_CHIPCO_PMU_MINRES_MSK, 1 << ldo);
603 	else
604 		chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK, ~(1 << ldo));
605 	chipco_read32(cc, SSB_CHIPCO_PMU_MINRES_MSK); //SPEC FIXME found via mmiotrace - dummy read?
606 }
607 
608 EXPORT_SYMBOL(ssb_pmu_set_ldo_voltage);
609 EXPORT_SYMBOL(ssb_pmu_set_ldo_paref);
610