xref: /linux/drivers/spi/spidev.c (revision 827634added7f38b7d724cab1dccdb2b004c13c3)
1 /*
2  * Simple synchronous userspace interface to SPI devices
3  *
4  * Copyright (C) 2006 SWAPP
5  *	Andrea Paterniani <a.paterniani@swapp-eng.it>
6  * Copyright (C) 2007 David Brownell (simplification, cleanup)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  */
18 
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/ioctl.h>
22 #include <linux/fs.h>
23 #include <linux/device.h>
24 #include <linux/err.h>
25 #include <linux/list.h>
26 #include <linux/errno.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/compat.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 
33 #include <linux/spi/spi.h>
34 #include <linux/spi/spidev.h>
35 
36 #include <linux/uaccess.h>
37 
38 
39 /*
40  * This supports access to SPI devices using normal userspace I/O calls.
41  * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
42  * and often mask message boundaries, full SPI support requires full duplex
43  * transfers.  There are several kinds of internal message boundaries to
44  * handle chipselect management and other protocol options.
45  *
46  * SPI has a character major number assigned.  We allocate minor numbers
47  * dynamically using a bitmask.  You must use hotplug tools, such as udev
48  * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
49  * nodes, since there is no fixed association of minor numbers with any
50  * particular SPI bus or device.
51  */
52 #define SPIDEV_MAJOR			153	/* assigned */
53 #define N_SPI_MINORS			32	/* ... up to 256 */
54 
55 static DECLARE_BITMAP(minors, N_SPI_MINORS);
56 
57 
58 /* Bit masks for spi_device.mode management.  Note that incorrect
59  * settings for some settings can cause *lots* of trouble for other
60  * devices on a shared bus:
61  *
62  *  - CS_HIGH ... this device will be active when it shouldn't be
63  *  - 3WIRE ... when active, it won't behave as it should
64  *  - NO_CS ... there will be no explicit message boundaries; this
65  *	is completely incompatible with the shared bus model
66  *  - READY ... transfers may proceed when they shouldn't.
67  *
68  * REVISIT should changing those flags be privileged?
69  */
70 #define SPI_MODE_MASK		(SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
71 				| SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
72 				| SPI_NO_CS | SPI_READY | SPI_TX_DUAL \
73 				| SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)
74 
75 struct spidev_data {
76 	dev_t			devt;
77 	spinlock_t		spi_lock;
78 	struct spi_device	*spi;
79 	struct list_head	device_entry;
80 
81 	/* TX/RX buffers are NULL unless this device is open (users > 0) */
82 	struct mutex		buf_lock;
83 	unsigned		users;
84 	u8			*tx_buffer;
85 	u8			*rx_buffer;
86 	u32			speed_hz;
87 };
88 
89 static LIST_HEAD(device_list);
90 static DEFINE_MUTEX(device_list_lock);
91 
92 static unsigned bufsiz = 4096;
93 module_param(bufsiz, uint, S_IRUGO);
94 MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
95 
96 /*-------------------------------------------------------------------------*/
97 
98 /*
99  * We can't use the standard synchronous wrappers for file I/O; we
100  * need to protect against async removal of the underlying spi_device.
101  */
102 static void spidev_complete(void *arg)
103 {
104 	complete(arg);
105 }
106 
107 static ssize_t
108 spidev_sync(struct spidev_data *spidev, struct spi_message *message)
109 {
110 	DECLARE_COMPLETION_ONSTACK(done);
111 	int status;
112 
113 	message->complete = spidev_complete;
114 	message->context = &done;
115 
116 	spin_lock_irq(&spidev->spi_lock);
117 	if (spidev->spi == NULL)
118 		status = -ESHUTDOWN;
119 	else
120 		status = spi_async(spidev->spi, message);
121 	spin_unlock_irq(&spidev->spi_lock);
122 
123 	if (status == 0) {
124 		wait_for_completion(&done);
125 		status = message->status;
126 		if (status == 0)
127 			status = message->actual_length;
128 	}
129 	return status;
130 }
131 
132 static inline ssize_t
133 spidev_sync_write(struct spidev_data *spidev, size_t len)
134 {
135 	struct spi_transfer	t = {
136 			.tx_buf		= spidev->tx_buffer,
137 			.len		= len,
138 			.speed_hz	= spidev->speed_hz,
139 		};
140 	struct spi_message	m;
141 
142 	spi_message_init(&m);
143 	spi_message_add_tail(&t, &m);
144 	return spidev_sync(spidev, &m);
145 }
146 
147 static inline ssize_t
148 spidev_sync_read(struct spidev_data *spidev, size_t len)
149 {
150 	struct spi_transfer	t = {
151 			.rx_buf		= spidev->rx_buffer,
152 			.len		= len,
153 			.speed_hz	= spidev->speed_hz,
154 		};
155 	struct spi_message	m;
156 
157 	spi_message_init(&m);
158 	spi_message_add_tail(&t, &m);
159 	return spidev_sync(spidev, &m);
160 }
161 
162 /*-------------------------------------------------------------------------*/
163 
164 /* Read-only message with current device setup */
165 static ssize_t
166 spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
167 {
168 	struct spidev_data	*spidev;
169 	ssize_t			status = 0;
170 
171 	/* chipselect only toggles at start or end of operation */
172 	if (count > bufsiz)
173 		return -EMSGSIZE;
174 
175 	spidev = filp->private_data;
176 
177 	mutex_lock(&spidev->buf_lock);
178 	status = spidev_sync_read(spidev, count);
179 	if (status > 0) {
180 		unsigned long	missing;
181 
182 		missing = copy_to_user(buf, spidev->rx_buffer, status);
183 		if (missing == status)
184 			status = -EFAULT;
185 		else
186 			status = status - missing;
187 	}
188 	mutex_unlock(&spidev->buf_lock);
189 
190 	return status;
191 }
192 
193 /* Write-only message with current device setup */
194 static ssize_t
195 spidev_write(struct file *filp, const char __user *buf,
196 		size_t count, loff_t *f_pos)
197 {
198 	struct spidev_data	*spidev;
199 	ssize_t			status = 0;
200 	unsigned long		missing;
201 
202 	/* chipselect only toggles at start or end of operation */
203 	if (count > bufsiz)
204 		return -EMSGSIZE;
205 
206 	spidev = filp->private_data;
207 
208 	mutex_lock(&spidev->buf_lock);
209 	missing = copy_from_user(spidev->tx_buffer, buf, count);
210 	if (missing == 0)
211 		status = spidev_sync_write(spidev, count);
212 	else
213 		status = -EFAULT;
214 	mutex_unlock(&spidev->buf_lock);
215 
216 	return status;
217 }
218 
219 static int spidev_message(struct spidev_data *spidev,
220 		struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
221 {
222 	struct spi_message	msg;
223 	struct spi_transfer	*k_xfers;
224 	struct spi_transfer	*k_tmp;
225 	struct spi_ioc_transfer *u_tmp;
226 	unsigned		n, total, tx_total, rx_total;
227 	u8			*tx_buf, *rx_buf;
228 	int			status = -EFAULT;
229 
230 	spi_message_init(&msg);
231 	k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
232 	if (k_xfers == NULL)
233 		return -ENOMEM;
234 
235 	/* Construct spi_message, copying any tx data to bounce buffer.
236 	 * We walk the array of user-provided transfers, using each one
237 	 * to initialize a kernel version of the same transfer.
238 	 */
239 	tx_buf = spidev->tx_buffer;
240 	rx_buf = spidev->rx_buffer;
241 	total = 0;
242 	tx_total = 0;
243 	rx_total = 0;
244 	for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
245 			n;
246 			n--, k_tmp++, u_tmp++) {
247 		k_tmp->len = u_tmp->len;
248 
249 		total += k_tmp->len;
250 		/* Since the function returns the total length of transfers
251 		 * on success, restrict the total to positive int values to
252 		 * avoid the return value looking like an error.  Also check
253 		 * each transfer length to avoid arithmetic overflow.
254 		 */
255 		if (total > INT_MAX || k_tmp->len > INT_MAX) {
256 			status = -EMSGSIZE;
257 			goto done;
258 		}
259 
260 		if (u_tmp->rx_buf) {
261 			/* this transfer needs space in RX bounce buffer */
262 			rx_total += k_tmp->len;
263 			if (rx_total > bufsiz) {
264 				status = -EMSGSIZE;
265 				goto done;
266 			}
267 			k_tmp->rx_buf = rx_buf;
268 			if (!access_ok(VERIFY_WRITE, (u8 __user *)
269 						(uintptr_t) u_tmp->rx_buf,
270 						u_tmp->len))
271 				goto done;
272 			rx_buf += k_tmp->len;
273 		}
274 		if (u_tmp->tx_buf) {
275 			/* this transfer needs space in TX bounce buffer */
276 			tx_total += k_tmp->len;
277 			if (tx_total > bufsiz) {
278 				status = -EMSGSIZE;
279 				goto done;
280 			}
281 			k_tmp->tx_buf = tx_buf;
282 			if (copy_from_user(tx_buf, (const u8 __user *)
283 						(uintptr_t) u_tmp->tx_buf,
284 					u_tmp->len))
285 				goto done;
286 			tx_buf += k_tmp->len;
287 		}
288 
289 		k_tmp->cs_change = !!u_tmp->cs_change;
290 		k_tmp->tx_nbits = u_tmp->tx_nbits;
291 		k_tmp->rx_nbits = u_tmp->rx_nbits;
292 		k_tmp->bits_per_word = u_tmp->bits_per_word;
293 		k_tmp->delay_usecs = u_tmp->delay_usecs;
294 		k_tmp->speed_hz = u_tmp->speed_hz;
295 		if (!k_tmp->speed_hz)
296 			k_tmp->speed_hz = spidev->speed_hz;
297 #ifdef VERBOSE
298 		dev_dbg(&spidev->spi->dev,
299 			"  xfer len %zd %s%s%s%dbits %u usec %uHz\n",
300 			u_tmp->len,
301 			u_tmp->rx_buf ? "rx " : "",
302 			u_tmp->tx_buf ? "tx " : "",
303 			u_tmp->cs_change ? "cs " : "",
304 			u_tmp->bits_per_word ? : spidev->spi->bits_per_word,
305 			u_tmp->delay_usecs,
306 			u_tmp->speed_hz ? : spidev->spi->max_speed_hz);
307 #endif
308 		spi_message_add_tail(k_tmp, &msg);
309 	}
310 
311 	status = spidev_sync(spidev, &msg);
312 	if (status < 0)
313 		goto done;
314 
315 	/* copy any rx data out of bounce buffer */
316 	rx_buf = spidev->rx_buffer;
317 	for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
318 		if (u_tmp->rx_buf) {
319 			if (__copy_to_user((u8 __user *)
320 					(uintptr_t) u_tmp->rx_buf, rx_buf,
321 					u_tmp->len)) {
322 				status = -EFAULT;
323 				goto done;
324 			}
325 			rx_buf += u_tmp->len;
326 		}
327 	}
328 	status = total;
329 
330 done:
331 	kfree(k_xfers);
332 	return status;
333 }
334 
335 static struct spi_ioc_transfer *
336 spidev_get_ioc_message(unsigned int cmd, struct spi_ioc_transfer __user *u_ioc,
337 		unsigned *n_ioc)
338 {
339 	struct spi_ioc_transfer	*ioc;
340 	u32	tmp;
341 
342 	/* Check type, command number and direction */
343 	if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC
344 			|| _IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
345 			|| _IOC_DIR(cmd) != _IOC_WRITE)
346 		return ERR_PTR(-ENOTTY);
347 
348 	tmp = _IOC_SIZE(cmd);
349 	if ((tmp % sizeof(struct spi_ioc_transfer)) != 0)
350 		return ERR_PTR(-EINVAL);
351 	*n_ioc = tmp / sizeof(struct spi_ioc_transfer);
352 	if (*n_ioc == 0)
353 		return NULL;
354 
355 	/* copy into scratch area */
356 	ioc = kmalloc(tmp, GFP_KERNEL);
357 	if (!ioc)
358 		return ERR_PTR(-ENOMEM);
359 	if (__copy_from_user(ioc, u_ioc, tmp)) {
360 		kfree(ioc);
361 		return ERR_PTR(-EFAULT);
362 	}
363 	return ioc;
364 }
365 
366 static long
367 spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
368 {
369 	int			err = 0;
370 	int			retval = 0;
371 	struct spidev_data	*spidev;
372 	struct spi_device	*spi;
373 	u32			tmp;
374 	unsigned		n_ioc;
375 	struct spi_ioc_transfer	*ioc;
376 
377 	/* Check type and command number */
378 	if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
379 		return -ENOTTY;
380 
381 	/* Check access direction once here; don't repeat below.
382 	 * IOC_DIR is from the user perspective, while access_ok is
383 	 * from the kernel perspective; so they look reversed.
384 	 */
385 	if (_IOC_DIR(cmd) & _IOC_READ)
386 		err = !access_ok(VERIFY_WRITE,
387 				(void __user *)arg, _IOC_SIZE(cmd));
388 	if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
389 		err = !access_ok(VERIFY_READ,
390 				(void __user *)arg, _IOC_SIZE(cmd));
391 	if (err)
392 		return -EFAULT;
393 
394 	/* guard against device removal before, or while,
395 	 * we issue this ioctl.
396 	 */
397 	spidev = filp->private_data;
398 	spin_lock_irq(&spidev->spi_lock);
399 	spi = spi_dev_get(spidev->spi);
400 	spin_unlock_irq(&spidev->spi_lock);
401 
402 	if (spi == NULL)
403 		return -ESHUTDOWN;
404 
405 	/* use the buffer lock here for triple duty:
406 	 *  - prevent I/O (from us) so calling spi_setup() is safe;
407 	 *  - prevent concurrent SPI_IOC_WR_* from morphing
408 	 *    data fields while SPI_IOC_RD_* reads them;
409 	 *  - SPI_IOC_MESSAGE needs the buffer locked "normally".
410 	 */
411 	mutex_lock(&spidev->buf_lock);
412 
413 	switch (cmd) {
414 	/* read requests */
415 	case SPI_IOC_RD_MODE:
416 		retval = __put_user(spi->mode & SPI_MODE_MASK,
417 					(__u8 __user *)arg);
418 		break;
419 	case SPI_IOC_RD_MODE32:
420 		retval = __put_user(spi->mode & SPI_MODE_MASK,
421 					(__u32 __user *)arg);
422 		break;
423 	case SPI_IOC_RD_LSB_FIRST:
424 		retval = __put_user((spi->mode & SPI_LSB_FIRST) ?  1 : 0,
425 					(__u8 __user *)arg);
426 		break;
427 	case SPI_IOC_RD_BITS_PER_WORD:
428 		retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
429 		break;
430 	case SPI_IOC_RD_MAX_SPEED_HZ:
431 		retval = __put_user(spidev->speed_hz, (__u32 __user *)arg);
432 		break;
433 
434 	/* write requests */
435 	case SPI_IOC_WR_MODE:
436 	case SPI_IOC_WR_MODE32:
437 		if (cmd == SPI_IOC_WR_MODE)
438 			retval = __get_user(tmp, (u8 __user *)arg);
439 		else
440 			retval = __get_user(tmp, (u32 __user *)arg);
441 		if (retval == 0) {
442 			u32	save = spi->mode;
443 
444 			if (tmp & ~SPI_MODE_MASK) {
445 				retval = -EINVAL;
446 				break;
447 			}
448 
449 			tmp |= spi->mode & ~SPI_MODE_MASK;
450 			spi->mode = (u16)tmp;
451 			retval = spi_setup(spi);
452 			if (retval < 0)
453 				spi->mode = save;
454 			else
455 				dev_dbg(&spi->dev, "spi mode %x\n", tmp);
456 		}
457 		break;
458 	case SPI_IOC_WR_LSB_FIRST:
459 		retval = __get_user(tmp, (__u8 __user *)arg);
460 		if (retval == 0) {
461 			u32	save = spi->mode;
462 
463 			if (tmp)
464 				spi->mode |= SPI_LSB_FIRST;
465 			else
466 				spi->mode &= ~SPI_LSB_FIRST;
467 			retval = spi_setup(spi);
468 			if (retval < 0)
469 				spi->mode = save;
470 			else
471 				dev_dbg(&spi->dev, "%csb first\n",
472 						tmp ? 'l' : 'm');
473 		}
474 		break;
475 	case SPI_IOC_WR_BITS_PER_WORD:
476 		retval = __get_user(tmp, (__u8 __user *)arg);
477 		if (retval == 0) {
478 			u8	save = spi->bits_per_word;
479 
480 			spi->bits_per_word = tmp;
481 			retval = spi_setup(spi);
482 			if (retval < 0)
483 				spi->bits_per_word = save;
484 			else
485 				dev_dbg(&spi->dev, "%d bits per word\n", tmp);
486 		}
487 		break;
488 	case SPI_IOC_WR_MAX_SPEED_HZ:
489 		retval = __get_user(tmp, (__u32 __user *)arg);
490 		if (retval == 0) {
491 			u32	save = spi->max_speed_hz;
492 
493 			spi->max_speed_hz = tmp;
494 			retval = spi_setup(spi);
495 			if (retval >= 0)
496 				spidev->speed_hz = tmp;
497 			else
498 				dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
499 			spi->max_speed_hz = save;
500 		}
501 		break;
502 
503 	default:
504 		/* segmented and/or full-duplex I/O request */
505 		/* Check message and copy into scratch area */
506 		ioc = spidev_get_ioc_message(cmd,
507 				(struct spi_ioc_transfer __user *)arg, &n_ioc);
508 		if (IS_ERR(ioc)) {
509 			retval = PTR_ERR(ioc);
510 			break;
511 		}
512 		if (!ioc)
513 			break;	/* n_ioc is also 0 */
514 
515 		/* translate to spi_message, execute */
516 		retval = spidev_message(spidev, ioc, n_ioc);
517 		kfree(ioc);
518 		break;
519 	}
520 
521 	mutex_unlock(&spidev->buf_lock);
522 	spi_dev_put(spi);
523 	return retval;
524 }
525 
526 #ifdef CONFIG_COMPAT
527 static long
528 spidev_compat_ioc_message(struct file *filp, unsigned int cmd,
529 		unsigned long arg)
530 {
531 	struct spi_ioc_transfer __user	*u_ioc;
532 	int				retval = 0;
533 	struct spidev_data		*spidev;
534 	struct spi_device		*spi;
535 	unsigned			n_ioc, n;
536 	struct spi_ioc_transfer		*ioc;
537 
538 	u_ioc = (struct spi_ioc_transfer __user *) compat_ptr(arg);
539 	if (!access_ok(VERIFY_READ, u_ioc, _IOC_SIZE(cmd)))
540 		return -EFAULT;
541 
542 	/* guard against device removal before, or while,
543 	 * we issue this ioctl.
544 	 */
545 	spidev = filp->private_data;
546 	spin_lock_irq(&spidev->spi_lock);
547 	spi = spi_dev_get(spidev->spi);
548 	spin_unlock_irq(&spidev->spi_lock);
549 
550 	if (spi == NULL)
551 		return -ESHUTDOWN;
552 
553 	/* SPI_IOC_MESSAGE needs the buffer locked "normally" */
554 	mutex_lock(&spidev->buf_lock);
555 
556 	/* Check message and copy into scratch area */
557 	ioc = spidev_get_ioc_message(cmd, u_ioc, &n_ioc);
558 	if (IS_ERR(ioc)) {
559 		retval = PTR_ERR(ioc);
560 		goto done;
561 	}
562 	if (!ioc)
563 		goto done;	/* n_ioc is also 0 */
564 
565 	/* Convert buffer pointers */
566 	for (n = 0; n < n_ioc; n++) {
567 		ioc[n].rx_buf = (uintptr_t) compat_ptr(ioc[n].rx_buf);
568 		ioc[n].tx_buf = (uintptr_t) compat_ptr(ioc[n].tx_buf);
569 	}
570 
571 	/* translate to spi_message, execute */
572 	retval = spidev_message(spidev, ioc, n_ioc);
573 	kfree(ioc);
574 
575 done:
576 	mutex_unlock(&spidev->buf_lock);
577 	spi_dev_put(spi);
578 	return retval;
579 }
580 
581 static long
582 spidev_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
583 {
584 	if (_IOC_TYPE(cmd) == SPI_IOC_MAGIC
585 			&& _IOC_NR(cmd) == _IOC_NR(SPI_IOC_MESSAGE(0))
586 			&& _IOC_DIR(cmd) == _IOC_WRITE)
587 		return spidev_compat_ioc_message(filp, cmd, arg);
588 
589 	return spidev_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
590 }
591 #else
592 #define spidev_compat_ioctl NULL
593 #endif /* CONFIG_COMPAT */
594 
595 static int spidev_open(struct inode *inode, struct file *filp)
596 {
597 	struct spidev_data	*spidev;
598 	int			status = -ENXIO;
599 
600 	mutex_lock(&device_list_lock);
601 
602 	list_for_each_entry(spidev, &device_list, device_entry) {
603 		if (spidev->devt == inode->i_rdev) {
604 			status = 0;
605 			break;
606 		}
607 	}
608 
609 	if (status) {
610 		pr_debug("spidev: nothing for minor %d\n", iminor(inode));
611 		goto err_find_dev;
612 	}
613 
614 	if (!spidev->tx_buffer) {
615 		spidev->tx_buffer = kmalloc(bufsiz, GFP_KERNEL);
616 		if (!spidev->tx_buffer) {
617 				dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
618 				status = -ENOMEM;
619 			goto err_find_dev;
620 			}
621 		}
622 
623 	if (!spidev->rx_buffer) {
624 		spidev->rx_buffer = kmalloc(bufsiz, GFP_KERNEL);
625 		if (!spidev->rx_buffer) {
626 			dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
627 			status = -ENOMEM;
628 			goto err_alloc_rx_buf;
629 		}
630 	}
631 
632 	spidev->users++;
633 	filp->private_data = spidev;
634 	nonseekable_open(inode, filp);
635 
636 	mutex_unlock(&device_list_lock);
637 	return 0;
638 
639 err_alloc_rx_buf:
640 	kfree(spidev->tx_buffer);
641 	spidev->tx_buffer = NULL;
642 err_find_dev:
643 	mutex_unlock(&device_list_lock);
644 	return status;
645 }
646 
647 static int spidev_release(struct inode *inode, struct file *filp)
648 {
649 	struct spidev_data	*spidev;
650 	int			status = 0;
651 
652 	mutex_lock(&device_list_lock);
653 	spidev = filp->private_data;
654 	filp->private_data = NULL;
655 
656 	/* last close? */
657 	spidev->users--;
658 	if (!spidev->users) {
659 		int		dofree;
660 
661 		kfree(spidev->tx_buffer);
662 		spidev->tx_buffer = NULL;
663 
664 		kfree(spidev->rx_buffer);
665 		spidev->rx_buffer = NULL;
666 
667 		spidev->speed_hz = spidev->spi->max_speed_hz;
668 
669 		/* ... after we unbound from the underlying device? */
670 		spin_lock_irq(&spidev->spi_lock);
671 		dofree = (spidev->spi == NULL);
672 		spin_unlock_irq(&spidev->spi_lock);
673 
674 		if (dofree)
675 			kfree(spidev);
676 	}
677 	mutex_unlock(&device_list_lock);
678 
679 	return status;
680 }
681 
682 static const struct file_operations spidev_fops = {
683 	.owner =	THIS_MODULE,
684 	/* REVISIT switch to aio primitives, so that userspace
685 	 * gets more complete API coverage.  It'll simplify things
686 	 * too, except for the locking.
687 	 */
688 	.write =	spidev_write,
689 	.read =		spidev_read,
690 	.unlocked_ioctl = spidev_ioctl,
691 	.compat_ioctl = spidev_compat_ioctl,
692 	.open =		spidev_open,
693 	.release =	spidev_release,
694 	.llseek =	no_llseek,
695 };
696 
697 /*-------------------------------------------------------------------------*/
698 
699 /* The main reason to have this class is to make mdev/udev create the
700  * /dev/spidevB.C character device nodes exposing our userspace API.
701  * It also simplifies memory management.
702  */
703 
704 static struct class *spidev_class;
705 
706 #ifdef CONFIG_OF
707 static const struct of_device_id spidev_dt_ids[] = {
708 	{ .compatible = "rohm,dh2228fv" },
709 	{},
710 };
711 MODULE_DEVICE_TABLE(of, spidev_dt_ids);
712 #endif
713 
714 /*-------------------------------------------------------------------------*/
715 
716 static int spidev_probe(struct spi_device *spi)
717 {
718 	struct spidev_data	*spidev;
719 	int			status;
720 	unsigned long		minor;
721 
722 	/*
723 	 * spidev should never be referenced in DT without a specific
724 	 * compatbile string, it is a Linux implementation thing
725 	 * rather than a description of the hardware.
726 	 */
727 	if (spi->dev.of_node && !of_match_device(spidev_dt_ids, &spi->dev)) {
728 		dev_err(&spi->dev, "buggy DT: spidev listed directly in DT\n");
729 		WARN_ON(spi->dev.of_node &&
730 			!of_match_device(spidev_dt_ids, &spi->dev));
731 	}
732 
733 	/* Allocate driver data */
734 	spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
735 	if (!spidev)
736 		return -ENOMEM;
737 
738 	/* Initialize the driver data */
739 	spidev->spi = spi;
740 	spin_lock_init(&spidev->spi_lock);
741 	mutex_init(&spidev->buf_lock);
742 
743 	INIT_LIST_HEAD(&spidev->device_entry);
744 
745 	/* If we can allocate a minor number, hook up this device.
746 	 * Reusing minors is fine so long as udev or mdev is working.
747 	 */
748 	mutex_lock(&device_list_lock);
749 	minor = find_first_zero_bit(minors, N_SPI_MINORS);
750 	if (minor < N_SPI_MINORS) {
751 		struct device *dev;
752 
753 		spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
754 		dev = device_create(spidev_class, &spi->dev, spidev->devt,
755 				    spidev, "spidev%d.%d",
756 				    spi->master->bus_num, spi->chip_select);
757 		status = PTR_ERR_OR_ZERO(dev);
758 	} else {
759 		dev_dbg(&spi->dev, "no minor number available!\n");
760 		status = -ENODEV;
761 	}
762 	if (status == 0) {
763 		set_bit(minor, minors);
764 		list_add(&spidev->device_entry, &device_list);
765 	}
766 	mutex_unlock(&device_list_lock);
767 
768 	spidev->speed_hz = spi->max_speed_hz;
769 
770 	if (status == 0)
771 		spi_set_drvdata(spi, spidev);
772 	else
773 		kfree(spidev);
774 
775 	return status;
776 }
777 
778 static int spidev_remove(struct spi_device *spi)
779 {
780 	struct spidev_data	*spidev = spi_get_drvdata(spi);
781 
782 	/* make sure ops on existing fds can abort cleanly */
783 	spin_lock_irq(&spidev->spi_lock);
784 	spidev->spi = NULL;
785 	spin_unlock_irq(&spidev->spi_lock);
786 
787 	/* prevent new opens */
788 	mutex_lock(&device_list_lock);
789 	list_del(&spidev->device_entry);
790 	device_destroy(spidev_class, spidev->devt);
791 	clear_bit(MINOR(spidev->devt), minors);
792 	if (spidev->users == 0)
793 		kfree(spidev);
794 	mutex_unlock(&device_list_lock);
795 
796 	return 0;
797 }
798 
799 static struct spi_driver spidev_spi_driver = {
800 	.driver = {
801 		.name =		"spidev",
802 		.owner =	THIS_MODULE,
803 		.of_match_table = of_match_ptr(spidev_dt_ids),
804 	},
805 	.probe =	spidev_probe,
806 	.remove =	spidev_remove,
807 
808 	/* NOTE:  suspend/resume methods are not necessary here.
809 	 * We don't do anything except pass the requests to/from
810 	 * the underlying controller.  The refrigerator handles
811 	 * most issues; the controller driver handles the rest.
812 	 */
813 };
814 
815 /*-------------------------------------------------------------------------*/
816 
817 static int __init spidev_init(void)
818 {
819 	int status;
820 
821 	/* Claim our 256 reserved device numbers.  Then register a class
822 	 * that will key udev/mdev to add/remove /dev nodes.  Last, register
823 	 * the driver which manages those device numbers.
824 	 */
825 	BUILD_BUG_ON(N_SPI_MINORS > 256);
826 	status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
827 	if (status < 0)
828 		return status;
829 
830 	spidev_class = class_create(THIS_MODULE, "spidev");
831 	if (IS_ERR(spidev_class)) {
832 		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
833 		return PTR_ERR(spidev_class);
834 	}
835 
836 	status = spi_register_driver(&spidev_spi_driver);
837 	if (status < 0) {
838 		class_destroy(spidev_class);
839 		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
840 	}
841 	return status;
842 }
843 module_init(spidev_init);
844 
845 static void __exit spidev_exit(void)
846 {
847 	spi_unregister_driver(&spidev_spi_driver);
848 	class_destroy(spidev_class);
849 	unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
850 }
851 module_exit(spidev_exit);
852 
853 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
854 MODULE_DESCRIPTION("User mode SPI device interface");
855 MODULE_LICENSE("GPL");
856 MODULE_ALIAS("spi:spidev");
857