1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Xilinx Zynq UltraScale+ MPSoC Quad-SPI (QSPI) controller driver 4 * (host mode only) 5 * 6 * Copyright (C) 2009 - 2015 Xilinx, Inc. 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/delay.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/firmware/xlnx-zynqmp.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/module.h> 17 #include <linux/of.h> 18 #include <linux/platform_device.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/spi/spi.h> 21 #include <linux/spinlock.h> 22 #include <linux/workqueue.h> 23 #include <linux/spi/spi-mem.h> 24 25 /* Generic QSPI register offsets */ 26 #define GQSPI_CONFIG_OFST 0x00000100 27 #define GQSPI_ISR_OFST 0x00000104 28 #define GQSPI_IDR_OFST 0x0000010C 29 #define GQSPI_IER_OFST 0x00000108 30 #define GQSPI_IMASK_OFST 0x00000110 31 #define GQSPI_EN_OFST 0x00000114 32 #define GQSPI_TXD_OFST 0x0000011C 33 #define GQSPI_RXD_OFST 0x00000120 34 #define GQSPI_TX_THRESHOLD_OFST 0x00000128 35 #define GQSPI_RX_THRESHOLD_OFST 0x0000012C 36 #define IOU_TAPDLY_BYPASS_OFST 0x0000003C 37 #define GQSPI_LPBK_DLY_ADJ_OFST 0x00000138 38 #define GQSPI_GEN_FIFO_OFST 0x00000140 39 #define GQSPI_SEL_OFST 0x00000144 40 #define GQSPI_GF_THRESHOLD_OFST 0x00000150 41 #define GQSPI_FIFO_CTRL_OFST 0x0000014C 42 #define GQSPI_QSPIDMA_DST_CTRL_OFST 0x0000080C 43 #define GQSPI_QSPIDMA_DST_SIZE_OFST 0x00000804 44 #define GQSPI_QSPIDMA_DST_STS_OFST 0x00000808 45 #define GQSPI_QSPIDMA_DST_I_STS_OFST 0x00000814 46 #define GQSPI_QSPIDMA_DST_I_EN_OFST 0x00000818 47 #define GQSPI_QSPIDMA_DST_I_DIS_OFST 0x0000081C 48 #define GQSPI_QSPIDMA_DST_I_MASK_OFST 0x00000820 49 #define GQSPI_QSPIDMA_DST_ADDR_OFST 0x00000800 50 #define GQSPI_QSPIDMA_DST_ADDR_MSB_OFST 0x00000828 51 #define GQSPI_DATA_DLY_ADJ_OFST 0x000001F8 52 53 /* GQSPI register bit masks */ 54 #define GQSPI_SEL_MASK 0x00000001 55 #define GQSPI_EN_MASK 0x00000001 56 #define GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK 0x00000020 57 #define GQSPI_ISR_WR_TO_CLR_MASK 0x00000002 58 #define GQSPI_IDR_ALL_MASK 0x00000FBE 59 #define GQSPI_CFG_MODE_EN_MASK 0xC0000000 60 #define GQSPI_CFG_GEN_FIFO_START_MODE_MASK 0x20000000 61 #define GQSPI_CFG_ENDIAN_MASK 0x04000000 62 #define GQSPI_CFG_EN_POLL_TO_MASK 0x00100000 63 #define GQSPI_CFG_WP_HOLD_MASK 0x00080000 64 #define GQSPI_CFG_BAUD_RATE_DIV_MASK 0x00000038 65 #define GQSPI_CFG_CLK_PHA_MASK 0x00000004 66 #define GQSPI_CFG_CLK_POL_MASK 0x00000002 67 #define GQSPI_CFG_START_GEN_FIFO_MASK 0x10000000 68 #define GQSPI_GENFIFO_IMM_DATA_MASK 0x000000FF 69 #define GQSPI_GENFIFO_DATA_XFER 0x00000100 70 #define GQSPI_GENFIFO_EXP 0x00000200 71 #define GQSPI_GENFIFO_MODE_SPI 0x00000400 72 #define GQSPI_GENFIFO_MODE_DUALSPI 0x00000800 73 #define GQSPI_GENFIFO_MODE_QUADSPI 0x00000C00 74 #define GQSPI_GENFIFO_MODE_MASK 0x00000C00 75 #define GQSPI_GENFIFO_CS_LOWER 0x00001000 76 #define GQSPI_GENFIFO_CS_UPPER 0x00002000 77 #define GQSPI_GENFIFO_BUS_LOWER 0x00004000 78 #define GQSPI_GENFIFO_BUS_UPPER 0x00008000 79 #define GQSPI_GENFIFO_BUS_BOTH 0x0000C000 80 #define GQSPI_GENFIFO_BUS_MASK 0x0000C000 81 #define GQSPI_GENFIFO_TX 0x00010000 82 #define GQSPI_GENFIFO_RX 0x00020000 83 #define GQSPI_GENFIFO_STRIPE 0x00040000 84 #define GQSPI_GENFIFO_POLL 0x00080000 85 #define GQSPI_GENFIFO_EXP_START 0x00000100 86 #define GQSPI_FIFO_CTRL_RST_RX_FIFO_MASK 0x00000004 87 #define GQSPI_FIFO_CTRL_RST_TX_FIFO_MASK 0x00000002 88 #define GQSPI_FIFO_CTRL_RST_GEN_FIFO_MASK 0x00000001 89 #define GQSPI_ISR_RXEMPTY_MASK 0x00000800 90 #define GQSPI_ISR_GENFIFOFULL_MASK 0x00000400 91 #define GQSPI_ISR_GENFIFONOT_FULL_MASK 0x00000200 92 #define GQSPI_ISR_TXEMPTY_MASK 0x00000100 93 #define GQSPI_ISR_GENFIFOEMPTY_MASK 0x00000080 94 #define GQSPI_ISR_RXFULL_MASK 0x00000020 95 #define GQSPI_ISR_RXNEMPTY_MASK 0x00000010 96 #define GQSPI_ISR_TXFULL_MASK 0x00000008 97 #define GQSPI_ISR_TXNOT_FULL_MASK 0x00000004 98 #define GQSPI_ISR_POLL_TIME_EXPIRE_MASK 0x00000002 99 #define GQSPI_IER_TXNOT_FULL_MASK 0x00000004 100 #define GQSPI_IER_RXEMPTY_MASK 0x00000800 101 #define GQSPI_IER_POLL_TIME_EXPIRE_MASK 0x00000002 102 #define GQSPI_IER_RXNEMPTY_MASK 0x00000010 103 #define GQSPI_IER_GENFIFOEMPTY_MASK 0x00000080 104 #define GQSPI_IER_TXEMPTY_MASK 0x00000100 105 #define GQSPI_QSPIDMA_DST_INTR_ALL_MASK 0x000000FE 106 #define GQSPI_QSPIDMA_DST_STS_WTC 0x0000E000 107 #define GQSPI_CFG_MODE_EN_DMA_MASK 0x80000000 108 #define GQSPI_ISR_IDR_MASK 0x00000994 109 #define GQSPI_QSPIDMA_DST_I_EN_DONE_MASK 0x00000002 110 #define GQSPI_QSPIDMA_DST_I_STS_DONE_MASK 0x00000002 111 #define GQSPI_IRQ_MASK 0x00000980 112 113 #define GQSPI_CFG_BAUD_RATE_DIV_SHIFT 3 114 #define GQSPI_GENFIFO_CS_SETUP 0x4 115 #define GQSPI_GENFIFO_CS_HOLD 0x3 116 #define GQSPI_TXD_DEPTH 64 117 #define GQSPI_RX_FIFO_THRESHOLD 32 118 #define GQSPI_RX_FIFO_FILL (GQSPI_RX_FIFO_THRESHOLD * 4) 119 #define GQSPI_TX_FIFO_THRESHOLD_RESET_VAL 32 120 #define GQSPI_TX_FIFO_FILL (GQSPI_TXD_DEPTH -\ 121 GQSPI_TX_FIFO_THRESHOLD_RESET_VAL) 122 #define GQSPI_GEN_FIFO_THRESHOLD_RESET_VAL 0X10 123 #define GQSPI_QSPIDMA_DST_CTRL_RESET_VAL 0x803FFA00 124 #define GQSPI_SELECT_FLASH_CS_LOWER 0x1 125 #define GQSPI_SELECT_FLASH_CS_UPPER 0x2 126 #define GQSPI_SELECT_FLASH_CS_BOTH 0x3 127 #define GQSPI_SELECT_FLASH_BUS_LOWER 0x1 128 #define GQSPI_SELECT_FLASH_BUS_UPPER 0x2 129 #define GQSPI_SELECT_FLASH_BUS_BOTH 0x3 130 #define GQSPI_BAUD_DIV_MAX 7 /* Baud rate divisor maximum */ 131 #define GQSPI_BAUD_DIV_SHIFT 2 /* Baud rate divisor shift */ 132 #define GQSPI_SELECT_MODE_SPI 0x1 133 #define GQSPI_SELECT_MODE_DUALSPI 0x2 134 #define GQSPI_SELECT_MODE_QUADSPI 0x4 135 #define GQSPI_DMA_UNALIGN 0x3 136 #define GQSPI_DEFAULT_NUM_CS 1 /* Default number of chip selects */ 137 138 #define GQSPI_MAX_NUM_CS 2 /* Maximum number of chip selects */ 139 140 #define GQSPI_USE_DATA_DLY 0x1 141 #define GQSPI_USE_DATA_DLY_SHIFT 31 142 #define GQSPI_DATA_DLY_ADJ_VALUE 0x2 143 #define GQSPI_DATA_DLY_ADJ_SHIFT 28 144 #define GQSPI_LPBK_DLY_ADJ_DLY_1 0x1 145 #define GQSPI_LPBK_DLY_ADJ_DLY_1_SHIFT 0x3 146 #define TAP_DLY_BYPASS_LQSPI_RX_VALUE 0x1 147 #define TAP_DLY_BYPASS_LQSPI_RX_SHIFT 0x2 148 149 /* set to differentiate versal from zynqmp, 1=versal, 0=zynqmp */ 150 #define QSPI_QUIRK_HAS_TAPDELAY BIT(0) 151 152 #define GQSPI_FREQ_37_5MHZ 37500000 153 #define GQSPI_FREQ_40MHZ 40000000 154 #define GQSPI_FREQ_100MHZ 100000000 155 #define GQSPI_FREQ_150MHZ 150000000 156 157 #define SPI_AUTOSUSPEND_TIMEOUT 3000 158 enum mode_type {GQSPI_MODE_IO, GQSPI_MODE_DMA}; 159 160 /** 161 * struct qspi_platform_data - zynqmp qspi platform data structure 162 * @quirks: Flags is used to identify the platform 163 */ 164 struct qspi_platform_data { 165 u32 quirks; 166 }; 167 168 /** 169 * struct zynqmp_qspi - Defines qspi driver instance 170 * @ctlr: Pointer to the spi controller information 171 * @regs: Virtual address of the QSPI controller registers 172 * @refclk: Pointer to the peripheral clock 173 * @pclk: Pointer to the APB clock 174 * @irq: IRQ number 175 * @dev: Pointer to struct device 176 * @txbuf: Pointer to the TX buffer 177 * @rxbuf: Pointer to the RX buffer 178 * @bytes_to_transfer: Number of bytes left to transfer 179 * @bytes_to_receive: Number of bytes left to receive 180 * @genfifocs: Used for chip select 181 * @genfifobus: Used to select the upper or lower bus 182 * @dma_rx_bytes: Remaining bytes to receive by DMA mode 183 * @dma_addr: DMA address after mapping the kernel buffer 184 * @genfifoentry: Used for storing the genfifoentry instruction. 185 * @mode: Defines the mode in which QSPI is operating 186 * @data_completion: completion structure 187 * @op_lock: Operational lock 188 * @speed_hz: Current SPI bus clock speed in hz 189 * @has_tapdelay: Used for tapdelay register available in qspi 190 */ 191 struct zynqmp_qspi { 192 struct spi_controller *ctlr; 193 void __iomem *regs; 194 struct clk *refclk; 195 struct clk *pclk; 196 int irq; 197 struct device *dev; 198 const void *txbuf; 199 void *rxbuf; 200 int bytes_to_transfer; 201 int bytes_to_receive; 202 u32 genfifocs; 203 u32 genfifobus; 204 u32 dma_rx_bytes; 205 dma_addr_t dma_addr; 206 u32 genfifoentry; 207 enum mode_type mode; 208 struct completion data_completion; 209 struct mutex op_lock; 210 u32 speed_hz; 211 bool has_tapdelay; 212 }; 213 214 /** 215 * zynqmp_gqspi_read - For GQSPI controller read operation 216 * @xqspi: Pointer to the zynqmp_qspi structure 217 * @offset: Offset from where to read 218 * Return: Value at the offset 219 */ 220 static u32 zynqmp_gqspi_read(struct zynqmp_qspi *xqspi, u32 offset) 221 { 222 return readl_relaxed(xqspi->regs + offset); 223 } 224 225 /** 226 * zynqmp_gqspi_write - For GQSPI controller write operation 227 * @xqspi: Pointer to the zynqmp_qspi structure 228 * @offset: Offset where to write 229 * @val: Value to be written 230 */ 231 static inline void zynqmp_gqspi_write(struct zynqmp_qspi *xqspi, u32 offset, 232 u32 val) 233 { 234 writel_relaxed(val, (xqspi->regs + offset)); 235 } 236 237 /** 238 * zynqmp_gqspi_selecttarget - For selection of target device 239 * @instanceptr: Pointer to the zynqmp_qspi structure 240 * @targetcs: For chip select 241 * @targetbus: To check which bus is selected- upper or lower 242 */ 243 static void zynqmp_gqspi_selecttarget(struct zynqmp_qspi *instanceptr, 244 u8 targetcs, u8 targetbus) 245 { 246 /* 247 * Bus and CS lines selected here will be updated in the instance and 248 * used for subsequent GENFIFO entries during transfer. 249 */ 250 251 /* Choose target select line */ 252 switch (targetcs) { 253 case GQSPI_SELECT_FLASH_CS_BOTH: 254 instanceptr->genfifocs = GQSPI_GENFIFO_CS_LOWER | 255 GQSPI_GENFIFO_CS_UPPER; 256 break; 257 case GQSPI_SELECT_FLASH_CS_UPPER: 258 instanceptr->genfifocs = GQSPI_GENFIFO_CS_UPPER; 259 break; 260 case GQSPI_SELECT_FLASH_CS_LOWER: 261 instanceptr->genfifocs = GQSPI_GENFIFO_CS_LOWER; 262 break; 263 default: 264 dev_warn(instanceptr->dev, "Invalid target select\n"); 265 } 266 267 /* Choose the bus */ 268 switch (targetbus) { 269 case GQSPI_SELECT_FLASH_BUS_BOTH: 270 instanceptr->genfifobus = GQSPI_GENFIFO_BUS_LOWER | 271 GQSPI_GENFIFO_BUS_UPPER; 272 break; 273 case GQSPI_SELECT_FLASH_BUS_UPPER: 274 instanceptr->genfifobus = GQSPI_GENFIFO_BUS_UPPER; 275 break; 276 case GQSPI_SELECT_FLASH_BUS_LOWER: 277 instanceptr->genfifobus = GQSPI_GENFIFO_BUS_LOWER; 278 break; 279 default: 280 dev_warn(instanceptr->dev, "Invalid target bus\n"); 281 } 282 } 283 284 /** 285 * zynqmp_qspi_set_tapdelay: To configure qspi tap delays 286 * @xqspi: Pointer to the zynqmp_qspi structure 287 * @baudrateval: Buadrate to configure 288 */ 289 static void zynqmp_qspi_set_tapdelay(struct zynqmp_qspi *xqspi, u32 baudrateval) 290 { 291 u32 tapdlybypass = 0, lpbkdlyadj = 0, datadlyadj = 0, clk_rate; 292 u32 reqhz = 0; 293 294 clk_rate = clk_get_rate(xqspi->refclk); 295 reqhz = (clk_rate / (GQSPI_BAUD_DIV_SHIFT << baudrateval)); 296 297 if (!xqspi->has_tapdelay) { 298 if (reqhz <= GQSPI_FREQ_40MHZ) { 299 zynqmp_pm_set_tapdelay_bypass(PM_TAPDELAY_QSPI, 300 PM_TAPDELAY_BYPASS_ENABLE); 301 } else if (reqhz <= GQSPI_FREQ_100MHZ) { 302 zynqmp_pm_set_tapdelay_bypass(PM_TAPDELAY_QSPI, 303 PM_TAPDELAY_BYPASS_ENABLE); 304 lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK); 305 datadlyadj |= ((GQSPI_USE_DATA_DLY << 306 GQSPI_USE_DATA_DLY_SHIFT) 307 | (GQSPI_DATA_DLY_ADJ_VALUE << 308 GQSPI_DATA_DLY_ADJ_SHIFT)); 309 } else if (reqhz <= GQSPI_FREQ_150MHZ) { 310 lpbkdlyadj |= GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK; 311 } 312 } else { 313 if (reqhz <= GQSPI_FREQ_37_5MHZ) { 314 tapdlybypass |= (TAP_DLY_BYPASS_LQSPI_RX_VALUE << 315 TAP_DLY_BYPASS_LQSPI_RX_SHIFT); 316 } else if (reqhz <= GQSPI_FREQ_100MHZ) { 317 tapdlybypass |= (TAP_DLY_BYPASS_LQSPI_RX_VALUE << 318 TAP_DLY_BYPASS_LQSPI_RX_SHIFT); 319 lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK); 320 datadlyadj |= (GQSPI_USE_DATA_DLY << 321 GQSPI_USE_DATA_DLY_SHIFT); 322 } else if (reqhz <= GQSPI_FREQ_150MHZ) { 323 lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK 324 | (GQSPI_LPBK_DLY_ADJ_DLY_1 << 325 GQSPI_LPBK_DLY_ADJ_DLY_1_SHIFT)); 326 } 327 zynqmp_gqspi_write(xqspi, 328 IOU_TAPDLY_BYPASS_OFST, tapdlybypass); 329 } 330 zynqmp_gqspi_write(xqspi, GQSPI_LPBK_DLY_ADJ_OFST, lpbkdlyadj); 331 zynqmp_gqspi_write(xqspi, GQSPI_DATA_DLY_ADJ_OFST, datadlyadj); 332 } 333 334 /** 335 * zynqmp_qspi_init_hw - Initialize the hardware 336 * @xqspi: Pointer to the zynqmp_qspi structure 337 * 338 * The default settings of the QSPI controller's configurable parameters on 339 * reset are 340 * - Host mode 341 * - TX threshold set to 1 342 * - RX threshold set to 1 343 * - Flash memory interface mode enabled 344 * This function performs the following actions 345 * - Disable and clear all the interrupts 346 * - Enable manual target select 347 * - Enable manual start 348 * - Deselect all the chip select lines 349 * - Set the little endian mode of TX FIFO 350 * - Set clock phase 351 * - Set clock polarity and 352 * - Enable the QSPI controller 353 */ 354 static void zynqmp_qspi_init_hw(struct zynqmp_qspi *xqspi) 355 { 356 u32 config_reg, baud_rate_val = 0; 357 ulong clk_rate; 358 359 /* Select the GQSPI mode */ 360 zynqmp_gqspi_write(xqspi, GQSPI_SEL_OFST, GQSPI_SEL_MASK); 361 /* Clear and disable interrupts */ 362 zynqmp_gqspi_write(xqspi, GQSPI_ISR_OFST, 363 zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST) | 364 GQSPI_ISR_WR_TO_CLR_MASK); 365 /* Clear the DMA STS */ 366 zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST, 367 zynqmp_gqspi_read(xqspi, 368 GQSPI_QSPIDMA_DST_I_STS_OFST)); 369 zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_STS_OFST, 370 zynqmp_gqspi_read(xqspi, 371 GQSPI_QSPIDMA_DST_STS_OFST) | 372 GQSPI_QSPIDMA_DST_STS_WTC); 373 zynqmp_gqspi_write(xqspi, GQSPI_IDR_OFST, GQSPI_IDR_ALL_MASK); 374 zynqmp_gqspi_write(xqspi, 375 GQSPI_QSPIDMA_DST_I_DIS_OFST, 376 GQSPI_QSPIDMA_DST_INTR_ALL_MASK); 377 /* Disable the GQSPI */ 378 zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0); 379 config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST); 380 config_reg &= ~GQSPI_CFG_MODE_EN_MASK; 381 /* Manual start */ 382 config_reg |= GQSPI_CFG_GEN_FIFO_START_MODE_MASK; 383 /* Little endian by default */ 384 config_reg &= ~GQSPI_CFG_ENDIAN_MASK; 385 /* Disable poll time out */ 386 config_reg &= ~GQSPI_CFG_EN_POLL_TO_MASK; 387 /* Set hold bit */ 388 config_reg |= GQSPI_CFG_WP_HOLD_MASK; 389 /* Clear pre-scalar by default */ 390 config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK; 391 /* Set CPHA */ 392 if (xqspi->ctlr->mode_bits & SPI_CPHA) 393 config_reg |= GQSPI_CFG_CLK_PHA_MASK; 394 else 395 config_reg &= ~GQSPI_CFG_CLK_PHA_MASK; 396 /* Set CPOL */ 397 if (xqspi->ctlr->mode_bits & SPI_CPOL) 398 config_reg |= GQSPI_CFG_CLK_POL_MASK; 399 else 400 config_reg &= ~GQSPI_CFG_CLK_POL_MASK; 401 402 /* Set the clock frequency */ 403 clk_rate = clk_get_rate(xqspi->refclk); 404 while ((baud_rate_val < GQSPI_BAUD_DIV_MAX) && 405 (clk_rate / 406 (GQSPI_BAUD_DIV_SHIFT << baud_rate_val)) > xqspi->speed_hz) 407 baud_rate_val++; 408 409 config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK; 410 config_reg |= (baud_rate_val << GQSPI_CFG_BAUD_RATE_DIV_SHIFT); 411 412 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg); 413 414 /* Set the tapdelay for clock frequency */ 415 zynqmp_qspi_set_tapdelay(xqspi, baud_rate_val); 416 417 /* Clear the TX and RX FIFO */ 418 zynqmp_gqspi_write(xqspi, GQSPI_FIFO_CTRL_OFST, 419 GQSPI_FIFO_CTRL_RST_RX_FIFO_MASK | 420 GQSPI_FIFO_CTRL_RST_TX_FIFO_MASK | 421 GQSPI_FIFO_CTRL_RST_GEN_FIFO_MASK); 422 /* Reset thresholds */ 423 zynqmp_gqspi_write(xqspi, GQSPI_TX_THRESHOLD_OFST, 424 GQSPI_TX_FIFO_THRESHOLD_RESET_VAL); 425 zynqmp_gqspi_write(xqspi, GQSPI_RX_THRESHOLD_OFST, 426 GQSPI_RX_FIFO_THRESHOLD); 427 zynqmp_gqspi_write(xqspi, GQSPI_GF_THRESHOLD_OFST, 428 GQSPI_GEN_FIFO_THRESHOLD_RESET_VAL); 429 zynqmp_gqspi_selecttarget(xqspi, 430 GQSPI_SELECT_FLASH_CS_LOWER, 431 GQSPI_SELECT_FLASH_BUS_LOWER); 432 /* Initialize DMA */ 433 zynqmp_gqspi_write(xqspi, 434 GQSPI_QSPIDMA_DST_CTRL_OFST, 435 GQSPI_QSPIDMA_DST_CTRL_RESET_VAL); 436 437 /* Enable the GQSPI */ 438 zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK); 439 } 440 441 /** 442 * zynqmp_qspi_copy_read_data - Copy data to RX buffer 443 * @xqspi: Pointer to the zynqmp_qspi structure 444 * @data: The variable where data is stored 445 * @size: Number of bytes to be copied from data to RX buffer 446 */ 447 static void zynqmp_qspi_copy_read_data(struct zynqmp_qspi *xqspi, 448 ulong data, u8 size) 449 { 450 memcpy(xqspi->rxbuf, &data, size); 451 xqspi->rxbuf += size; 452 xqspi->bytes_to_receive -= size; 453 } 454 455 /** 456 * zynqmp_qspi_chipselect - Select or deselect the chip select line 457 * @qspi: Pointer to the spi_device structure 458 * @is_high: Select(0) or deselect (1) the chip select line 459 */ 460 static void zynqmp_qspi_chipselect(struct spi_device *qspi, bool is_high) 461 { 462 struct zynqmp_qspi *xqspi = spi_controller_get_devdata(qspi->controller); 463 ulong timeout; 464 u32 genfifoentry = 0, statusreg; 465 466 genfifoentry |= GQSPI_GENFIFO_MODE_SPI; 467 468 if (!is_high) { 469 if (!spi_get_chipselect(qspi, 0)) { 470 xqspi->genfifobus = GQSPI_GENFIFO_BUS_LOWER; 471 xqspi->genfifocs = GQSPI_GENFIFO_CS_LOWER; 472 } else { 473 xqspi->genfifobus = GQSPI_GENFIFO_BUS_UPPER; 474 xqspi->genfifocs = GQSPI_GENFIFO_CS_UPPER; 475 } 476 genfifoentry |= xqspi->genfifobus; 477 genfifoentry |= xqspi->genfifocs; 478 genfifoentry |= GQSPI_GENFIFO_CS_SETUP; 479 } else { 480 genfifoentry |= GQSPI_GENFIFO_CS_HOLD; 481 } 482 483 zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry); 484 485 /* Manually start the generic FIFO command */ 486 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, 487 zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) | 488 GQSPI_CFG_START_GEN_FIFO_MASK); 489 490 timeout = jiffies + msecs_to_jiffies(1000); 491 492 /* Wait until the generic FIFO command is empty */ 493 do { 494 statusreg = zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST); 495 496 if ((statusreg & GQSPI_ISR_GENFIFOEMPTY_MASK) && 497 (statusreg & GQSPI_ISR_TXEMPTY_MASK)) 498 break; 499 cpu_relax(); 500 } while (!time_after_eq(jiffies, timeout)); 501 502 if (time_after_eq(jiffies, timeout)) 503 dev_err(xqspi->dev, "Chip select timed out\n"); 504 } 505 506 /** 507 * zynqmp_qspi_selectspimode - Selects SPI mode - x1 or x2 or x4. 508 * @xqspi: xqspi is a pointer to the GQSPI instance 509 * @spimode: spimode - SPI or DUAL or QUAD. 510 * Return: Mask to set desired SPI mode in GENFIFO entry. 511 */ 512 static inline u32 zynqmp_qspi_selectspimode(struct zynqmp_qspi *xqspi, 513 u8 spimode) 514 { 515 u32 mask = 0; 516 517 switch (spimode) { 518 case GQSPI_SELECT_MODE_DUALSPI: 519 mask = GQSPI_GENFIFO_MODE_DUALSPI; 520 break; 521 case GQSPI_SELECT_MODE_QUADSPI: 522 mask = GQSPI_GENFIFO_MODE_QUADSPI; 523 break; 524 case GQSPI_SELECT_MODE_SPI: 525 mask = GQSPI_GENFIFO_MODE_SPI; 526 break; 527 default: 528 dev_warn(xqspi->dev, "Invalid SPI mode\n"); 529 } 530 531 return mask; 532 } 533 534 /** 535 * zynqmp_qspi_config_op - Configure QSPI controller for specified 536 * transfer 537 * @xqspi: Pointer to the zynqmp_qspi structure 538 * @qspi: Pointer to the spi_device structure 539 * 540 * Sets the operational mode of QSPI controller for the next QSPI transfer and 541 * sets the requested clock frequency. 542 * 543 * Return: Always 0 544 * 545 * Note: 546 * If the requested frequency is not an exact match with what can be 547 * obtained using the pre-scalar value, the driver sets the clock 548 * frequency which is lower than the requested frequency (maximum lower) 549 * for the transfer. 550 * 551 * If the requested frequency is higher or lower than that is supported 552 * by the QSPI controller the driver will set the highest or lowest 553 * frequency supported by controller. 554 */ 555 static int zynqmp_qspi_config_op(struct zynqmp_qspi *xqspi, 556 struct spi_device *qspi) 557 { 558 ulong clk_rate; 559 u32 config_reg, req_speed_hz, baud_rate_val = 0; 560 561 req_speed_hz = qspi->max_speed_hz; 562 563 if (xqspi->speed_hz != req_speed_hz) { 564 xqspi->speed_hz = req_speed_hz; 565 566 /* Set the clock frequency */ 567 /* If req_speed_hz == 0, default to lowest speed */ 568 clk_rate = clk_get_rate(xqspi->refclk); 569 570 while ((baud_rate_val < GQSPI_BAUD_DIV_MAX) && 571 (clk_rate / 572 (GQSPI_BAUD_DIV_SHIFT << baud_rate_val)) > 573 req_speed_hz) 574 baud_rate_val++; 575 576 config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST); 577 578 config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK; 579 config_reg |= (baud_rate_val << GQSPI_CFG_BAUD_RATE_DIV_SHIFT); 580 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg); 581 zynqmp_qspi_set_tapdelay(xqspi, baud_rate_val); 582 } 583 return 0; 584 } 585 586 /** 587 * zynqmp_qspi_setup_op - Configure the QSPI controller 588 * @qspi: Pointer to the spi_device structure 589 * 590 * Sets the operational mode of QSPI controller for the next QSPI transfer, 591 * baud rate and divisor value to setup the requested qspi clock. 592 * 593 * Return: 0 on success; error value otherwise. 594 */ 595 static int zynqmp_qspi_setup_op(struct spi_device *qspi) 596 { 597 struct spi_controller *ctlr = qspi->controller; 598 struct zynqmp_qspi *xqspi = spi_controller_get_devdata(ctlr); 599 600 if (ctlr->busy) 601 return -EBUSY; 602 603 zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK); 604 605 return 0; 606 } 607 608 /** 609 * zynqmp_qspi_filltxfifo - Fills the TX FIFO as long as there is room in 610 * the FIFO or the bytes required to be 611 * transmitted. 612 * @xqspi: Pointer to the zynqmp_qspi structure 613 * @size: Number of bytes to be copied from TX buffer to TX FIFO 614 */ 615 static void zynqmp_qspi_filltxfifo(struct zynqmp_qspi *xqspi, int size) 616 { 617 u32 count = 0, intermediate; 618 619 while ((xqspi->bytes_to_transfer > 0) && (count < size) && (xqspi->txbuf)) { 620 if (xqspi->bytes_to_transfer >= 4) { 621 memcpy(&intermediate, xqspi->txbuf, 4); 622 xqspi->txbuf += 4; 623 xqspi->bytes_to_transfer -= 4; 624 count += 4; 625 } else { 626 memcpy(&intermediate, xqspi->txbuf, 627 xqspi->bytes_to_transfer); 628 xqspi->txbuf += xqspi->bytes_to_transfer; 629 xqspi->bytes_to_transfer = 0; 630 count += xqspi->bytes_to_transfer; 631 } 632 zynqmp_gqspi_write(xqspi, GQSPI_TXD_OFST, intermediate); 633 } 634 } 635 636 /** 637 * zynqmp_qspi_readrxfifo - Fills the RX FIFO as long as there is room in 638 * the FIFO. 639 * @xqspi: Pointer to the zynqmp_qspi structure 640 * @size: Number of bytes to be copied from RX buffer to RX FIFO 641 */ 642 static void zynqmp_qspi_readrxfifo(struct zynqmp_qspi *xqspi, u32 size) 643 { 644 ulong data; 645 int count = 0; 646 647 while ((count < size) && (xqspi->bytes_to_receive > 0)) { 648 if (xqspi->bytes_to_receive >= 4) { 649 (*(u32 *)xqspi->rxbuf) = 650 zynqmp_gqspi_read(xqspi, GQSPI_RXD_OFST); 651 xqspi->rxbuf += 4; 652 xqspi->bytes_to_receive -= 4; 653 count += 4; 654 } else { 655 data = zynqmp_gqspi_read(xqspi, GQSPI_RXD_OFST); 656 count += xqspi->bytes_to_receive; 657 zynqmp_qspi_copy_read_data(xqspi, data, 658 xqspi->bytes_to_receive); 659 xqspi->bytes_to_receive = 0; 660 } 661 } 662 } 663 664 /** 665 * zynqmp_qspi_fillgenfifo - Fills the GENFIFO. 666 * @xqspi: Pointer to the zynqmp_qspi structure 667 * @nbits: Transfer/Receive buswidth. 668 * @genfifoentry: Variable in which GENFIFO mask is saved 669 */ 670 static void zynqmp_qspi_fillgenfifo(struct zynqmp_qspi *xqspi, u8 nbits, 671 u32 genfifoentry) 672 { 673 u32 transfer_len = 0; 674 675 if (xqspi->txbuf) { 676 genfifoentry &= ~GQSPI_GENFIFO_RX; 677 genfifoentry |= GQSPI_GENFIFO_DATA_XFER; 678 genfifoentry |= GQSPI_GENFIFO_TX; 679 transfer_len = xqspi->bytes_to_transfer; 680 } else if (xqspi->rxbuf) { 681 genfifoentry &= ~GQSPI_GENFIFO_TX; 682 genfifoentry |= GQSPI_GENFIFO_DATA_XFER; 683 genfifoentry |= GQSPI_GENFIFO_RX; 684 if (xqspi->mode == GQSPI_MODE_DMA) 685 transfer_len = xqspi->dma_rx_bytes; 686 else 687 transfer_len = xqspi->bytes_to_receive; 688 } else { 689 /* Sending dummy circles here */ 690 genfifoentry &= ~(GQSPI_GENFIFO_TX | GQSPI_GENFIFO_RX); 691 genfifoentry |= GQSPI_GENFIFO_DATA_XFER; 692 transfer_len = xqspi->bytes_to_transfer; 693 } 694 genfifoentry |= zynqmp_qspi_selectspimode(xqspi, nbits); 695 xqspi->genfifoentry = genfifoentry; 696 697 if ((transfer_len) < GQSPI_GENFIFO_IMM_DATA_MASK) { 698 genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK; 699 genfifoentry |= transfer_len; 700 zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry); 701 } else { 702 int tempcount = transfer_len; 703 u32 exponent = 8; /* 2^8 = 256 */ 704 u8 imm_data = tempcount & 0xFF; 705 706 tempcount &= ~(tempcount & 0xFF); 707 /* Immediate entry */ 708 if (tempcount != 0) { 709 /* Exponent entries */ 710 genfifoentry |= GQSPI_GENFIFO_EXP; 711 while (tempcount != 0) { 712 if (tempcount & GQSPI_GENFIFO_EXP_START) { 713 genfifoentry &= 714 ~GQSPI_GENFIFO_IMM_DATA_MASK; 715 genfifoentry |= exponent; 716 zynqmp_gqspi_write(xqspi, 717 GQSPI_GEN_FIFO_OFST, 718 genfifoentry); 719 } 720 tempcount = tempcount >> 1; 721 exponent++; 722 } 723 } 724 if (imm_data != 0) { 725 genfifoentry &= ~GQSPI_GENFIFO_EXP; 726 genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK; 727 genfifoentry |= (u8)(imm_data & 0xFF); 728 zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 729 genfifoentry); 730 } 731 } 732 if (xqspi->mode == GQSPI_MODE_IO && xqspi->rxbuf) { 733 /* Dummy generic FIFO entry */ 734 zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0); 735 } 736 } 737 738 /** 739 * zynqmp_process_dma_irq - Handler for DMA done interrupt of QSPI 740 * controller 741 * @xqspi: zynqmp_qspi instance pointer 742 * 743 * This function handles DMA interrupt only. 744 */ 745 static void zynqmp_process_dma_irq(struct zynqmp_qspi *xqspi) 746 { 747 u32 config_reg, genfifoentry; 748 749 dma_unmap_single(xqspi->dev, xqspi->dma_addr, 750 xqspi->dma_rx_bytes, DMA_FROM_DEVICE); 751 xqspi->rxbuf += xqspi->dma_rx_bytes; 752 xqspi->bytes_to_receive -= xqspi->dma_rx_bytes; 753 xqspi->dma_rx_bytes = 0; 754 755 /* Disabling the DMA interrupts */ 756 zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_DIS_OFST, 757 GQSPI_QSPIDMA_DST_I_EN_DONE_MASK); 758 759 if (xqspi->bytes_to_receive > 0) { 760 /* Switch to IO mode,for remaining bytes to receive */ 761 config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST); 762 config_reg &= ~GQSPI_CFG_MODE_EN_MASK; 763 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg); 764 765 /* Initiate the transfer of remaining bytes */ 766 genfifoentry = xqspi->genfifoentry; 767 genfifoentry |= xqspi->bytes_to_receive; 768 zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry); 769 770 /* Dummy generic FIFO entry */ 771 zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0); 772 773 /* Manual start */ 774 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, 775 (zynqmp_gqspi_read(xqspi, 776 GQSPI_CONFIG_OFST) | 777 GQSPI_CFG_START_GEN_FIFO_MASK)); 778 779 /* Enable the RX interrupts for IO mode */ 780 zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST, 781 GQSPI_IER_GENFIFOEMPTY_MASK | 782 GQSPI_IER_RXNEMPTY_MASK | 783 GQSPI_IER_RXEMPTY_MASK); 784 } 785 } 786 787 /** 788 * zynqmp_qspi_irq - Interrupt service routine of the QSPI controller 789 * @irq: IRQ number 790 * @dev_id: Pointer to the xqspi structure 791 * 792 * This function handles TX empty only. 793 * On TX empty interrupt this function reads the received data from RX FIFO 794 * and fills the TX FIFO if there is any data remaining to be transferred. 795 * 796 * Return: IRQ_HANDLED when interrupt is handled 797 * IRQ_NONE otherwise. 798 */ 799 static irqreturn_t zynqmp_qspi_irq(int irq, void *dev_id) 800 { 801 struct zynqmp_qspi *xqspi = (struct zynqmp_qspi *)dev_id; 802 irqreturn_t ret = IRQ_NONE; 803 u32 status, mask, dma_status = 0; 804 805 status = zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST); 806 zynqmp_gqspi_write(xqspi, GQSPI_ISR_OFST, status); 807 mask = (status & ~(zynqmp_gqspi_read(xqspi, GQSPI_IMASK_OFST))); 808 809 /* Read and clear DMA status */ 810 if (xqspi->mode == GQSPI_MODE_DMA) { 811 dma_status = 812 zynqmp_gqspi_read(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST); 813 zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST, 814 dma_status); 815 } 816 817 if (mask & GQSPI_ISR_TXNOT_FULL_MASK) { 818 zynqmp_qspi_filltxfifo(xqspi, GQSPI_TX_FIFO_FILL); 819 ret = IRQ_HANDLED; 820 } 821 822 if (dma_status & GQSPI_QSPIDMA_DST_I_STS_DONE_MASK) { 823 zynqmp_process_dma_irq(xqspi); 824 ret = IRQ_HANDLED; 825 } else if (!(mask & GQSPI_IER_RXEMPTY_MASK) && 826 (mask & GQSPI_IER_GENFIFOEMPTY_MASK)) { 827 zynqmp_qspi_readrxfifo(xqspi, GQSPI_RX_FIFO_FILL); 828 ret = IRQ_HANDLED; 829 } 830 831 if (xqspi->bytes_to_receive == 0 && xqspi->bytes_to_transfer == 0 && 832 ((status & GQSPI_IRQ_MASK) == GQSPI_IRQ_MASK)) { 833 zynqmp_gqspi_write(xqspi, GQSPI_IDR_OFST, GQSPI_ISR_IDR_MASK); 834 complete(&xqspi->data_completion); 835 ret = IRQ_HANDLED; 836 } 837 return ret; 838 } 839 840 /** 841 * zynqmp_qspi_setuprxdma - This function sets up the RX DMA operation 842 * @xqspi: xqspi is a pointer to the GQSPI instance. 843 * 844 * Return: 0 on success; error value otherwise. 845 */ 846 static int zynqmp_qspi_setuprxdma(struct zynqmp_qspi *xqspi) 847 { 848 u32 rx_bytes, rx_rem, config_reg; 849 dma_addr_t addr; 850 u64 dma_align = (u64)(uintptr_t)xqspi->rxbuf; 851 852 if (xqspi->bytes_to_receive < 8 || 853 ((dma_align & GQSPI_DMA_UNALIGN) != 0x0)) { 854 /* Setting to IO mode */ 855 config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST); 856 config_reg &= ~GQSPI_CFG_MODE_EN_MASK; 857 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg); 858 xqspi->mode = GQSPI_MODE_IO; 859 xqspi->dma_rx_bytes = 0; 860 return 0; 861 } 862 863 rx_rem = xqspi->bytes_to_receive % 4; 864 rx_bytes = (xqspi->bytes_to_receive - rx_rem); 865 866 addr = dma_map_single(xqspi->dev, (void *)xqspi->rxbuf, 867 rx_bytes, DMA_FROM_DEVICE); 868 if (dma_mapping_error(xqspi->dev, addr)) { 869 dev_err(xqspi->dev, "ERR:rxdma:memory not mapped\n"); 870 return -ENOMEM; 871 } 872 873 xqspi->dma_rx_bytes = rx_bytes; 874 xqspi->dma_addr = addr; 875 zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_ADDR_OFST, 876 (u32)(addr & 0xffffffff)); 877 addr = ((addr >> 16) >> 16); 878 zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_ADDR_MSB_OFST, 879 ((u32)addr) & 0xfff); 880 881 /* Enabling the DMA mode */ 882 config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST); 883 config_reg &= ~GQSPI_CFG_MODE_EN_MASK; 884 config_reg |= GQSPI_CFG_MODE_EN_DMA_MASK; 885 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg); 886 887 /* Switch to DMA mode */ 888 xqspi->mode = GQSPI_MODE_DMA; 889 890 /* Write the number of bytes to transfer */ 891 zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_SIZE_OFST, rx_bytes); 892 893 return 0; 894 } 895 896 /** 897 * zynqmp_qspi_write_op - This function sets up the GENFIFO entries, 898 * TX FIFO, and fills the TX FIFO with as many 899 * bytes as possible. 900 * @xqspi: Pointer to the GQSPI instance. 901 * @tx_nbits: Transfer buswidth. 902 * @genfifoentry: Variable in which GENFIFO mask is returned 903 * to calling function 904 */ 905 static void zynqmp_qspi_write_op(struct zynqmp_qspi *xqspi, u8 tx_nbits, 906 u32 genfifoentry) 907 { 908 u32 config_reg; 909 910 zynqmp_qspi_fillgenfifo(xqspi, tx_nbits, genfifoentry); 911 zynqmp_qspi_filltxfifo(xqspi, GQSPI_TXD_DEPTH); 912 if (xqspi->mode == GQSPI_MODE_DMA) { 913 config_reg = zynqmp_gqspi_read(xqspi, 914 GQSPI_CONFIG_OFST); 915 config_reg &= ~GQSPI_CFG_MODE_EN_MASK; 916 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, 917 config_reg); 918 xqspi->mode = GQSPI_MODE_IO; 919 } 920 } 921 922 /** 923 * zynqmp_qspi_read_op - This function sets up the GENFIFO entries and 924 * RX DMA operation. 925 * @xqspi: xqspi is a pointer to the GQSPI instance. 926 * @rx_nbits: Receive buswidth. 927 * @genfifoentry: genfifoentry is pointer to the variable in which 928 * GENFIFO mask is returned to calling function 929 * 930 * Return: 0 on success; error value otherwise. 931 */ 932 static int zynqmp_qspi_read_op(struct zynqmp_qspi *xqspi, u8 rx_nbits, 933 u32 genfifoentry) 934 { 935 int ret; 936 937 ret = zynqmp_qspi_setuprxdma(xqspi); 938 if (ret) 939 return ret; 940 zynqmp_qspi_fillgenfifo(xqspi, rx_nbits, genfifoentry); 941 942 return 0; 943 } 944 945 /** 946 * zynqmp_qspi_suspend - Suspend method for the QSPI driver 947 * @dev: Address of the platform_device structure 948 * 949 * This function stops the QSPI driver queue and disables the QSPI controller 950 * 951 * Return: Always 0 952 */ 953 static int __maybe_unused zynqmp_qspi_suspend(struct device *dev) 954 { 955 struct zynqmp_qspi *xqspi = dev_get_drvdata(dev); 956 struct spi_controller *ctlr = xqspi->ctlr; 957 int ret; 958 959 ret = spi_controller_suspend(ctlr); 960 if (ret) 961 return ret; 962 963 zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0); 964 965 return 0; 966 } 967 968 /** 969 * zynqmp_qspi_resume - Resume method for the QSPI driver 970 * @dev: Address of the platform_device structure 971 * 972 * The function starts the QSPI driver queue and initializes the QSPI 973 * controller 974 * 975 * Return: 0 on success; error value otherwise 976 */ 977 static int __maybe_unused zynqmp_qspi_resume(struct device *dev) 978 { 979 struct zynqmp_qspi *xqspi = dev_get_drvdata(dev); 980 struct spi_controller *ctlr = xqspi->ctlr; 981 982 zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK); 983 984 spi_controller_resume(ctlr); 985 986 return 0; 987 } 988 989 /** 990 * zynqmp_runtime_suspend - Runtime suspend method for the SPI driver 991 * @dev: Address of the platform_device structure 992 * 993 * This function disables the clocks 994 * 995 * Return: Always 0 996 */ 997 static int __maybe_unused zynqmp_runtime_suspend(struct device *dev) 998 { 999 struct zynqmp_qspi *xqspi = dev_get_drvdata(dev); 1000 1001 clk_disable_unprepare(xqspi->refclk); 1002 clk_disable_unprepare(xqspi->pclk); 1003 1004 return 0; 1005 } 1006 1007 /** 1008 * zynqmp_runtime_resume - Runtime resume method for the SPI driver 1009 * @dev: Address of the platform_device structure 1010 * 1011 * This function enables the clocks 1012 * 1013 * Return: 0 on success and error value on error 1014 */ 1015 static int __maybe_unused zynqmp_runtime_resume(struct device *dev) 1016 { 1017 struct zynqmp_qspi *xqspi = dev_get_drvdata(dev); 1018 int ret; 1019 1020 ret = clk_prepare_enable(xqspi->pclk); 1021 if (ret) { 1022 dev_err(dev, "Cannot enable APB clock.\n"); 1023 return ret; 1024 } 1025 1026 ret = clk_prepare_enable(xqspi->refclk); 1027 if (ret) { 1028 dev_err(dev, "Cannot enable device clock.\n"); 1029 clk_disable_unprepare(xqspi->pclk); 1030 return ret; 1031 } 1032 1033 return 0; 1034 } 1035 1036 static unsigned long zynqmp_qspi_timeout(struct zynqmp_qspi *xqspi, u8 bits, 1037 unsigned long bytes) 1038 { 1039 unsigned long timeout; 1040 1041 /* Assume we are at most 2x slower than the nominal bus speed */ 1042 timeout = mult_frac(bytes, 2 * 8 * MSEC_PER_SEC, 1043 bits * xqspi->speed_hz); 1044 /* And add 100 ms for scheduling delays */ 1045 return msecs_to_jiffies(timeout + 100); 1046 } 1047 1048 /** 1049 * zynqmp_qspi_exec_op() - Initiates the QSPI transfer 1050 * @mem: The SPI memory 1051 * @op: The memory operation to execute 1052 * 1053 * Executes a memory operation. 1054 * 1055 * This function first selects the chip and starts the memory operation. 1056 * 1057 * Return: 0 in case of success, a negative error code otherwise. 1058 */ 1059 static int zynqmp_qspi_exec_op(struct spi_mem *mem, 1060 const struct spi_mem_op *op) 1061 { 1062 struct zynqmp_qspi *xqspi = spi_controller_get_devdata 1063 (mem->spi->controller); 1064 unsigned long timeout; 1065 int err = 0, i; 1066 u32 genfifoentry = 0; 1067 u16 opcode = op->cmd.opcode; 1068 u64 opaddr; 1069 1070 dev_dbg(xqspi->dev, "cmd:%#x mode:%d.%d.%d.%d\n", 1071 op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth, 1072 op->dummy.buswidth, op->data.buswidth); 1073 1074 mutex_lock(&xqspi->op_lock); 1075 zynqmp_qspi_config_op(xqspi, mem->spi); 1076 zynqmp_qspi_chipselect(mem->spi, false); 1077 genfifoentry |= xqspi->genfifocs; 1078 genfifoentry |= xqspi->genfifobus; 1079 1080 if (op->cmd.opcode) { 1081 reinit_completion(&xqspi->data_completion); 1082 xqspi->txbuf = &opcode; 1083 xqspi->rxbuf = NULL; 1084 xqspi->bytes_to_transfer = op->cmd.nbytes; 1085 xqspi->bytes_to_receive = 0; 1086 zynqmp_qspi_write_op(xqspi, op->cmd.buswidth, genfifoentry); 1087 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, 1088 zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) | 1089 GQSPI_CFG_START_GEN_FIFO_MASK); 1090 zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST, 1091 GQSPI_IER_GENFIFOEMPTY_MASK | 1092 GQSPI_IER_TXNOT_FULL_MASK); 1093 timeout = zynqmp_qspi_timeout(xqspi, op->cmd.buswidth, 1094 op->cmd.nbytes); 1095 if (!wait_for_completion_timeout(&xqspi->data_completion, 1096 timeout)) { 1097 err = -ETIMEDOUT; 1098 goto return_err; 1099 } 1100 } 1101 1102 if (op->addr.nbytes) { 1103 xqspi->txbuf = &opaddr; 1104 for (i = 0; i < op->addr.nbytes; i++) { 1105 *(((u8 *)xqspi->txbuf) + i) = op->addr.val >> 1106 (8 * (op->addr.nbytes - i - 1)); 1107 } 1108 1109 reinit_completion(&xqspi->data_completion); 1110 xqspi->rxbuf = NULL; 1111 xqspi->bytes_to_transfer = op->addr.nbytes; 1112 xqspi->bytes_to_receive = 0; 1113 zynqmp_qspi_write_op(xqspi, op->addr.buswidth, genfifoentry); 1114 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, 1115 zynqmp_gqspi_read(xqspi, 1116 GQSPI_CONFIG_OFST) | 1117 GQSPI_CFG_START_GEN_FIFO_MASK); 1118 zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST, 1119 GQSPI_IER_TXEMPTY_MASK | 1120 GQSPI_IER_GENFIFOEMPTY_MASK | 1121 GQSPI_IER_TXNOT_FULL_MASK); 1122 timeout = zynqmp_qspi_timeout(xqspi, op->addr.buswidth, 1123 op->addr.nbytes); 1124 if (!wait_for_completion_timeout(&xqspi->data_completion, 1125 timeout)) { 1126 err = -ETIMEDOUT; 1127 goto return_err; 1128 } 1129 } 1130 1131 if (op->dummy.nbytes) { 1132 xqspi->txbuf = NULL; 1133 xqspi->rxbuf = NULL; 1134 /* 1135 * xqspi->bytes_to_transfer here represents the dummy circles 1136 * which need to be sent. 1137 */ 1138 xqspi->bytes_to_transfer = op->dummy.nbytes * 8 / op->dummy.buswidth; 1139 xqspi->bytes_to_receive = 0; 1140 /* 1141 * Using op->data.buswidth instead of op->dummy.buswidth here because 1142 * we need to use it to configure the correct SPI mode. 1143 */ 1144 zynqmp_qspi_write_op(xqspi, op->data.buswidth, 1145 genfifoentry); 1146 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, 1147 zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) | 1148 GQSPI_CFG_START_GEN_FIFO_MASK); 1149 } 1150 1151 if (op->data.nbytes) { 1152 reinit_completion(&xqspi->data_completion); 1153 if (op->data.dir == SPI_MEM_DATA_OUT) { 1154 xqspi->txbuf = (u8 *)op->data.buf.out; 1155 xqspi->rxbuf = NULL; 1156 xqspi->bytes_to_transfer = op->data.nbytes; 1157 xqspi->bytes_to_receive = 0; 1158 zynqmp_qspi_write_op(xqspi, op->data.buswidth, 1159 genfifoentry); 1160 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, 1161 zynqmp_gqspi_read 1162 (xqspi, GQSPI_CONFIG_OFST) | 1163 GQSPI_CFG_START_GEN_FIFO_MASK); 1164 zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST, 1165 GQSPI_IER_TXEMPTY_MASK | 1166 GQSPI_IER_GENFIFOEMPTY_MASK | 1167 GQSPI_IER_TXNOT_FULL_MASK); 1168 } else { 1169 xqspi->txbuf = NULL; 1170 xqspi->rxbuf = (u8 *)op->data.buf.in; 1171 xqspi->bytes_to_receive = op->data.nbytes; 1172 xqspi->bytes_to_transfer = 0; 1173 err = zynqmp_qspi_read_op(xqspi, op->data.buswidth, 1174 genfifoentry); 1175 if (err) 1176 goto return_err; 1177 1178 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, 1179 zynqmp_gqspi_read 1180 (xqspi, GQSPI_CONFIG_OFST) | 1181 GQSPI_CFG_START_GEN_FIFO_MASK); 1182 if (xqspi->mode == GQSPI_MODE_DMA) { 1183 zynqmp_gqspi_write 1184 (xqspi, GQSPI_QSPIDMA_DST_I_EN_OFST, 1185 GQSPI_QSPIDMA_DST_I_EN_DONE_MASK); 1186 } else { 1187 zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST, 1188 GQSPI_IER_GENFIFOEMPTY_MASK | 1189 GQSPI_IER_RXNEMPTY_MASK | 1190 GQSPI_IER_RXEMPTY_MASK); 1191 } 1192 } 1193 timeout = zynqmp_qspi_timeout(xqspi, op->data.buswidth, 1194 op->data.nbytes); 1195 if (!wait_for_completion_timeout(&xqspi->data_completion, timeout)) 1196 err = -ETIMEDOUT; 1197 } 1198 1199 return_err: 1200 1201 zynqmp_qspi_chipselect(mem->spi, true); 1202 mutex_unlock(&xqspi->op_lock); 1203 1204 return err; 1205 } 1206 1207 static const struct dev_pm_ops zynqmp_qspi_dev_pm_ops = { 1208 SET_RUNTIME_PM_OPS(zynqmp_runtime_suspend, 1209 zynqmp_runtime_resume, NULL) 1210 SET_SYSTEM_SLEEP_PM_OPS(zynqmp_qspi_suspend, zynqmp_qspi_resume) 1211 }; 1212 1213 static const struct qspi_platform_data versal_qspi_def = { 1214 .quirks = QSPI_QUIRK_HAS_TAPDELAY, 1215 }; 1216 1217 static const struct of_device_id zynqmp_qspi_of_match[] = { 1218 { .compatible = "xlnx,zynqmp-qspi-1.0"}, 1219 { .compatible = "xlnx,versal-qspi-1.0", .data = &versal_qspi_def }, 1220 { /* End of table */ } 1221 }; 1222 1223 static const struct spi_controller_mem_ops zynqmp_qspi_mem_ops = { 1224 .exec_op = zynqmp_qspi_exec_op, 1225 }; 1226 1227 /** 1228 * zynqmp_qspi_probe - Probe method for the QSPI driver 1229 * @pdev: Pointer to the platform_device structure 1230 * 1231 * This function initializes the driver data structures and the hardware. 1232 * 1233 * Return: 0 on success; error value otherwise 1234 */ 1235 static int zynqmp_qspi_probe(struct platform_device *pdev) 1236 { 1237 int ret = 0; 1238 struct spi_controller *ctlr; 1239 struct zynqmp_qspi *xqspi; 1240 struct device *dev = &pdev->dev; 1241 struct device_node *np = dev->of_node; 1242 u32 num_cs; 1243 const struct qspi_platform_data *p_data; 1244 1245 ctlr = spi_alloc_host(&pdev->dev, sizeof(*xqspi)); 1246 if (!ctlr) 1247 return -ENOMEM; 1248 1249 xqspi = spi_controller_get_devdata(ctlr); 1250 xqspi->dev = dev; 1251 xqspi->ctlr = ctlr; 1252 platform_set_drvdata(pdev, xqspi); 1253 1254 p_data = of_device_get_match_data(&pdev->dev); 1255 if (p_data && (p_data->quirks & QSPI_QUIRK_HAS_TAPDELAY)) 1256 xqspi->has_tapdelay = true; 1257 1258 xqspi->regs = devm_platform_ioremap_resource(pdev, 0); 1259 if (IS_ERR(xqspi->regs)) { 1260 ret = PTR_ERR(xqspi->regs); 1261 goto remove_ctlr; 1262 } 1263 1264 xqspi->pclk = devm_clk_get(&pdev->dev, "pclk"); 1265 if (IS_ERR(xqspi->pclk)) { 1266 dev_err(dev, "pclk clock not found.\n"); 1267 ret = PTR_ERR(xqspi->pclk); 1268 goto remove_ctlr; 1269 } 1270 1271 xqspi->refclk = devm_clk_get(&pdev->dev, "ref_clk"); 1272 if (IS_ERR(xqspi->refclk)) { 1273 dev_err(dev, "ref_clk clock not found.\n"); 1274 ret = PTR_ERR(xqspi->refclk); 1275 goto remove_ctlr; 1276 } 1277 1278 ret = clk_prepare_enable(xqspi->pclk); 1279 if (ret) { 1280 dev_err(dev, "Unable to enable APB clock.\n"); 1281 goto remove_ctlr; 1282 } 1283 1284 ret = clk_prepare_enable(xqspi->refclk); 1285 if (ret) { 1286 dev_err(dev, "Unable to enable device clock.\n"); 1287 goto clk_dis_pclk; 1288 } 1289 1290 init_completion(&xqspi->data_completion); 1291 1292 mutex_init(&xqspi->op_lock); 1293 1294 pm_runtime_use_autosuspend(&pdev->dev); 1295 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT); 1296 pm_runtime_set_active(&pdev->dev); 1297 pm_runtime_enable(&pdev->dev); 1298 1299 ret = pm_runtime_get_sync(&pdev->dev); 1300 if (ret < 0) { 1301 dev_err(&pdev->dev, "Failed to pm_runtime_get_sync: %d\n", ret); 1302 goto clk_dis_all; 1303 } 1304 1305 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD | 1306 SPI_TX_DUAL | SPI_TX_QUAD; 1307 ctlr->max_speed_hz = clk_get_rate(xqspi->refclk) / 2; 1308 xqspi->speed_hz = ctlr->max_speed_hz; 1309 1310 /* QSPI controller initializations */ 1311 zynqmp_qspi_init_hw(xqspi); 1312 1313 xqspi->irq = platform_get_irq(pdev, 0); 1314 if (xqspi->irq < 0) { 1315 ret = xqspi->irq; 1316 goto clk_dis_all; 1317 } 1318 ret = devm_request_irq(&pdev->dev, xqspi->irq, zynqmp_qspi_irq, 1319 0, pdev->name, xqspi); 1320 if (ret != 0) { 1321 ret = -ENXIO; 1322 dev_err(dev, "request_irq failed\n"); 1323 goto clk_dis_all; 1324 } 1325 1326 ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(44)); 1327 if (ret) 1328 goto clk_dis_all; 1329 1330 ret = of_property_read_u32(np, "num-cs", &num_cs); 1331 if (ret < 0) { 1332 ctlr->num_chipselect = GQSPI_DEFAULT_NUM_CS; 1333 } else if (num_cs > GQSPI_MAX_NUM_CS) { 1334 ret = -EINVAL; 1335 dev_err(&pdev->dev, "only %d chip selects are available\n", 1336 GQSPI_MAX_NUM_CS); 1337 goto clk_dis_all; 1338 } else { 1339 ctlr->num_chipselect = num_cs; 1340 } 1341 1342 ctlr->bits_per_word_mask = SPI_BPW_MASK(8); 1343 ctlr->mem_ops = &zynqmp_qspi_mem_ops; 1344 ctlr->setup = zynqmp_qspi_setup_op; 1345 ctlr->bits_per_word_mask = SPI_BPW_MASK(8); 1346 ctlr->dev.of_node = np; 1347 ctlr->auto_runtime_pm = true; 1348 1349 ret = devm_spi_register_controller(&pdev->dev, ctlr); 1350 if (ret) { 1351 dev_err(&pdev->dev, "spi_register_controller failed\n"); 1352 goto clk_dis_all; 1353 } 1354 1355 pm_runtime_mark_last_busy(&pdev->dev); 1356 pm_runtime_put_autosuspend(&pdev->dev); 1357 1358 return 0; 1359 1360 clk_dis_all: 1361 pm_runtime_disable(&pdev->dev); 1362 pm_runtime_put_noidle(&pdev->dev); 1363 pm_runtime_set_suspended(&pdev->dev); 1364 clk_disable_unprepare(xqspi->refclk); 1365 clk_dis_pclk: 1366 clk_disable_unprepare(xqspi->pclk); 1367 remove_ctlr: 1368 spi_controller_put(ctlr); 1369 1370 return ret; 1371 } 1372 1373 /** 1374 * zynqmp_qspi_remove - Remove method for the QSPI driver 1375 * @pdev: Pointer to the platform_device structure 1376 * 1377 * This function is called if a device is physically removed from the system or 1378 * if the driver module is being unloaded. It frees all resources allocated to 1379 * the device. 1380 * 1381 * Return: 0 Always 1382 */ 1383 static void zynqmp_qspi_remove(struct platform_device *pdev) 1384 { 1385 struct zynqmp_qspi *xqspi = platform_get_drvdata(pdev); 1386 1387 pm_runtime_get_sync(&pdev->dev); 1388 1389 zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0); 1390 1391 pm_runtime_disable(&pdev->dev); 1392 pm_runtime_put_noidle(&pdev->dev); 1393 pm_runtime_set_suspended(&pdev->dev); 1394 clk_disable_unprepare(xqspi->refclk); 1395 clk_disable_unprepare(xqspi->pclk); 1396 } 1397 1398 MODULE_DEVICE_TABLE(of, zynqmp_qspi_of_match); 1399 1400 static struct platform_driver zynqmp_qspi_driver = { 1401 .probe = zynqmp_qspi_probe, 1402 .remove_new = zynqmp_qspi_remove, 1403 .driver = { 1404 .name = "zynqmp-qspi", 1405 .of_match_table = zynqmp_qspi_of_match, 1406 .pm = &zynqmp_qspi_dev_pm_ops, 1407 }, 1408 }; 1409 1410 module_platform_driver(zynqmp_qspi_driver); 1411 1412 MODULE_AUTHOR("Xilinx, Inc."); 1413 MODULE_DESCRIPTION("Xilinx Zynqmp QSPI driver"); 1414 MODULE_LICENSE("GPL"); 1415