xref: /linux/drivers/spi/spi-xilinx.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  * Xilinx SPI controller driver (master mode only)
3  *
4  * Author: MontaVista Software, Inc.
5  *	source@mvista.com
6  *
7  * Copyright (c) 2010 Secret Lab Technologies, Ltd.
8  * Copyright (c) 2009 Intel Corporation
9  * 2002-2007 (c) MontaVista Software, Inc.
10 
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/spi/spi.h>
22 #include <linux/spi/spi_bitbang.h>
23 #include <linux/spi/xilinx_spi.h>
24 #include <linux/io.h>
25 
26 #define XILINX_SPI_NAME "xilinx_spi"
27 
28 /* Register definitions as per "OPB Serial Peripheral Interface (SPI) (v1.00e)
29  * Product Specification", DS464
30  */
31 #define XSPI_CR_OFFSET		0x60	/* Control Register */
32 
33 #define XSPI_CR_ENABLE		0x02
34 #define XSPI_CR_MASTER_MODE	0x04
35 #define XSPI_CR_CPOL		0x08
36 #define XSPI_CR_CPHA		0x10
37 #define XSPI_CR_MODE_MASK	(XSPI_CR_CPHA | XSPI_CR_CPOL)
38 #define XSPI_CR_TXFIFO_RESET	0x20
39 #define XSPI_CR_RXFIFO_RESET	0x40
40 #define XSPI_CR_MANUAL_SSELECT	0x80
41 #define XSPI_CR_TRANS_INHIBIT	0x100
42 #define XSPI_CR_LSB_FIRST	0x200
43 
44 #define XSPI_SR_OFFSET		0x64	/* Status Register */
45 
46 #define XSPI_SR_RX_EMPTY_MASK	0x01	/* Receive FIFO is empty */
47 #define XSPI_SR_RX_FULL_MASK	0x02	/* Receive FIFO is full */
48 #define XSPI_SR_TX_EMPTY_MASK	0x04	/* Transmit FIFO is empty */
49 #define XSPI_SR_TX_FULL_MASK	0x08	/* Transmit FIFO is full */
50 #define XSPI_SR_MODE_FAULT_MASK	0x10	/* Mode fault error */
51 
52 #define XSPI_TXD_OFFSET		0x68	/* Data Transmit Register */
53 #define XSPI_RXD_OFFSET		0x6c	/* Data Receive Register */
54 
55 #define XSPI_SSR_OFFSET		0x70	/* 32-bit Slave Select Register */
56 
57 /* Register definitions as per "OPB IPIF (v3.01c) Product Specification", DS414
58  * IPIF registers are 32 bit
59  */
60 #define XIPIF_V123B_DGIER_OFFSET	0x1c	/* IPIF global int enable reg */
61 #define XIPIF_V123B_GINTR_ENABLE	0x80000000
62 
63 #define XIPIF_V123B_IISR_OFFSET		0x20	/* IPIF interrupt status reg */
64 #define XIPIF_V123B_IIER_OFFSET		0x28	/* IPIF interrupt enable reg */
65 
66 #define XSPI_INTR_MODE_FAULT		0x01	/* Mode fault error */
67 #define XSPI_INTR_SLAVE_MODE_FAULT	0x02	/* Selected as slave while
68 						 * disabled */
69 #define XSPI_INTR_TX_EMPTY		0x04	/* TxFIFO is empty */
70 #define XSPI_INTR_TX_UNDERRUN		0x08	/* TxFIFO was underrun */
71 #define XSPI_INTR_RX_FULL		0x10	/* RxFIFO is full */
72 #define XSPI_INTR_RX_OVERRUN		0x20	/* RxFIFO was overrun */
73 #define XSPI_INTR_TX_HALF_EMPTY		0x40	/* TxFIFO is half empty */
74 
75 #define XIPIF_V123B_RESETR_OFFSET	0x40	/* IPIF reset register */
76 #define XIPIF_V123B_RESET_MASK		0x0a	/* the value to write */
77 
78 struct xilinx_spi {
79 	/* bitbang has to be first */
80 	struct spi_bitbang bitbang;
81 	struct completion done;
82 	struct resource mem; /* phys mem */
83 	void __iomem	*regs;	/* virt. address of the control registers */
84 
85 	u32		irq;
86 
87 	u8 *rx_ptr;		/* pointer in the Tx buffer */
88 	const u8 *tx_ptr;	/* pointer in the Rx buffer */
89 	int remaining_bytes;	/* the number of bytes left to transfer */
90 	u8 bits_per_word;
91 	unsigned int (*read_fn) (void __iomem *);
92 	void (*write_fn) (u32, void __iomem *);
93 	void (*tx_fn) (struct xilinx_spi *);
94 	void (*rx_fn) (struct xilinx_spi *);
95 };
96 
97 static void xspi_write32(u32 val, void __iomem *addr)
98 {
99 	iowrite32(val, addr);
100 }
101 
102 static unsigned int xspi_read32(void __iomem *addr)
103 {
104 	return ioread32(addr);
105 }
106 
107 static void xspi_write32_be(u32 val, void __iomem *addr)
108 {
109 	iowrite32be(val, addr);
110 }
111 
112 static unsigned int xspi_read32_be(void __iomem *addr)
113 {
114 	return ioread32be(addr);
115 }
116 
117 static void xspi_tx8(struct xilinx_spi *xspi)
118 {
119 	xspi->write_fn(*xspi->tx_ptr, xspi->regs + XSPI_TXD_OFFSET);
120 	xspi->tx_ptr++;
121 }
122 
123 static void xspi_tx16(struct xilinx_spi *xspi)
124 {
125 	xspi->write_fn(*(u16 *)(xspi->tx_ptr), xspi->regs + XSPI_TXD_OFFSET);
126 	xspi->tx_ptr += 2;
127 }
128 
129 static void xspi_tx32(struct xilinx_spi *xspi)
130 {
131 	xspi->write_fn(*(u32 *)(xspi->tx_ptr), xspi->regs + XSPI_TXD_OFFSET);
132 	xspi->tx_ptr += 4;
133 }
134 
135 static void xspi_rx8(struct xilinx_spi *xspi)
136 {
137 	u32 data = xspi->read_fn(xspi->regs + XSPI_RXD_OFFSET);
138 	if (xspi->rx_ptr) {
139 		*xspi->rx_ptr = data & 0xff;
140 		xspi->rx_ptr++;
141 	}
142 }
143 
144 static void xspi_rx16(struct xilinx_spi *xspi)
145 {
146 	u32 data = xspi->read_fn(xspi->regs + XSPI_RXD_OFFSET);
147 	if (xspi->rx_ptr) {
148 		*(u16 *)(xspi->rx_ptr) = data & 0xffff;
149 		xspi->rx_ptr += 2;
150 	}
151 }
152 
153 static void xspi_rx32(struct xilinx_spi *xspi)
154 {
155 	u32 data = xspi->read_fn(xspi->regs + XSPI_RXD_OFFSET);
156 	if (xspi->rx_ptr) {
157 		*(u32 *)(xspi->rx_ptr) = data;
158 		xspi->rx_ptr += 4;
159 	}
160 }
161 
162 static void xspi_init_hw(struct xilinx_spi *xspi)
163 {
164 	void __iomem *regs_base = xspi->regs;
165 
166 	/* Reset the SPI device */
167 	xspi->write_fn(XIPIF_V123B_RESET_MASK,
168 		regs_base + XIPIF_V123B_RESETR_OFFSET);
169 	/* Disable all the interrupts just in case */
170 	xspi->write_fn(0, regs_base + XIPIF_V123B_IIER_OFFSET);
171 	/* Enable the global IPIF interrupt */
172 	xspi->write_fn(XIPIF_V123B_GINTR_ENABLE,
173 		regs_base + XIPIF_V123B_DGIER_OFFSET);
174 	/* Deselect the slave on the SPI bus */
175 	xspi->write_fn(0xffff, regs_base + XSPI_SSR_OFFSET);
176 	/* Disable the transmitter, enable Manual Slave Select Assertion,
177 	 * put SPI controller into master mode, and enable it */
178 	xspi->write_fn(XSPI_CR_TRANS_INHIBIT | XSPI_CR_MANUAL_SSELECT |
179 		XSPI_CR_MASTER_MODE | XSPI_CR_ENABLE | XSPI_CR_TXFIFO_RESET |
180 		XSPI_CR_RXFIFO_RESET, regs_base + XSPI_CR_OFFSET);
181 }
182 
183 static void xilinx_spi_chipselect(struct spi_device *spi, int is_on)
184 {
185 	struct xilinx_spi *xspi = spi_master_get_devdata(spi->master);
186 
187 	if (is_on == BITBANG_CS_INACTIVE) {
188 		/* Deselect the slave on the SPI bus */
189 		xspi->write_fn(0xffff, xspi->regs + XSPI_SSR_OFFSET);
190 	} else if (is_on == BITBANG_CS_ACTIVE) {
191 		/* Set the SPI clock phase and polarity */
192 		u16 cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET)
193 			 & ~XSPI_CR_MODE_MASK;
194 		if (spi->mode & SPI_CPHA)
195 			cr |= XSPI_CR_CPHA;
196 		if (spi->mode & SPI_CPOL)
197 			cr |= XSPI_CR_CPOL;
198 		xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET);
199 
200 		/* We do not check spi->max_speed_hz here as the SPI clock
201 		 * frequency is not software programmable (the IP block design
202 		 * parameter)
203 		 */
204 
205 		/* Activate the chip select */
206 		xspi->write_fn(~(0x0001 << spi->chip_select),
207 			xspi->regs + XSPI_SSR_OFFSET);
208 	}
209 }
210 
211 /* spi_bitbang requires custom setup_transfer() to be defined if there is a
212  * custom txrx_bufs(). We have nothing to setup here as the SPI IP block
213  * supports 8 or 16 bits per word which cannot be changed in software.
214  * SPI clock can't be changed in software either.
215  * Check for correct bits per word. Chip select delay calculations could be
216  * added here as soon as bitbang_work() can be made aware of the delay value.
217  */
218 static int xilinx_spi_setup_transfer(struct spi_device *spi,
219 		struct spi_transfer *t)
220 {
221 	struct xilinx_spi *xspi = spi_master_get_devdata(spi->master);
222 	u8 bits_per_word;
223 
224 	bits_per_word = (t && t->bits_per_word)
225 			 ? t->bits_per_word : spi->bits_per_word;
226 	if (bits_per_word != xspi->bits_per_word) {
227 		dev_err(&spi->dev, "%s, unsupported bits_per_word=%d\n",
228 			__func__, bits_per_word);
229 		return -EINVAL;
230 	}
231 
232 	return 0;
233 }
234 
235 static int xilinx_spi_setup(struct spi_device *spi)
236 {
237 	/* always return 0, we can not check the number of bits.
238 	 * There are cases when SPI setup is called before any driver is
239 	 * there, in that case the SPI core defaults to 8 bits, which we
240 	 * do not support in some cases. But if we return an error, the
241 	 * SPI device would not be registered and no driver can get hold of it
242 	 * When the driver is there, it will call SPI setup again with the
243 	 * correct number of bits per transfer.
244 	 * If a driver setups with the wrong bit number, it will fail when
245 	 * it tries to do a transfer
246 	 */
247 	return 0;
248 }
249 
250 static void xilinx_spi_fill_tx_fifo(struct xilinx_spi *xspi)
251 {
252 	u8 sr;
253 
254 	/* Fill the Tx FIFO with as many bytes as possible */
255 	sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
256 	while ((sr & XSPI_SR_TX_FULL_MASK) == 0 && xspi->remaining_bytes > 0) {
257 		if (xspi->tx_ptr)
258 			xspi->tx_fn(xspi);
259 		else
260 			xspi->write_fn(0, xspi->regs + XSPI_TXD_OFFSET);
261 		xspi->remaining_bytes -= xspi->bits_per_word / 8;
262 		sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
263 	}
264 }
265 
266 static int xilinx_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t)
267 {
268 	struct xilinx_spi *xspi = spi_master_get_devdata(spi->master);
269 	u32 ipif_ier;
270 	u16 cr;
271 
272 	/* We get here with transmitter inhibited */
273 
274 	xspi->tx_ptr = t->tx_buf;
275 	xspi->rx_ptr = t->rx_buf;
276 	xspi->remaining_bytes = t->len;
277 	INIT_COMPLETION(xspi->done);
278 
279 	xilinx_spi_fill_tx_fifo(xspi);
280 
281 	/* Enable the transmit empty interrupt, which we use to determine
282 	 * progress on the transmission.
283 	 */
284 	ipif_ier = xspi->read_fn(xspi->regs + XIPIF_V123B_IIER_OFFSET);
285 	xspi->write_fn(ipif_ier | XSPI_INTR_TX_EMPTY,
286 		xspi->regs + XIPIF_V123B_IIER_OFFSET);
287 
288 	/* Start the transfer by not inhibiting the transmitter any longer */
289 	cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET) &
290 		~XSPI_CR_TRANS_INHIBIT;
291 	xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET);
292 
293 	wait_for_completion(&xspi->done);
294 
295 	/* Disable the transmit empty interrupt */
296 	xspi->write_fn(ipif_ier, xspi->regs + XIPIF_V123B_IIER_OFFSET);
297 
298 	return t->len - xspi->remaining_bytes;
299 }
300 
301 
302 /* This driver supports single master mode only. Hence Tx FIFO Empty
303  * is the only interrupt we care about.
304  * Receive FIFO Overrun, Transmit FIFO Underrun, Mode Fault, and Slave Mode
305  * Fault are not to happen.
306  */
307 static irqreturn_t xilinx_spi_irq(int irq, void *dev_id)
308 {
309 	struct xilinx_spi *xspi = dev_id;
310 	u32 ipif_isr;
311 
312 	/* Get the IPIF interrupts, and clear them immediately */
313 	ipif_isr = xspi->read_fn(xspi->regs + XIPIF_V123B_IISR_OFFSET);
314 	xspi->write_fn(ipif_isr, xspi->regs + XIPIF_V123B_IISR_OFFSET);
315 
316 	if (ipif_isr & XSPI_INTR_TX_EMPTY) {	/* Transmission completed */
317 		u16 cr;
318 		u8 sr;
319 
320 		/* A transmit has just completed. Process received data and
321 		 * check for more data to transmit. Always inhibit the
322 		 * transmitter while the Isr refills the transmit register/FIFO,
323 		 * or make sure it is stopped if we're done.
324 		 */
325 		cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET);
326 		xspi->write_fn(cr | XSPI_CR_TRANS_INHIBIT,
327 			xspi->regs + XSPI_CR_OFFSET);
328 
329 		/* Read out all the data from the Rx FIFO */
330 		sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
331 		while ((sr & XSPI_SR_RX_EMPTY_MASK) == 0) {
332 			xspi->rx_fn(xspi);
333 			sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
334 		}
335 
336 		/* See if there is more data to send */
337 		if (xspi->remaining_bytes > 0) {
338 			xilinx_spi_fill_tx_fifo(xspi);
339 			/* Start the transfer by not inhibiting the
340 			 * transmitter any longer
341 			 */
342 			xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET);
343 		} else {
344 			/* No more data to send.
345 			 * Indicate the transfer is completed.
346 			 */
347 			complete(&xspi->done);
348 		}
349 	}
350 
351 	return IRQ_HANDLED;
352 }
353 
354 static const struct of_device_id xilinx_spi_of_match[] = {
355 	{ .compatible = "xlnx,xps-spi-2.00.a", },
356 	{ .compatible = "xlnx,xps-spi-2.00.b", },
357 	{}
358 };
359 MODULE_DEVICE_TABLE(of, xilinx_spi_of_match);
360 
361 struct spi_master *xilinx_spi_init(struct device *dev, struct resource *mem,
362 	u32 irq, s16 bus_num, int num_cs, int little_endian, int bits_per_word)
363 {
364 	struct spi_master *master;
365 	struct xilinx_spi *xspi;
366 	int ret;
367 
368 	master = spi_alloc_master(dev, sizeof(struct xilinx_spi));
369 	if (!master)
370 		return NULL;
371 
372 	/* the spi->mode bits understood by this driver: */
373 	master->mode_bits = SPI_CPOL | SPI_CPHA;
374 
375 	xspi = spi_master_get_devdata(master);
376 	xspi->bitbang.master = spi_master_get(master);
377 	xspi->bitbang.chipselect = xilinx_spi_chipselect;
378 	xspi->bitbang.setup_transfer = xilinx_spi_setup_transfer;
379 	xspi->bitbang.txrx_bufs = xilinx_spi_txrx_bufs;
380 	xspi->bitbang.master->setup = xilinx_spi_setup;
381 	init_completion(&xspi->done);
382 
383 	if (!request_mem_region(mem->start, resource_size(mem),
384 		XILINX_SPI_NAME))
385 		goto put_master;
386 
387 	xspi->regs = ioremap(mem->start, resource_size(mem));
388 	if (xspi->regs == NULL) {
389 		dev_warn(dev, "ioremap failure\n");
390 		goto map_failed;
391 	}
392 
393 	master->bus_num = bus_num;
394 	master->num_chipselect = num_cs;
395 	master->dev.of_node = dev->of_node;
396 
397 	xspi->mem = *mem;
398 	xspi->irq = irq;
399 	if (little_endian) {
400 		xspi->read_fn = xspi_read32;
401 		xspi->write_fn = xspi_write32;
402 	} else {
403 		xspi->read_fn = xspi_read32_be;
404 		xspi->write_fn = xspi_write32_be;
405 	}
406 	xspi->bits_per_word = bits_per_word;
407 	if (xspi->bits_per_word == 8) {
408 		xspi->tx_fn = xspi_tx8;
409 		xspi->rx_fn = xspi_rx8;
410 	} else if (xspi->bits_per_word == 16) {
411 		xspi->tx_fn = xspi_tx16;
412 		xspi->rx_fn = xspi_rx16;
413 	} else if (xspi->bits_per_word == 32) {
414 		xspi->tx_fn = xspi_tx32;
415 		xspi->rx_fn = xspi_rx32;
416 	} else
417 		goto unmap_io;
418 
419 
420 	/* SPI controller initializations */
421 	xspi_init_hw(xspi);
422 
423 	/* Register for SPI Interrupt */
424 	ret = request_irq(xspi->irq, xilinx_spi_irq, 0, XILINX_SPI_NAME, xspi);
425 	if (ret)
426 		goto unmap_io;
427 
428 	ret = spi_bitbang_start(&xspi->bitbang);
429 	if (ret) {
430 		dev_err(dev, "spi_bitbang_start FAILED\n");
431 		goto free_irq;
432 	}
433 
434 	dev_info(dev, "at 0x%08llX mapped to 0x%p, irq=%d\n",
435 		(unsigned long long)mem->start, xspi->regs, xspi->irq);
436 	return master;
437 
438 free_irq:
439 	free_irq(xspi->irq, xspi);
440 unmap_io:
441 	iounmap(xspi->regs);
442 map_failed:
443 	release_mem_region(mem->start, resource_size(mem));
444 put_master:
445 	spi_master_put(master);
446 	return NULL;
447 }
448 EXPORT_SYMBOL(xilinx_spi_init);
449 
450 void xilinx_spi_deinit(struct spi_master *master)
451 {
452 	struct xilinx_spi *xspi;
453 
454 	xspi = spi_master_get_devdata(master);
455 
456 	spi_bitbang_stop(&xspi->bitbang);
457 	free_irq(xspi->irq, xspi);
458 	iounmap(xspi->regs);
459 
460 	release_mem_region(xspi->mem.start, resource_size(&xspi->mem));
461 	spi_master_put(xspi->bitbang.master);
462 }
463 EXPORT_SYMBOL(xilinx_spi_deinit);
464 
465 static int xilinx_spi_probe(struct platform_device *dev)
466 {
467 	struct xspi_platform_data *pdata;
468 	struct resource *r;
469 	int irq, num_cs = 0, little_endian = 0, bits_per_word = 8;
470 	struct spi_master *master;
471 	u8 i;
472 
473 	pdata = dev->dev.platform_data;
474 	if (pdata) {
475 		num_cs = pdata->num_chipselect;
476 		little_endian = pdata->little_endian;
477 		bits_per_word = pdata->bits_per_word;
478 	}
479 
480 #ifdef CONFIG_OF
481 	if (dev->dev.of_node) {
482 		const __be32 *prop;
483 		int len;
484 
485 		/* number of slave select bits is required */
486 		prop = of_get_property(dev->dev.of_node, "xlnx,num-ss-bits",
487 				       &len);
488 		if (prop && len >= sizeof(*prop))
489 			num_cs = __be32_to_cpup(prop);
490 	}
491 #endif
492 
493 	if (!num_cs) {
494 		dev_err(&dev->dev, "Missing slave select configuration data\n");
495 		return -EINVAL;
496 	}
497 
498 
499 	r = platform_get_resource(dev, IORESOURCE_MEM, 0);
500 	if (!r)
501 		return -ENODEV;
502 
503 	irq = platform_get_irq(dev, 0);
504 	if (irq < 0)
505 		return -ENXIO;
506 
507 	master = xilinx_spi_init(&dev->dev, r, irq, dev->id, num_cs,
508 				 little_endian, bits_per_word);
509 	if (!master)
510 		return -ENODEV;
511 
512 	if (pdata) {
513 		for (i = 0; i < pdata->num_devices; i++)
514 			spi_new_device(master, pdata->devices + i);
515 	}
516 
517 	platform_set_drvdata(dev, master);
518 	return 0;
519 }
520 
521 static int xilinx_spi_remove(struct platform_device *dev)
522 {
523 	xilinx_spi_deinit(platform_get_drvdata(dev));
524 	platform_set_drvdata(dev, 0);
525 
526 	return 0;
527 }
528 
529 /* work with hotplug and coldplug */
530 MODULE_ALIAS("platform:" XILINX_SPI_NAME);
531 
532 static struct platform_driver xilinx_spi_driver = {
533 	.probe = xilinx_spi_probe,
534 	.remove = xilinx_spi_remove,
535 	.driver = {
536 		.name = XILINX_SPI_NAME,
537 		.owner = THIS_MODULE,
538 		.of_match_table = xilinx_spi_of_match,
539 	},
540 };
541 module_platform_driver(xilinx_spi_driver);
542 
543 MODULE_AUTHOR("MontaVista Software, Inc. <source@mvista.com>");
544 MODULE_DESCRIPTION("Xilinx SPI driver");
545 MODULE_LICENSE("GPL");
546