xref: /linux/drivers/spi/spi-wpcm-fiu.c (revision 1b0975ee3bdd3eb19a47371c26fd7ef8f7f6b599)
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2022 Jonathan Neuschäfer
3 
4 #include <linux/clk.h>
5 #include <linux/mfd/syscon.h>
6 #include <linux/module.h>
7 #include <linux/of_address.h>
8 #include <linux/of_device.h>
9 #include <linux/platform_device.h>
10 #include <linux/regmap.h>
11 #include <linux/spi/spi-mem.h>
12 
13 #define FIU_CFG		0x00
14 #define FIU_BURST_BFG	0x01
15 #define FIU_RESP_CFG	0x02
16 #define FIU_CFBB_PROT	0x03
17 #define FIU_FWIN1_LOW	0x04
18 #define FIU_FWIN1_HIGH	0x06
19 #define FIU_FWIN2_LOW	0x08
20 #define FIU_FWIN2_HIGH	0x0a
21 #define FIU_FWIN3_LOW	0x0c
22 #define FIU_FWIN3_HIGH	0x0e
23 #define FIU_PROT_LOCK	0x10
24 #define FIU_PROT_CLEAR	0x11
25 #define FIU_SPI_FL_CFG	0x14
26 #define FIU_UMA_CODE	0x16
27 #define FIU_UMA_AB0	0x17
28 #define FIU_UMA_AB1	0x18
29 #define FIU_UMA_AB2	0x19
30 #define FIU_UMA_DB0	0x1a
31 #define FIU_UMA_DB1	0x1b
32 #define FIU_UMA_DB2	0x1c
33 #define FIU_UMA_DB3	0x1d
34 #define FIU_UMA_CTS	0x1e
35 #define FIU_UMA_ECTS	0x1f
36 
37 #define FIU_BURST_CFG_R16	3
38 
39 #define FIU_UMA_CTS_D_SIZE(x)	(x)
40 #define FIU_UMA_CTS_A_SIZE	BIT(3)
41 #define FIU_UMA_CTS_WR		BIT(4)
42 #define FIU_UMA_CTS_CS(x)	((x) << 5)
43 #define FIU_UMA_CTS_EXEC_DONE	BIT(7)
44 
45 #define SHM_FLASH_SIZE	0x02
46 #define SHM_FLASH_SIZE_STALL_HOST BIT(6)
47 
48 /*
49  * I observed a typical wait time of 16 iterations for a UMA transfer to
50  * finish, so this should be a safe limit.
51  */
52 #define UMA_WAIT_ITERATIONS 100
53 
54 /* The memory-mapped view of flash is 16 MiB long */
55 #define MAX_MEMORY_SIZE_PER_CS	(16 << 20)
56 #define MAX_MEMORY_SIZE_TOTAL	(4 * MAX_MEMORY_SIZE_PER_CS)
57 
58 struct wpcm_fiu_spi {
59 	struct device *dev;
60 	struct clk *clk;
61 	void __iomem *regs;
62 	void __iomem *memory;
63 	size_t memory_size;
64 	struct regmap *shm_regmap;
65 };
66 
67 static void wpcm_fiu_set_opcode(struct wpcm_fiu_spi *fiu, u8 opcode)
68 {
69 	writeb(opcode, fiu->regs + FIU_UMA_CODE);
70 }
71 
72 static void wpcm_fiu_set_addr(struct wpcm_fiu_spi *fiu, u32 addr)
73 {
74 	writeb((addr >>  0) & 0xff, fiu->regs + FIU_UMA_AB0);
75 	writeb((addr >>  8) & 0xff, fiu->regs + FIU_UMA_AB1);
76 	writeb((addr >> 16) & 0xff, fiu->regs + FIU_UMA_AB2);
77 }
78 
79 static void wpcm_fiu_set_data(struct wpcm_fiu_spi *fiu, const u8 *data, unsigned int nbytes)
80 {
81 	int i;
82 
83 	for (i = 0; i < nbytes; i++)
84 		writeb(data[i], fiu->regs + FIU_UMA_DB0 + i);
85 }
86 
87 static void wpcm_fiu_get_data(struct wpcm_fiu_spi *fiu, u8 *data, unsigned int nbytes)
88 {
89 	int i;
90 
91 	for (i = 0; i < nbytes; i++)
92 		data[i] = readb(fiu->regs + FIU_UMA_DB0 + i);
93 }
94 
95 /*
96  * Perform a UMA (User Mode Access) operation, i.e. a software-controlled SPI transfer.
97  */
98 static int wpcm_fiu_do_uma(struct wpcm_fiu_spi *fiu, unsigned int cs,
99 			   bool use_addr, bool write, int data_bytes)
100 {
101 	int i = 0;
102 	u8 cts = FIU_UMA_CTS_EXEC_DONE | FIU_UMA_CTS_CS(cs);
103 
104 	if (use_addr)
105 		cts |= FIU_UMA_CTS_A_SIZE;
106 	if (write)
107 		cts |= FIU_UMA_CTS_WR;
108 	cts |= FIU_UMA_CTS_D_SIZE(data_bytes);
109 
110 	writeb(cts, fiu->regs + FIU_UMA_CTS);
111 
112 	for (i = 0; i < UMA_WAIT_ITERATIONS; i++)
113 		if (!(readb(fiu->regs + FIU_UMA_CTS) & FIU_UMA_CTS_EXEC_DONE))
114 			return 0;
115 
116 	dev_info(fiu->dev, "UMA transfer has not finished in %d iterations\n", UMA_WAIT_ITERATIONS);
117 	return -EIO;
118 }
119 
120 static void wpcm_fiu_ects_assert(struct wpcm_fiu_spi *fiu, unsigned int cs)
121 {
122 	u8 ects = readb(fiu->regs + FIU_UMA_ECTS);
123 
124 	ects &= ~BIT(cs);
125 	writeb(ects, fiu->regs + FIU_UMA_ECTS);
126 }
127 
128 static void wpcm_fiu_ects_deassert(struct wpcm_fiu_spi *fiu, unsigned int cs)
129 {
130 	u8 ects = readb(fiu->regs + FIU_UMA_ECTS);
131 
132 	ects |= BIT(cs);
133 	writeb(ects, fiu->regs + FIU_UMA_ECTS);
134 }
135 
136 struct wpcm_fiu_op_shape {
137 	bool (*match)(const struct spi_mem_op *op);
138 	int (*exec)(struct spi_mem *mem, const struct spi_mem_op *op);
139 };
140 
141 static bool wpcm_fiu_normal_match(const struct spi_mem_op *op)
142 {
143 	// Opcode 0x0b (FAST READ) is treated differently in hardware
144 	if (op->cmd.opcode == 0x0b)
145 		return false;
146 
147 	return (op->addr.nbytes == 0 || op->addr.nbytes == 3) &&
148 	       op->dummy.nbytes == 0 && op->data.nbytes <= 4;
149 }
150 
151 static int wpcm_fiu_normal_exec(struct spi_mem *mem, const struct spi_mem_op *op)
152 {
153 	struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(mem->spi->controller);
154 	int ret;
155 
156 	wpcm_fiu_set_opcode(fiu, op->cmd.opcode);
157 	wpcm_fiu_set_addr(fiu, op->addr.val);
158 	if (op->data.dir == SPI_MEM_DATA_OUT)
159 		wpcm_fiu_set_data(fiu, op->data.buf.out, op->data.nbytes);
160 
161 	ret = wpcm_fiu_do_uma(fiu, spi_get_chipselect(mem->spi, 0), op->addr.nbytes == 3,
162 			      op->data.dir == SPI_MEM_DATA_OUT, op->data.nbytes);
163 
164 	if (op->data.dir == SPI_MEM_DATA_IN)
165 		wpcm_fiu_get_data(fiu, op->data.buf.in, op->data.nbytes);
166 
167 	return ret;
168 }
169 
170 static bool wpcm_fiu_fast_read_match(const struct spi_mem_op *op)
171 {
172 	return op->cmd.opcode == 0x0b && op->addr.nbytes == 3 &&
173 	       op->dummy.nbytes == 1 &&
174 	       op->data.nbytes >= 1 && op->data.nbytes <= 4 &&
175 	       op->data.dir == SPI_MEM_DATA_IN;
176 }
177 
178 static int wpcm_fiu_fast_read_exec(struct spi_mem *mem, const struct spi_mem_op *op)
179 {
180 	return -EINVAL;
181 }
182 
183 /*
184  * 4-byte addressing.
185  *
186  * Flash view:  [ C  A  A  A   A     D  D  D  D]
187  * bytes:        13 aa bb cc  dd -> 5a a5 f0 0f
188  * FIU's view:  [ C  A  A  A][ C     D  D  D  D]
189  * FIU mode:    [ read/write][      read       ]
190  */
191 static bool wpcm_fiu_4ba_match(const struct spi_mem_op *op)
192 {
193 	return op->addr.nbytes == 4 && op->dummy.nbytes == 0 && op->data.nbytes <= 4;
194 }
195 
196 static int wpcm_fiu_4ba_exec(struct spi_mem *mem, const struct spi_mem_op *op)
197 {
198 	struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(mem->spi->controller);
199 	int cs = spi_get_chipselect(mem->spi, 0);
200 
201 	wpcm_fiu_ects_assert(fiu, cs);
202 
203 	wpcm_fiu_set_opcode(fiu, op->cmd.opcode);
204 	wpcm_fiu_set_addr(fiu, op->addr.val >> 8);
205 	wpcm_fiu_do_uma(fiu, cs, true, false, 0);
206 
207 	wpcm_fiu_set_opcode(fiu, op->addr.val & 0xff);
208 	wpcm_fiu_set_addr(fiu, 0);
209 	if (op->data.dir == SPI_MEM_DATA_OUT)
210 		wpcm_fiu_set_data(fiu, op->data.buf.out, op->data.nbytes);
211 	wpcm_fiu_do_uma(fiu, cs, false, op->data.dir == SPI_MEM_DATA_OUT, op->data.nbytes);
212 
213 	wpcm_fiu_ects_deassert(fiu, cs);
214 
215 	if (op->data.dir == SPI_MEM_DATA_IN)
216 		wpcm_fiu_get_data(fiu, op->data.buf.in, op->data.nbytes);
217 
218 	return 0;
219 }
220 
221 /*
222  * RDID (Read Identification) needs special handling because Linux expects to
223  * be able to read 6 ID bytes and FIU can only read up to 4 at once.
224  *
225  * We're lucky in this case, because executing the RDID instruction twice will
226  * result in the same result.
227  *
228  * What we do is as follows (C: write command/opcode byte, D: read data byte,
229  * A: write address byte):
230  *
231  *  1. C D D D
232  *  2. C A A A D D D
233  */
234 static bool wpcm_fiu_rdid_match(const struct spi_mem_op *op)
235 {
236 	return op->cmd.opcode == 0x9f && op->addr.nbytes == 0 &&
237 	       op->dummy.nbytes == 0 && op->data.nbytes == 6 &&
238 	       op->data.dir == SPI_MEM_DATA_IN;
239 }
240 
241 static int wpcm_fiu_rdid_exec(struct spi_mem *mem, const struct spi_mem_op *op)
242 {
243 	struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(mem->spi->controller);
244 	int cs = spi_get_chipselect(mem->spi, 0);
245 
246 	/* First transfer */
247 	wpcm_fiu_set_opcode(fiu, op->cmd.opcode);
248 	wpcm_fiu_set_addr(fiu, 0);
249 	wpcm_fiu_do_uma(fiu, cs, false, false, 3);
250 	wpcm_fiu_get_data(fiu, op->data.buf.in, 3);
251 
252 	/* Second transfer */
253 	wpcm_fiu_set_opcode(fiu, op->cmd.opcode);
254 	wpcm_fiu_set_addr(fiu, 0);
255 	wpcm_fiu_do_uma(fiu, cs, true, false, 3);
256 	wpcm_fiu_get_data(fiu, op->data.buf.in + 3, 3);
257 
258 	return 0;
259 }
260 
261 /*
262  * With some dummy bytes.
263  *
264  *  C A A A  X*  X D D D D
265  * [C A A A  D*][C D D D D]
266  */
267 static bool wpcm_fiu_dummy_match(const struct spi_mem_op *op)
268 {
269 	// Opcode 0x0b (FAST READ) is treated differently in hardware
270 	if (op->cmd.opcode == 0x0b)
271 		return false;
272 
273 	return (op->addr.nbytes == 0 || op->addr.nbytes == 3) &&
274 	       op->dummy.nbytes >= 1 && op->dummy.nbytes <= 5 &&
275 	       op->data.nbytes <= 4;
276 }
277 
278 static int wpcm_fiu_dummy_exec(struct spi_mem *mem, const struct spi_mem_op *op)
279 {
280 	struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(mem->spi->controller);
281 	int cs = spi_get_chipselect(mem->spi, 0);
282 
283 	wpcm_fiu_ects_assert(fiu, cs);
284 
285 	/* First transfer */
286 	wpcm_fiu_set_opcode(fiu, op->cmd.opcode);
287 	wpcm_fiu_set_addr(fiu, op->addr.val);
288 	wpcm_fiu_do_uma(fiu, cs, op->addr.nbytes != 0, true, op->dummy.nbytes - 1);
289 
290 	/* Second transfer */
291 	wpcm_fiu_set_opcode(fiu, 0);
292 	wpcm_fiu_set_addr(fiu, 0);
293 	wpcm_fiu_do_uma(fiu, cs, false, false, op->data.nbytes);
294 	wpcm_fiu_get_data(fiu, op->data.buf.in, op->data.nbytes);
295 
296 	wpcm_fiu_ects_deassert(fiu, cs);
297 
298 	return 0;
299 }
300 
301 static const struct wpcm_fiu_op_shape wpcm_fiu_op_shapes[] = {
302 	{ .match = wpcm_fiu_normal_match, .exec = wpcm_fiu_normal_exec },
303 	{ .match = wpcm_fiu_fast_read_match, .exec = wpcm_fiu_fast_read_exec },
304 	{ .match = wpcm_fiu_4ba_match, .exec = wpcm_fiu_4ba_exec },
305 	{ .match = wpcm_fiu_rdid_match, .exec = wpcm_fiu_rdid_exec },
306 	{ .match = wpcm_fiu_dummy_match, .exec = wpcm_fiu_dummy_exec },
307 };
308 
309 static const struct wpcm_fiu_op_shape *wpcm_fiu_find_op_shape(const struct spi_mem_op *op)
310 {
311 	size_t i;
312 
313 	for (i = 0; i < ARRAY_SIZE(wpcm_fiu_op_shapes); i++) {
314 		const struct wpcm_fiu_op_shape *shape = &wpcm_fiu_op_shapes[i];
315 
316 		if (shape->match(op))
317 			return shape;
318 	}
319 
320 	return NULL;
321 }
322 
323 static bool wpcm_fiu_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
324 {
325 	if (!spi_mem_default_supports_op(mem, op))
326 		return false;
327 
328 	if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr)
329 		return false;
330 
331 	if (op->cmd.buswidth > 1 || op->addr.buswidth > 1 ||
332 	    op->dummy.buswidth > 1 || op->data.buswidth > 1)
333 		return false;
334 
335 	return wpcm_fiu_find_op_shape(op) != NULL;
336 }
337 
338 /*
339  * In order to ensure the integrity of SPI transfers performed via UMA,
340  * temporarily disable (stall) memory accesses coming from the host CPU.
341  */
342 static void wpcm_fiu_stall_host(struct wpcm_fiu_spi *fiu, bool stall)
343 {
344 	if (fiu->shm_regmap) {
345 		int res = regmap_update_bits(fiu->shm_regmap, SHM_FLASH_SIZE,
346 					     SHM_FLASH_SIZE_STALL_HOST,
347 					     stall ? SHM_FLASH_SIZE_STALL_HOST : 0);
348 		if (res)
349 			dev_warn(fiu->dev, "Failed to (un)stall host memory accesses: %d\n", res);
350 	}
351 }
352 
353 static int wpcm_fiu_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
354 {
355 	struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(mem->spi->controller);
356 	const struct wpcm_fiu_op_shape *shape = wpcm_fiu_find_op_shape(op);
357 
358 	wpcm_fiu_stall_host(fiu, true);
359 
360 	if (shape)
361 		return shape->exec(mem, op);
362 
363 	wpcm_fiu_stall_host(fiu, false);
364 
365 	return -ENOTSUPP;
366 }
367 
368 static int wpcm_fiu_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
369 {
370 	if (op->data.nbytes > 4)
371 		op->data.nbytes = 4;
372 
373 	return 0;
374 }
375 
376 static int wpcm_fiu_dirmap_create(struct spi_mem_dirmap_desc *desc)
377 {
378 	struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(desc->mem->spi->controller);
379 	int cs = spi_get_chipselect(desc->mem->spi, 0);
380 
381 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
382 		return -ENOTSUPP;
383 
384 	/*
385 	 * Unfortunately, FIU only supports a 16 MiB direct mapping window (per
386 	 * attached flash chip), but the SPI MEM core doesn't support partial
387 	 * direct mappings. This means that we can't support direct mapping on
388 	 * flashes that are bigger than 16 MiB.
389 	 */
390 	if (desc->info.offset + desc->info.length > MAX_MEMORY_SIZE_PER_CS)
391 		return -ENOTSUPP;
392 
393 	/* Don't read past the memory window */
394 	if (cs * MAX_MEMORY_SIZE_PER_CS + desc->info.offset + desc->info.length > fiu->memory_size)
395 		return -ENOTSUPP;
396 
397 	return 0;
398 }
399 
400 static ssize_t wpcm_fiu_direct_read(struct spi_mem_dirmap_desc *desc, u64 offs, size_t len, void *buf)
401 {
402 	struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(desc->mem->spi->controller);
403 	int cs = spi_get_chipselect(desc->mem->spi, 0);
404 
405 	if (offs >= MAX_MEMORY_SIZE_PER_CS)
406 		return -ENOTSUPP;
407 
408 	offs += cs * MAX_MEMORY_SIZE_PER_CS;
409 
410 	if (!fiu->memory || offs >= fiu->memory_size)
411 		return -ENOTSUPP;
412 
413 	len = min_t(size_t, len, fiu->memory_size - offs);
414 	memcpy_fromio(buf, fiu->memory + offs, len);
415 
416 	return len;
417 }
418 
419 static const struct spi_controller_mem_ops wpcm_fiu_mem_ops = {
420 	.adjust_op_size = wpcm_fiu_adjust_op_size,
421 	.supports_op = wpcm_fiu_supports_op,
422 	.exec_op = wpcm_fiu_exec_op,
423 	.dirmap_create = wpcm_fiu_dirmap_create,
424 	.dirmap_read = wpcm_fiu_direct_read,
425 };
426 
427 static void wpcm_fiu_hw_init(struct wpcm_fiu_spi *fiu)
428 {
429 	/* Configure memory-mapped flash access */
430 	writeb(FIU_BURST_CFG_R16, fiu->regs + FIU_BURST_BFG);
431 	writeb(MAX_MEMORY_SIZE_TOTAL / (512 << 10), fiu->regs + FIU_CFG);
432 	writeb(MAX_MEMORY_SIZE_PER_CS / (512 << 10) | BIT(6), fiu->regs + FIU_SPI_FL_CFG);
433 
434 	/* Deassert all manually asserted chip selects */
435 	writeb(0x0f, fiu->regs + FIU_UMA_ECTS);
436 }
437 
438 static int wpcm_fiu_probe(struct platform_device *pdev)
439 {
440 	struct device *dev = &pdev->dev;
441 	struct spi_controller *ctrl;
442 	struct wpcm_fiu_spi *fiu;
443 	struct resource *res;
444 
445 	ctrl = devm_spi_alloc_master(dev, sizeof(*fiu));
446 	if (!ctrl)
447 		return -ENOMEM;
448 
449 	fiu = spi_controller_get_devdata(ctrl);
450 	fiu->dev = dev;
451 
452 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "control");
453 	fiu->regs = devm_ioremap_resource(dev, res);
454 	if (IS_ERR(fiu->regs)) {
455 		dev_err(dev, "Failed to map registers\n");
456 		return PTR_ERR(fiu->regs);
457 	}
458 
459 	fiu->clk = devm_clk_get_enabled(dev, NULL);
460 	if (IS_ERR(fiu->clk))
461 		return PTR_ERR(fiu->clk);
462 
463 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "memory");
464 	fiu->memory = devm_ioremap_resource(dev, res);
465 	fiu->memory_size = min_t(size_t, resource_size(res), MAX_MEMORY_SIZE_TOTAL);
466 	if (IS_ERR(fiu->memory)) {
467 		dev_err(dev, "Failed to map flash memory window\n");
468 		return PTR_ERR(fiu->memory);
469 	}
470 
471 	fiu->shm_regmap = syscon_regmap_lookup_by_phandle_optional(dev->of_node, "nuvoton,shm");
472 
473 	wpcm_fiu_hw_init(fiu);
474 
475 	ctrl->bus_num = -1;
476 	ctrl->mem_ops = &wpcm_fiu_mem_ops;
477 	ctrl->num_chipselect = 4;
478 	ctrl->dev.of_node = dev->of_node;
479 
480 	/*
481 	 * The FIU doesn't include a clock divider, the clock is entirely
482 	 * determined by the AHB3 bus clock.
483 	 */
484 	ctrl->min_speed_hz = clk_get_rate(fiu->clk);
485 	ctrl->max_speed_hz = clk_get_rate(fiu->clk);
486 
487 	return devm_spi_register_controller(dev, ctrl);
488 }
489 
490 static const struct of_device_id wpcm_fiu_dt_ids[] = {
491 	{ .compatible = "nuvoton,wpcm450-fiu", },
492 	{ }
493 };
494 MODULE_DEVICE_TABLE(of, wpcm_fiu_dt_ids);
495 
496 static struct platform_driver wpcm_fiu_driver = {
497 	.driver = {
498 		.name	= "wpcm450-fiu",
499 		.bus	= &platform_bus_type,
500 		.of_match_table = wpcm_fiu_dt_ids,
501 	},
502 	.probe      = wpcm_fiu_probe,
503 };
504 module_platform_driver(wpcm_fiu_driver);
505 
506 MODULE_DESCRIPTION("Nuvoton WPCM450 FIU SPI controller driver");
507 MODULE_AUTHOR("Jonathan Neuschäfer <j.neuschaefer@gmx.net>");
508 MODULE_LICENSE("GPL");
509