1 /* 2 * SPI bus driver for the Topcliff PCH used by Intel SoCs 3 * 4 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; version 2 of the License. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. 18 */ 19 20 #include <linux/delay.h> 21 #include <linux/pci.h> 22 #include <linux/wait.h> 23 #include <linux/spi/spi.h> 24 #include <linux/interrupt.h> 25 #include <linux/sched.h> 26 #include <linux/spi/spidev.h> 27 #include <linux/module.h> 28 #include <linux/device.h> 29 #include <linux/platform_device.h> 30 31 #include <linux/dmaengine.h> 32 #include <linux/pch_dma.h> 33 34 /* Register offsets */ 35 #define PCH_SPCR 0x00 /* SPI control register */ 36 #define PCH_SPBRR 0x04 /* SPI baud rate register */ 37 #define PCH_SPSR 0x08 /* SPI status register */ 38 #define PCH_SPDWR 0x0C /* SPI write data register */ 39 #define PCH_SPDRR 0x10 /* SPI read data register */ 40 #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */ 41 #define PCH_SRST 0x1C /* SPI reset register */ 42 #define PCH_ADDRESS_SIZE 0x20 43 44 #define PCH_SPSR_TFD 0x000007C0 45 #define PCH_SPSR_RFD 0x0000F800 46 47 #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11) 48 #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6) 49 50 #define PCH_RX_THOLD 7 51 #define PCH_RX_THOLD_MAX 15 52 53 #define PCH_TX_THOLD 2 54 55 #define PCH_MAX_BAUDRATE 5000000 56 #define PCH_MAX_FIFO_DEPTH 16 57 58 #define STATUS_RUNNING 1 59 #define STATUS_EXITING 2 60 #define PCH_SLEEP_TIME 10 61 62 #define SSN_LOW 0x02U 63 #define SSN_HIGH 0x03U 64 #define SSN_NO_CONTROL 0x00U 65 #define PCH_MAX_CS 0xFF 66 #define PCI_DEVICE_ID_GE_SPI 0x8816 67 68 #define SPCR_SPE_BIT (1 << 0) 69 #define SPCR_MSTR_BIT (1 << 1) 70 #define SPCR_LSBF_BIT (1 << 4) 71 #define SPCR_CPHA_BIT (1 << 5) 72 #define SPCR_CPOL_BIT (1 << 6) 73 #define SPCR_TFIE_BIT (1 << 8) 74 #define SPCR_RFIE_BIT (1 << 9) 75 #define SPCR_FIE_BIT (1 << 10) 76 #define SPCR_ORIE_BIT (1 << 11) 77 #define SPCR_MDFIE_BIT (1 << 12) 78 #define SPCR_FICLR_BIT (1 << 24) 79 #define SPSR_TFI_BIT (1 << 0) 80 #define SPSR_RFI_BIT (1 << 1) 81 #define SPSR_FI_BIT (1 << 2) 82 #define SPSR_ORF_BIT (1 << 3) 83 #define SPBRR_SIZE_BIT (1 << 10) 84 85 #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\ 86 SPCR_ORIE_BIT|SPCR_MDFIE_BIT) 87 88 #define SPCR_RFIC_FIELD 20 89 #define SPCR_TFIC_FIELD 16 90 91 #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1) 92 #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD) 93 #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD) 94 95 #define PCH_CLOCK_HZ 50000000 96 #define PCH_MAX_SPBR 1023 97 98 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */ 99 #define PCI_VENDOR_ID_ROHM 0x10DB 100 #define PCI_DEVICE_ID_ML7213_SPI 0x802c 101 #define PCI_DEVICE_ID_ML7223_SPI 0x800F 102 #define PCI_DEVICE_ID_ML7831_SPI 0x8816 103 104 /* 105 * Set the number of SPI instance max 106 * Intel EG20T PCH : 1ch 107 * LAPIS Semiconductor ML7213 IOH : 2ch 108 * LAPIS Semiconductor ML7223 IOH : 1ch 109 * LAPIS Semiconductor ML7831 IOH : 1ch 110 */ 111 #define PCH_SPI_MAX_DEV 2 112 113 #define PCH_BUF_SIZE 4096 114 #define PCH_DMA_TRANS_SIZE 12 115 116 static int use_dma = 1; 117 118 struct pch_spi_dma_ctrl { 119 struct dma_async_tx_descriptor *desc_tx; 120 struct dma_async_tx_descriptor *desc_rx; 121 struct pch_dma_slave param_tx; 122 struct pch_dma_slave param_rx; 123 struct dma_chan *chan_tx; 124 struct dma_chan *chan_rx; 125 struct scatterlist *sg_tx_p; 126 struct scatterlist *sg_rx_p; 127 struct scatterlist sg_tx; 128 struct scatterlist sg_rx; 129 int nent; 130 void *tx_buf_virt; 131 void *rx_buf_virt; 132 dma_addr_t tx_buf_dma; 133 dma_addr_t rx_buf_dma; 134 }; 135 /** 136 * struct pch_spi_data - Holds the SPI channel specific details 137 * @io_remap_addr: The remapped PCI base address 138 * @master: Pointer to the SPI master structure 139 * @work: Reference to work queue handler 140 * @wk: Workqueue for carrying out execution of the 141 * requests 142 * @wait: Wait queue for waking up upon receiving an 143 * interrupt. 144 * @transfer_complete: Status of SPI Transfer 145 * @bcurrent_msg_processing: Status flag for message processing 146 * @lock: Lock for protecting this structure 147 * @queue: SPI Message queue 148 * @status: Status of the SPI driver 149 * @bpw_len: Length of data to be transferred in bits per 150 * word 151 * @transfer_active: Flag showing active transfer 152 * @tx_index: Transmit data count; for bookkeeping during 153 * transfer 154 * @rx_index: Receive data count; for bookkeeping during 155 * transfer 156 * @tx_buff: Buffer for data to be transmitted 157 * @rx_index: Buffer for Received data 158 * @n_curnt_chip: The chip number that this SPI driver currently 159 * operates on 160 * @current_chip: Reference to the current chip that this SPI 161 * driver currently operates on 162 * @current_msg: The current message that this SPI driver is 163 * handling 164 * @cur_trans: The current transfer that this SPI driver is 165 * handling 166 * @board_dat: Reference to the SPI device data structure 167 * @plat_dev: platform_device structure 168 * @ch: SPI channel number 169 * @irq_reg_sts: Status of IRQ registration 170 */ 171 struct pch_spi_data { 172 void __iomem *io_remap_addr; 173 unsigned long io_base_addr; 174 struct spi_master *master; 175 struct work_struct work; 176 struct workqueue_struct *wk; 177 wait_queue_head_t wait; 178 u8 transfer_complete; 179 u8 bcurrent_msg_processing; 180 spinlock_t lock; 181 struct list_head queue; 182 u8 status; 183 u32 bpw_len; 184 u8 transfer_active; 185 u32 tx_index; 186 u32 rx_index; 187 u16 *pkt_tx_buff; 188 u16 *pkt_rx_buff; 189 u8 n_curnt_chip; 190 struct spi_device *current_chip; 191 struct spi_message *current_msg; 192 struct spi_transfer *cur_trans; 193 struct pch_spi_board_data *board_dat; 194 struct platform_device *plat_dev; 195 int ch; 196 struct pch_spi_dma_ctrl dma; 197 int use_dma; 198 u8 irq_reg_sts; 199 int save_total_len; 200 }; 201 202 /** 203 * struct pch_spi_board_data - Holds the SPI device specific details 204 * @pdev: Pointer to the PCI device 205 * @suspend_sts: Status of suspend 206 * @num: The number of SPI device instance 207 */ 208 struct pch_spi_board_data { 209 struct pci_dev *pdev; 210 u8 suspend_sts; 211 int num; 212 }; 213 214 struct pch_pd_dev_save { 215 int num; 216 struct platform_device *pd_save[PCH_SPI_MAX_DEV]; 217 struct pch_spi_board_data *board_dat; 218 }; 219 220 static DEFINE_PCI_DEVICE_TABLE(pch_spi_pcidev_id) = { 221 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, }, 222 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, }, 223 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, }, 224 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, }, 225 { } 226 }; 227 228 /** 229 * pch_spi_writereg() - Performs register writes 230 * @master: Pointer to struct spi_master. 231 * @idx: Register offset. 232 * @val: Value to be written to register. 233 */ 234 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val) 235 { 236 struct pch_spi_data *data = spi_master_get_devdata(master); 237 iowrite32(val, (data->io_remap_addr + idx)); 238 } 239 240 /** 241 * pch_spi_readreg() - Performs register reads 242 * @master: Pointer to struct spi_master. 243 * @idx: Register offset. 244 */ 245 static inline u32 pch_spi_readreg(struct spi_master *master, int idx) 246 { 247 struct pch_spi_data *data = spi_master_get_devdata(master); 248 return ioread32(data->io_remap_addr + idx); 249 } 250 251 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx, 252 u32 set, u32 clr) 253 { 254 u32 tmp = pch_spi_readreg(master, idx); 255 tmp = (tmp & ~clr) | set; 256 pch_spi_writereg(master, idx, tmp); 257 } 258 259 static void pch_spi_set_master_mode(struct spi_master *master) 260 { 261 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0); 262 } 263 264 /** 265 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs 266 * @master: Pointer to struct spi_master. 267 */ 268 static void pch_spi_clear_fifo(struct spi_master *master) 269 { 270 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0); 271 pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT); 272 } 273 274 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val, 275 void __iomem *io_remap_addr) 276 { 277 u32 n_read, tx_index, rx_index, bpw_len; 278 u16 *pkt_rx_buffer, *pkt_tx_buff; 279 int read_cnt; 280 u32 reg_spcr_val; 281 void __iomem *spsr; 282 void __iomem *spdrr; 283 void __iomem *spdwr; 284 285 spsr = io_remap_addr + PCH_SPSR; 286 iowrite32(reg_spsr_val, spsr); 287 288 if (data->transfer_active) { 289 rx_index = data->rx_index; 290 tx_index = data->tx_index; 291 bpw_len = data->bpw_len; 292 pkt_rx_buffer = data->pkt_rx_buff; 293 pkt_tx_buff = data->pkt_tx_buff; 294 295 spdrr = io_remap_addr + PCH_SPDRR; 296 spdwr = io_remap_addr + PCH_SPDWR; 297 298 n_read = PCH_READABLE(reg_spsr_val); 299 300 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) { 301 pkt_rx_buffer[rx_index++] = ioread32(spdrr); 302 if (tx_index < bpw_len) 303 iowrite32(pkt_tx_buff[tx_index++], spdwr); 304 } 305 306 /* disable RFI if not needed */ 307 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) { 308 reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR); 309 reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */ 310 311 /* reset rx threshold */ 312 reg_spcr_val &= ~MASK_RFIC_SPCR_BITS; 313 reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD); 314 315 iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR)); 316 } 317 318 /* update counts */ 319 data->tx_index = tx_index; 320 data->rx_index = rx_index; 321 322 /* if transfer complete interrupt */ 323 if (reg_spsr_val & SPSR_FI_BIT) { 324 if ((tx_index == bpw_len) && (rx_index == tx_index)) { 325 /* disable interrupts */ 326 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, 327 PCH_ALL); 328 329 /* transfer is completed; 330 inform pch_spi_process_messages */ 331 data->transfer_complete = true; 332 data->transfer_active = false; 333 wake_up(&data->wait); 334 } else { 335 dev_err(&data->master->dev, 336 "%s : Transfer is not completed", 337 __func__); 338 } 339 } 340 } 341 } 342 343 /** 344 * pch_spi_handler() - Interrupt handler 345 * @irq: The interrupt number. 346 * @dev_id: Pointer to struct pch_spi_board_data. 347 */ 348 static irqreturn_t pch_spi_handler(int irq, void *dev_id) 349 { 350 u32 reg_spsr_val; 351 void __iomem *spsr; 352 void __iomem *io_remap_addr; 353 irqreturn_t ret = IRQ_NONE; 354 struct pch_spi_data *data = dev_id; 355 struct pch_spi_board_data *board_dat = data->board_dat; 356 357 if (board_dat->suspend_sts) { 358 dev_dbg(&board_dat->pdev->dev, 359 "%s returning due to suspend\n", __func__); 360 return IRQ_NONE; 361 } 362 363 io_remap_addr = data->io_remap_addr; 364 spsr = io_remap_addr + PCH_SPSR; 365 366 reg_spsr_val = ioread32(spsr); 367 368 if (reg_spsr_val & SPSR_ORF_BIT) { 369 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__); 370 if (data->current_msg->complete != 0) { 371 data->transfer_complete = true; 372 data->current_msg->status = -EIO; 373 data->current_msg->complete(data->current_msg->context); 374 data->bcurrent_msg_processing = false; 375 data->current_msg = NULL; 376 data->cur_trans = NULL; 377 } 378 } 379 380 if (data->use_dma) 381 return IRQ_NONE; 382 383 /* Check if the interrupt is for SPI device */ 384 if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) { 385 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr); 386 ret = IRQ_HANDLED; 387 } 388 389 dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n", 390 __func__, ret); 391 392 return ret; 393 } 394 395 /** 396 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR 397 * @master: Pointer to struct spi_master. 398 * @speed_hz: Baud rate. 399 */ 400 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz) 401 { 402 u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2); 403 404 /* if baud rate is less than we can support limit it */ 405 if (n_spbr > PCH_MAX_SPBR) 406 n_spbr = PCH_MAX_SPBR; 407 408 pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS); 409 } 410 411 /** 412 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR 413 * @master: Pointer to struct spi_master. 414 * @bits_per_word: Bits per word for SPI transfer. 415 */ 416 static void pch_spi_set_bits_per_word(struct spi_master *master, 417 u8 bits_per_word) 418 { 419 if (bits_per_word == 8) 420 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT); 421 else 422 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0); 423 } 424 425 /** 426 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer 427 * @spi: Pointer to struct spi_device. 428 */ 429 static void pch_spi_setup_transfer(struct spi_device *spi) 430 { 431 u32 flags = 0; 432 433 dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n", 434 __func__, pch_spi_readreg(spi->master, PCH_SPBRR), 435 spi->max_speed_hz); 436 pch_spi_set_baud_rate(spi->master, spi->max_speed_hz); 437 438 /* set bits per word */ 439 pch_spi_set_bits_per_word(spi->master, spi->bits_per_word); 440 441 if (!(spi->mode & SPI_LSB_FIRST)) 442 flags |= SPCR_LSBF_BIT; 443 if (spi->mode & SPI_CPOL) 444 flags |= SPCR_CPOL_BIT; 445 if (spi->mode & SPI_CPHA) 446 flags |= SPCR_CPHA_BIT; 447 pch_spi_setclr_reg(spi->master, PCH_SPCR, flags, 448 (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT)); 449 450 /* Clear the FIFO by toggling FICLR to 1 and back to 0 */ 451 pch_spi_clear_fifo(spi->master); 452 } 453 454 /** 455 * pch_spi_reset() - Clears SPI registers 456 * @master: Pointer to struct spi_master. 457 */ 458 static void pch_spi_reset(struct spi_master *master) 459 { 460 /* write 1 to reset SPI */ 461 pch_spi_writereg(master, PCH_SRST, 0x1); 462 463 /* clear reset */ 464 pch_spi_writereg(master, PCH_SRST, 0x0); 465 } 466 467 static int pch_spi_setup(struct spi_device *pspi) 468 { 469 /* check bits per word */ 470 if (pspi->bits_per_word == 0) { 471 pspi->bits_per_word = 8; 472 dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__); 473 } 474 475 if ((pspi->bits_per_word != 8) && (pspi->bits_per_word != 16)) { 476 dev_err(&pspi->dev, "%s Invalid bits per word\n", __func__); 477 return -EINVAL; 478 } 479 480 /* Check baud rate setting */ 481 /* if baud rate of chip is greater than 482 max we can support,return error */ 483 if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE) 484 pspi->max_speed_hz = PCH_MAX_BAUDRATE; 485 486 dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__, 487 (pspi->mode) & (SPI_CPOL | SPI_CPHA)); 488 489 return 0; 490 } 491 492 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg) 493 { 494 495 struct spi_transfer *transfer; 496 struct pch_spi_data *data = spi_master_get_devdata(pspi->master); 497 int retval; 498 unsigned long flags; 499 500 /* validate spi message and baud rate */ 501 if (unlikely(list_empty(&pmsg->transfers) == 1)) { 502 dev_err(&pspi->dev, "%s list empty\n", __func__); 503 retval = -EINVAL; 504 goto err_out; 505 } 506 507 if (unlikely(pspi->max_speed_hz == 0)) { 508 dev_err(&pspi->dev, "%s pch_spi_transfer maxspeed=%d\n", 509 __func__, pspi->max_speed_hz); 510 retval = -EINVAL; 511 goto err_out; 512 } 513 514 dev_dbg(&pspi->dev, "%s Transfer List not empty. " 515 "Transfer Speed is set.\n", __func__); 516 517 spin_lock_irqsave(&data->lock, flags); 518 /* validate Tx/Rx buffers and Transfer length */ 519 list_for_each_entry(transfer, &pmsg->transfers, transfer_list) { 520 if (!transfer->tx_buf && !transfer->rx_buf) { 521 dev_err(&pspi->dev, 522 "%s Tx and Rx buffer NULL\n", __func__); 523 retval = -EINVAL; 524 goto err_return_spinlock; 525 } 526 527 if (!transfer->len) { 528 dev_err(&pspi->dev, "%s Transfer length invalid\n", 529 __func__); 530 retval = -EINVAL; 531 goto err_return_spinlock; 532 } 533 534 dev_dbg(&pspi->dev, "%s Tx/Rx buffer valid. Transfer length" 535 " valid\n", __func__); 536 537 /* if baud rate has been specified validate the same */ 538 if (transfer->speed_hz > PCH_MAX_BAUDRATE) 539 transfer->speed_hz = PCH_MAX_BAUDRATE; 540 541 /* if bits per word has been specified validate the same */ 542 if (transfer->bits_per_word) { 543 if ((transfer->bits_per_word != 8) 544 && (transfer->bits_per_word != 16)) { 545 retval = -EINVAL; 546 dev_err(&pspi->dev, 547 "%s Invalid bits per word\n", __func__); 548 goto err_return_spinlock; 549 } 550 } 551 } 552 spin_unlock_irqrestore(&data->lock, flags); 553 554 /* We won't process any messages if we have been asked to terminate */ 555 if (data->status == STATUS_EXITING) { 556 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__); 557 retval = -ESHUTDOWN; 558 goto err_out; 559 } 560 561 /* If suspended ,return -EINVAL */ 562 if (data->board_dat->suspend_sts) { 563 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__); 564 retval = -EINVAL; 565 goto err_out; 566 } 567 568 /* set status of message */ 569 pmsg->actual_length = 0; 570 dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status); 571 572 pmsg->status = -EINPROGRESS; 573 spin_lock_irqsave(&data->lock, flags); 574 /* add message to queue */ 575 list_add_tail(&pmsg->queue, &data->queue); 576 spin_unlock_irqrestore(&data->lock, flags); 577 578 dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__); 579 580 /* schedule work queue to run */ 581 queue_work(data->wk, &data->work); 582 dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__); 583 584 retval = 0; 585 586 err_out: 587 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval); 588 return retval; 589 err_return_spinlock: 590 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval); 591 spin_unlock_irqrestore(&data->lock, flags); 592 return retval; 593 } 594 595 static inline void pch_spi_select_chip(struct pch_spi_data *data, 596 struct spi_device *pspi) 597 { 598 if (data->current_chip != NULL) { 599 if (pspi->chip_select != data->n_curnt_chip) { 600 dev_dbg(&pspi->dev, "%s : different slave\n", __func__); 601 data->current_chip = NULL; 602 } 603 } 604 605 data->current_chip = pspi; 606 607 data->n_curnt_chip = data->current_chip->chip_select; 608 609 dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__); 610 pch_spi_setup_transfer(pspi); 611 } 612 613 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw) 614 { 615 int size; 616 u32 n_writes; 617 int j; 618 struct spi_message *pmsg, *tmp; 619 const u8 *tx_buf; 620 const u16 *tx_sbuf; 621 622 /* set baud rate if needed */ 623 if (data->cur_trans->speed_hz) { 624 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__); 625 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz); 626 } 627 628 /* set bits per word if needed */ 629 if (data->cur_trans->bits_per_word && 630 (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) { 631 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__); 632 pch_spi_set_bits_per_word(data->master, 633 data->cur_trans->bits_per_word); 634 *bpw = data->cur_trans->bits_per_word; 635 } else { 636 *bpw = data->current_msg->spi->bits_per_word; 637 } 638 639 /* reset Tx/Rx index */ 640 data->tx_index = 0; 641 data->rx_index = 0; 642 643 data->bpw_len = data->cur_trans->len / (*bpw / 8); 644 645 /* find alloc size */ 646 size = data->cur_trans->len * sizeof(*data->pkt_tx_buff); 647 648 /* allocate memory for pkt_tx_buff & pkt_rx_buffer */ 649 data->pkt_tx_buff = kzalloc(size, GFP_KERNEL); 650 if (data->pkt_tx_buff != NULL) { 651 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL); 652 if (!data->pkt_rx_buff) 653 kfree(data->pkt_tx_buff); 654 } 655 656 if (!data->pkt_rx_buff) { 657 /* flush queue and set status of all transfers to -ENOMEM */ 658 dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__); 659 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) { 660 pmsg->status = -ENOMEM; 661 662 if (pmsg->complete != 0) 663 pmsg->complete(pmsg->context); 664 665 /* delete from queue */ 666 list_del_init(&pmsg->queue); 667 } 668 return; 669 } 670 671 /* copy Tx Data */ 672 if (data->cur_trans->tx_buf != NULL) { 673 if (*bpw == 8) { 674 tx_buf = data->cur_trans->tx_buf; 675 for (j = 0; j < data->bpw_len; j++) 676 data->pkt_tx_buff[j] = *tx_buf++; 677 } else { 678 tx_sbuf = data->cur_trans->tx_buf; 679 for (j = 0; j < data->bpw_len; j++) 680 data->pkt_tx_buff[j] = *tx_sbuf++; 681 } 682 } 683 684 /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */ 685 n_writes = data->bpw_len; 686 if (n_writes > PCH_MAX_FIFO_DEPTH) 687 n_writes = PCH_MAX_FIFO_DEPTH; 688 689 dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing " 690 "0x2 to SSNXCR\n", __func__); 691 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW); 692 693 for (j = 0; j < n_writes; j++) 694 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]); 695 696 /* update tx_index */ 697 data->tx_index = j; 698 699 /* reset transfer complete flag */ 700 data->transfer_complete = false; 701 data->transfer_active = true; 702 } 703 704 static void pch_spi_nomore_transfer(struct pch_spi_data *data) 705 { 706 struct spi_message *pmsg, *tmp; 707 dev_dbg(&data->master->dev, "%s called\n", __func__); 708 /* Invoke complete callback 709 * [To the spi core..indicating end of transfer] */ 710 data->current_msg->status = 0; 711 712 if (data->current_msg->complete != 0) { 713 dev_dbg(&data->master->dev, 714 "%s:Invoking callback of SPI core\n", __func__); 715 data->current_msg->complete(data->current_msg->context); 716 } 717 718 /* update status in global variable */ 719 data->bcurrent_msg_processing = false; 720 721 dev_dbg(&data->master->dev, 722 "%s:data->bcurrent_msg_processing = false\n", __func__); 723 724 data->current_msg = NULL; 725 data->cur_trans = NULL; 726 727 /* check if we have items in list and not suspending 728 * return 1 if list empty */ 729 if ((list_empty(&data->queue) == 0) && 730 (!data->board_dat->suspend_sts) && 731 (data->status != STATUS_EXITING)) { 732 /* We have some more work to do (either there is more tranint 733 * bpw;sfer requests in the current message or there are 734 *more messages) 735 */ 736 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__); 737 queue_work(data->wk, &data->work); 738 } else if (data->board_dat->suspend_sts || 739 data->status == STATUS_EXITING) { 740 dev_dbg(&data->master->dev, 741 "%s suspend/remove initiated, flushing queue\n", 742 __func__); 743 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) { 744 pmsg->status = -EIO; 745 746 if (pmsg->complete) 747 pmsg->complete(pmsg->context); 748 749 /* delete from queue */ 750 list_del_init(&pmsg->queue); 751 } 752 } 753 } 754 755 static void pch_spi_set_ir(struct pch_spi_data *data) 756 { 757 /* enable interrupts, set threshold, enable SPI */ 758 if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH) 759 /* set receive threshold to PCH_RX_THOLD */ 760 pch_spi_setclr_reg(data->master, PCH_SPCR, 761 PCH_RX_THOLD << SPCR_RFIC_FIELD | 762 SPCR_FIE_BIT | SPCR_RFIE_BIT | 763 SPCR_ORIE_BIT | SPCR_SPE_BIT, 764 MASK_RFIC_SPCR_BITS | PCH_ALL); 765 else 766 /* set receive threshold to maximum */ 767 pch_spi_setclr_reg(data->master, PCH_SPCR, 768 PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD | 769 SPCR_FIE_BIT | SPCR_ORIE_BIT | 770 SPCR_SPE_BIT, 771 MASK_RFIC_SPCR_BITS | PCH_ALL); 772 773 /* Wait until the transfer completes; go to sleep after 774 initiating the transfer. */ 775 dev_dbg(&data->master->dev, 776 "%s:waiting for transfer to get over\n", __func__); 777 778 wait_event_interruptible(data->wait, data->transfer_complete); 779 780 /* clear all interrupts */ 781 pch_spi_writereg(data->master, PCH_SPSR, 782 pch_spi_readreg(data->master, PCH_SPSR)); 783 /* Disable interrupts and SPI transfer */ 784 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT); 785 /* clear FIFO */ 786 pch_spi_clear_fifo(data->master); 787 } 788 789 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw) 790 { 791 int j; 792 u8 *rx_buf; 793 u16 *rx_sbuf; 794 795 /* copy Rx Data */ 796 if (!data->cur_trans->rx_buf) 797 return; 798 799 if (bpw == 8) { 800 rx_buf = data->cur_trans->rx_buf; 801 for (j = 0; j < data->bpw_len; j++) 802 *rx_buf++ = data->pkt_rx_buff[j] & 0xFF; 803 } else { 804 rx_sbuf = data->cur_trans->rx_buf; 805 for (j = 0; j < data->bpw_len; j++) 806 *rx_sbuf++ = data->pkt_rx_buff[j]; 807 } 808 } 809 810 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw) 811 { 812 int j; 813 u8 *rx_buf; 814 u16 *rx_sbuf; 815 const u8 *rx_dma_buf; 816 const u16 *rx_dma_sbuf; 817 818 /* copy Rx Data */ 819 if (!data->cur_trans->rx_buf) 820 return; 821 822 if (bpw == 8) { 823 rx_buf = data->cur_trans->rx_buf; 824 rx_dma_buf = data->dma.rx_buf_virt; 825 for (j = 0; j < data->bpw_len; j++) 826 *rx_buf++ = *rx_dma_buf++ & 0xFF; 827 data->cur_trans->rx_buf = rx_buf; 828 } else { 829 rx_sbuf = data->cur_trans->rx_buf; 830 rx_dma_sbuf = data->dma.rx_buf_virt; 831 for (j = 0; j < data->bpw_len; j++) 832 *rx_sbuf++ = *rx_dma_sbuf++; 833 data->cur_trans->rx_buf = rx_sbuf; 834 } 835 } 836 837 static int pch_spi_start_transfer(struct pch_spi_data *data) 838 { 839 struct pch_spi_dma_ctrl *dma; 840 unsigned long flags; 841 int rtn; 842 843 dma = &data->dma; 844 845 spin_lock_irqsave(&data->lock, flags); 846 847 /* disable interrupts, SPI set enable */ 848 pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL); 849 850 spin_unlock_irqrestore(&data->lock, flags); 851 852 /* Wait until the transfer completes; go to sleep after 853 initiating the transfer. */ 854 dev_dbg(&data->master->dev, 855 "%s:waiting for transfer to get over\n", __func__); 856 rtn = wait_event_interruptible_timeout(data->wait, 857 data->transfer_complete, 858 msecs_to_jiffies(2 * HZ)); 859 if (!rtn) 860 dev_err(&data->master->dev, 861 "%s wait-event timeout\n", __func__); 862 863 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent, 864 DMA_FROM_DEVICE); 865 866 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent, 867 DMA_FROM_DEVICE); 868 memset(data->dma.tx_buf_virt, 0, PAGE_SIZE); 869 870 async_tx_ack(dma->desc_rx); 871 async_tx_ack(dma->desc_tx); 872 kfree(dma->sg_tx_p); 873 kfree(dma->sg_rx_p); 874 875 spin_lock_irqsave(&data->lock, flags); 876 877 /* clear fifo threshold, disable interrupts, disable SPI transfer */ 878 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, 879 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL | 880 SPCR_SPE_BIT); 881 /* clear all interrupts */ 882 pch_spi_writereg(data->master, PCH_SPSR, 883 pch_spi_readreg(data->master, PCH_SPSR)); 884 /* clear FIFO */ 885 pch_spi_clear_fifo(data->master); 886 887 spin_unlock_irqrestore(&data->lock, flags); 888 889 return rtn; 890 } 891 892 static void pch_dma_rx_complete(void *arg) 893 { 894 struct pch_spi_data *data = arg; 895 896 /* transfer is completed;inform pch_spi_process_messages_dma */ 897 data->transfer_complete = true; 898 wake_up_interruptible(&data->wait); 899 } 900 901 static bool pch_spi_filter(struct dma_chan *chan, void *slave) 902 { 903 struct pch_dma_slave *param = slave; 904 905 if ((chan->chan_id == param->chan_id) && 906 (param->dma_dev == chan->device->dev)) { 907 chan->private = param; 908 return true; 909 } else { 910 return false; 911 } 912 } 913 914 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw) 915 { 916 dma_cap_mask_t mask; 917 struct dma_chan *chan; 918 struct pci_dev *dma_dev; 919 struct pch_dma_slave *param; 920 struct pch_spi_dma_ctrl *dma; 921 unsigned int width; 922 923 if (bpw == 8) 924 width = PCH_DMA_WIDTH_1_BYTE; 925 else 926 width = PCH_DMA_WIDTH_2_BYTES; 927 928 dma = &data->dma; 929 dma_cap_zero(mask); 930 dma_cap_set(DMA_SLAVE, mask); 931 932 /* Get DMA's dev information */ 933 dma_dev = pci_get_bus_and_slot(data->board_dat->pdev->bus->number, 934 PCI_DEVFN(12, 0)); 935 936 /* Set Tx DMA */ 937 param = &dma->param_tx; 938 param->dma_dev = &dma_dev->dev; 939 param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */ 940 param->tx_reg = data->io_base_addr + PCH_SPDWR; 941 param->width = width; 942 chan = dma_request_channel(mask, pch_spi_filter, param); 943 if (!chan) { 944 dev_err(&data->master->dev, 945 "ERROR: dma_request_channel FAILS(Tx)\n"); 946 data->use_dma = 0; 947 return; 948 } 949 dma->chan_tx = chan; 950 951 /* Set Rx DMA */ 952 param = &dma->param_rx; 953 param->dma_dev = &dma_dev->dev; 954 param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */ 955 param->rx_reg = data->io_base_addr + PCH_SPDRR; 956 param->width = width; 957 chan = dma_request_channel(mask, pch_spi_filter, param); 958 if (!chan) { 959 dev_err(&data->master->dev, 960 "ERROR: dma_request_channel FAILS(Rx)\n"); 961 dma_release_channel(dma->chan_tx); 962 dma->chan_tx = NULL; 963 data->use_dma = 0; 964 return; 965 } 966 dma->chan_rx = chan; 967 } 968 969 static void pch_spi_release_dma(struct pch_spi_data *data) 970 { 971 struct pch_spi_dma_ctrl *dma; 972 973 dma = &data->dma; 974 if (dma->chan_tx) { 975 dma_release_channel(dma->chan_tx); 976 dma->chan_tx = NULL; 977 } 978 if (dma->chan_rx) { 979 dma_release_channel(dma->chan_rx); 980 dma->chan_rx = NULL; 981 } 982 return; 983 } 984 985 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw) 986 { 987 const u8 *tx_buf; 988 const u16 *tx_sbuf; 989 u8 *tx_dma_buf; 990 u16 *tx_dma_sbuf; 991 struct scatterlist *sg; 992 struct dma_async_tx_descriptor *desc_tx; 993 struct dma_async_tx_descriptor *desc_rx; 994 int num; 995 int i; 996 int size; 997 int rem; 998 int head; 999 unsigned long flags; 1000 struct pch_spi_dma_ctrl *dma; 1001 1002 dma = &data->dma; 1003 1004 /* set baud rate if needed */ 1005 if (data->cur_trans->speed_hz) { 1006 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__); 1007 spin_lock_irqsave(&data->lock, flags); 1008 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz); 1009 spin_unlock_irqrestore(&data->lock, flags); 1010 } 1011 1012 /* set bits per word if needed */ 1013 if (data->cur_trans->bits_per_word && 1014 (data->current_msg->spi->bits_per_word != 1015 data->cur_trans->bits_per_word)) { 1016 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__); 1017 spin_lock_irqsave(&data->lock, flags); 1018 pch_spi_set_bits_per_word(data->master, 1019 data->cur_trans->bits_per_word); 1020 spin_unlock_irqrestore(&data->lock, flags); 1021 *bpw = data->cur_trans->bits_per_word; 1022 } else { 1023 *bpw = data->current_msg->spi->bits_per_word; 1024 } 1025 data->bpw_len = data->cur_trans->len / (*bpw / 8); 1026 1027 if (data->bpw_len > PCH_BUF_SIZE) { 1028 data->bpw_len = PCH_BUF_SIZE; 1029 data->cur_trans->len -= PCH_BUF_SIZE; 1030 } 1031 1032 /* copy Tx Data */ 1033 if (data->cur_trans->tx_buf != NULL) { 1034 if (*bpw == 8) { 1035 tx_buf = data->cur_trans->tx_buf; 1036 tx_dma_buf = dma->tx_buf_virt; 1037 for (i = 0; i < data->bpw_len; i++) 1038 *tx_dma_buf++ = *tx_buf++; 1039 } else { 1040 tx_sbuf = data->cur_trans->tx_buf; 1041 tx_dma_sbuf = dma->tx_buf_virt; 1042 for (i = 0; i < data->bpw_len; i++) 1043 *tx_dma_sbuf++ = *tx_sbuf++; 1044 } 1045 } 1046 1047 /* Calculate Rx parameter for DMA transmitting */ 1048 if (data->bpw_len > PCH_DMA_TRANS_SIZE) { 1049 if (data->bpw_len % PCH_DMA_TRANS_SIZE) { 1050 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1; 1051 rem = data->bpw_len % PCH_DMA_TRANS_SIZE; 1052 } else { 1053 num = data->bpw_len / PCH_DMA_TRANS_SIZE; 1054 rem = PCH_DMA_TRANS_SIZE; 1055 } 1056 size = PCH_DMA_TRANS_SIZE; 1057 } else { 1058 num = 1; 1059 size = data->bpw_len; 1060 rem = data->bpw_len; 1061 } 1062 dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n", 1063 __func__, num, size, rem); 1064 spin_lock_irqsave(&data->lock, flags); 1065 1066 /* set receive fifo threshold and transmit fifo threshold */ 1067 pch_spi_setclr_reg(data->master, PCH_SPCR, 1068 ((size - 1) << SPCR_RFIC_FIELD) | 1069 (PCH_TX_THOLD << SPCR_TFIC_FIELD), 1070 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS); 1071 1072 spin_unlock_irqrestore(&data->lock, flags); 1073 1074 /* RX */ 1075 dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC); 1076 sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */ 1077 /* offset, length setting */ 1078 sg = dma->sg_rx_p; 1079 for (i = 0; i < num; i++, sg++) { 1080 if (i == (num - 2)) { 1081 sg->offset = size * i; 1082 sg->offset = sg->offset * (*bpw / 8); 1083 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem, 1084 sg->offset); 1085 sg_dma_len(sg) = rem; 1086 } else if (i == (num - 1)) { 1087 sg->offset = size * (i - 1) + rem; 1088 sg->offset = sg->offset * (*bpw / 8); 1089 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size, 1090 sg->offset); 1091 sg_dma_len(sg) = size; 1092 } else { 1093 sg->offset = size * i; 1094 sg->offset = sg->offset * (*bpw / 8); 1095 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size, 1096 sg->offset); 1097 sg_dma_len(sg) = size; 1098 } 1099 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset; 1100 } 1101 sg = dma->sg_rx_p; 1102 desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg, 1103 num, DMA_DEV_TO_MEM, 1104 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1105 if (!desc_rx) { 1106 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n", 1107 __func__); 1108 return; 1109 } 1110 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE); 1111 desc_rx->callback = pch_dma_rx_complete; 1112 desc_rx->callback_param = data; 1113 dma->nent = num; 1114 dma->desc_rx = desc_rx; 1115 1116 /* Calculate Tx parameter for DMA transmitting */ 1117 if (data->bpw_len > PCH_MAX_FIFO_DEPTH) { 1118 head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE; 1119 if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) { 1120 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1; 1121 rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head; 1122 } else { 1123 num = data->bpw_len / PCH_DMA_TRANS_SIZE; 1124 rem = data->bpw_len % PCH_DMA_TRANS_SIZE + 1125 PCH_DMA_TRANS_SIZE - head; 1126 } 1127 size = PCH_DMA_TRANS_SIZE; 1128 } else { 1129 num = 1; 1130 size = data->bpw_len; 1131 rem = data->bpw_len; 1132 head = 0; 1133 } 1134 1135 dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC); 1136 sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */ 1137 /* offset, length setting */ 1138 sg = dma->sg_tx_p; 1139 for (i = 0; i < num; i++, sg++) { 1140 if (i == 0) { 1141 sg->offset = 0; 1142 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head, 1143 sg->offset); 1144 sg_dma_len(sg) = size + head; 1145 } else if (i == (num - 1)) { 1146 sg->offset = head + size * i; 1147 sg->offset = sg->offset * (*bpw / 8); 1148 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem, 1149 sg->offset); 1150 sg_dma_len(sg) = rem; 1151 } else { 1152 sg->offset = head + size * i; 1153 sg->offset = sg->offset * (*bpw / 8); 1154 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size, 1155 sg->offset); 1156 sg_dma_len(sg) = size; 1157 } 1158 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset; 1159 } 1160 sg = dma->sg_tx_p; 1161 desc_tx = dmaengine_prep_slave_sg(dma->chan_tx, 1162 sg, num, DMA_MEM_TO_DEV, 1163 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1164 if (!desc_tx) { 1165 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n", 1166 __func__); 1167 return; 1168 } 1169 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE); 1170 desc_tx->callback = NULL; 1171 desc_tx->callback_param = data; 1172 dma->nent = num; 1173 dma->desc_tx = desc_tx; 1174 1175 dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing " 1176 "0x2 to SSNXCR\n", __func__); 1177 1178 spin_lock_irqsave(&data->lock, flags); 1179 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW); 1180 desc_rx->tx_submit(desc_rx); 1181 desc_tx->tx_submit(desc_tx); 1182 spin_unlock_irqrestore(&data->lock, flags); 1183 1184 /* reset transfer complete flag */ 1185 data->transfer_complete = false; 1186 } 1187 1188 static void pch_spi_process_messages(struct work_struct *pwork) 1189 { 1190 struct spi_message *pmsg, *tmp; 1191 struct pch_spi_data *data; 1192 int bpw; 1193 1194 data = container_of(pwork, struct pch_spi_data, work); 1195 dev_dbg(&data->master->dev, "%s data initialized\n", __func__); 1196 1197 spin_lock(&data->lock); 1198 /* check if suspend has been initiated;if yes flush queue */ 1199 if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) { 1200 dev_dbg(&data->master->dev, "%s suspend/remove initiated," 1201 "flushing queue\n", __func__); 1202 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) { 1203 pmsg->status = -EIO; 1204 1205 if (pmsg->complete != 0) { 1206 spin_unlock(&data->lock); 1207 pmsg->complete(pmsg->context); 1208 spin_lock(&data->lock); 1209 } 1210 1211 /* delete from queue */ 1212 list_del_init(&pmsg->queue); 1213 } 1214 1215 spin_unlock(&data->lock); 1216 return; 1217 } 1218 1219 data->bcurrent_msg_processing = true; 1220 dev_dbg(&data->master->dev, 1221 "%s Set data->bcurrent_msg_processing= true\n", __func__); 1222 1223 /* Get the message from the queue and delete it from there. */ 1224 data->current_msg = list_entry(data->queue.next, struct spi_message, 1225 queue); 1226 1227 list_del_init(&data->current_msg->queue); 1228 1229 data->current_msg->status = 0; 1230 1231 pch_spi_select_chip(data, data->current_msg->spi); 1232 1233 spin_unlock(&data->lock); 1234 1235 if (data->use_dma) 1236 pch_spi_request_dma(data, 1237 data->current_msg->spi->bits_per_word); 1238 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL); 1239 do { 1240 int cnt; 1241 /* If we are already processing a message get the next 1242 transfer structure from the message otherwise retrieve 1243 the 1st transfer request from the message. */ 1244 spin_lock(&data->lock); 1245 if (data->cur_trans == NULL) { 1246 data->cur_trans = 1247 list_entry(data->current_msg->transfers.next, 1248 struct spi_transfer, transfer_list); 1249 dev_dbg(&data->master->dev, "%s " 1250 ":Getting 1st transfer message\n", __func__); 1251 } else { 1252 data->cur_trans = 1253 list_entry(data->cur_trans->transfer_list.next, 1254 struct spi_transfer, transfer_list); 1255 dev_dbg(&data->master->dev, "%s " 1256 ":Getting next transfer message\n", __func__); 1257 } 1258 spin_unlock(&data->lock); 1259 1260 if (!data->cur_trans->len) 1261 goto out; 1262 cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1; 1263 data->save_total_len = data->cur_trans->len; 1264 if (data->use_dma) { 1265 int i; 1266 char *save_rx_buf = data->cur_trans->rx_buf; 1267 for (i = 0; i < cnt; i ++) { 1268 pch_spi_handle_dma(data, &bpw); 1269 if (!pch_spi_start_transfer(data)) { 1270 data->transfer_complete = true; 1271 data->current_msg->status = -EIO; 1272 data->current_msg->complete 1273 (data->current_msg->context); 1274 data->bcurrent_msg_processing = false; 1275 data->current_msg = NULL; 1276 data->cur_trans = NULL; 1277 goto out; 1278 } 1279 pch_spi_copy_rx_data_for_dma(data, bpw); 1280 } 1281 data->cur_trans->rx_buf = save_rx_buf; 1282 } else { 1283 pch_spi_set_tx(data, &bpw); 1284 pch_spi_set_ir(data); 1285 pch_spi_copy_rx_data(data, bpw); 1286 kfree(data->pkt_rx_buff); 1287 data->pkt_rx_buff = NULL; 1288 kfree(data->pkt_tx_buff); 1289 data->pkt_tx_buff = NULL; 1290 } 1291 /* increment message count */ 1292 data->cur_trans->len = data->save_total_len; 1293 data->current_msg->actual_length += data->cur_trans->len; 1294 1295 dev_dbg(&data->master->dev, 1296 "%s:data->current_msg->actual_length=%d\n", 1297 __func__, data->current_msg->actual_length); 1298 1299 /* check for delay */ 1300 if (data->cur_trans->delay_usecs) { 1301 dev_dbg(&data->master->dev, "%s:" 1302 "delay in usec=%d\n", __func__, 1303 data->cur_trans->delay_usecs); 1304 udelay(data->cur_trans->delay_usecs); 1305 } 1306 1307 spin_lock(&data->lock); 1308 1309 /* No more transfer in this message. */ 1310 if ((data->cur_trans->transfer_list.next) == 1311 &(data->current_msg->transfers)) { 1312 pch_spi_nomore_transfer(data); 1313 } 1314 1315 spin_unlock(&data->lock); 1316 1317 } while (data->cur_trans != NULL); 1318 1319 out: 1320 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH); 1321 if (data->use_dma) 1322 pch_spi_release_dma(data); 1323 } 1324 1325 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat, 1326 struct pch_spi_data *data) 1327 { 1328 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__); 1329 1330 /* free workqueue */ 1331 if (data->wk != NULL) { 1332 destroy_workqueue(data->wk); 1333 data->wk = NULL; 1334 dev_dbg(&board_dat->pdev->dev, 1335 "%s destroy_workqueue invoked successfully\n", 1336 __func__); 1337 } 1338 } 1339 1340 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat, 1341 struct pch_spi_data *data) 1342 { 1343 int retval = 0; 1344 1345 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__); 1346 1347 /* create workqueue */ 1348 data->wk = create_singlethread_workqueue(KBUILD_MODNAME); 1349 if (!data->wk) { 1350 dev_err(&board_dat->pdev->dev, 1351 "%s create_singlet hread_workqueue failed\n", __func__); 1352 retval = -EBUSY; 1353 goto err_return; 1354 } 1355 1356 /* reset PCH SPI h/w */ 1357 pch_spi_reset(data->master); 1358 dev_dbg(&board_dat->pdev->dev, 1359 "%s pch_spi_reset invoked successfully\n", __func__); 1360 1361 dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__); 1362 1363 err_return: 1364 if (retval != 0) { 1365 dev_err(&board_dat->pdev->dev, 1366 "%s FAIL:invoking pch_spi_free_resources\n", __func__); 1367 pch_spi_free_resources(board_dat, data); 1368 } 1369 1370 dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval); 1371 1372 return retval; 1373 } 1374 1375 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat, 1376 struct pch_spi_data *data) 1377 { 1378 struct pch_spi_dma_ctrl *dma; 1379 1380 dma = &data->dma; 1381 if (dma->tx_buf_dma) 1382 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE, 1383 dma->tx_buf_virt, dma->tx_buf_dma); 1384 if (dma->rx_buf_dma) 1385 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE, 1386 dma->rx_buf_virt, dma->rx_buf_dma); 1387 return; 1388 } 1389 1390 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat, 1391 struct pch_spi_data *data) 1392 { 1393 struct pch_spi_dma_ctrl *dma; 1394 1395 dma = &data->dma; 1396 /* Get Consistent memory for Tx DMA */ 1397 dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev, 1398 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL); 1399 /* Get Consistent memory for Rx DMA */ 1400 dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev, 1401 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL); 1402 } 1403 1404 static int pch_spi_pd_probe(struct platform_device *plat_dev) 1405 { 1406 int ret; 1407 struct spi_master *master; 1408 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev); 1409 struct pch_spi_data *data; 1410 1411 dev_dbg(&plat_dev->dev, "%s:debug\n", __func__); 1412 1413 master = spi_alloc_master(&board_dat->pdev->dev, 1414 sizeof(struct pch_spi_data)); 1415 if (!master) { 1416 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n", 1417 plat_dev->id); 1418 return -ENOMEM; 1419 } 1420 1421 data = spi_master_get_devdata(master); 1422 data->master = master; 1423 1424 platform_set_drvdata(plat_dev, data); 1425 1426 /* baseaddress + address offset) */ 1427 data->io_base_addr = pci_resource_start(board_dat->pdev, 1) + 1428 PCH_ADDRESS_SIZE * plat_dev->id; 1429 data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0) + 1430 PCH_ADDRESS_SIZE * plat_dev->id; 1431 if (!data->io_remap_addr) { 1432 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__); 1433 ret = -ENOMEM; 1434 goto err_pci_iomap; 1435 } 1436 1437 dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n", 1438 plat_dev->id, data->io_remap_addr); 1439 1440 /* initialize members of SPI master */ 1441 master->num_chipselect = PCH_MAX_CS; 1442 master->setup = pch_spi_setup; 1443 master->transfer = pch_spi_transfer; 1444 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST; 1445 1446 data->board_dat = board_dat; 1447 data->plat_dev = plat_dev; 1448 data->n_curnt_chip = 255; 1449 data->status = STATUS_RUNNING; 1450 data->ch = plat_dev->id; 1451 data->use_dma = use_dma; 1452 1453 INIT_LIST_HEAD(&data->queue); 1454 spin_lock_init(&data->lock); 1455 INIT_WORK(&data->work, pch_spi_process_messages); 1456 init_waitqueue_head(&data->wait); 1457 1458 ret = pch_spi_get_resources(board_dat, data); 1459 if (ret) { 1460 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret); 1461 goto err_spi_get_resources; 1462 } 1463 1464 ret = request_irq(board_dat->pdev->irq, pch_spi_handler, 1465 IRQF_SHARED, KBUILD_MODNAME, data); 1466 if (ret) { 1467 dev_err(&plat_dev->dev, 1468 "%s request_irq failed\n", __func__); 1469 goto err_request_irq; 1470 } 1471 data->irq_reg_sts = true; 1472 1473 pch_spi_set_master_mode(master); 1474 1475 ret = spi_register_master(master); 1476 if (ret != 0) { 1477 dev_err(&plat_dev->dev, 1478 "%s spi_register_master FAILED\n", __func__); 1479 goto err_spi_register_master; 1480 } 1481 1482 if (use_dma) { 1483 dev_info(&plat_dev->dev, "Use DMA for data transfers\n"); 1484 pch_alloc_dma_buf(board_dat, data); 1485 } 1486 1487 return 0; 1488 1489 err_spi_register_master: 1490 free_irq(board_dat->pdev->irq, board_dat); 1491 err_request_irq: 1492 pch_spi_free_resources(board_dat, data); 1493 err_spi_get_resources: 1494 pci_iounmap(board_dat->pdev, data->io_remap_addr); 1495 err_pci_iomap: 1496 spi_master_put(master); 1497 1498 return ret; 1499 } 1500 1501 static int pch_spi_pd_remove(struct platform_device *plat_dev) 1502 { 1503 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev); 1504 struct pch_spi_data *data = platform_get_drvdata(plat_dev); 1505 int count; 1506 unsigned long flags; 1507 1508 dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n", 1509 __func__, plat_dev->id, board_dat->pdev->irq); 1510 1511 if (use_dma) 1512 pch_free_dma_buf(board_dat, data); 1513 1514 /* check for any pending messages; no action is taken if the queue 1515 * is still full; but at least we tried. Unload anyway */ 1516 count = 500; 1517 spin_lock_irqsave(&data->lock, flags); 1518 data->status = STATUS_EXITING; 1519 while ((list_empty(&data->queue) == 0) && --count) { 1520 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n", 1521 __func__); 1522 spin_unlock_irqrestore(&data->lock, flags); 1523 msleep(PCH_SLEEP_TIME); 1524 spin_lock_irqsave(&data->lock, flags); 1525 } 1526 spin_unlock_irqrestore(&data->lock, flags); 1527 1528 pch_spi_free_resources(board_dat, data); 1529 /* disable interrupts & free IRQ */ 1530 if (data->irq_reg_sts) { 1531 /* disable interrupts */ 1532 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL); 1533 data->irq_reg_sts = false; 1534 free_irq(board_dat->pdev->irq, data); 1535 } 1536 1537 pci_iounmap(board_dat->pdev, data->io_remap_addr); 1538 spi_unregister_master(data->master); 1539 1540 return 0; 1541 } 1542 #ifdef CONFIG_PM 1543 static int pch_spi_pd_suspend(struct platform_device *pd_dev, 1544 pm_message_t state) 1545 { 1546 u8 count; 1547 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev); 1548 struct pch_spi_data *data = platform_get_drvdata(pd_dev); 1549 1550 dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__); 1551 1552 if (!board_dat) { 1553 dev_err(&pd_dev->dev, 1554 "%s pci_get_drvdata returned NULL\n", __func__); 1555 return -EFAULT; 1556 } 1557 1558 /* check if the current message is processed: 1559 Only after thats done the transfer will be suspended */ 1560 count = 255; 1561 while ((--count) > 0) { 1562 if (!(data->bcurrent_msg_processing)) 1563 break; 1564 msleep(PCH_SLEEP_TIME); 1565 } 1566 1567 /* Free IRQ */ 1568 if (data->irq_reg_sts) { 1569 /* disable all interrupts */ 1570 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL); 1571 pch_spi_reset(data->master); 1572 free_irq(board_dat->pdev->irq, data); 1573 1574 data->irq_reg_sts = false; 1575 dev_dbg(&pd_dev->dev, 1576 "%s free_irq invoked successfully.\n", __func__); 1577 } 1578 1579 return 0; 1580 } 1581 1582 static int pch_spi_pd_resume(struct platform_device *pd_dev) 1583 { 1584 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev); 1585 struct pch_spi_data *data = platform_get_drvdata(pd_dev); 1586 int retval; 1587 1588 if (!board_dat) { 1589 dev_err(&pd_dev->dev, 1590 "%s pci_get_drvdata returned NULL\n", __func__); 1591 return -EFAULT; 1592 } 1593 1594 if (!data->irq_reg_sts) { 1595 /* register IRQ */ 1596 retval = request_irq(board_dat->pdev->irq, pch_spi_handler, 1597 IRQF_SHARED, KBUILD_MODNAME, data); 1598 if (retval < 0) { 1599 dev_err(&pd_dev->dev, 1600 "%s request_irq failed\n", __func__); 1601 return retval; 1602 } 1603 1604 /* reset PCH SPI h/w */ 1605 pch_spi_reset(data->master); 1606 pch_spi_set_master_mode(data->master); 1607 data->irq_reg_sts = true; 1608 } 1609 return 0; 1610 } 1611 #else 1612 #define pch_spi_pd_suspend NULL 1613 #define pch_spi_pd_resume NULL 1614 #endif 1615 1616 static struct platform_driver pch_spi_pd_driver = { 1617 .driver = { 1618 .name = "pch-spi", 1619 .owner = THIS_MODULE, 1620 }, 1621 .probe = pch_spi_pd_probe, 1622 .remove = pch_spi_pd_remove, 1623 .suspend = pch_spi_pd_suspend, 1624 .resume = pch_spi_pd_resume 1625 }; 1626 1627 static int pch_spi_probe(struct pci_dev *pdev, 1628 const struct pci_device_id *id) 1629 { 1630 struct pch_spi_board_data *board_dat; 1631 struct platform_device *pd_dev = NULL; 1632 int retval; 1633 int i; 1634 struct pch_pd_dev_save *pd_dev_save; 1635 1636 pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL); 1637 if (!pd_dev_save) { 1638 dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__); 1639 return -ENOMEM; 1640 } 1641 1642 board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL); 1643 if (!board_dat) { 1644 dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__); 1645 retval = -ENOMEM; 1646 goto err_no_mem; 1647 } 1648 1649 retval = pci_request_regions(pdev, KBUILD_MODNAME); 1650 if (retval) { 1651 dev_err(&pdev->dev, "%s request_region failed\n", __func__); 1652 goto pci_request_regions; 1653 } 1654 1655 board_dat->pdev = pdev; 1656 board_dat->num = id->driver_data; 1657 pd_dev_save->num = id->driver_data; 1658 pd_dev_save->board_dat = board_dat; 1659 1660 retval = pci_enable_device(pdev); 1661 if (retval) { 1662 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__); 1663 goto pci_enable_device; 1664 } 1665 1666 for (i = 0; i < board_dat->num; i++) { 1667 pd_dev = platform_device_alloc("pch-spi", i); 1668 if (!pd_dev) { 1669 dev_err(&pdev->dev, "platform_device_alloc failed\n"); 1670 goto err_platform_device; 1671 } 1672 pd_dev_save->pd_save[i] = pd_dev; 1673 pd_dev->dev.parent = &pdev->dev; 1674 1675 retval = platform_device_add_data(pd_dev, board_dat, 1676 sizeof(*board_dat)); 1677 if (retval) { 1678 dev_err(&pdev->dev, 1679 "platform_device_add_data failed\n"); 1680 platform_device_put(pd_dev); 1681 goto err_platform_device; 1682 } 1683 1684 retval = platform_device_add(pd_dev); 1685 if (retval) { 1686 dev_err(&pdev->dev, "platform_device_add failed\n"); 1687 platform_device_put(pd_dev); 1688 goto err_platform_device; 1689 } 1690 } 1691 1692 pci_set_drvdata(pdev, pd_dev_save); 1693 1694 return 0; 1695 1696 err_platform_device: 1697 pci_disable_device(pdev); 1698 pci_enable_device: 1699 pci_release_regions(pdev); 1700 pci_request_regions: 1701 kfree(board_dat); 1702 err_no_mem: 1703 kfree(pd_dev_save); 1704 1705 return retval; 1706 } 1707 1708 static void pch_spi_remove(struct pci_dev *pdev) 1709 { 1710 int i; 1711 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev); 1712 1713 dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev); 1714 1715 for (i = 0; i < pd_dev_save->num; i++) 1716 platform_device_unregister(pd_dev_save->pd_save[i]); 1717 1718 pci_disable_device(pdev); 1719 pci_release_regions(pdev); 1720 kfree(pd_dev_save->board_dat); 1721 kfree(pd_dev_save); 1722 } 1723 1724 #ifdef CONFIG_PM 1725 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state) 1726 { 1727 int retval; 1728 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev); 1729 1730 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__); 1731 1732 pd_dev_save->board_dat->suspend_sts = true; 1733 1734 /* save config space */ 1735 retval = pci_save_state(pdev); 1736 if (retval == 0) { 1737 pci_enable_wake(pdev, PCI_D3hot, 0); 1738 pci_disable_device(pdev); 1739 pci_set_power_state(pdev, PCI_D3hot); 1740 } else { 1741 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__); 1742 } 1743 1744 return retval; 1745 } 1746 1747 static int pch_spi_resume(struct pci_dev *pdev) 1748 { 1749 int retval; 1750 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev); 1751 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__); 1752 1753 pci_set_power_state(pdev, PCI_D0); 1754 pci_restore_state(pdev); 1755 1756 retval = pci_enable_device(pdev); 1757 if (retval < 0) { 1758 dev_err(&pdev->dev, 1759 "%s pci_enable_device failed\n", __func__); 1760 } else { 1761 pci_enable_wake(pdev, PCI_D3hot, 0); 1762 1763 /* set suspend status to false */ 1764 pd_dev_save->board_dat->suspend_sts = false; 1765 } 1766 1767 return retval; 1768 } 1769 #else 1770 #define pch_spi_suspend NULL 1771 #define pch_spi_resume NULL 1772 1773 #endif 1774 1775 static struct pci_driver pch_spi_pcidev_driver = { 1776 .name = "pch_spi", 1777 .id_table = pch_spi_pcidev_id, 1778 .probe = pch_spi_probe, 1779 .remove = pch_spi_remove, 1780 .suspend = pch_spi_suspend, 1781 .resume = pch_spi_resume, 1782 }; 1783 1784 static int __init pch_spi_init(void) 1785 { 1786 int ret; 1787 ret = platform_driver_register(&pch_spi_pd_driver); 1788 if (ret) 1789 return ret; 1790 1791 ret = pci_register_driver(&pch_spi_pcidev_driver); 1792 if (ret) { 1793 platform_driver_unregister(&pch_spi_pd_driver); 1794 return ret; 1795 } 1796 1797 return 0; 1798 } 1799 module_init(pch_spi_init); 1800 1801 static void __exit pch_spi_exit(void) 1802 { 1803 pci_unregister_driver(&pch_spi_pcidev_driver); 1804 platform_driver_unregister(&pch_spi_pd_driver); 1805 } 1806 module_exit(pch_spi_exit); 1807 1808 module_param(use_dma, int, 0644); 1809 MODULE_PARM_DESC(use_dma, 1810 "to use DMA for data transfers pass 1 else 0; default 1"); 1811 1812 MODULE_LICENSE("GPL"); 1813 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver"); 1814