1 /* 2 * SPI bus driver for the Topcliff PCH used by Intel SoCs 3 * 4 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; version 2 of the License. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/delay.h> 17 #include <linux/pci.h> 18 #include <linux/wait.h> 19 #include <linux/spi/spi.h> 20 #include <linux/interrupt.h> 21 #include <linux/sched.h> 22 #include <linux/spi/spidev.h> 23 #include <linux/module.h> 24 #include <linux/device.h> 25 #include <linux/platform_device.h> 26 27 #include <linux/dmaengine.h> 28 #include <linux/pch_dma.h> 29 30 /* Register offsets */ 31 #define PCH_SPCR 0x00 /* SPI control register */ 32 #define PCH_SPBRR 0x04 /* SPI baud rate register */ 33 #define PCH_SPSR 0x08 /* SPI status register */ 34 #define PCH_SPDWR 0x0C /* SPI write data register */ 35 #define PCH_SPDRR 0x10 /* SPI read data register */ 36 #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */ 37 #define PCH_SRST 0x1C /* SPI reset register */ 38 #define PCH_ADDRESS_SIZE 0x20 39 40 #define PCH_SPSR_TFD 0x000007C0 41 #define PCH_SPSR_RFD 0x0000F800 42 43 #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11) 44 #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6) 45 46 #define PCH_RX_THOLD 7 47 #define PCH_RX_THOLD_MAX 15 48 49 #define PCH_TX_THOLD 2 50 51 #define PCH_MAX_BAUDRATE 5000000 52 #define PCH_MAX_FIFO_DEPTH 16 53 54 #define STATUS_RUNNING 1 55 #define STATUS_EXITING 2 56 #define PCH_SLEEP_TIME 10 57 58 #define SSN_LOW 0x02U 59 #define SSN_HIGH 0x03U 60 #define SSN_NO_CONTROL 0x00U 61 #define PCH_MAX_CS 0xFF 62 #define PCI_DEVICE_ID_GE_SPI 0x8816 63 64 #define SPCR_SPE_BIT (1 << 0) 65 #define SPCR_MSTR_BIT (1 << 1) 66 #define SPCR_LSBF_BIT (1 << 4) 67 #define SPCR_CPHA_BIT (1 << 5) 68 #define SPCR_CPOL_BIT (1 << 6) 69 #define SPCR_TFIE_BIT (1 << 8) 70 #define SPCR_RFIE_BIT (1 << 9) 71 #define SPCR_FIE_BIT (1 << 10) 72 #define SPCR_ORIE_BIT (1 << 11) 73 #define SPCR_MDFIE_BIT (1 << 12) 74 #define SPCR_FICLR_BIT (1 << 24) 75 #define SPSR_TFI_BIT (1 << 0) 76 #define SPSR_RFI_BIT (1 << 1) 77 #define SPSR_FI_BIT (1 << 2) 78 #define SPSR_ORF_BIT (1 << 3) 79 #define SPBRR_SIZE_BIT (1 << 10) 80 81 #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\ 82 SPCR_ORIE_BIT|SPCR_MDFIE_BIT) 83 84 #define SPCR_RFIC_FIELD 20 85 #define SPCR_TFIC_FIELD 16 86 87 #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1) 88 #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD) 89 #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD) 90 91 #define PCH_CLOCK_HZ 50000000 92 #define PCH_MAX_SPBR 1023 93 94 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */ 95 #define PCI_VENDOR_ID_ROHM 0x10DB 96 #define PCI_DEVICE_ID_ML7213_SPI 0x802c 97 #define PCI_DEVICE_ID_ML7223_SPI 0x800F 98 #define PCI_DEVICE_ID_ML7831_SPI 0x8816 99 100 /* 101 * Set the number of SPI instance max 102 * Intel EG20T PCH : 1ch 103 * LAPIS Semiconductor ML7213 IOH : 2ch 104 * LAPIS Semiconductor ML7223 IOH : 1ch 105 * LAPIS Semiconductor ML7831 IOH : 1ch 106 */ 107 #define PCH_SPI_MAX_DEV 2 108 109 #define PCH_BUF_SIZE 4096 110 #define PCH_DMA_TRANS_SIZE 12 111 112 static int use_dma = 1; 113 114 struct pch_spi_dma_ctrl { 115 struct dma_async_tx_descriptor *desc_tx; 116 struct dma_async_tx_descriptor *desc_rx; 117 struct pch_dma_slave param_tx; 118 struct pch_dma_slave param_rx; 119 struct dma_chan *chan_tx; 120 struct dma_chan *chan_rx; 121 struct scatterlist *sg_tx_p; 122 struct scatterlist *sg_rx_p; 123 struct scatterlist sg_tx; 124 struct scatterlist sg_rx; 125 int nent; 126 void *tx_buf_virt; 127 void *rx_buf_virt; 128 dma_addr_t tx_buf_dma; 129 dma_addr_t rx_buf_dma; 130 }; 131 /** 132 * struct pch_spi_data - Holds the SPI channel specific details 133 * @io_remap_addr: The remapped PCI base address 134 * @master: Pointer to the SPI master structure 135 * @work: Reference to work queue handler 136 * @wk: Workqueue for carrying out execution of the 137 * requests 138 * @wait: Wait queue for waking up upon receiving an 139 * interrupt. 140 * @transfer_complete: Status of SPI Transfer 141 * @bcurrent_msg_processing: Status flag for message processing 142 * @lock: Lock for protecting this structure 143 * @queue: SPI Message queue 144 * @status: Status of the SPI driver 145 * @bpw_len: Length of data to be transferred in bits per 146 * word 147 * @transfer_active: Flag showing active transfer 148 * @tx_index: Transmit data count; for bookkeeping during 149 * transfer 150 * @rx_index: Receive data count; for bookkeeping during 151 * transfer 152 * @tx_buff: Buffer for data to be transmitted 153 * @rx_index: Buffer for Received data 154 * @n_curnt_chip: The chip number that this SPI driver currently 155 * operates on 156 * @current_chip: Reference to the current chip that this SPI 157 * driver currently operates on 158 * @current_msg: The current message that this SPI driver is 159 * handling 160 * @cur_trans: The current transfer that this SPI driver is 161 * handling 162 * @board_dat: Reference to the SPI device data structure 163 * @plat_dev: platform_device structure 164 * @ch: SPI channel number 165 * @irq_reg_sts: Status of IRQ registration 166 */ 167 struct pch_spi_data { 168 void __iomem *io_remap_addr; 169 unsigned long io_base_addr; 170 struct spi_master *master; 171 struct work_struct work; 172 struct workqueue_struct *wk; 173 wait_queue_head_t wait; 174 u8 transfer_complete; 175 u8 bcurrent_msg_processing; 176 spinlock_t lock; 177 struct list_head queue; 178 u8 status; 179 u32 bpw_len; 180 u8 transfer_active; 181 u32 tx_index; 182 u32 rx_index; 183 u16 *pkt_tx_buff; 184 u16 *pkt_rx_buff; 185 u8 n_curnt_chip; 186 struct spi_device *current_chip; 187 struct spi_message *current_msg; 188 struct spi_transfer *cur_trans; 189 struct pch_spi_board_data *board_dat; 190 struct platform_device *plat_dev; 191 int ch; 192 struct pch_spi_dma_ctrl dma; 193 int use_dma; 194 u8 irq_reg_sts; 195 int save_total_len; 196 }; 197 198 /** 199 * struct pch_spi_board_data - Holds the SPI device specific details 200 * @pdev: Pointer to the PCI device 201 * @suspend_sts: Status of suspend 202 * @num: The number of SPI device instance 203 */ 204 struct pch_spi_board_data { 205 struct pci_dev *pdev; 206 u8 suspend_sts; 207 int num; 208 }; 209 210 struct pch_pd_dev_save { 211 int num; 212 struct platform_device *pd_save[PCH_SPI_MAX_DEV]; 213 struct pch_spi_board_data *board_dat; 214 }; 215 216 static const struct pci_device_id pch_spi_pcidev_id[] = { 217 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, }, 218 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, }, 219 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, }, 220 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, }, 221 { } 222 }; 223 224 /** 225 * pch_spi_writereg() - Performs register writes 226 * @master: Pointer to struct spi_master. 227 * @idx: Register offset. 228 * @val: Value to be written to register. 229 */ 230 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val) 231 { 232 struct pch_spi_data *data = spi_master_get_devdata(master); 233 iowrite32(val, (data->io_remap_addr + idx)); 234 } 235 236 /** 237 * pch_spi_readreg() - Performs register reads 238 * @master: Pointer to struct spi_master. 239 * @idx: Register offset. 240 */ 241 static inline u32 pch_spi_readreg(struct spi_master *master, int idx) 242 { 243 struct pch_spi_data *data = spi_master_get_devdata(master); 244 return ioread32(data->io_remap_addr + idx); 245 } 246 247 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx, 248 u32 set, u32 clr) 249 { 250 u32 tmp = pch_spi_readreg(master, idx); 251 tmp = (tmp & ~clr) | set; 252 pch_spi_writereg(master, idx, tmp); 253 } 254 255 static void pch_spi_set_master_mode(struct spi_master *master) 256 { 257 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0); 258 } 259 260 /** 261 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs 262 * @master: Pointer to struct spi_master. 263 */ 264 static void pch_spi_clear_fifo(struct spi_master *master) 265 { 266 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0); 267 pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT); 268 } 269 270 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val, 271 void __iomem *io_remap_addr) 272 { 273 u32 n_read, tx_index, rx_index, bpw_len; 274 u16 *pkt_rx_buffer, *pkt_tx_buff; 275 int read_cnt; 276 u32 reg_spcr_val; 277 void __iomem *spsr; 278 void __iomem *spdrr; 279 void __iomem *spdwr; 280 281 spsr = io_remap_addr + PCH_SPSR; 282 iowrite32(reg_spsr_val, spsr); 283 284 if (data->transfer_active) { 285 rx_index = data->rx_index; 286 tx_index = data->tx_index; 287 bpw_len = data->bpw_len; 288 pkt_rx_buffer = data->pkt_rx_buff; 289 pkt_tx_buff = data->pkt_tx_buff; 290 291 spdrr = io_remap_addr + PCH_SPDRR; 292 spdwr = io_remap_addr + PCH_SPDWR; 293 294 n_read = PCH_READABLE(reg_spsr_val); 295 296 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) { 297 pkt_rx_buffer[rx_index++] = ioread32(spdrr); 298 if (tx_index < bpw_len) 299 iowrite32(pkt_tx_buff[tx_index++], spdwr); 300 } 301 302 /* disable RFI if not needed */ 303 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) { 304 reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR); 305 reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */ 306 307 /* reset rx threshold */ 308 reg_spcr_val &= ~MASK_RFIC_SPCR_BITS; 309 reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD); 310 311 iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR)); 312 } 313 314 /* update counts */ 315 data->tx_index = tx_index; 316 data->rx_index = rx_index; 317 318 /* if transfer complete interrupt */ 319 if (reg_spsr_val & SPSR_FI_BIT) { 320 if ((tx_index == bpw_len) && (rx_index == tx_index)) { 321 /* disable interrupts */ 322 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, 323 PCH_ALL); 324 325 /* transfer is completed; 326 inform pch_spi_process_messages */ 327 data->transfer_complete = true; 328 data->transfer_active = false; 329 wake_up(&data->wait); 330 } else { 331 dev_vdbg(&data->master->dev, 332 "%s : Transfer is not completed", 333 __func__); 334 } 335 } 336 } 337 } 338 339 /** 340 * pch_spi_handler() - Interrupt handler 341 * @irq: The interrupt number. 342 * @dev_id: Pointer to struct pch_spi_board_data. 343 */ 344 static irqreturn_t pch_spi_handler(int irq, void *dev_id) 345 { 346 u32 reg_spsr_val; 347 void __iomem *spsr; 348 void __iomem *io_remap_addr; 349 irqreturn_t ret = IRQ_NONE; 350 struct pch_spi_data *data = dev_id; 351 struct pch_spi_board_data *board_dat = data->board_dat; 352 353 if (board_dat->suspend_sts) { 354 dev_dbg(&board_dat->pdev->dev, 355 "%s returning due to suspend\n", __func__); 356 return IRQ_NONE; 357 } 358 359 io_remap_addr = data->io_remap_addr; 360 spsr = io_remap_addr + PCH_SPSR; 361 362 reg_spsr_val = ioread32(spsr); 363 364 if (reg_spsr_val & SPSR_ORF_BIT) { 365 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__); 366 if (data->current_msg->complete) { 367 data->transfer_complete = true; 368 data->current_msg->status = -EIO; 369 data->current_msg->complete(data->current_msg->context); 370 data->bcurrent_msg_processing = false; 371 data->current_msg = NULL; 372 data->cur_trans = NULL; 373 } 374 } 375 376 if (data->use_dma) 377 return IRQ_NONE; 378 379 /* Check if the interrupt is for SPI device */ 380 if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) { 381 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr); 382 ret = IRQ_HANDLED; 383 } 384 385 dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n", 386 __func__, ret); 387 388 return ret; 389 } 390 391 /** 392 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR 393 * @master: Pointer to struct spi_master. 394 * @speed_hz: Baud rate. 395 */ 396 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz) 397 { 398 u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2); 399 400 /* if baud rate is less than we can support limit it */ 401 if (n_spbr > PCH_MAX_SPBR) 402 n_spbr = PCH_MAX_SPBR; 403 404 pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS); 405 } 406 407 /** 408 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR 409 * @master: Pointer to struct spi_master. 410 * @bits_per_word: Bits per word for SPI transfer. 411 */ 412 static void pch_spi_set_bits_per_word(struct spi_master *master, 413 u8 bits_per_word) 414 { 415 if (bits_per_word == 8) 416 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT); 417 else 418 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0); 419 } 420 421 /** 422 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer 423 * @spi: Pointer to struct spi_device. 424 */ 425 static void pch_spi_setup_transfer(struct spi_device *spi) 426 { 427 u32 flags = 0; 428 429 dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n", 430 __func__, pch_spi_readreg(spi->master, PCH_SPBRR), 431 spi->max_speed_hz); 432 pch_spi_set_baud_rate(spi->master, spi->max_speed_hz); 433 434 /* set bits per word */ 435 pch_spi_set_bits_per_word(spi->master, spi->bits_per_word); 436 437 if (!(spi->mode & SPI_LSB_FIRST)) 438 flags |= SPCR_LSBF_BIT; 439 if (spi->mode & SPI_CPOL) 440 flags |= SPCR_CPOL_BIT; 441 if (spi->mode & SPI_CPHA) 442 flags |= SPCR_CPHA_BIT; 443 pch_spi_setclr_reg(spi->master, PCH_SPCR, flags, 444 (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT)); 445 446 /* Clear the FIFO by toggling FICLR to 1 and back to 0 */ 447 pch_spi_clear_fifo(spi->master); 448 } 449 450 /** 451 * pch_spi_reset() - Clears SPI registers 452 * @master: Pointer to struct spi_master. 453 */ 454 static void pch_spi_reset(struct spi_master *master) 455 { 456 /* write 1 to reset SPI */ 457 pch_spi_writereg(master, PCH_SRST, 0x1); 458 459 /* clear reset */ 460 pch_spi_writereg(master, PCH_SRST, 0x0); 461 } 462 463 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg) 464 { 465 466 struct spi_transfer *transfer; 467 struct pch_spi_data *data = spi_master_get_devdata(pspi->master); 468 int retval; 469 unsigned long flags; 470 471 spin_lock_irqsave(&data->lock, flags); 472 /* validate Tx/Rx buffers and Transfer length */ 473 list_for_each_entry(transfer, &pmsg->transfers, transfer_list) { 474 if (!transfer->tx_buf && !transfer->rx_buf) { 475 dev_err(&pspi->dev, 476 "%s Tx and Rx buffer NULL\n", __func__); 477 retval = -EINVAL; 478 goto err_return_spinlock; 479 } 480 481 if (!transfer->len) { 482 dev_err(&pspi->dev, "%s Transfer length invalid\n", 483 __func__); 484 retval = -EINVAL; 485 goto err_return_spinlock; 486 } 487 488 dev_dbg(&pspi->dev, 489 "%s Tx/Rx buffer valid. Transfer length valid\n", 490 __func__); 491 } 492 spin_unlock_irqrestore(&data->lock, flags); 493 494 /* We won't process any messages if we have been asked to terminate */ 495 if (data->status == STATUS_EXITING) { 496 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__); 497 retval = -ESHUTDOWN; 498 goto err_out; 499 } 500 501 /* If suspended ,return -EINVAL */ 502 if (data->board_dat->suspend_sts) { 503 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__); 504 retval = -EINVAL; 505 goto err_out; 506 } 507 508 /* set status of message */ 509 pmsg->actual_length = 0; 510 dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status); 511 512 pmsg->status = -EINPROGRESS; 513 spin_lock_irqsave(&data->lock, flags); 514 /* add message to queue */ 515 list_add_tail(&pmsg->queue, &data->queue); 516 spin_unlock_irqrestore(&data->lock, flags); 517 518 dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__); 519 520 /* schedule work queue to run */ 521 queue_work(data->wk, &data->work); 522 dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__); 523 524 retval = 0; 525 526 err_out: 527 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval); 528 return retval; 529 err_return_spinlock: 530 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval); 531 spin_unlock_irqrestore(&data->lock, flags); 532 return retval; 533 } 534 535 static inline void pch_spi_select_chip(struct pch_spi_data *data, 536 struct spi_device *pspi) 537 { 538 if (data->current_chip != NULL) { 539 if (pspi->chip_select != data->n_curnt_chip) { 540 dev_dbg(&pspi->dev, "%s : different slave\n", __func__); 541 data->current_chip = NULL; 542 } 543 } 544 545 data->current_chip = pspi; 546 547 data->n_curnt_chip = data->current_chip->chip_select; 548 549 dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__); 550 pch_spi_setup_transfer(pspi); 551 } 552 553 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw) 554 { 555 int size; 556 u32 n_writes; 557 int j; 558 struct spi_message *pmsg, *tmp; 559 const u8 *tx_buf; 560 const u16 *tx_sbuf; 561 562 /* set baud rate if needed */ 563 if (data->cur_trans->speed_hz) { 564 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__); 565 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz); 566 } 567 568 /* set bits per word if needed */ 569 if (data->cur_trans->bits_per_word && 570 (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) { 571 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__); 572 pch_spi_set_bits_per_word(data->master, 573 data->cur_trans->bits_per_word); 574 *bpw = data->cur_trans->bits_per_word; 575 } else { 576 *bpw = data->current_msg->spi->bits_per_word; 577 } 578 579 /* reset Tx/Rx index */ 580 data->tx_index = 0; 581 data->rx_index = 0; 582 583 data->bpw_len = data->cur_trans->len / (*bpw / 8); 584 585 /* find alloc size */ 586 size = data->cur_trans->len * sizeof(*data->pkt_tx_buff); 587 588 /* allocate memory for pkt_tx_buff & pkt_rx_buffer */ 589 data->pkt_tx_buff = kzalloc(size, GFP_KERNEL); 590 if (data->pkt_tx_buff != NULL) { 591 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL); 592 if (!data->pkt_rx_buff) 593 kfree(data->pkt_tx_buff); 594 } 595 596 if (!data->pkt_rx_buff) { 597 /* flush queue and set status of all transfers to -ENOMEM */ 598 dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__); 599 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) { 600 pmsg->status = -ENOMEM; 601 602 if (pmsg->complete) 603 pmsg->complete(pmsg->context); 604 605 /* delete from queue */ 606 list_del_init(&pmsg->queue); 607 } 608 return; 609 } 610 611 /* copy Tx Data */ 612 if (data->cur_trans->tx_buf != NULL) { 613 if (*bpw == 8) { 614 tx_buf = data->cur_trans->tx_buf; 615 for (j = 0; j < data->bpw_len; j++) 616 data->pkt_tx_buff[j] = *tx_buf++; 617 } else { 618 tx_sbuf = data->cur_trans->tx_buf; 619 for (j = 0; j < data->bpw_len; j++) 620 data->pkt_tx_buff[j] = *tx_sbuf++; 621 } 622 } 623 624 /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */ 625 n_writes = data->bpw_len; 626 if (n_writes > PCH_MAX_FIFO_DEPTH) 627 n_writes = PCH_MAX_FIFO_DEPTH; 628 629 dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing " 630 "0x2 to SSNXCR\n", __func__); 631 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW); 632 633 for (j = 0; j < n_writes; j++) 634 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]); 635 636 /* update tx_index */ 637 data->tx_index = j; 638 639 /* reset transfer complete flag */ 640 data->transfer_complete = false; 641 data->transfer_active = true; 642 } 643 644 static void pch_spi_nomore_transfer(struct pch_spi_data *data) 645 { 646 struct spi_message *pmsg, *tmp; 647 dev_dbg(&data->master->dev, "%s called\n", __func__); 648 /* Invoke complete callback 649 * [To the spi core..indicating end of transfer] */ 650 data->current_msg->status = 0; 651 652 if (data->current_msg->complete) { 653 dev_dbg(&data->master->dev, 654 "%s:Invoking callback of SPI core\n", __func__); 655 data->current_msg->complete(data->current_msg->context); 656 } 657 658 /* update status in global variable */ 659 data->bcurrent_msg_processing = false; 660 661 dev_dbg(&data->master->dev, 662 "%s:data->bcurrent_msg_processing = false\n", __func__); 663 664 data->current_msg = NULL; 665 data->cur_trans = NULL; 666 667 /* check if we have items in list and not suspending 668 * return 1 if list empty */ 669 if ((list_empty(&data->queue) == 0) && 670 (!data->board_dat->suspend_sts) && 671 (data->status != STATUS_EXITING)) { 672 /* We have some more work to do (either there is more tranint 673 * bpw;sfer requests in the current message or there are 674 *more messages) 675 */ 676 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__); 677 queue_work(data->wk, &data->work); 678 } else if (data->board_dat->suspend_sts || 679 data->status == STATUS_EXITING) { 680 dev_dbg(&data->master->dev, 681 "%s suspend/remove initiated, flushing queue\n", 682 __func__); 683 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) { 684 pmsg->status = -EIO; 685 686 if (pmsg->complete) 687 pmsg->complete(pmsg->context); 688 689 /* delete from queue */ 690 list_del_init(&pmsg->queue); 691 } 692 } 693 } 694 695 static void pch_spi_set_ir(struct pch_spi_data *data) 696 { 697 /* enable interrupts, set threshold, enable SPI */ 698 if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH) 699 /* set receive threshold to PCH_RX_THOLD */ 700 pch_spi_setclr_reg(data->master, PCH_SPCR, 701 PCH_RX_THOLD << SPCR_RFIC_FIELD | 702 SPCR_FIE_BIT | SPCR_RFIE_BIT | 703 SPCR_ORIE_BIT | SPCR_SPE_BIT, 704 MASK_RFIC_SPCR_BITS | PCH_ALL); 705 else 706 /* set receive threshold to maximum */ 707 pch_spi_setclr_reg(data->master, PCH_SPCR, 708 PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD | 709 SPCR_FIE_BIT | SPCR_ORIE_BIT | 710 SPCR_SPE_BIT, 711 MASK_RFIC_SPCR_BITS | PCH_ALL); 712 713 /* Wait until the transfer completes; go to sleep after 714 initiating the transfer. */ 715 dev_dbg(&data->master->dev, 716 "%s:waiting for transfer to get over\n", __func__); 717 718 wait_event_interruptible(data->wait, data->transfer_complete); 719 720 /* clear all interrupts */ 721 pch_spi_writereg(data->master, PCH_SPSR, 722 pch_spi_readreg(data->master, PCH_SPSR)); 723 /* Disable interrupts and SPI transfer */ 724 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT); 725 /* clear FIFO */ 726 pch_spi_clear_fifo(data->master); 727 } 728 729 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw) 730 { 731 int j; 732 u8 *rx_buf; 733 u16 *rx_sbuf; 734 735 /* copy Rx Data */ 736 if (!data->cur_trans->rx_buf) 737 return; 738 739 if (bpw == 8) { 740 rx_buf = data->cur_trans->rx_buf; 741 for (j = 0; j < data->bpw_len; j++) 742 *rx_buf++ = data->pkt_rx_buff[j] & 0xFF; 743 } else { 744 rx_sbuf = data->cur_trans->rx_buf; 745 for (j = 0; j < data->bpw_len; j++) 746 *rx_sbuf++ = data->pkt_rx_buff[j]; 747 } 748 } 749 750 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw) 751 { 752 int j; 753 u8 *rx_buf; 754 u16 *rx_sbuf; 755 const u8 *rx_dma_buf; 756 const u16 *rx_dma_sbuf; 757 758 /* copy Rx Data */ 759 if (!data->cur_trans->rx_buf) 760 return; 761 762 if (bpw == 8) { 763 rx_buf = data->cur_trans->rx_buf; 764 rx_dma_buf = data->dma.rx_buf_virt; 765 for (j = 0; j < data->bpw_len; j++) 766 *rx_buf++ = *rx_dma_buf++ & 0xFF; 767 data->cur_trans->rx_buf = rx_buf; 768 } else { 769 rx_sbuf = data->cur_trans->rx_buf; 770 rx_dma_sbuf = data->dma.rx_buf_virt; 771 for (j = 0; j < data->bpw_len; j++) 772 *rx_sbuf++ = *rx_dma_sbuf++; 773 data->cur_trans->rx_buf = rx_sbuf; 774 } 775 } 776 777 static int pch_spi_start_transfer(struct pch_spi_data *data) 778 { 779 struct pch_spi_dma_ctrl *dma; 780 unsigned long flags; 781 int rtn; 782 783 dma = &data->dma; 784 785 spin_lock_irqsave(&data->lock, flags); 786 787 /* disable interrupts, SPI set enable */ 788 pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL); 789 790 spin_unlock_irqrestore(&data->lock, flags); 791 792 /* Wait until the transfer completes; go to sleep after 793 initiating the transfer. */ 794 dev_dbg(&data->master->dev, 795 "%s:waiting for transfer to get over\n", __func__); 796 rtn = wait_event_interruptible_timeout(data->wait, 797 data->transfer_complete, 798 msecs_to_jiffies(2 * HZ)); 799 if (!rtn) 800 dev_err(&data->master->dev, 801 "%s wait-event timeout\n", __func__); 802 803 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent, 804 DMA_FROM_DEVICE); 805 806 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent, 807 DMA_FROM_DEVICE); 808 memset(data->dma.tx_buf_virt, 0, PAGE_SIZE); 809 810 async_tx_ack(dma->desc_rx); 811 async_tx_ack(dma->desc_tx); 812 kfree(dma->sg_tx_p); 813 kfree(dma->sg_rx_p); 814 815 spin_lock_irqsave(&data->lock, flags); 816 817 /* clear fifo threshold, disable interrupts, disable SPI transfer */ 818 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, 819 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL | 820 SPCR_SPE_BIT); 821 /* clear all interrupts */ 822 pch_spi_writereg(data->master, PCH_SPSR, 823 pch_spi_readreg(data->master, PCH_SPSR)); 824 /* clear FIFO */ 825 pch_spi_clear_fifo(data->master); 826 827 spin_unlock_irqrestore(&data->lock, flags); 828 829 return rtn; 830 } 831 832 static void pch_dma_rx_complete(void *arg) 833 { 834 struct pch_spi_data *data = arg; 835 836 /* transfer is completed;inform pch_spi_process_messages_dma */ 837 data->transfer_complete = true; 838 wake_up_interruptible(&data->wait); 839 } 840 841 static bool pch_spi_filter(struct dma_chan *chan, void *slave) 842 { 843 struct pch_dma_slave *param = slave; 844 845 if ((chan->chan_id == param->chan_id) && 846 (param->dma_dev == chan->device->dev)) { 847 chan->private = param; 848 return true; 849 } else { 850 return false; 851 } 852 } 853 854 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw) 855 { 856 dma_cap_mask_t mask; 857 struct dma_chan *chan; 858 struct pci_dev *dma_dev; 859 struct pch_dma_slave *param; 860 struct pch_spi_dma_ctrl *dma; 861 unsigned int width; 862 863 if (bpw == 8) 864 width = PCH_DMA_WIDTH_1_BYTE; 865 else 866 width = PCH_DMA_WIDTH_2_BYTES; 867 868 dma = &data->dma; 869 dma_cap_zero(mask); 870 dma_cap_set(DMA_SLAVE, mask); 871 872 /* Get DMA's dev information */ 873 dma_dev = pci_get_slot(data->board_dat->pdev->bus, 874 PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0)); 875 876 /* Set Tx DMA */ 877 param = &dma->param_tx; 878 param->dma_dev = &dma_dev->dev; 879 param->chan_id = data->ch * 2; /* Tx = 0, 2 */; 880 param->tx_reg = data->io_base_addr + PCH_SPDWR; 881 param->width = width; 882 chan = dma_request_channel(mask, pch_spi_filter, param); 883 if (!chan) { 884 dev_err(&data->master->dev, 885 "ERROR: dma_request_channel FAILS(Tx)\n"); 886 data->use_dma = 0; 887 return; 888 } 889 dma->chan_tx = chan; 890 891 /* Set Rx DMA */ 892 param = &dma->param_rx; 893 param->dma_dev = &dma_dev->dev; 894 param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */; 895 param->rx_reg = data->io_base_addr + PCH_SPDRR; 896 param->width = width; 897 chan = dma_request_channel(mask, pch_spi_filter, param); 898 if (!chan) { 899 dev_err(&data->master->dev, 900 "ERROR: dma_request_channel FAILS(Rx)\n"); 901 dma_release_channel(dma->chan_tx); 902 dma->chan_tx = NULL; 903 data->use_dma = 0; 904 return; 905 } 906 dma->chan_rx = chan; 907 } 908 909 static void pch_spi_release_dma(struct pch_spi_data *data) 910 { 911 struct pch_spi_dma_ctrl *dma; 912 913 dma = &data->dma; 914 if (dma->chan_tx) { 915 dma_release_channel(dma->chan_tx); 916 dma->chan_tx = NULL; 917 } 918 if (dma->chan_rx) { 919 dma_release_channel(dma->chan_rx); 920 dma->chan_rx = NULL; 921 } 922 return; 923 } 924 925 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw) 926 { 927 const u8 *tx_buf; 928 const u16 *tx_sbuf; 929 u8 *tx_dma_buf; 930 u16 *tx_dma_sbuf; 931 struct scatterlist *sg; 932 struct dma_async_tx_descriptor *desc_tx; 933 struct dma_async_tx_descriptor *desc_rx; 934 int num; 935 int i; 936 int size; 937 int rem; 938 int head; 939 unsigned long flags; 940 struct pch_spi_dma_ctrl *dma; 941 942 dma = &data->dma; 943 944 /* set baud rate if needed */ 945 if (data->cur_trans->speed_hz) { 946 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__); 947 spin_lock_irqsave(&data->lock, flags); 948 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz); 949 spin_unlock_irqrestore(&data->lock, flags); 950 } 951 952 /* set bits per word if needed */ 953 if (data->cur_trans->bits_per_word && 954 (data->current_msg->spi->bits_per_word != 955 data->cur_trans->bits_per_word)) { 956 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__); 957 spin_lock_irqsave(&data->lock, flags); 958 pch_spi_set_bits_per_word(data->master, 959 data->cur_trans->bits_per_word); 960 spin_unlock_irqrestore(&data->lock, flags); 961 *bpw = data->cur_trans->bits_per_word; 962 } else { 963 *bpw = data->current_msg->spi->bits_per_word; 964 } 965 data->bpw_len = data->cur_trans->len / (*bpw / 8); 966 967 if (data->bpw_len > PCH_BUF_SIZE) { 968 data->bpw_len = PCH_BUF_SIZE; 969 data->cur_trans->len -= PCH_BUF_SIZE; 970 } 971 972 /* copy Tx Data */ 973 if (data->cur_trans->tx_buf != NULL) { 974 if (*bpw == 8) { 975 tx_buf = data->cur_trans->tx_buf; 976 tx_dma_buf = dma->tx_buf_virt; 977 for (i = 0; i < data->bpw_len; i++) 978 *tx_dma_buf++ = *tx_buf++; 979 } else { 980 tx_sbuf = data->cur_trans->tx_buf; 981 tx_dma_sbuf = dma->tx_buf_virt; 982 for (i = 0; i < data->bpw_len; i++) 983 *tx_dma_sbuf++ = *tx_sbuf++; 984 } 985 } 986 987 /* Calculate Rx parameter for DMA transmitting */ 988 if (data->bpw_len > PCH_DMA_TRANS_SIZE) { 989 if (data->bpw_len % PCH_DMA_TRANS_SIZE) { 990 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1; 991 rem = data->bpw_len % PCH_DMA_TRANS_SIZE; 992 } else { 993 num = data->bpw_len / PCH_DMA_TRANS_SIZE; 994 rem = PCH_DMA_TRANS_SIZE; 995 } 996 size = PCH_DMA_TRANS_SIZE; 997 } else { 998 num = 1; 999 size = data->bpw_len; 1000 rem = data->bpw_len; 1001 } 1002 dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n", 1003 __func__, num, size, rem); 1004 spin_lock_irqsave(&data->lock, flags); 1005 1006 /* set receive fifo threshold and transmit fifo threshold */ 1007 pch_spi_setclr_reg(data->master, PCH_SPCR, 1008 ((size - 1) << SPCR_RFIC_FIELD) | 1009 (PCH_TX_THOLD << SPCR_TFIC_FIELD), 1010 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS); 1011 1012 spin_unlock_irqrestore(&data->lock, flags); 1013 1014 /* RX */ 1015 dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC); 1016 sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */ 1017 /* offset, length setting */ 1018 sg = dma->sg_rx_p; 1019 for (i = 0; i < num; i++, sg++) { 1020 if (i == (num - 2)) { 1021 sg->offset = size * i; 1022 sg->offset = sg->offset * (*bpw / 8); 1023 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem, 1024 sg->offset); 1025 sg_dma_len(sg) = rem; 1026 } else if (i == (num - 1)) { 1027 sg->offset = size * (i - 1) + rem; 1028 sg->offset = sg->offset * (*bpw / 8); 1029 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size, 1030 sg->offset); 1031 sg_dma_len(sg) = size; 1032 } else { 1033 sg->offset = size * i; 1034 sg->offset = sg->offset * (*bpw / 8); 1035 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size, 1036 sg->offset); 1037 sg_dma_len(sg) = size; 1038 } 1039 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset; 1040 } 1041 sg = dma->sg_rx_p; 1042 desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg, 1043 num, DMA_DEV_TO_MEM, 1044 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1045 if (!desc_rx) { 1046 dev_err(&data->master->dev, 1047 "%s:dmaengine_prep_slave_sg Failed\n", __func__); 1048 return; 1049 } 1050 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE); 1051 desc_rx->callback = pch_dma_rx_complete; 1052 desc_rx->callback_param = data; 1053 dma->nent = num; 1054 dma->desc_rx = desc_rx; 1055 1056 /* Calculate Tx parameter for DMA transmitting */ 1057 if (data->bpw_len > PCH_MAX_FIFO_DEPTH) { 1058 head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE; 1059 if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) { 1060 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1; 1061 rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head; 1062 } else { 1063 num = data->bpw_len / PCH_DMA_TRANS_SIZE; 1064 rem = data->bpw_len % PCH_DMA_TRANS_SIZE + 1065 PCH_DMA_TRANS_SIZE - head; 1066 } 1067 size = PCH_DMA_TRANS_SIZE; 1068 } else { 1069 num = 1; 1070 size = data->bpw_len; 1071 rem = data->bpw_len; 1072 head = 0; 1073 } 1074 1075 dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC); 1076 sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */ 1077 /* offset, length setting */ 1078 sg = dma->sg_tx_p; 1079 for (i = 0; i < num; i++, sg++) { 1080 if (i == 0) { 1081 sg->offset = 0; 1082 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head, 1083 sg->offset); 1084 sg_dma_len(sg) = size + head; 1085 } else if (i == (num - 1)) { 1086 sg->offset = head + size * i; 1087 sg->offset = sg->offset * (*bpw / 8); 1088 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem, 1089 sg->offset); 1090 sg_dma_len(sg) = rem; 1091 } else { 1092 sg->offset = head + size * i; 1093 sg->offset = sg->offset * (*bpw / 8); 1094 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size, 1095 sg->offset); 1096 sg_dma_len(sg) = size; 1097 } 1098 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset; 1099 } 1100 sg = dma->sg_tx_p; 1101 desc_tx = dmaengine_prep_slave_sg(dma->chan_tx, 1102 sg, num, DMA_MEM_TO_DEV, 1103 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1104 if (!desc_tx) { 1105 dev_err(&data->master->dev, 1106 "%s:dmaengine_prep_slave_sg Failed\n", __func__); 1107 return; 1108 } 1109 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE); 1110 desc_tx->callback = NULL; 1111 desc_tx->callback_param = data; 1112 dma->nent = num; 1113 dma->desc_tx = desc_tx; 1114 1115 dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__); 1116 1117 spin_lock_irqsave(&data->lock, flags); 1118 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW); 1119 desc_rx->tx_submit(desc_rx); 1120 desc_tx->tx_submit(desc_tx); 1121 spin_unlock_irqrestore(&data->lock, flags); 1122 1123 /* reset transfer complete flag */ 1124 data->transfer_complete = false; 1125 } 1126 1127 static void pch_spi_process_messages(struct work_struct *pwork) 1128 { 1129 struct spi_message *pmsg, *tmp; 1130 struct pch_spi_data *data; 1131 int bpw; 1132 1133 data = container_of(pwork, struct pch_spi_data, work); 1134 dev_dbg(&data->master->dev, "%s data initialized\n", __func__); 1135 1136 spin_lock(&data->lock); 1137 /* check if suspend has been initiated;if yes flush queue */ 1138 if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) { 1139 dev_dbg(&data->master->dev, 1140 "%s suspend/remove initiated, flushing queue\n", __func__); 1141 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) { 1142 pmsg->status = -EIO; 1143 1144 if (pmsg->complete) { 1145 spin_unlock(&data->lock); 1146 pmsg->complete(pmsg->context); 1147 spin_lock(&data->lock); 1148 } 1149 1150 /* delete from queue */ 1151 list_del_init(&pmsg->queue); 1152 } 1153 1154 spin_unlock(&data->lock); 1155 return; 1156 } 1157 1158 data->bcurrent_msg_processing = true; 1159 dev_dbg(&data->master->dev, 1160 "%s Set data->bcurrent_msg_processing= true\n", __func__); 1161 1162 /* Get the message from the queue and delete it from there. */ 1163 data->current_msg = list_entry(data->queue.next, struct spi_message, 1164 queue); 1165 1166 list_del_init(&data->current_msg->queue); 1167 1168 data->current_msg->status = 0; 1169 1170 pch_spi_select_chip(data, data->current_msg->spi); 1171 1172 spin_unlock(&data->lock); 1173 1174 if (data->use_dma) 1175 pch_spi_request_dma(data, 1176 data->current_msg->spi->bits_per_word); 1177 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL); 1178 do { 1179 int cnt; 1180 /* If we are already processing a message get the next 1181 transfer structure from the message otherwise retrieve 1182 the 1st transfer request from the message. */ 1183 spin_lock(&data->lock); 1184 if (data->cur_trans == NULL) { 1185 data->cur_trans = 1186 list_entry(data->current_msg->transfers.next, 1187 struct spi_transfer, transfer_list); 1188 dev_dbg(&data->master->dev, "%s " 1189 ":Getting 1st transfer message\n", __func__); 1190 } else { 1191 data->cur_trans = 1192 list_entry(data->cur_trans->transfer_list.next, 1193 struct spi_transfer, transfer_list); 1194 dev_dbg(&data->master->dev, "%s " 1195 ":Getting next transfer message\n", __func__); 1196 } 1197 spin_unlock(&data->lock); 1198 1199 if (!data->cur_trans->len) 1200 goto out; 1201 cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1; 1202 data->save_total_len = data->cur_trans->len; 1203 if (data->use_dma) { 1204 int i; 1205 char *save_rx_buf = data->cur_trans->rx_buf; 1206 for (i = 0; i < cnt; i ++) { 1207 pch_spi_handle_dma(data, &bpw); 1208 if (!pch_spi_start_transfer(data)) { 1209 data->transfer_complete = true; 1210 data->current_msg->status = -EIO; 1211 data->current_msg->complete 1212 (data->current_msg->context); 1213 data->bcurrent_msg_processing = false; 1214 data->current_msg = NULL; 1215 data->cur_trans = NULL; 1216 goto out; 1217 } 1218 pch_spi_copy_rx_data_for_dma(data, bpw); 1219 } 1220 data->cur_trans->rx_buf = save_rx_buf; 1221 } else { 1222 pch_spi_set_tx(data, &bpw); 1223 pch_spi_set_ir(data); 1224 pch_spi_copy_rx_data(data, bpw); 1225 kfree(data->pkt_rx_buff); 1226 data->pkt_rx_buff = NULL; 1227 kfree(data->pkt_tx_buff); 1228 data->pkt_tx_buff = NULL; 1229 } 1230 /* increment message count */ 1231 data->cur_trans->len = data->save_total_len; 1232 data->current_msg->actual_length += data->cur_trans->len; 1233 1234 dev_dbg(&data->master->dev, 1235 "%s:data->current_msg->actual_length=%d\n", 1236 __func__, data->current_msg->actual_length); 1237 1238 /* check for delay */ 1239 if (data->cur_trans->delay_usecs) { 1240 dev_dbg(&data->master->dev, "%s:" 1241 "delay in usec=%d\n", __func__, 1242 data->cur_trans->delay_usecs); 1243 udelay(data->cur_trans->delay_usecs); 1244 } 1245 1246 spin_lock(&data->lock); 1247 1248 /* No more transfer in this message. */ 1249 if ((data->cur_trans->transfer_list.next) == 1250 &(data->current_msg->transfers)) { 1251 pch_spi_nomore_transfer(data); 1252 } 1253 1254 spin_unlock(&data->lock); 1255 1256 } while (data->cur_trans != NULL); 1257 1258 out: 1259 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH); 1260 if (data->use_dma) 1261 pch_spi_release_dma(data); 1262 } 1263 1264 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat, 1265 struct pch_spi_data *data) 1266 { 1267 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__); 1268 1269 /* free workqueue */ 1270 if (data->wk != NULL) { 1271 destroy_workqueue(data->wk); 1272 data->wk = NULL; 1273 dev_dbg(&board_dat->pdev->dev, 1274 "%s destroy_workqueue invoked successfully\n", 1275 __func__); 1276 } 1277 } 1278 1279 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat, 1280 struct pch_spi_data *data) 1281 { 1282 int retval = 0; 1283 1284 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__); 1285 1286 /* create workqueue */ 1287 data->wk = create_singlethread_workqueue(KBUILD_MODNAME); 1288 if (!data->wk) { 1289 dev_err(&board_dat->pdev->dev, 1290 "%s create_singlet hread_workqueue failed\n", __func__); 1291 retval = -EBUSY; 1292 goto err_return; 1293 } 1294 1295 /* reset PCH SPI h/w */ 1296 pch_spi_reset(data->master); 1297 dev_dbg(&board_dat->pdev->dev, 1298 "%s pch_spi_reset invoked successfully\n", __func__); 1299 1300 dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__); 1301 1302 err_return: 1303 if (retval != 0) { 1304 dev_err(&board_dat->pdev->dev, 1305 "%s FAIL:invoking pch_spi_free_resources\n", __func__); 1306 pch_spi_free_resources(board_dat, data); 1307 } 1308 1309 dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval); 1310 1311 return retval; 1312 } 1313 1314 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat, 1315 struct pch_spi_data *data) 1316 { 1317 struct pch_spi_dma_ctrl *dma; 1318 1319 dma = &data->dma; 1320 if (dma->tx_buf_dma) 1321 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE, 1322 dma->tx_buf_virt, dma->tx_buf_dma); 1323 if (dma->rx_buf_dma) 1324 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE, 1325 dma->rx_buf_virt, dma->rx_buf_dma); 1326 return; 1327 } 1328 1329 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat, 1330 struct pch_spi_data *data) 1331 { 1332 struct pch_spi_dma_ctrl *dma; 1333 1334 dma = &data->dma; 1335 /* Get Consistent memory for Tx DMA */ 1336 dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev, 1337 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL); 1338 /* Get Consistent memory for Rx DMA */ 1339 dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev, 1340 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL); 1341 } 1342 1343 static int pch_spi_pd_probe(struct platform_device *plat_dev) 1344 { 1345 int ret; 1346 struct spi_master *master; 1347 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev); 1348 struct pch_spi_data *data; 1349 1350 dev_dbg(&plat_dev->dev, "%s:debug\n", __func__); 1351 1352 master = spi_alloc_master(&board_dat->pdev->dev, 1353 sizeof(struct pch_spi_data)); 1354 if (!master) { 1355 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n", 1356 plat_dev->id); 1357 return -ENOMEM; 1358 } 1359 1360 data = spi_master_get_devdata(master); 1361 data->master = master; 1362 1363 platform_set_drvdata(plat_dev, data); 1364 1365 /* baseaddress + address offset) */ 1366 data->io_base_addr = pci_resource_start(board_dat->pdev, 1) + 1367 PCH_ADDRESS_SIZE * plat_dev->id; 1368 data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0); 1369 if (!data->io_remap_addr) { 1370 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__); 1371 ret = -ENOMEM; 1372 goto err_pci_iomap; 1373 } 1374 data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id; 1375 1376 dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n", 1377 plat_dev->id, data->io_remap_addr); 1378 1379 /* initialize members of SPI master */ 1380 master->num_chipselect = PCH_MAX_CS; 1381 master->transfer = pch_spi_transfer; 1382 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST; 1383 master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16); 1384 master->max_speed_hz = PCH_MAX_BAUDRATE; 1385 1386 data->board_dat = board_dat; 1387 data->plat_dev = plat_dev; 1388 data->n_curnt_chip = 255; 1389 data->status = STATUS_RUNNING; 1390 data->ch = plat_dev->id; 1391 data->use_dma = use_dma; 1392 1393 INIT_LIST_HEAD(&data->queue); 1394 spin_lock_init(&data->lock); 1395 INIT_WORK(&data->work, pch_spi_process_messages); 1396 init_waitqueue_head(&data->wait); 1397 1398 ret = pch_spi_get_resources(board_dat, data); 1399 if (ret) { 1400 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret); 1401 goto err_spi_get_resources; 1402 } 1403 1404 ret = request_irq(board_dat->pdev->irq, pch_spi_handler, 1405 IRQF_SHARED, KBUILD_MODNAME, data); 1406 if (ret) { 1407 dev_err(&plat_dev->dev, 1408 "%s request_irq failed\n", __func__); 1409 goto err_request_irq; 1410 } 1411 data->irq_reg_sts = true; 1412 1413 pch_spi_set_master_mode(master); 1414 1415 if (use_dma) { 1416 dev_info(&plat_dev->dev, "Use DMA for data transfers\n"); 1417 pch_alloc_dma_buf(board_dat, data); 1418 } 1419 1420 ret = spi_register_master(master); 1421 if (ret != 0) { 1422 dev_err(&plat_dev->dev, 1423 "%s spi_register_master FAILED\n", __func__); 1424 goto err_spi_register_master; 1425 } 1426 1427 return 0; 1428 1429 err_spi_register_master: 1430 pch_free_dma_buf(board_dat, data); 1431 free_irq(board_dat->pdev->irq, data); 1432 err_request_irq: 1433 pch_spi_free_resources(board_dat, data); 1434 err_spi_get_resources: 1435 pci_iounmap(board_dat->pdev, data->io_remap_addr); 1436 err_pci_iomap: 1437 spi_master_put(master); 1438 1439 return ret; 1440 } 1441 1442 static int pch_spi_pd_remove(struct platform_device *plat_dev) 1443 { 1444 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev); 1445 struct pch_spi_data *data = platform_get_drvdata(plat_dev); 1446 int count; 1447 unsigned long flags; 1448 1449 dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n", 1450 __func__, plat_dev->id, board_dat->pdev->irq); 1451 1452 if (use_dma) 1453 pch_free_dma_buf(board_dat, data); 1454 1455 /* check for any pending messages; no action is taken if the queue 1456 * is still full; but at least we tried. Unload anyway */ 1457 count = 500; 1458 spin_lock_irqsave(&data->lock, flags); 1459 data->status = STATUS_EXITING; 1460 while ((list_empty(&data->queue) == 0) && --count) { 1461 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n", 1462 __func__); 1463 spin_unlock_irqrestore(&data->lock, flags); 1464 msleep(PCH_SLEEP_TIME); 1465 spin_lock_irqsave(&data->lock, flags); 1466 } 1467 spin_unlock_irqrestore(&data->lock, flags); 1468 1469 pch_spi_free_resources(board_dat, data); 1470 /* disable interrupts & free IRQ */ 1471 if (data->irq_reg_sts) { 1472 /* disable interrupts */ 1473 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL); 1474 data->irq_reg_sts = false; 1475 free_irq(board_dat->pdev->irq, data); 1476 } 1477 1478 pci_iounmap(board_dat->pdev, data->io_remap_addr); 1479 spi_unregister_master(data->master); 1480 1481 return 0; 1482 } 1483 #ifdef CONFIG_PM 1484 static int pch_spi_pd_suspend(struct platform_device *pd_dev, 1485 pm_message_t state) 1486 { 1487 u8 count; 1488 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev); 1489 struct pch_spi_data *data = platform_get_drvdata(pd_dev); 1490 1491 dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__); 1492 1493 if (!board_dat) { 1494 dev_err(&pd_dev->dev, 1495 "%s pci_get_drvdata returned NULL\n", __func__); 1496 return -EFAULT; 1497 } 1498 1499 /* check if the current message is processed: 1500 Only after thats done the transfer will be suspended */ 1501 count = 255; 1502 while ((--count) > 0) { 1503 if (!(data->bcurrent_msg_processing)) 1504 break; 1505 msleep(PCH_SLEEP_TIME); 1506 } 1507 1508 /* Free IRQ */ 1509 if (data->irq_reg_sts) { 1510 /* disable all interrupts */ 1511 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL); 1512 pch_spi_reset(data->master); 1513 free_irq(board_dat->pdev->irq, data); 1514 1515 data->irq_reg_sts = false; 1516 dev_dbg(&pd_dev->dev, 1517 "%s free_irq invoked successfully.\n", __func__); 1518 } 1519 1520 return 0; 1521 } 1522 1523 static int pch_spi_pd_resume(struct platform_device *pd_dev) 1524 { 1525 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev); 1526 struct pch_spi_data *data = platform_get_drvdata(pd_dev); 1527 int retval; 1528 1529 if (!board_dat) { 1530 dev_err(&pd_dev->dev, 1531 "%s pci_get_drvdata returned NULL\n", __func__); 1532 return -EFAULT; 1533 } 1534 1535 if (!data->irq_reg_sts) { 1536 /* register IRQ */ 1537 retval = request_irq(board_dat->pdev->irq, pch_spi_handler, 1538 IRQF_SHARED, KBUILD_MODNAME, data); 1539 if (retval < 0) { 1540 dev_err(&pd_dev->dev, 1541 "%s request_irq failed\n", __func__); 1542 return retval; 1543 } 1544 1545 /* reset PCH SPI h/w */ 1546 pch_spi_reset(data->master); 1547 pch_spi_set_master_mode(data->master); 1548 data->irq_reg_sts = true; 1549 } 1550 return 0; 1551 } 1552 #else 1553 #define pch_spi_pd_suspend NULL 1554 #define pch_spi_pd_resume NULL 1555 #endif 1556 1557 static struct platform_driver pch_spi_pd_driver = { 1558 .driver = { 1559 .name = "pch-spi", 1560 }, 1561 .probe = pch_spi_pd_probe, 1562 .remove = pch_spi_pd_remove, 1563 .suspend = pch_spi_pd_suspend, 1564 .resume = pch_spi_pd_resume 1565 }; 1566 1567 static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1568 { 1569 struct pch_spi_board_data *board_dat; 1570 struct platform_device *pd_dev = NULL; 1571 int retval; 1572 int i; 1573 struct pch_pd_dev_save *pd_dev_save; 1574 1575 pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL); 1576 if (!pd_dev_save) 1577 return -ENOMEM; 1578 1579 board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL); 1580 if (!board_dat) { 1581 retval = -ENOMEM; 1582 goto err_no_mem; 1583 } 1584 1585 retval = pci_request_regions(pdev, KBUILD_MODNAME); 1586 if (retval) { 1587 dev_err(&pdev->dev, "%s request_region failed\n", __func__); 1588 goto pci_request_regions; 1589 } 1590 1591 board_dat->pdev = pdev; 1592 board_dat->num = id->driver_data; 1593 pd_dev_save->num = id->driver_data; 1594 pd_dev_save->board_dat = board_dat; 1595 1596 retval = pci_enable_device(pdev); 1597 if (retval) { 1598 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__); 1599 goto pci_enable_device; 1600 } 1601 1602 for (i = 0; i < board_dat->num; i++) { 1603 pd_dev = platform_device_alloc("pch-spi", i); 1604 if (!pd_dev) { 1605 dev_err(&pdev->dev, "platform_device_alloc failed\n"); 1606 retval = -ENOMEM; 1607 goto err_platform_device; 1608 } 1609 pd_dev_save->pd_save[i] = pd_dev; 1610 pd_dev->dev.parent = &pdev->dev; 1611 1612 retval = platform_device_add_data(pd_dev, board_dat, 1613 sizeof(*board_dat)); 1614 if (retval) { 1615 dev_err(&pdev->dev, 1616 "platform_device_add_data failed\n"); 1617 platform_device_put(pd_dev); 1618 goto err_platform_device; 1619 } 1620 1621 retval = platform_device_add(pd_dev); 1622 if (retval) { 1623 dev_err(&pdev->dev, "platform_device_add failed\n"); 1624 platform_device_put(pd_dev); 1625 goto err_platform_device; 1626 } 1627 } 1628 1629 pci_set_drvdata(pdev, pd_dev_save); 1630 1631 return 0; 1632 1633 err_platform_device: 1634 while (--i >= 0) 1635 platform_device_unregister(pd_dev_save->pd_save[i]); 1636 pci_disable_device(pdev); 1637 pci_enable_device: 1638 pci_release_regions(pdev); 1639 pci_request_regions: 1640 kfree(board_dat); 1641 err_no_mem: 1642 kfree(pd_dev_save); 1643 1644 return retval; 1645 } 1646 1647 static void pch_spi_remove(struct pci_dev *pdev) 1648 { 1649 int i; 1650 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev); 1651 1652 dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev); 1653 1654 for (i = 0; i < pd_dev_save->num; i++) 1655 platform_device_unregister(pd_dev_save->pd_save[i]); 1656 1657 pci_disable_device(pdev); 1658 pci_release_regions(pdev); 1659 kfree(pd_dev_save->board_dat); 1660 kfree(pd_dev_save); 1661 } 1662 1663 #ifdef CONFIG_PM 1664 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state) 1665 { 1666 int retval; 1667 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev); 1668 1669 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__); 1670 1671 pd_dev_save->board_dat->suspend_sts = true; 1672 1673 /* save config space */ 1674 retval = pci_save_state(pdev); 1675 if (retval == 0) { 1676 pci_enable_wake(pdev, PCI_D3hot, 0); 1677 pci_disable_device(pdev); 1678 pci_set_power_state(pdev, PCI_D3hot); 1679 } else { 1680 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__); 1681 } 1682 1683 return retval; 1684 } 1685 1686 static int pch_spi_resume(struct pci_dev *pdev) 1687 { 1688 int retval; 1689 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev); 1690 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__); 1691 1692 pci_set_power_state(pdev, PCI_D0); 1693 pci_restore_state(pdev); 1694 1695 retval = pci_enable_device(pdev); 1696 if (retval < 0) { 1697 dev_err(&pdev->dev, 1698 "%s pci_enable_device failed\n", __func__); 1699 } else { 1700 pci_enable_wake(pdev, PCI_D3hot, 0); 1701 1702 /* set suspend status to false */ 1703 pd_dev_save->board_dat->suspend_sts = false; 1704 } 1705 1706 return retval; 1707 } 1708 #else 1709 #define pch_spi_suspend NULL 1710 #define pch_spi_resume NULL 1711 1712 #endif 1713 1714 static struct pci_driver pch_spi_pcidev_driver = { 1715 .name = "pch_spi", 1716 .id_table = pch_spi_pcidev_id, 1717 .probe = pch_spi_probe, 1718 .remove = pch_spi_remove, 1719 .suspend = pch_spi_suspend, 1720 .resume = pch_spi_resume, 1721 }; 1722 1723 static int __init pch_spi_init(void) 1724 { 1725 int ret; 1726 ret = platform_driver_register(&pch_spi_pd_driver); 1727 if (ret) 1728 return ret; 1729 1730 ret = pci_register_driver(&pch_spi_pcidev_driver); 1731 if (ret) { 1732 platform_driver_unregister(&pch_spi_pd_driver); 1733 return ret; 1734 } 1735 1736 return 0; 1737 } 1738 module_init(pch_spi_init); 1739 1740 static void __exit pch_spi_exit(void) 1741 { 1742 pci_unregister_driver(&pch_spi_pcidev_driver); 1743 platform_driver_unregister(&pch_spi_pd_driver); 1744 } 1745 module_exit(pch_spi_exit); 1746 1747 module_param(use_dma, int, 0644); 1748 MODULE_PARM_DESC(use_dma, 1749 "to use DMA for data transfers pass 1 else 0; default 1"); 1750 1751 MODULE_LICENSE("GPL"); 1752 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver"); 1753 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id); 1754 1755