xref: /linux/drivers/spi/spi-tegra210-quad.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Copyright (C) 2020 NVIDIA CORPORATION.
4 
5 #include <linux/clk.h>
6 #include <linux/completion.h>
7 #include <linux/delay.h>
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmapool.h>
11 #include <linux/err.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/iopoll.h>
15 #include <linux/kernel.h>
16 #include <linux/kthread.h>
17 #include <linux/module.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/reset.h>
23 #include <linux/spi/spi.h>
24 #include <linux/acpi.h>
25 #include <linux/property.h>
26 
27 #define QSPI_COMMAND1				0x000
28 #define QSPI_BIT_LENGTH(x)			(((x) & 0x1f) << 0)
29 #define QSPI_PACKED				BIT(5)
30 #define QSPI_INTERFACE_WIDTH_MASK		(0x03 << 7)
31 #define QSPI_INTERFACE_WIDTH(x)			(((x) & 0x03) << 7)
32 #define QSPI_INTERFACE_WIDTH_SINGLE		QSPI_INTERFACE_WIDTH(0)
33 #define QSPI_INTERFACE_WIDTH_DUAL		QSPI_INTERFACE_WIDTH(1)
34 #define QSPI_INTERFACE_WIDTH_QUAD		QSPI_INTERFACE_WIDTH(2)
35 #define QSPI_SDR_DDR_SEL			BIT(9)
36 #define QSPI_TX_EN				BIT(11)
37 #define QSPI_RX_EN				BIT(12)
38 #define QSPI_CS_SW_VAL				BIT(20)
39 #define QSPI_CS_SW_HW				BIT(21)
40 #define QSPI_CONTROL_MODE_0			(0 << 28)
41 #define QSPI_CONTROL_MODE_3			(3 << 28)
42 #define QSPI_CONTROL_MODE_MASK			(3 << 28)
43 #define QSPI_M_S				BIT(30)
44 #define QSPI_PIO				BIT(31)
45 
46 #define QSPI_COMMAND2				0x004
47 #define QSPI_TX_TAP_DELAY(x)			(((x) & 0x3f) << 10)
48 #define QSPI_RX_TAP_DELAY(x)			(((x) & 0xff) << 0)
49 
50 #define QSPI_CS_TIMING1				0x008
51 #define QSPI_SETUP_HOLD(setup, hold)		(((setup) << 4) | (hold))
52 
53 #define QSPI_CS_TIMING2				0x00c
54 #define CYCLES_BETWEEN_PACKETS_0(x)		(((x) & 0x1f) << 0)
55 #define CS_ACTIVE_BETWEEN_PACKETS_0		BIT(5)
56 
57 #define QSPI_TRANS_STATUS			0x010
58 #define QSPI_BLK_CNT(val)			(((val) >> 0) & 0xffff)
59 #define QSPI_RDY				BIT(30)
60 
61 #define QSPI_FIFO_STATUS			0x014
62 #define QSPI_RX_FIFO_EMPTY			BIT(0)
63 #define QSPI_RX_FIFO_FULL			BIT(1)
64 #define QSPI_TX_FIFO_EMPTY			BIT(2)
65 #define QSPI_TX_FIFO_FULL			BIT(3)
66 #define QSPI_RX_FIFO_UNF			BIT(4)
67 #define QSPI_RX_FIFO_OVF			BIT(5)
68 #define QSPI_TX_FIFO_UNF			BIT(6)
69 #define QSPI_TX_FIFO_OVF			BIT(7)
70 #define QSPI_ERR				BIT(8)
71 #define QSPI_TX_FIFO_FLUSH			BIT(14)
72 #define QSPI_RX_FIFO_FLUSH			BIT(15)
73 #define QSPI_TX_FIFO_EMPTY_COUNT(val)		(((val) >> 16) & 0x7f)
74 #define QSPI_RX_FIFO_FULL_COUNT(val)		(((val) >> 23) & 0x7f)
75 
76 #define QSPI_FIFO_ERROR				(QSPI_RX_FIFO_UNF | \
77 						 QSPI_RX_FIFO_OVF | \
78 						 QSPI_TX_FIFO_UNF | \
79 						 QSPI_TX_FIFO_OVF)
80 #define QSPI_FIFO_EMPTY				(QSPI_RX_FIFO_EMPTY | \
81 						 QSPI_TX_FIFO_EMPTY)
82 
83 #define QSPI_TX_DATA				0x018
84 #define QSPI_RX_DATA				0x01c
85 
86 #define QSPI_DMA_CTL				0x020
87 #define QSPI_TX_TRIG(n)				(((n) & 0x3) << 15)
88 #define QSPI_TX_TRIG_1				QSPI_TX_TRIG(0)
89 #define QSPI_TX_TRIG_4				QSPI_TX_TRIG(1)
90 #define QSPI_TX_TRIG_8				QSPI_TX_TRIG(2)
91 #define QSPI_TX_TRIG_16				QSPI_TX_TRIG(3)
92 
93 #define QSPI_RX_TRIG(n)				(((n) & 0x3) << 19)
94 #define QSPI_RX_TRIG_1				QSPI_RX_TRIG(0)
95 #define QSPI_RX_TRIG_4				QSPI_RX_TRIG(1)
96 #define QSPI_RX_TRIG_8				QSPI_RX_TRIG(2)
97 #define QSPI_RX_TRIG_16				QSPI_RX_TRIG(3)
98 
99 #define QSPI_DMA_EN				BIT(31)
100 
101 #define QSPI_DMA_BLK				0x024
102 #define QSPI_DMA_BLK_SET(x)			(((x) & 0xffff) << 0)
103 
104 #define QSPI_TX_FIFO				0x108
105 #define QSPI_RX_FIFO				0x188
106 
107 #define QSPI_FIFO_DEPTH				64
108 
109 #define QSPI_INTR_MASK				0x18c
110 #define QSPI_INTR_RX_FIFO_UNF_MASK		BIT(25)
111 #define QSPI_INTR_RX_FIFO_OVF_MASK		BIT(26)
112 #define QSPI_INTR_TX_FIFO_UNF_MASK		BIT(27)
113 #define QSPI_INTR_TX_FIFO_OVF_MASK		BIT(28)
114 #define QSPI_INTR_RDY_MASK			BIT(29)
115 #define QSPI_INTR_RX_TX_FIFO_ERR		(QSPI_INTR_RX_FIFO_UNF_MASK | \
116 						 QSPI_INTR_RX_FIFO_OVF_MASK | \
117 						 QSPI_INTR_TX_FIFO_UNF_MASK | \
118 						 QSPI_INTR_TX_FIFO_OVF_MASK)
119 
120 #define QSPI_MISC_REG                           0x194
121 #define QSPI_NUM_DUMMY_CYCLE(x)			(((x) & 0xff) << 0)
122 #define QSPI_DUMMY_CYCLES_MAX			0xff
123 
124 #define QSPI_CMB_SEQ_CMD			0x19c
125 #define QSPI_COMMAND_VALUE_SET(X)		(((x) & 0xFF) << 0)
126 
127 #define QSPI_CMB_SEQ_CMD_CFG			0x1a0
128 #define QSPI_COMMAND_X1_X2_X4(x)		(((x) & 0x3) << 13)
129 #define QSPI_COMMAND_X1_X2_X4_MASK		(0x03 << 13)
130 #define QSPI_COMMAND_SDR_DDR			BIT(12)
131 #define QSPI_COMMAND_SIZE_SET(x)		(((x) & 0xFF) << 0)
132 
133 #define QSPI_GLOBAL_CONFIG			0X1a4
134 #define QSPI_CMB_SEQ_EN				BIT(0)
135 
136 #define QSPI_CMB_SEQ_ADDR			0x1a8
137 #define QSPI_ADDRESS_VALUE_SET(X)		(((x) & 0xFFFF) << 0)
138 
139 #define QSPI_CMB_SEQ_ADDR_CFG			0x1ac
140 #define QSPI_ADDRESS_X1_X2_X4(x)		(((x) & 0x3) << 13)
141 #define QSPI_ADDRESS_X1_X2_X4_MASK		(0x03 << 13)
142 #define QSPI_ADDRESS_SDR_DDR			BIT(12)
143 #define QSPI_ADDRESS_SIZE_SET(x)		(((x) & 0xFF) << 0)
144 
145 #define DATA_DIR_TX				BIT(0)
146 #define DATA_DIR_RX				BIT(1)
147 
148 #define QSPI_DMA_TIMEOUT			(msecs_to_jiffies(1000))
149 #define DEFAULT_QSPI_DMA_BUF_LEN		(64 * 1024)
150 #define CMD_TRANSFER				0
151 #define ADDR_TRANSFER				1
152 #define DATA_TRANSFER				2
153 
154 struct tegra_qspi_soc_data {
155 	bool has_dma;
156 	bool cmb_xfer_capable;
157 };
158 
159 struct tegra_qspi_client_data {
160 	int tx_clk_tap_delay;
161 	int rx_clk_tap_delay;
162 };
163 
164 struct tegra_qspi {
165 	struct device				*dev;
166 	struct spi_master			*master;
167 	/* lock to protect data accessed by irq */
168 	spinlock_t				lock;
169 
170 	struct clk				*clk;
171 	void __iomem				*base;
172 	phys_addr_t				phys;
173 	unsigned int				irq;
174 
175 	u32					cur_speed;
176 	unsigned int				cur_pos;
177 	unsigned int				words_per_32bit;
178 	unsigned int				bytes_per_word;
179 	unsigned int				curr_dma_words;
180 	unsigned int				cur_direction;
181 
182 	unsigned int				cur_rx_pos;
183 	unsigned int				cur_tx_pos;
184 
185 	unsigned int				dma_buf_size;
186 	unsigned int				max_buf_size;
187 	bool					is_curr_dma_xfer;
188 
189 	struct completion			rx_dma_complete;
190 	struct completion			tx_dma_complete;
191 
192 	u32					tx_status;
193 	u32					rx_status;
194 	u32					status_reg;
195 	bool					is_packed;
196 	bool					use_dma;
197 
198 	u32					command1_reg;
199 	u32					dma_control_reg;
200 	u32					def_command1_reg;
201 	u32					def_command2_reg;
202 	u32					spi_cs_timing1;
203 	u32					spi_cs_timing2;
204 	u8					dummy_cycles;
205 
206 	struct completion			xfer_completion;
207 	struct spi_transfer			*curr_xfer;
208 
209 	struct dma_chan				*rx_dma_chan;
210 	u32					*rx_dma_buf;
211 	dma_addr_t				rx_dma_phys;
212 	struct dma_async_tx_descriptor		*rx_dma_desc;
213 
214 	struct dma_chan				*tx_dma_chan;
215 	u32					*tx_dma_buf;
216 	dma_addr_t				tx_dma_phys;
217 	struct dma_async_tx_descriptor		*tx_dma_desc;
218 	const struct tegra_qspi_soc_data	*soc_data;
219 };
220 
221 static inline u32 tegra_qspi_readl(struct tegra_qspi *tqspi, unsigned long offset)
222 {
223 	return readl(tqspi->base + offset);
224 }
225 
226 static inline void tegra_qspi_writel(struct tegra_qspi *tqspi, u32 value, unsigned long offset)
227 {
228 	writel(value, tqspi->base + offset);
229 
230 	/* read back register to make sure that register writes completed */
231 	if (offset != QSPI_TX_FIFO)
232 		readl(tqspi->base + QSPI_COMMAND1);
233 }
234 
235 static void tegra_qspi_mask_clear_irq(struct tegra_qspi *tqspi)
236 {
237 	u32 value;
238 
239 	/* write 1 to clear status register */
240 	value = tegra_qspi_readl(tqspi, QSPI_TRANS_STATUS);
241 	tegra_qspi_writel(tqspi, value, QSPI_TRANS_STATUS);
242 
243 	value = tegra_qspi_readl(tqspi, QSPI_INTR_MASK);
244 	if (!(value & QSPI_INTR_RDY_MASK)) {
245 		value |= (QSPI_INTR_RDY_MASK | QSPI_INTR_RX_TX_FIFO_ERR);
246 		tegra_qspi_writel(tqspi, value, QSPI_INTR_MASK);
247 	}
248 
249 	/* clear fifo status error if any */
250 	value = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
251 	if (value & QSPI_ERR)
252 		tegra_qspi_writel(tqspi, QSPI_ERR | QSPI_FIFO_ERROR, QSPI_FIFO_STATUS);
253 }
254 
255 static unsigned int
256 tegra_qspi_calculate_curr_xfer_param(struct tegra_qspi *tqspi, struct spi_transfer *t)
257 {
258 	unsigned int max_word, max_len, total_fifo_words;
259 	unsigned int remain_len = t->len - tqspi->cur_pos;
260 	unsigned int bits_per_word = t->bits_per_word;
261 
262 	tqspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
263 
264 	/*
265 	 * Tegra QSPI controller supports packed or unpacked mode transfers.
266 	 * Packed mode is used for data transfers using 8, 16, or 32 bits per
267 	 * word with a minimum transfer of 1 word and for all other transfers
268 	 * unpacked mode will be used.
269 	 */
270 
271 	if ((bits_per_word == 8 || bits_per_word == 16 ||
272 	     bits_per_word == 32) && t->len > 3) {
273 		tqspi->is_packed = true;
274 		tqspi->words_per_32bit = 32 / bits_per_word;
275 	} else {
276 		tqspi->is_packed = false;
277 		tqspi->words_per_32bit = 1;
278 	}
279 
280 	if (tqspi->is_packed) {
281 		max_len = min(remain_len, tqspi->max_buf_size);
282 		tqspi->curr_dma_words = max_len / tqspi->bytes_per_word;
283 		total_fifo_words = (max_len + 3) / 4;
284 	} else {
285 		max_word = (remain_len - 1) / tqspi->bytes_per_word + 1;
286 		max_word = min(max_word, tqspi->max_buf_size / 4);
287 		tqspi->curr_dma_words = max_word;
288 		total_fifo_words = max_word;
289 	}
290 
291 	return total_fifo_words;
292 }
293 
294 static unsigned int
295 tegra_qspi_fill_tx_fifo_from_client_txbuf(struct tegra_qspi *tqspi, struct spi_transfer *t)
296 {
297 	unsigned int written_words, fifo_words_left, count;
298 	unsigned int len, tx_empty_count, max_n_32bit, i;
299 	u8 *tx_buf = (u8 *)t->tx_buf + tqspi->cur_tx_pos;
300 	u32 fifo_status;
301 
302 	fifo_status = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
303 	tx_empty_count = QSPI_TX_FIFO_EMPTY_COUNT(fifo_status);
304 
305 	if (tqspi->is_packed) {
306 		fifo_words_left = tx_empty_count * tqspi->words_per_32bit;
307 		written_words = min(fifo_words_left, tqspi->curr_dma_words);
308 		len = written_words * tqspi->bytes_per_word;
309 		max_n_32bit = DIV_ROUND_UP(len, 4);
310 		for (count = 0; count < max_n_32bit; count++) {
311 			u32 x = 0;
312 
313 			for (i = 0; (i < 4) && len; i++, len--)
314 				x |= (u32)(*tx_buf++) << (i * 8);
315 			tegra_qspi_writel(tqspi, x, QSPI_TX_FIFO);
316 		}
317 
318 		tqspi->cur_tx_pos += written_words * tqspi->bytes_per_word;
319 	} else {
320 		unsigned int write_bytes;
321 		u8 bytes_per_word = tqspi->bytes_per_word;
322 
323 		max_n_32bit = min(tqspi->curr_dma_words, tx_empty_count);
324 		written_words = max_n_32bit;
325 		len = written_words * tqspi->bytes_per_word;
326 		if (len > t->len - tqspi->cur_pos)
327 			len = t->len - tqspi->cur_pos;
328 		write_bytes = len;
329 		for (count = 0; count < max_n_32bit; count++) {
330 			u32 x = 0;
331 
332 			for (i = 0; len && (i < bytes_per_word); i++, len--)
333 				x |= (u32)(*tx_buf++) << (i * 8);
334 			tegra_qspi_writel(tqspi, x, QSPI_TX_FIFO);
335 		}
336 
337 		tqspi->cur_tx_pos += write_bytes;
338 	}
339 
340 	return written_words;
341 }
342 
343 static unsigned int
344 tegra_qspi_read_rx_fifo_to_client_rxbuf(struct tegra_qspi *tqspi, struct spi_transfer *t)
345 {
346 	u8 *rx_buf = (u8 *)t->rx_buf + tqspi->cur_rx_pos;
347 	unsigned int len, rx_full_count, count, i;
348 	unsigned int read_words = 0;
349 	u32 fifo_status, x;
350 
351 	fifo_status = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
352 	rx_full_count = QSPI_RX_FIFO_FULL_COUNT(fifo_status);
353 	if (tqspi->is_packed) {
354 		len = tqspi->curr_dma_words * tqspi->bytes_per_word;
355 		for (count = 0; count < rx_full_count; count++) {
356 			x = tegra_qspi_readl(tqspi, QSPI_RX_FIFO);
357 
358 			for (i = 0; len && (i < 4); i++, len--)
359 				*rx_buf++ = (x >> i * 8) & 0xff;
360 		}
361 
362 		read_words += tqspi->curr_dma_words;
363 		tqspi->cur_rx_pos += tqspi->curr_dma_words * tqspi->bytes_per_word;
364 	} else {
365 		u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
366 		u8 bytes_per_word = tqspi->bytes_per_word;
367 		unsigned int read_bytes;
368 
369 		len = rx_full_count * bytes_per_word;
370 		if (len > t->len - tqspi->cur_pos)
371 			len = t->len - tqspi->cur_pos;
372 		read_bytes = len;
373 		for (count = 0; count < rx_full_count; count++) {
374 			x = tegra_qspi_readl(tqspi, QSPI_RX_FIFO) & rx_mask;
375 
376 			for (i = 0; len && (i < bytes_per_word); i++, len--)
377 				*rx_buf++ = (x >> (i * 8)) & 0xff;
378 		}
379 
380 		read_words += rx_full_count;
381 		tqspi->cur_rx_pos += read_bytes;
382 	}
383 
384 	return read_words;
385 }
386 
387 static void
388 tegra_qspi_copy_client_txbuf_to_qspi_txbuf(struct tegra_qspi *tqspi, struct spi_transfer *t)
389 {
390 	dma_sync_single_for_cpu(tqspi->dev, tqspi->tx_dma_phys,
391 				tqspi->dma_buf_size, DMA_TO_DEVICE);
392 
393 	/*
394 	 * In packed mode, each word in FIFO may contain multiple packets
395 	 * based on bits per word. So all bytes in each FIFO word are valid.
396 	 *
397 	 * In unpacked mode, each word in FIFO contains single packet and
398 	 * based on bits per word any remaining bits in FIFO word will be
399 	 * ignored by the hardware and are invalid bits.
400 	 */
401 	if (tqspi->is_packed) {
402 		tqspi->cur_tx_pos += tqspi->curr_dma_words * tqspi->bytes_per_word;
403 	} else {
404 		u8 *tx_buf = (u8 *)t->tx_buf + tqspi->cur_tx_pos;
405 		unsigned int i, count, consume, write_bytes;
406 
407 		/*
408 		 * Fill tx_dma_buf to contain single packet in each word based
409 		 * on bits per word from SPI core tx_buf.
410 		 */
411 		consume = tqspi->curr_dma_words * tqspi->bytes_per_word;
412 		if (consume > t->len - tqspi->cur_pos)
413 			consume = t->len - tqspi->cur_pos;
414 		write_bytes = consume;
415 		for (count = 0; count < tqspi->curr_dma_words; count++) {
416 			u32 x = 0;
417 
418 			for (i = 0; consume && (i < tqspi->bytes_per_word); i++, consume--)
419 				x |= (u32)(*tx_buf++) << (i * 8);
420 			tqspi->tx_dma_buf[count] = x;
421 		}
422 
423 		tqspi->cur_tx_pos += write_bytes;
424 	}
425 
426 	dma_sync_single_for_device(tqspi->dev, tqspi->tx_dma_phys,
427 				   tqspi->dma_buf_size, DMA_TO_DEVICE);
428 }
429 
430 static void
431 tegra_qspi_copy_qspi_rxbuf_to_client_rxbuf(struct tegra_qspi *tqspi, struct spi_transfer *t)
432 {
433 	dma_sync_single_for_cpu(tqspi->dev, tqspi->rx_dma_phys,
434 				tqspi->dma_buf_size, DMA_FROM_DEVICE);
435 
436 	if (tqspi->is_packed) {
437 		tqspi->cur_rx_pos += tqspi->curr_dma_words * tqspi->bytes_per_word;
438 	} else {
439 		unsigned char *rx_buf = t->rx_buf + tqspi->cur_rx_pos;
440 		u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
441 		unsigned int i, count, consume, read_bytes;
442 
443 		/*
444 		 * Each FIFO word contains single data packet.
445 		 * Skip invalid bits in each FIFO word based on bits per word
446 		 * and align bytes while filling in SPI core rx_buf.
447 		 */
448 		consume = tqspi->curr_dma_words * tqspi->bytes_per_word;
449 		if (consume > t->len - tqspi->cur_pos)
450 			consume = t->len - tqspi->cur_pos;
451 		read_bytes = consume;
452 		for (count = 0; count < tqspi->curr_dma_words; count++) {
453 			u32 x = tqspi->rx_dma_buf[count] & rx_mask;
454 
455 			for (i = 0; consume && (i < tqspi->bytes_per_word); i++, consume--)
456 				*rx_buf++ = (x >> (i * 8)) & 0xff;
457 		}
458 
459 		tqspi->cur_rx_pos += read_bytes;
460 	}
461 
462 	dma_sync_single_for_device(tqspi->dev, tqspi->rx_dma_phys,
463 				   tqspi->dma_buf_size, DMA_FROM_DEVICE);
464 }
465 
466 static void tegra_qspi_dma_complete(void *args)
467 {
468 	struct completion *dma_complete = args;
469 
470 	complete(dma_complete);
471 }
472 
473 static int tegra_qspi_start_tx_dma(struct tegra_qspi *tqspi, struct spi_transfer *t, int len)
474 {
475 	dma_addr_t tx_dma_phys;
476 
477 	reinit_completion(&tqspi->tx_dma_complete);
478 
479 	if (tqspi->is_packed)
480 		tx_dma_phys = t->tx_dma;
481 	else
482 		tx_dma_phys = tqspi->tx_dma_phys;
483 
484 	tqspi->tx_dma_desc = dmaengine_prep_slave_single(tqspi->tx_dma_chan, tx_dma_phys,
485 							 len, DMA_MEM_TO_DEV,
486 							 DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
487 
488 	if (!tqspi->tx_dma_desc) {
489 		dev_err(tqspi->dev, "Unable to get TX descriptor\n");
490 		return -EIO;
491 	}
492 
493 	tqspi->tx_dma_desc->callback = tegra_qspi_dma_complete;
494 	tqspi->tx_dma_desc->callback_param = &tqspi->tx_dma_complete;
495 	dmaengine_submit(tqspi->tx_dma_desc);
496 	dma_async_issue_pending(tqspi->tx_dma_chan);
497 
498 	return 0;
499 }
500 
501 static int tegra_qspi_start_rx_dma(struct tegra_qspi *tqspi, struct spi_transfer *t, int len)
502 {
503 	dma_addr_t rx_dma_phys;
504 
505 	reinit_completion(&tqspi->rx_dma_complete);
506 
507 	if (tqspi->is_packed)
508 		rx_dma_phys = t->rx_dma;
509 	else
510 		rx_dma_phys = tqspi->rx_dma_phys;
511 
512 	tqspi->rx_dma_desc = dmaengine_prep_slave_single(tqspi->rx_dma_chan, rx_dma_phys,
513 							 len, DMA_DEV_TO_MEM,
514 							 DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
515 
516 	if (!tqspi->rx_dma_desc) {
517 		dev_err(tqspi->dev, "Unable to get RX descriptor\n");
518 		return -EIO;
519 	}
520 
521 	tqspi->rx_dma_desc->callback = tegra_qspi_dma_complete;
522 	tqspi->rx_dma_desc->callback_param = &tqspi->rx_dma_complete;
523 	dmaengine_submit(tqspi->rx_dma_desc);
524 	dma_async_issue_pending(tqspi->rx_dma_chan);
525 
526 	return 0;
527 }
528 
529 static int tegra_qspi_flush_fifos(struct tegra_qspi *tqspi, bool atomic)
530 {
531 	void __iomem *addr = tqspi->base + QSPI_FIFO_STATUS;
532 	u32 val;
533 
534 	val = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
535 	if ((val & QSPI_FIFO_EMPTY) == QSPI_FIFO_EMPTY)
536 		return 0;
537 
538 	val |= QSPI_RX_FIFO_FLUSH | QSPI_TX_FIFO_FLUSH;
539 	tegra_qspi_writel(tqspi, val, QSPI_FIFO_STATUS);
540 
541 	if (!atomic)
542 		return readl_relaxed_poll_timeout(addr, val,
543 						  (val & QSPI_FIFO_EMPTY) == QSPI_FIFO_EMPTY,
544 						  1000, 1000000);
545 
546 	return readl_relaxed_poll_timeout_atomic(addr, val,
547 						 (val & QSPI_FIFO_EMPTY) == QSPI_FIFO_EMPTY,
548 						 1000, 1000000);
549 }
550 
551 static void tegra_qspi_unmask_irq(struct tegra_qspi *tqspi)
552 {
553 	u32 intr_mask;
554 
555 	intr_mask = tegra_qspi_readl(tqspi, QSPI_INTR_MASK);
556 	intr_mask &= ~(QSPI_INTR_RDY_MASK | QSPI_INTR_RX_TX_FIFO_ERR);
557 	tegra_qspi_writel(tqspi, intr_mask, QSPI_INTR_MASK);
558 }
559 
560 static int tegra_qspi_dma_map_xfer(struct tegra_qspi *tqspi, struct spi_transfer *t)
561 {
562 	u8 *tx_buf = (u8 *)t->tx_buf + tqspi->cur_tx_pos;
563 	u8 *rx_buf = (u8 *)t->rx_buf + tqspi->cur_rx_pos;
564 	unsigned int len;
565 
566 	len = DIV_ROUND_UP(tqspi->curr_dma_words * tqspi->bytes_per_word, 4) * 4;
567 
568 	if (t->tx_buf) {
569 		t->tx_dma = dma_map_single(tqspi->dev, (void *)tx_buf, len, DMA_TO_DEVICE);
570 		if (dma_mapping_error(tqspi->dev, t->tx_dma))
571 			return -ENOMEM;
572 	}
573 
574 	if (t->rx_buf) {
575 		t->rx_dma = dma_map_single(tqspi->dev, (void *)rx_buf, len, DMA_FROM_DEVICE);
576 		if (dma_mapping_error(tqspi->dev, t->rx_dma)) {
577 			dma_unmap_single(tqspi->dev, t->tx_dma, len, DMA_TO_DEVICE);
578 			return -ENOMEM;
579 		}
580 	}
581 
582 	return 0;
583 }
584 
585 static void tegra_qspi_dma_unmap_xfer(struct tegra_qspi *tqspi, struct spi_transfer *t)
586 {
587 	unsigned int len;
588 
589 	len = DIV_ROUND_UP(tqspi->curr_dma_words * tqspi->bytes_per_word, 4) * 4;
590 
591 	dma_unmap_single(tqspi->dev, t->tx_dma, len, DMA_TO_DEVICE);
592 	dma_unmap_single(tqspi->dev, t->rx_dma, len, DMA_FROM_DEVICE);
593 }
594 
595 static int tegra_qspi_start_dma_based_transfer(struct tegra_qspi *tqspi, struct spi_transfer *t)
596 {
597 	struct dma_slave_config dma_sconfig = { 0 };
598 	unsigned int len;
599 	u8 dma_burst;
600 	int ret = 0;
601 	u32 val;
602 
603 	if (tqspi->is_packed) {
604 		ret = tegra_qspi_dma_map_xfer(tqspi, t);
605 		if (ret < 0)
606 			return ret;
607 	}
608 
609 	val = QSPI_DMA_BLK_SET(tqspi->curr_dma_words - 1);
610 	tegra_qspi_writel(tqspi, val, QSPI_DMA_BLK);
611 
612 	tegra_qspi_unmask_irq(tqspi);
613 
614 	if (tqspi->is_packed)
615 		len = DIV_ROUND_UP(tqspi->curr_dma_words * tqspi->bytes_per_word, 4) * 4;
616 	else
617 		len = tqspi->curr_dma_words * 4;
618 
619 	/* set attention level based on length of transfer */
620 	val = 0;
621 	if (len & 0xf) {
622 		val |= QSPI_TX_TRIG_1 | QSPI_RX_TRIG_1;
623 		dma_burst = 1;
624 	} else if (((len) >> 4) & 0x1) {
625 		val |= QSPI_TX_TRIG_4 | QSPI_RX_TRIG_4;
626 		dma_burst = 4;
627 	} else {
628 		val |= QSPI_TX_TRIG_8 | QSPI_RX_TRIG_8;
629 		dma_burst = 8;
630 	}
631 
632 	tegra_qspi_writel(tqspi, val, QSPI_DMA_CTL);
633 	tqspi->dma_control_reg = val;
634 
635 	dma_sconfig.device_fc = true;
636 	if (tqspi->cur_direction & DATA_DIR_TX) {
637 		dma_sconfig.dst_addr = tqspi->phys + QSPI_TX_FIFO;
638 		dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
639 		dma_sconfig.dst_maxburst = dma_burst;
640 		ret = dmaengine_slave_config(tqspi->tx_dma_chan, &dma_sconfig);
641 		if (ret < 0) {
642 			dev_err(tqspi->dev, "failed DMA slave config: %d\n", ret);
643 			return ret;
644 		}
645 
646 		tegra_qspi_copy_client_txbuf_to_qspi_txbuf(tqspi, t);
647 		ret = tegra_qspi_start_tx_dma(tqspi, t, len);
648 		if (ret < 0) {
649 			dev_err(tqspi->dev, "failed to starting TX DMA: %d\n", ret);
650 			return ret;
651 		}
652 	}
653 
654 	if (tqspi->cur_direction & DATA_DIR_RX) {
655 		dma_sconfig.src_addr = tqspi->phys + QSPI_RX_FIFO;
656 		dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
657 		dma_sconfig.src_maxburst = dma_burst;
658 		ret = dmaengine_slave_config(tqspi->rx_dma_chan, &dma_sconfig);
659 		if (ret < 0) {
660 			dev_err(tqspi->dev, "failed DMA slave config: %d\n", ret);
661 			return ret;
662 		}
663 
664 		dma_sync_single_for_device(tqspi->dev, tqspi->rx_dma_phys,
665 					   tqspi->dma_buf_size,
666 					   DMA_FROM_DEVICE);
667 
668 		ret = tegra_qspi_start_rx_dma(tqspi, t, len);
669 		if (ret < 0) {
670 			dev_err(tqspi->dev, "failed to start RX DMA: %d\n", ret);
671 			if (tqspi->cur_direction & DATA_DIR_TX)
672 				dmaengine_terminate_all(tqspi->tx_dma_chan);
673 			return ret;
674 		}
675 	}
676 
677 	tegra_qspi_writel(tqspi, tqspi->command1_reg, QSPI_COMMAND1);
678 
679 	tqspi->is_curr_dma_xfer = true;
680 	tqspi->dma_control_reg = val;
681 	val |= QSPI_DMA_EN;
682 	tegra_qspi_writel(tqspi, val, QSPI_DMA_CTL);
683 
684 	return ret;
685 }
686 
687 static int tegra_qspi_start_cpu_based_transfer(struct tegra_qspi *qspi, struct spi_transfer *t)
688 {
689 	u32 val;
690 	unsigned int cur_words;
691 
692 	if (qspi->cur_direction & DATA_DIR_TX)
693 		cur_words = tegra_qspi_fill_tx_fifo_from_client_txbuf(qspi, t);
694 	else
695 		cur_words = qspi->curr_dma_words;
696 
697 	val = QSPI_DMA_BLK_SET(cur_words - 1);
698 	tegra_qspi_writel(qspi, val, QSPI_DMA_BLK);
699 
700 	tegra_qspi_unmask_irq(qspi);
701 
702 	qspi->is_curr_dma_xfer = false;
703 	val = qspi->command1_reg;
704 	val |= QSPI_PIO;
705 	tegra_qspi_writel(qspi, val, QSPI_COMMAND1);
706 
707 	return 0;
708 }
709 
710 static void tegra_qspi_deinit_dma(struct tegra_qspi *tqspi)
711 {
712 	if (tqspi->tx_dma_buf) {
713 		dma_free_coherent(tqspi->dev, tqspi->dma_buf_size,
714 				  tqspi->tx_dma_buf, tqspi->tx_dma_phys);
715 		tqspi->tx_dma_buf = NULL;
716 	}
717 
718 	if (tqspi->tx_dma_chan) {
719 		dma_release_channel(tqspi->tx_dma_chan);
720 		tqspi->tx_dma_chan = NULL;
721 	}
722 
723 	if (tqspi->rx_dma_buf) {
724 		dma_free_coherent(tqspi->dev, tqspi->dma_buf_size,
725 				  tqspi->rx_dma_buf, tqspi->rx_dma_phys);
726 		tqspi->rx_dma_buf = NULL;
727 	}
728 
729 	if (tqspi->rx_dma_chan) {
730 		dma_release_channel(tqspi->rx_dma_chan);
731 		tqspi->rx_dma_chan = NULL;
732 	}
733 }
734 
735 static int tegra_qspi_init_dma(struct tegra_qspi *tqspi)
736 {
737 	struct dma_chan *dma_chan;
738 	dma_addr_t dma_phys;
739 	u32 *dma_buf;
740 	int err;
741 
742 	dma_chan = dma_request_chan(tqspi->dev, "rx");
743 	if (IS_ERR(dma_chan)) {
744 		err = PTR_ERR(dma_chan);
745 		goto err_out;
746 	}
747 
748 	tqspi->rx_dma_chan = dma_chan;
749 
750 	dma_buf = dma_alloc_coherent(tqspi->dev, tqspi->dma_buf_size, &dma_phys, GFP_KERNEL);
751 	if (!dma_buf) {
752 		err = -ENOMEM;
753 		goto err_out;
754 	}
755 
756 	tqspi->rx_dma_buf = dma_buf;
757 	tqspi->rx_dma_phys = dma_phys;
758 
759 	dma_chan = dma_request_chan(tqspi->dev, "tx");
760 	if (IS_ERR(dma_chan)) {
761 		err = PTR_ERR(dma_chan);
762 		goto err_out;
763 	}
764 
765 	tqspi->tx_dma_chan = dma_chan;
766 
767 	dma_buf = dma_alloc_coherent(tqspi->dev, tqspi->dma_buf_size, &dma_phys, GFP_KERNEL);
768 	if (!dma_buf) {
769 		err = -ENOMEM;
770 		goto err_out;
771 	}
772 
773 	tqspi->tx_dma_buf = dma_buf;
774 	tqspi->tx_dma_phys = dma_phys;
775 	tqspi->use_dma = true;
776 
777 	return 0;
778 
779 err_out:
780 	tegra_qspi_deinit_dma(tqspi);
781 
782 	if (err != -EPROBE_DEFER) {
783 		dev_err(tqspi->dev, "cannot use DMA: %d\n", err);
784 		dev_err(tqspi->dev, "falling back to PIO\n");
785 		return 0;
786 	}
787 
788 	return err;
789 }
790 
791 static u32 tegra_qspi_setup_transfer_one(struct spi_device *spi, struct spi_transfer *t,
792 					 bool is_first_of_msg)
793 {
794 	struct tegra_qspi *tqspi = spi_master_get_devdata(spi->master);
795 	struct tegra_qspi_client_data *cdata = spi->controller_data;
796 	u32 command1, command2, speed = t->speed_hz;
797 	u8 bits_per_word = t->bits_per_word;
798 	u32 tx_tap = 0, rx_tap = 0;
799 	int req_mode;
800 
801 	if (!has_acpi_companion(tqspi->dev) && speed != tqspi->cur_speed) {
802 		clk_set_rate(tqspi->clk, speed);
803 		tqspi->cur_speed = speed;
804 	}
805 
806 	tqspi->cur_pos = 0;
807 	tqspi->cur_rx_pos = 0;
808 	tqspi->cur_tx_pos = 0;
809 	tqspi->curr_xfer = t;
810 
811 	if (is_first_of_msg) {
812 		tegra_qspi_mask_clear_irq(tqspi);
813 
814 		command1 = tqspi->def_command1_reg;
815 		command1 |= QSPI_BIT_LENGTH(bits_per_word - 1);
816 
817 		command1 &= ~QSPI_CONTROL_MODE_MASK;
818 		req_mode = spi->mode & 0x3;
819 		if (req_mode == SPI_MODE_3)
820 			command1 |= QSPI_CONTROL_MODE_3;
821 		else
822 			command1 |= QSPI_CONTROL_MODE_0;
823 
824 		if (spi->mode & SPI_CS_HIGH)
825 			command1 |= QSPI_CS_SW_VAL;
826 		else
827 			command1 &= ~QSPI_CS_SW_VAL;
828 		tegra_qspi_writel(tqspi, command1, QSPI_COMMAND1);
829 
830 		if (cdata && cdata->tx_clk_tap_delay)
831 			tx_tap = cdata->tx_clk_tap_delay;
832 
833 		if (cdata && cdata->rx_clk_tap_delay)
834 			rx_tap = cdata->rx_clk_tap_delay;
835 
836 		command2 = QSPI_TX_TAP_DELAY(tx_tap) | QSPI_RX_TAP_DELAY(rx_tap);
837 		if (command2 != tqspi->def_command2_reg)
838 			tegra_qspi_writel(tqspi, command2, QSPI_COMMAND2);
839 
840 	} else {
841 		command1 = tqspi->command1_reg;
842 		command1 &= ~QSPI_BIT_LENGTH(~0);
843 		command1 |= QSPI_BIT_LENGTH(bits_per_word - 1);
844 	}
845 
846 	command1 &= ~QSPI_SDR_DDR_SEL;
847 
848 	return command1;
849 }
850 
851 static int tegra_qspi_start_transfer_one(struct spi_device *spi,
852 					 struct spi_transfer *t, u32 command1)
853 {
854 	struct tegra_qspi *tqspi = spi_master_get_devdata(spi->master);
855 	unsigned int total_fifo_words;
856 	u8 bus_width = 0;
857 	int ret;
858 
859 	total_fifo_words = tegra_qspi_calculate_curr_xfer_param(tqspi, t);
860 
861 	command1 &= ~QSPI_PACKED;
862 	if (tqspi->is_packed)
863 		command1 |= QSPI_PACKED;
864 	tegra_qspi_writel(tqspi, command1, QSPI_COMMAND1);
865 
866 	tqspi->cur_direction = 0;
867 
868 	command1 &= ~(QSPI_TX_EN | QSPI_RX_EN);
869 	if (t->rx_buf) {
870 		command1 |= QSPI_RX_EN;
871 		tqspi->cur_direction |= DATA_DIR_RX;
872 		bus_width = t->rx_nbits;
873 	}
874 
875 	if (t->tx_buf) {
876 		command1 |= QSPI_TX_EN;
877 		tqspi->cur_direction |= DATA_DIR_TX;
878 		bus_width = t->tx_nbits;
879 	}
880 
881 	command1 &= ~QSPI_INTERFACE_WIDTH_MASK;
882 
883 	if (bus_width == SPI_NBITS_QUAD)
884 		command1 |= QSPI_INTERFACE_WIDTH_QUAD;
885 	else if (bus_width == SPI_NBITS_DUAL)
886 		command1 |= QSPI_INTERFACE_WIDTH_DUAL;
887 	else
888 		command1 |= QSPI_INTERFACE_WIDTH_SINGLE;
889 
890 	tqspi->command1_reg = command1;
891 
892 	tegra_qspi_writel(tqspi, QSPI_NUM_DUMMY_CYCLE(tqspi->dummy_cycles), QSPI_MISC_REG);
893 
894 	ret = tegra_qspi_flush_fifos(tqspi, false);
895 	if (ret < 0)
896 		return ret;
897 
898 	if (tqspi->use_dma && total_fifo_words > QSPI_FIFO_DEPTH)
899 		ret = tegra_qspi_start_dma_based_transfer(tqspi, t);
900 	else
901 		ret = tegra_qspi_start_cpu_based_transfer(tqspi, t);
902 
903 	return ret;
904 }
905 
906 static struct tegra_qspi_client_data *tegra_qspi_parse_cdata_dt(struct spi_device *spi)
907 {
908 	struct tegra_qspi_client_data *cdata;
909 
910 	cdata = devm_kzalloc(&spi->dev, sizeof(*cdata), GFP_KERNEL);
911 	if (!cdata)
912 		return NULL;
913 
914 	device_property_read_u32(&spi->dev, "nvidia,tx-clk-tap-delay",
915 				 &cdata->tx_clk_tap_delay);
916 	device_property_read_u32(&spi->dev, "nvidia,rx-clk-tap-delay",
917 				 &cdata->rx_clk_tap_delay);
918 
919 	return cdata;
920 }
921 
922 static int tegra_qspi_setup(struct spi_device *spi)
923 {
924 	struct tegra_qspi *tqspi = spi_master_get_devdata(spi->master);
925 	struct tegra_qspi_client_data *cdata = spi->controller_data;
926 	unsigned long flags;
927 	u32 val;
928 	int ret;
929 
930 	ret = pm_runtime_resume_and_get(tqspi->dev);
931 	if (ret < 0) {
932 		dev_err(tqspi->dev, "failed to get runtime PM: %d\n", ret);
933 		return ret;
934 	}
935 
936 	if (!cdata) {
937 		cdata = tegra_qspi_parse_cdata_dt(spi);
938 		spi->controller_data = cdata;
939 	}
940 	spin_lock_irqsave(&tqspi->lock, flags);
941 
942 	/* keep default cs state to inactive */
943 	val = tqspi->def_command1_reg;
944 	if (spi->mode & SPI_CS_HIGH)
945 		val &= ~QSPI_CS_SW_VAL;
946 	else
947 		val |= QSPI_CS_SW_VAL;
948 
949 	tqspi->def_command1_reg = val;
950 	tegra_qspi_writel(tqspi, tqspi->def_command1_reg, QSPI_COMMAND1);
951 
952 	spin_unlock_irqrestore(&tqspi->lock, flags);
953 
954 	pm_runtime_put(tqspi->dev);
955 
956 	return 0;
957 }
958 
959 static void tegra_qspi_dump_regs(struct tegra_qspi *tqspi)
960 {
961 	dev_dbg(tqspi->dev, "============ QSPI REGISTER DUMP ============\n");
962 	dev_dbg(tqspi->dev, "Command1:    0x%08x | Command2:    0x%08x\n",
963 		tegra_qspi_readl(tqspi, QSPI_COMMAND1),
964 		tegra_qspi_readl(tqspi, QSPI_COMMAND2));
965 	dev_dbg(tqspi->dev, "DMA_CTL:     0x%08x | DMA_BLK:     0x%08x\n",
966 		tegra_qspi_readl(tqspi, QSPI_DMA_CTL),
967 		tegra_qspi_readl(tqspi, QSPI_DMA_BLK));
968 	dev_dbg(tqspi->dev, "INTR_MASK:  0x%08x | MISC: 0x%08x\n",
969 		tegra_qspi_readl(tqspi, QSPI_INTR_MASK),
970 		tegra_qspi_readl(tqspi, QSPI_MISC_REG));
971 	dev_dbg(tqspi->dev, "TRANS_STAT:  0x%08x | FIFO_STATUS: 0x%08x\n",
972 		tegra_qspi_readl(tqspi, QSPI_TRANS_STATUS),
973 		tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS));
974 }
975 
976 static void tegra_qspi_handle_error(struct tegra_qspi *tqspi)
977 {
978 	dev_err(tqspi->dev, "error in transfer, fifo status 0x%08x\n", tqspi->status_reg);
979 	tegra_qspi_dump_regs(tqspi);
980 	tegra_qspi_flush_fifos(tqspi, true);
981 	if (device_reset(tqspi->dev) < 0)
982 		dev_warn_once(tqspi->dev, "device reset failed\n");
983 }
984 
985 static void tegra_qspi_transfer_end(struct spi_device *spi)
986 {
987 	struct tegra_qspi *tqspi = spi_master_get_devdata(spi->master);
988 	int cs_val = (spi->mode & SPI_CS_HIGH) ? 0 : 1;
989 
990 	if (cs_val)
991 		tqspi->command1_reg |= QSPI_CS_SW_VAL;
992 	else
993 		tqspi->command1_reg &= ~QSPI_CS_SW_VAL;
994 	tegra_qspi_writel(tqspi, tqspi->command1_reg, QSPI_COMMAND1);
995 	tegra_qspi_writel(tqspi, tqspi->def_command1_reg, QSPI_COMMAND1);
996 }
997 
998 static u32 tegra_qspi_cmd_config(bool is_ddr, u8 bus_width, u8 len)
999 {
1000 	u32 cmd_config = 0;
1001 
1002 	/* Extract Command configuration and value */
1003 	if (is_ddr)
1004 		cmd_config |= QSPI_COMMAND_SDR_DDR;
1005 	else
1006 		cmd_config &= ~QSPI_COMMAND_SDR_DDR;
1007 
1008 	cmd_config |= QSPI_COMMAND_X1_X2_X4(bus_width);
1009 	cmd_config |= QSPI_COMMAND_SIZE_SET((len * 8) - 1);
1010 
1011 	return cmd_config;
1012 }
1013 
1014 static u32 tegra_qspi_addr_config(bool is_ddr, u8 bus_width, u8 len)
1015 {
1016 	u32 addr_config = 0;
1017 
1018 	/* Extract Address configuration and value */
1019 	is_ddr = 0; //Only SDR mode supported
1020 	bus_width = 0; //X1 mode
1021 
1022 	if (is_ddr)
1023 		addr_config |= QSPI_ADDRESS_SDR_DDR;
1024 	else
1025 		addr_config &= ~QSPI_ADDRESS_SDR_DDR;
1026 
1027 	addr_config |= QSPI_ADDRESS_X1_X2_X4(bus_width);
1028 	addr_config |= QSPI_ADDRESS_SIZE_SET((len * 8) - 1);
1029 
1030 	return addr_config;
1031 }
1032 
1033 static int tegra_qspi_combined_seq_xfer(struct tegra_qspi *tqspi,
1034 					struct spi_message *msg)
1035 {
1036 	bool is_first_msg = true;
1037 	struct spi_transfer *xfer;
1038 	struct spi_device *spi = msg->spi;
1039 	u8 transfer_phase = 0;
1040 	u32 cmd1 = 0, dma_ctl = 0;
1041 	int ret = 0;
1042 	u32 address_value = 0;
1043 	u32 cmd_config = 0, addr_config = 0;
1044 	u8 cmd_value = 0, val = 0;
1045 
1046 	/* Enable Combined sequence mode */
1047 	val = tegra_qspi_readl(tqspi, QSPI_GLOBAL_CONFIG);
1048 	val |= QSPI_CMB_SEQ_EN;
1049 	tegra_qspi_writel(tqspi, val, QSPI_GLOBAL_CONFIG);
1050 	/* Process individual transfer list */
1051 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1052 		switch (transfer_phase) {
1053 		case CMD_TRANSFER:
1054 			/* X1 SDR mode */
1055 			cmd_config = tegra_qspi_cmd_config(false, 0,
1056 							   xfer->len);
1057 			cmd_value = *((const u8 *)(xfer->tx_buf));
1058 			break;
1059 		case ADDR_TRANSFER:
1060 			/* X1 SDR mode */
1061 			addr_config = tegra_qspi_addr_config(false, 0,
1062 							     xfer->len);
1063 			address_value = *((const u32 *)(xfer->tx_buf));
1064 			break;
1065 		case DATA_TRANSFER:
1066 			/* Program Command, Address value in register */
1067 			tegra_qspi_writel(tqspi, cmd_value, QSPI_CMB_SEQ_CMD);
1068 			tegra_qspi_writel(tqspi, address_value,
1069 					  QSPI_CMB_SEQ_ADDR);
1070 			/* Program Command and Address config in register */
1071 			tegra_qspi_writel(tqspi, cmd_config,
1072 					  QSPI_CMB_SEQ_CMD_CFG);
1073 			tegra_qspi_writel(tqspi, addr_config,
1074 					  QSPI_CMB_SEQ_ADDR_CFG);
1075 
1076 			reinit_completion(&tqspi->xfer_completion);
1077 			cmd1 = tegra_qspi_setup_transfer_one(spi, xfer,
1078 							     is_first_msg);
1079 			ret = tegra_qspi_start_transfer_one(spi, xfer,
1080 							    cmd1);
1081 
1082 			if (ret < 0) {
1083 				dev_err(tqspi->dev, "Failed to start transfer-one: %d\n",
1084 					ret);
1085 				return ret;
1086 			}
1087 
1088 			is_first_msg = false;
1089 			ret = wait_for_completion_timeout
1090 					(&tqspi->xfer_completion,
1091 					QSPI_DMA_TIMEOUT);
1092 
1093 			if (WARN_ON(ret == 0)) {
1094 				dev_err(tqspi->dev, "QSPI Transfer failed with timeout: %d\n",
1095 					ret);
1096 				if (tqspi->is_curr_dma_xfer &&
1097 				    (tqspi->cur_direction & DATA_DIR_TX))
1098 					dmaengine_terminate_all
1099 						(tqspi->tx_dma_chan);
1100 
1101 				if (tqspi->is_curr_dma_xfer &&
1102 				    (tqspi->cur_direction & DATA_DIR_RX))
1103 					dmaengine_terminate_all
1104 						(tqspi->rx_dma_chan);
1105 
1106 				/* Abort transfer by resetting pio/dma bit */
1107 				if (!tqspi->is_curr_dma_xfer) {
1108 					cmd1 = tegra_qspi_readl
1109 							(tqspi,
1110 							 QSPI_COMMAND1);
1111 					cmd1 &= ~QSPI_PIO;
1112 					tegra_qspi_writel
1113 							(tqspi, cmd1,
1114 							 QSPI_COMMAND1);
1115 				} else {
1116 					dma_ctl = tegra_qspi_readl
1117 							(tqspi,
1118 							 QSPI_DMA_CTL);
1119 					dma_ctl &= ~QSPI_DMA_EN;
1120 					tegra_qspi_writel(tqspi, dma_ctl,
1121 							  QSPI_DMA_CTL);
1122 				}
1123 
1124 				/* Reset controller if timeout happens */
1125 				if (device_reset(tqspi->dev) < 0)
1126 					dev_warn_once(tqspi->dev,
1127 						      "device reset failed\n");
1128 				ret = -EIO;
1129 				goto exit;
1130 			}
1131 
1132 			if (tqspi->tx_status ||  tqspi->rx_status) {
1133 				dev_err(tqspi->dev, "QSPI Transfer failed\n");
1134 				tqspi->tx_status = 0;
1135 				tqspi->rx_status = 0;
1136 				ret = -EIO;
1137 				goto exit;
1138 			}
1139 			break;
1140 		default:
1141 			ret = -EINVAL;
1142 			goto exit;
1143 		}
1144 		msg->actual_length += xfer->len;
1145 		transfer_phase++;
1146 	}
1147 
1148 exit:
1149 	msg->status = ret;
1150 
1151 	return ret;
1152 }
1153 
1154 static int tegra_qspi_non_combined_seq_xfer(struct tegra_qspi *tqspi,
1155 					    struct spi_message *msg)
1156 {
1157 	struct spi_device *spi = msg->spi;
1158 	struct spi_transfer *transfer;
1159 	bool is_first_msg = true;
1160 	int ret = 0, val = 0;
1161 
1162 	msg->status = 0;
1163 	msg->actual_length = 0;
1164 	tqspi->tx_status = 0;
1165 	tqspi->rx_status = 0;
1166 
1167 	/* Disable Combined sequence mode */
1168 	val = tegra_qspi_readl(tqspi, QSPI_GLOBAL_CONFIG);
1169 	val &= ~QSPI_CMB_SEQ_EN;
1170 	tegra_qspi_writel(tqspi, val, QSPI_GLOBAL_CONFIG);
1171 	list_for_each_entry(transfer, &msg->transfers, transfer_list) {
1172 		struct spi_transfer *xfer = transfer;
1173 		u8 dummy_bytes = 0;
1174 		u32 cmd1;
1175 
1176 		tqspi->dummy_cycles = 0;
1177 		/*
1178 		 * Tegra QSPI hardware supports dummy bytes transfer after actual transfer
1179 		 * bytes based on programmed dummy clock cycles in the QSPI_MISC register.
1180 		 * So, check if the next transfer is dummy data transfer and program dummy
1181 		 * clock cycles along with the current transfer and skip next transfer.
1182 		 */
1183 		if (!list_is_last(&xfer->transfer_list, &msg->transfers)) {
1184 			struct spi_transfer *next_xfer;
1185 
1186 			next_xfer = list_next_entry(xfer, transfer_list);
1187 			if (next_xfer->dummy_data) {
1188 				u32 dummy_cycles = next_xfer->len * 8 / next_xfer->tx_nbits;
1189 
1190 				if (dummy_cycles <= QSPI_DUMMY_CYCLES_MAX) {
1191 					tqspi->dummy_cycles = dummy_cycles;
1192 					dummy_bytes = next_xfer->len;
1193 					transfer = next_xfer;
1194 				}
1195 			}
1196 		}
1197 
1198 		reinit_completion(&tqspi->xfer_completion);
1199 
1200 		cmd1 = tegra_qspi_setup_transfer_one(spi, xfer, is_first_msg);
1201 
1202 		ret = tegra_qspi_start_transfer_one(spi, xfer, cmd1);
1203 		if (ret < 0) {
1204 			dev_err(tqspi->dev, "failed to start transfer: %d\n", ret);
1205 			goto complete_xfer;
1206 		}
1207 
1208 		ret = wait_for_completion_timeout(&tqspi->xfer_completion,
1209 						  QSPI_DMA_TIMEOUT);
1210 		if (WARN_ON(ret == 0)) {
1211 			dev_err(tqspi->dev, "transfer timeout\n");
1212 			if (tqspi->is_curr_dma_xfer && (tqspi->cur_direction & DATA_DIR_TX))
1213 				dmaengine_terminate_all(tqspi->tx_dma_chan);
1214 			if (tqspi->is_curr_dma_xfer && (tqspi->cur_direction & DATA_DIR_RX))
1215 				dmaengine_terminate_all(tqspi->rx_dma_chan);
1216 			tegra_qspi_handle_error(tqspi);
1217 			ret = -EIO;
1218 			goto complete_xfer;
1219 		}
1220 
1221 		if (tqspi->tx_status ||  tqspi->rx_status) {
1222 			tegra_qspi_handle_error(tqspi);
1223 			ret = -EIO;
1224 			goto complete_xfer;
1225 		}
1226 
1227 		msg->actual_length += xfer->len + dummy_bytes;
1228 
1229 complete_xfer:
1230 		if (ret < 0) {
1231 			tegra_qspi_transfer_end(spi);
1232 			spi_transfer_delay_exec(xfer);
1233 			goto exit;
1234 		}
1235 
1236 		if (list_is_last(&xfer->transfer_list, &msg->transfers)) {
1237 			/* de-activate CS after last transfer only when cs_change is not set */
1238 			if (!xfer->cs_change) {
1239 				tegra_qspi_transfer_end(spi);
1240 				spi_transfer_delay_exec(xfer);
1241 			}
1242 		} else if (xfer->cs_change) {
1243 			 /* de-activated CS between the transfers only when cs_change is set */
1244 			tegra_qspi_transfer_end(spi);
1245 			spi_transfer_delay_exec(xfer);
1246 		}
1247 	}
1248 
1249 	ret = 0;
1250 exit:
1251 	msg->status = ret;
1252 
1253 	return ret;
1254 }
1255 
1256 static bool tegra_qspi_validate_cmb_seq(struct tegra_qspi *tqspi,
1257 					struct spi_message *msg)
1258 {
1259 	int transfer_count = 0;
1260 	struct spi_transfer *xfer;
1261 
1262 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1263 		transfer_count++;
1264 	}
1265 	if (!tqspi->soc_data->cmb_xfer_capable || transfer_count != 3)
1266 		return false;
1267 	xfer = list_first_entry(&msg->transfers, typeof(*xfer),
1268 				transfer_list);
1269 	if (xfer->len > 2)
1270 		return false;
1271 	xfer = list_next_entry(xfer, transfer_list);
1272 	if (xfer->len > 4 || xfer->len < 3)
1273 		return false;
1274 	xfer = list_next_entry(xfer, transfer_list);
1275 	if (!tqspi->soc_data->has_dma || xfer->len > (QSPI_FIFO_DEPTH << 2))
1276 		return false;
1277 
1278 	return true;
1279 }
1280 
1281 static int tegra_qspi_transfer_one_message(struct spi_master *master,
1282 					   struct spi_message *msg)
1283 {
1284 	struct tegra_qspi *tqspi = spi_master_get_devdata(master);
1285 	int ret;
1286 
1287 	if (tegra_qspi_validate_cmb_seq(tqspi, msg))
1288 		ret = tegra_qspi_combined_seq_xfer(tqspi, msg);
1289 	else
1290 		ret = tegra_qspi_non_combined_seq_xfer(tqspi, msg);
1291 
1292 	spi_finalize_current_message(master);
1293 
1294 	return ret;
1295 }
1296 
1297 static irqreturn_t handle_cpu_based_xfer(struct tegra_qspi *tqspi)
1298 {
1299 	struct spi_transfer *t = tqspi->curr_xfer;
1300 	unsigned long flags;
1301 
1302 	spin_lock_irqsave(&tqspi->lock, flags);
1303 
1304 	if (tqspi->tx_status ||  tqspi->rx_status) {
1305 		tegra_qspi_handle_error(tqspi);
1306 		complete(&tqspi->xfer_completion);
1307 		goto exit;
1308 	}
1309 
1310 	if (tqspi->cur_direction & DATA_DIR_RX)
1311 		tegra_qspi_read_rx_fifo_to_client_rxbuf(tqspi, t);
1312 
1313 	if (tqspi->cur_direction & DATA_DIR_TX)
1314 		tqspi->cur_pos = tqspi->cur_tx_pos;
1315 	else
1316 		tqspi->cur_pos = tqspi->cur_rx_pos;
1317 
1318 	if (tqspi->cur_pos == t->len) {
1319 		complete(&tqspi->xfer_completion);
1320 		goto exit;
1321 	}
1322 
1323 	tegra_qspi_calculate_curr_xfer_param(tqspi, t);
1324 	tegra_qspi_start_cpu_based_transfer(tqspi, t);
1325 exit:
1326 	spin_unlock_irqrestore(&tqspi->lock, flags);
1327 	return IRQ_HANDLED;
1328 }
1329 
1330 static irqreturn_t handle_dma_based_xfer(struct tegra_qspi *tqspi)
1331 {
1332 	struct spi_transfer *t = tqspi->curr_xfer;
1333 	unsigned int total_fifo_words;
1334 	unsigned long flags;
1335 	long wait_status;
1336 	int err = 0;
1337 
1338 	if (tqspi->cur_direction & DATA_DIR_TX) {
1339 		if (tqspi->tx_status) {
1340 			dmaengine_terminate_all(tqspi->tx_dma_chan);
1341 			err += 1;
1342 		} else {
1343 			wait_status = wait_for_completion_interruptible_timeout(
1344 				&tqspi->tx_dma_complete, QSPI_DMA_TIMEOUT);
1345 			if (wait_status <= 0) {
1346 				dmaengine_terminate_all(tqspi->tx_dma_chan);
1347 				dev_err(tqspi->dev, "failed TX DMA transfer\n");
1348 				err += 1;
1349 			}
1350 		}
1351 	}
1352 
1353 	if (tqspi->cur_direction & DATA_DIR_RX) {
1354 		if (tqspi->rx_status) {
1355 			dmaengine_terminate_all(tqspi->rx_dma_chan);
1356 			err += 2;
1357 		} else {
1358 			wait_status = wait_for_completion_interruptible_timeout(
1359 				&tqspi->rx_dma_complete, QSPI_DMA_TIMEOUT);
1360 			if (wait_status <= 0) {
1361 				dmaengine_terminate_all(tqspi->rx_dma_chan);
1362 				dev_err(tqspi->dev, "failed RX DMA transfer\n");
1363 				err += 2;
1364 			}
1365 		}
1366 	}
1367 
1368 	spin_lock_irqsave(&tqspi->lock, flags);
1369 
1370 	if (err) {
1371 		tegra_qspi_dma_unmap_xfer(tqspi, t);
1372 		tegra_qspi_handle_error(tqspi);
1373 		complete(&tqspi->xfer_completion);
1374 		goto exit;
1375 	}
1376 
1377 	if (tqspi->cur_direction & DATA_DIR_RX)
1378 		tegra_qspi_copy_qspi_rxbuf_to_client_rxbuf(tqspi, t);
1379 
1380 	if (tqspi->cur_direction & DATA_DIR_TX)
1381 		tqspi->cur_pos = tqspi->cur_tx_pos;
1382 	else
1383 		tqspi->cur_pos = tqspi->cur_rx_pos;
1384 
1385 	if (tqspi->cur_pos == t->len) {
1386 		tegra_qspi_dma_unmap_xfer(tqspi, t);
1387 		complete(&tqspi->xfer_completion);
1388 		goto exit;
1389 	}
1390 
1391 	tegra_qspi_dma_unmap_xfer(tqspi, t);
1392 
1393 	/* continue transfer in current message */
1394 	total_fifo_words = tegra_qspi_calculate_curr_xfer_param(tqspi, t);
1395 	if (total_fifo_words > QSPI_FIFO_DEPTH)
1396 		err = tegra_qspi_start_dma_based_transfer(tqspi, t);
1397 	else
1398 		err = tegra_qspi_start_cpu_based_transfer(tqspi, t);
1399 
1400 exit:
1401 	spin_unlock_irqrestore(&tqspi->lock, flags);
1402 	return IRQ_HANDLED;
1403 }
1404 
1405 static irqreturn_t tegra_qspi_isr_thread(int irq, void *context_data)
1406 {
1407 	struct tegra_qspi *tqspi = context_data;
1408 
1409 	tqspi->status_reg = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
1410 
1411 	if (tqspi->cur_direction & DATA_DIR_TX)
1412 		tqspi->tx_status = tqspi->status_reg & (QSPI_TX_FIFO_UNF | QSPI_TX_FIFO_OVF);
1413 
1414 	if (tqspi->cur_direction & DATA_DIR_RX)
1415 		tqspi->rx_status = tqspi->status_reg & (QSPI_RX_FIFO_OVF | QSPI_RX_FIFO_UNF);
1416 
1417 	tegra_qspi_mask_clear_irq(tqspi);
1418 
1419 	if (!tqspi->is_curr_dma_xfer)
1420 		return handle_cpu_based_xfer(tqspi);
1421 
1422 	return handle_dma_based_xfer(tqspi);
1423 }
1424 
1425 static struct tegra_qspi_soc_data tegra210_qspi_soc_data = {
1426 	.has_dma = true,
1427 	.cmb_xfer_capable = false,
1428 };
1429 
1430 static struct tegra_qspi_soc_data tegra186_qspi_soc_data = {
1431 	.has_dma = true,
1432 	.cmb_xfer_capable = true,
1433 };
1434 
1435 static struct tegra_qspi_soc_data tegra234_qspi_soc_data = {
1436 	.has_dma = false,
1437 	.cmb_xfer_capable = true,
1438 };
1439 
1440 static const struct of_device_id tegra_qspi_of_match[] = {
1441 	{
1442 		.compatible = "nvidia,tegra210-qspi",
1443 		.data	    = &tegra210_qspi_soc_data,
1444 	}, {
1445 		.compatible = "nvidia,tegra186-qspi",
1446 		.data	    = &tegra186_qspi_soc_data,
1447 	}, {
1448 		.compatible = "nvidia,tegra194-qspi",
1449 		.data	    = &tegra186_qspi_soc_data,
1450 	}, {
1451 		.compatible = "nvidia,tegra234-qspi",
1452 		.data	    = &tegra234_qspi_soc_data,
1453 	},
1454 	{}
1455 };
1456 
1457 MODULE_DEVICE_TABLE(of, tegra_qspi_of_match);
1458 
1459 #ifdef CONFIG_ACPI
1460 static const struct acpi_device_id tegra_qspi_acpi_match[] = {
1461 	{
1462 		.id = "NVDA1213",
1463 		.driver_data = (kernel_ulong_t)&tegra210_qspi_soc_data,
1464 	}, {
1465 		.id = "NVDA1313",
1466 		.driver_data = (kernel_ulong_t)&tegra186_qspi_soc_data,
1467 	}, {
1468 		.id = "NVDA1413",
1469 		.driver_data = (kernel_ulong_t)&tegra234_qspi_soc_data,
1470 	},
1471 	{}
1472 };
1473 
1474 MODULE_DEVICE_TABLE(acpi, tegra_qspi_acpi_match);
1475 #endif
1476 
1477 static int tegra_qspi_probe(struct platform_device *pdev)
1478 {
1479 	struct spi_master	*master;
1480 	struct tegra_qspi	*tqspi;
1481 	struct resource		*r;
1482 	int ret, qspi_irq;
1483 	int bus_num;
1484 
1485 	master = devm_spi_alloc_master(&pdev->dev, sizeof(*tqspi));
1486 	if (!master)
1487 		return -ENOMEM;
1488 
1489 	platform_set_drvdata(pdev, master);
1490 	tqspi = spi_master_get_devdata(master);
1491 
1492 	master->mode_bits = SPI_MODE_0 | SPI_MODE_3 | SPI_CS_HIGH |
1493 			    SPI_TX_DUAL | SPI_RX_DUAL | SPI_TX_QUAD | SPI_RX_QUAD;
1494 	master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) | SPI_BPW_MASK(8);
1495 	master->setup = tegra_qspi_setup;
1496 	master->transfer_one_message = tegra_qspi_transfer_one_message;
1497 	master->num_chipselect = 1;
1498 	master->auto_runtime_pm = true;
1499 
1500 	bus_num = of_alias_get_id(pdev->dev.of_node, "spi");
1501 	if (bus_num >= 0)
1502 		master->bus_num = bus_num;
1503 
1504 	tqspi->master = master;
1505 	tqspi->dev = &pdev->dev;
1506 	spin_lock_init(&tqspi->lock);
1507 
1508 	tqspi->soc_data = device_get_match_data(&pdev->dev);
1509 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1510 	tqspi->base = devm_ioremap_resource(&pdev->dev, r);
1511 	if (IS_ERR(tqspi->base))
1512 		return PTR_ERR(tqspi->base);
1513 
1514 	tqspi->phys = r->start;
1515 	qspi_irq = platform_get_irq(pdev, 0);
1516 	if (qspi_irq < 0)
1517 		return qspi_irq;
1518 	tqspi->irq = qspi_irq;
1519 
1520 	if (!has_acpi_companion(tqspi->dev)) {
1521 		tqspi->clk = devm_clk_get(&pdev->dev, "qspi");
1522 		if (IS_ERR(tqspi->clk)) {
1523 			ret = PTR_ERR(tqspi->clk);
1524 			dev_err(&pdev->dev, "failed to get clock: %d\n", ret);
1525 			return ret;
1526 		}
1527 
1528 	}
1529 
1530 	tqspi->max_buf_size = QSPI_FIFO_DEPTH << 2;
1531 	tqspi->dma_buf_size = DEFAULT_QSPI_DMA_BUF_LEN;
1532 
1533 	ret = tegra_qspi_init_dma(tqspi);
1534 	if (ret < 0)
1535 		return ret;
1536 
1537 	if (tqspi->use_dma)
1538 		tqspi->max_buf_size = tqspi->dma_buf_size;
1539 
1540 	init_completion(&tqspi->tx_dma_complete);
1541 	init_completion(&tqspi->rx_dma_complete);
1542 	init_completion(&tqspi->xfer_completion);
1543 
1544 	pm_runtime_enable(&pdev->dev);
1545 	ret = pm_runtime_resume_and_get(&pdev->dev);
1546 	if (ret < 0) {
1547 		dev_err(&pdev->dev, "failed to get runtime PM: %d\n", ret);
1548 		goto exit_pm_disable;
1549 	}
1550 
1551 	if (device_reset(tqspi->dev) < 0)
1552 		dev_warn_once(tqspi->dev, "device reset failed\n");
1553 
1554 	tqspi->def_command1_reg = QSPI_M_S | QSPI_CS_SW_HW |  QSPI_CS_SW_VAL;
1555 	tegra_qspi_writel(tqspi, tqspi->def_command1_reg, QSPI_COMMAND1);
1556 	tqspi->spi_cs_timing1 = tegra_qspi_readl(tqspi, QSPI_CS_TIMING1);
1557 	tqspi->spi_cs_timing2 = tegra_qspi_readl(tqspi, QSPI_CS_TIMING2);
1558 	tqspi->def_command2_reg = tegra_qspi_readl(tqspi, QSPI_COMMAND2);
1559 
1560 	pm_runtime_put(&pdev->dev);
1561 
1562 	ret = request_threaded_irq(tqspi->irq, NULL,
1563 				   tegra_qspi_isr_thread, IRQF_ONESHOT,
1564 				   dev_name(&pdev->dev), tqspi);
1565 	if (ret < 0) {
1566 		dev_err(&pdev->dev, "failed to request IRQ#%u: %d\n", tqspi->irq, ret);
1567 		goto exit_pm_disable;
1568 	}
1569 
1570 	master->dev.of_node = pdev->dev.of_node;
1571 	ret = spi_register_master(master);
1572 	if (ret < 0) {
1573 		dev_err(&pdev->dev, "failed to register master: %d\n", ret);
1574 		goto exit_free_irq;
1575 	}
1576 
1577 	return 0;
1578 
1579 exit_free_irq:
1580 	free_irq(qspi_irq, tqspi);
1581 exit_pm_disable:
1582 	pm_runtime_force_suspend(&pdev->dev);
1583 	tegra_qspi_deinit_dma(tqspi);
1584 	return ret;
1585 }
1586 
1587 static int tegra_qspi_remove(struct platform_device *pdev)
1588 {
1589 	struct spi_master *master = platform_get_drvdata(pdev);
1590 	struct tegra_qspi *tqspi = spi_master_get_devdata(master);
1591 
1592 	spi_unregister_master(master);
1593 	free_irq(tqspi->irq, tqspi);
1594 	pm_runtime_force_suspend(&pdev->dev);
1595 	tegra_qspi_deinit_dma(tqspi);
1596 
1597 	return 0;
1598 }
1599 
1600 static int __maybe_unused tegra_qspi_suspend(struct device *dev)
1601 {
1602 	struct spi_master *master = dev_get_drvdata(dev);
1603 
1604 	return spi_master_suspend(master);
1605 }
1606 
1607 static int __maybe_unused tegra_qspi_resume(struct device *dev)
1608 {
1609 	struct spi_master *master = dev_get_drvdata(dev);
1610 	struct tegra_qspi *tqspi = spi_master_get_devdata(master);
1611 	int ret;
1612 
1613 	ret = pm_runtime_resume_and_get(dev);
1614 	if (ret < 0) {
1615 		dev_err(dev, "failed to get runtime PM: %d\n", ret);
1616 		return ret;
1617 	}
1618 
1619 	tegra_qspi_writel(tqspi, tqspi->command1_reg, QSPI_COMMAND1);
1620 	tegra_qspi_writel(tqspi, tqspi->def_command2_reg, QSPI_COMMAND2);
1621 	pm_runtime_put(dev);
1622 
1623 	return spi_master_resume(master);
1624 }
1625 
1626 static int __maybe_unused tegra_qspi_runtime_suspend(struct device *dev)
1627 {
1628 	struct spi_master *master = dev_get_drvdata(dev);
1629 	struct tegra_qspi *tqspi = spi_master_get_devdata(master);
1630 
1631 	/* Runtime pm disabled with ACPI */
1632 	if (has_acpi_companion(tqspi->dev))
1633 		return 0;
1634 	/* flush all write which are in PPSB queue by reading back */
1635 	tegra_qspi_readl(tqspi, QSPI_COMMAND1);
1636 
1637 	clk_disable_unprepare(tqspi->clk);
1638 
1639 	return 0;
1640 }
1641 
1642 static int __maybe_unused tegra_qspi_runtime_resume(struct device *dev)
1643 {
1644 	struct spi_master *master = dev_get_drvdata(dev);
1645 	struct tegra_qspi *tqspi = spi_master_get_devdata(master);
1646 	int ret;
1647 
1648 	/* Runtime pm disabled with ACPI */
1649 	if (has_acpi_companion(tqspi->dev))
1650 		return 0;
1651 	ret = clk_prepare_enable(tqspi->clk);
1652 	if (ret < 0)
1653 		dev_err(tqspi->dev, "failed to enable clock: %d\n", ret);
1654 
1655 	return ret;
1656 }
1657 
1658 static const struct dev_pm_ops tegra_qspi_pm_ops = {
1659 	SET_RUNTIME_PM_OPS(tegra_qspi_runtime_suspend, tegra_qspi_runtime_resume, NULL)
1660 	SET_SYSTEM_SLEEP_PM_OPS(tegra_qspi_suspend, tegra_qspi_resume)
1661 };
1662 
1663 static struct platform_driver tegra_qspi_driver = {
1664 	.driver = {
1665 		.name		= "tegra-qspi",
1666 		.pm		= &tegra_qspi_pm_ops,
1667 		.of_match_table	= tegra_qspi_of_match,
1668 		.acpi_match_table = ACPI_PTR(tegra_qspi_acpi_match),
1669 	},
1670 	.probe =	tegra_qspi_probe,
1671 	.remove =	tegra_qspi_remove,
1672 };
1673 module_platform_driver(tegra_qspi_driver);
1674 
1675 MODULE_ALIAS("platform:qspi-tegra");
1676 MODULE_DESCRIPTION("NVIDIA Tegra QSPI Controller Driver");
1677 MODULE_AUTHOR("Sowjanya Komatineni <skomatineni@nvidia.com>");
1678 MODULE_LICENSE("GPL v2");
1679