1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SPI driver for NVIDIA's Tegra114 SPI Controller. 4 * 5 * Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved. 6 */ 7 8 #include <linux/clk.h> 9 #include <linux/completion.h> 10 #include <linux/delay.h> 11 #include <linux/dmaengine.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/dmapool.h> 14 #include <linux/err.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/kernel.h> 18 #include <linux/kthread.h> 19 #include <linux/module.h> 20 #include <linux/platform_device.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/of.h> 23 #include <linux/reset.h> 24 #include <linux/spi/spi.h> 25 26 #define SPI_COMMAND1 0x000 27 #define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0) 28 #define SPI_PACKED (1 << 5) 29 #define SPI_TX_EN (1 << 11) 30 #define SPI_RX_EN (1 << 12) 31 #define SPI_BOTH_EN_BYTE (1 << 13) 32 #define SPI_BOTH_EN_BIT (1 << 14) 33 #define SPI_LSBYTE_FE (1 << 15) 34 #define SPI_LSBIT_FE (1 << 16) 35 #define SPI_BIDIROE (1 << 17) 36 #define SPI_IDLE_SDA_DRIVE_LOW (0 << 18) 37 #define SPI_IDLE_SDA_DRIVE_HIGH (1 << 18) 38 #define SPI_IDLE_SDA_PULL_LOW (2 << 18) 39 #define SPI_IDLE_SDA_PULL_HIGH (3 << 18) 40 #define SPI_IDLE_SDA_MASK (3 << 18) 41 #define SPI_CS_SW_VAL (1 << 20) 42 #define SPI_CS_SW_HW (1 << 21) 43 /* SPI_CS_POL_INACTIVE bits are default high */ 44 /* n from 0 to 3 */ 45 #define SPI_CS_POL_INACTIVE(n) (1 << (22 + (n))) 46 #define SPI_CS_POL_INACTIVE_MASK (0xF << 22) 47 48 #define SPI_CS_SEL_0 (0 << 26) 49 #define SPI_CS_SEL_1 (1 << 26) 50 #define SPI_CS_SEL_2 (2 << 26) 51 #define SPI_CS_SEL_3 (3 << 26) 52 #define SPI_CS_SEL_MASK (3 << 26) 53 #define SPI_CS_SEL(x) (((x) & 0x3) << 26) 54 #define SPI_CONTROL_MODE_0 (0 << 28) 55 #define SPI_CONTROL_MODE_1 (1 << 28) 56 #define SPI_CONTROL_MODE_2 (2 << 28) 57 #define SPI_CONTROL_MODE_3 (3 << 28) 58 #define SPI_CONTROL_MODE_MASK (3 << 28) 59 #define SPI_MODE_SEL(x) (((x) & 0x3) << 28) 60 #define SPI_M_S (1 << 30) 61 #define SPI_PIO (1 << 31) 62 63 #define SPI_COMMAND2 0x004 64 #define SPI_TX_TAP_DELAY(x) (((x) & 0x3F) << 6) 65 #define SPI_RX_TAP_DELAY(x) (((x) & 0x3F) << 0) 66 67 #define SPI_CS_TIMING1 0x008 68 #define SPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold)) 69 #define SPI_CS_SETUP_HOLD(reg, cs, val) \ 70 ((((val) & 0xFFu) << ((cs) * 8)) | \ 71 ((reg) & ~(0xFFu << ((cs) * 8)))) 72 73 #define SPI_CS_TIMING2 0x00C 74 #define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1F) << 0) 75 #define CS_ACTIVE_BETWEEN_PACKETS_0 (1 << 5) 76 #define CYCLES_BETWEEN_PACKETS_1(x) (((x) & 0x1F) << 8) 77 #define CS_ACTIVE_BETWEEN_PACKETS_1 (1 << 13) 78 #define CYCLES_BETWEEN_PACKETS_2(x) (((x) & 0x1F) << 16) 79 #define CS_ACTIVE_BETWEEN_PACKETS_2 (1 << 21) 80 #define CYCLES_BETWEEN_PACKETS_3(x) (((x) & 0x1F) << 24) 81 #define CS_ACTIVE_BETWEEN_PACKETS_3 (1 << 29) 82 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val) \ 83 (reg = (((val) & 0x1) << ((cs) * 8 + 5)) | \ 84 ((reg) & ~(1 << ((cs) * 8 + 5)))) 85 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val) \ 86 (reg = (((val) & 0x1F) << ((cs) * 8)) | \ 87 ((reg) & ~(0x1F << ((cs) * 8)))) 88 #define MAX_SETUP_HOLD_CYCLES 16 89 #define MAX_INACTIVE_CYCLES 32 90 91 #define SPI_TRANS_STATUS 0x010 92 #define SPI_BLK_CNT(val) (((val) >> 0) & 0xFFFF) 93 #define SPI_SLV_IDLE_COUNT(val) (((val) >> 16) & 0xFF) 94 #define SPI_RDY (1 << 30) 95 96 #define SPI_FIFO_STATUS 0x014 97 #define SPI_RX_FIFO_EMPTY (1 << 0) 98 #define SPI_RX_FIFO_FULL (1 << 1) 99 #define SPI_TX_FIFO_EMPTY (1 << 2) 100 #define SPI_TX_FIFO_FULL (1 << 3) 101 #define SPI_RX_FIFO_UNF (1 << 4) 102 #define SPI_RX_FIFO_OVF (1 << 5) 103 #define SPI_TX_FIFO_UNF (1 << 6) 104 #define SPI_TX_FIFO_OVF (1 << 7) 105 #define SPI_ERR (1 << 8) 106 #define SPI_TX_FIFO_FLUSH (1 << 14) 107 #define SPI_RX_FIFO_FLUSH (1 << 15) 108 #define SPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7F) 109 #define SPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7F) 110 #define SPI_FRAME_END (1 << 30) 111 #define SPI_CS_INACTIVE (1 << 31) 112 113 #define SPI_FIFO_ERROR (SPI_RX_FIFO_UNF | \ 114 SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF) 115 #define SPI_FIFO_EMPTY (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY) 116 117 #define SPI_TX_DATA 0x018 118 #define SPI_RX_DATA 0x01C 119 120 #define SPI_DMA_CTL 0x020 121 #define SPI_TX_TRIG_1 (0 << 15) 122 #define SPI_TX_TRIG_4 (1 << 15) 123 #define SPI_TX_TRIG_8 (2 << 15) 124 #define SPI_TX_TRIG_16 (3 << 15) 125 #define SPI_TX_TRIG_MASK (3 << 15) 126 #define SPI_RX_TRIG_1 (0 << 19) 127 #define SPI_RX_TRIG_4 (1 << 19) 128 #define SPI_RX_TRIG_8 (2 << 19) 129 #define SPI_RX_TRIG_16 (3 << 19) 130 #define SPI_RX_TRIG_MASK (3 << 19) 131 #define SPI_IE_TX (1 << 28) 132 #define SPI_IE_RX (1 << 29) 133 #define SPI_CONT (1 << 30) 134 #define SPI_DMA (1 << 31) 135 #define SPI_DMA_EN SPI_DMA 136 137 #define SPI_DMA_BLK 0x024 138 #define SPI_DMA_BLK_SET(x) (((x) & 0xFFFF) << 0) 139 140 #define SPI_TX_FIFO 0x108 141 #define SPI_RX_FIFO 0x188 142 #define SPI_INTR_MASK 0x18c 143 #define SPI_INTR_ALL_MASK (0x1fUL << 25) 144 #define MAX_CHIP_SELECT 4 145 #define SPI_FIFO_DEPTH 64 146 #define DATA_DIR_TX (1 << 0) 147 #define DATA_DIR_RX (1 << 1) 148 149 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000)) 150 #define DEFAULT_SPI_DMA_BUF_LEN (16*1024) 151 #define TX_FIFO_EMPTY_COUNT_MAX SPI_TX_FIFO_EMPTY_COUNT(0x40) 152 #define RX_FIFO_FULL_COUNT_ZERO SPI_RX_FIFO_FULL_COUNT(0) 153 #define MAX_HOLD_CYCLES 16 154 #define SPI_DEFAULT_SPEED 25000000 155 156 struct tegra_spi_soc_data { 157 bool has_intr_mask_reg; 158 }; 159 160 struct tegra_spi_client_data { 161 int tx_clk_tap_delay; 162 int rx_clk_tap_delay; 163 }; 164 165 struct tegra_spi_data { 166 struct device *dev; 167 struct spi_controller *host; 168 spinlock_t lock; 169 170 struct clk *clk; 171 struct reset_control *rst; 172 void __iomem *base; 173 phys_addr_t phys; 174 unsigned irq; 175 u32 cur_speed; 176 177 struct spi_device *cur_spi; 178 struct spi_device *cs_control; 179 unsigned cur_pos; 180 unsigned words_per_32bit; 181 unsigned bytes_per_word; 182 unsigned curr_dma_words; 183 unsigned cur_direction; 184 185 unsigned cur_rx_pos; 186 unsigned cur_tx_pos; 187 188 unsigned dma_buf_size; 189 unsigned max_buf_size; 190 bool is_curr_dma_xfer; 191 bool use_hw_based_cs; 192 193 struct completion rx_dma_complete; 194 struct completion tx_dma_complete; 195 196 u32 tx_status; 197 u32 rx_status; 198 u32 status_reg; 199 bool is_packed; 200 201 u32 command1_reg; 202 u32 dma_control_reg; 203 u32 def_command1_reg; 204 u32 def_command2_reg; 205 u32 spi_cs_timing1; 206 u32 spi_cs_timing2; 207 u8 last_used_cs; 208 209 struct completion xfer_completion; 210 struct spi_transfer *curr_xfer; 211 struct dma_chan *rx_dma_chan; 212 u32 *rx_dma_buf; 213 dma_addr_t rx_dma_phys; 214 struct dma_async_tx_descriptor *rx_dma_desc; 215 216 struct dma_chan *tx_dma_chan; 217 u32 *tx_dma_buf; 218 dma_addr_t tx_dma_phys; 219 struct dma_async_tx_descriptor *tx_dma_desc; 220 const struct tegra_spi_soc_data *soc_data; 221 }; 222 223 static int tegra_spi_runtime_suspend(struct device *dev); 224 static int tegra_spi_runtime_resume(struct device *dev); 225 226 static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi, 227 unsigned long reg) 228 { 229 return readl(tspi->base + reg); 230 } 231 232 static inline void tegra_spi_writel(struct tegra_spi_data *tspi, 233 u32 val, unsigned long reg) 234 { 235 writel(val, tspi->base + reg); 236 237 /* Read back register to make sure that register writes completed */ 238 if (reg != SPI_TX_FIFO) 239 readl(tspi->base + SPI_COMMAND1); 240 } 241 242 static void tegra_spi_clear_status(struct tegra_spi_data *tspi) 243 { 244 u32 val; 245 246 /* Write 1 to clear status register */ 247 val = tegra_spi_readl(tspi, SPI_TRANS_STATUS); 248 tegra_spi_writel(tspi, val, SPI_TRANS_STATUS); 249 250 /* Clear fifo status error if any */ 251 val = tegra_spi_readl(tspi, SPI_FIFO_STATUS); 252 if (val & SPI_ERR) 253 tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR, 254 SPI_FIFO_STATUS); 255 } 256 257 static unsigned tegra_spi_calculate_curr_xfer_param( 258 struct spi_device *spi, struct tegra_spi_data *tspi, 259 struct spi_transfer *t) 260 { 261 unsigned remain_len = t->len - tspi->cur_pos; 262 unsigned max_word; 263 unsigned bits_per_word = t->bits_per_word; 264 unsigned max_len; 265 unsigned total_fifo_words; 266 267 tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8); 268 269 if ((bits_per_word == 8 || bits_per_word == 16 || 270 bits_per_word == 32) && t->len > 3) { 271 tspi->is_packed = true; 272 tspi->words_per_32bit = 32/bits_per_word; 273 } else { 274 tspi->is_packed = false; 275 tspi->words_per_32bit = 1; 276 } 277 278 if (tspi->is_packed) { 279 max_len = min(remain_len, tspi->max_buf_size); 280 tspi->curr_dma_words = max_len/tspi->bytes_per_word; 281 total_fifo_words = (max_len + 3) / 4; 282 } else { 283 max_word = (remain_len - 1) / tspi->bytes_per_word + 1; 284 max_word = min(max_word, tspi->max_buf_size/4); 285 tspi->curr_dma_words = max_word; 286 total_fifo_words = max_word; 287 } 288 return total_fifo_words; 289 } 290 291 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf( 292 struct tegra_spi_data *tspi, struct spi_transfer *t) 293 { 294 unsigned nbytes; 295 unsigned tx_empty_count; 296 u32 fifo_status; 297 unsigned max_n_32bit; 298 unsigned i, count; 299 unsigned int written_words; 300 unsigned fifo_words_left; 301 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos; 302 303 fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS); 304 tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status); 305 306 if (tspi->is_packed) { 307 fifo_words_left = tx_empty_count * tspi->words_per_32bit; 308 written_words = min(fifo_words_left, tspi->curr_dma_words); 309 nbytes = written_words * tspi->bytes_per_word; 310 max_n_32bit = DIV_ROUND_UP(nbytes, 4); 311 for (count = 0; count < max_n_32bit; count++) { 312 u32 x = 0; 313 314 for (i = 0; (i < 4) && nbytes; i++, nbytes--) 315 x |= (u32)(*tx_buf++) << (i * 8); 316 tegra_spi_writel(tspi, x, SPI_TX_FIFO); 317 } 318 319 tspi->cur_tx_pos += written_words * tspi->bytes_per_word; 320 } else { 321 unsigned int write_bytes; 322 max_n_32bit = min(tspi->curr_dma_words, tx_empty_count); 323 written_words = max_n_32bit; 324 nbytes = written_words * tspi->bytes_per_word; 325 if (nbytes > t->len - tspi->cur_pos) 326 nbytes = t->len - tspi->cur_pos; 327 write_bytes = nbytes; 328 for (count = 0; count < max_n_32bit; count++) { 329 u32 x = 0; 330 331 for (i = 0; nbytes && (i < tspi->bytes_per_word); 332 i++, nbytes--) 333 x |= (u32)(*tx_buf++) << (i * 8); 334 tegra_spi_writel(tspi, x, SPI_TX_FIFO); 335 } 336 337 tspi->cur_tx_pos += write_bytes; 338 } 339 340 return written_words; 341 } 342 343 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf( 344 struct tegra_spi_data *tspi, struct spi_transfer *t) 345 { 346 unsigned rx_full_count; 347 u32 fifo_status; 348 unsigned i, count; 349 unsigned int read_words = 0; 350 unsigned len; 351 u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos; 352 353 fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS); 354 rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status); 355 if (tspi->is_packed) { 356 len = tspi->curr_dma_words * tspi->bytes_per_word; 357 for (count = 0; count < rx_full_count; count++) { 358 u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO); 359 360 for (i = 0; len && (i < 4); i++, len--) 361 *rx_buf++ = (x >> i*8) & 0xFF; 362 } 363 read_words += tspi->curr_dma_words; 364 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word; 365 } else { 366 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1; 367 u8 bytes_per_word = tspi->bytes_per_word; 368 unsigned int read_bytes; 369 370 len = rx_full_count * bytes_per_word; 371 if (len > t->len - tspi->cur_pos) 372 len = t->len - tspi->cur_pos; 373 read_bytes = len; 374 for (count = 0; count < rx_full_count; count++) { 375 u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask; 376 377 for (i = 0; len && (i < bytes_per_word); i++, len--) 378 *rx_buf++ = (x >> (i*8)) & 0xFF; 379 } 380 read_words += rx_full_count; 381 tspi->cur_rx_pos += read_bytes; 382 } 383 384 return read_words; 385 } 386 387 static void tegra_spi_copy_client_txbuf_to_spi_txbuf( 388 struct tegra_spi_data *tspi, struct spi_transfer *t) 389 { 390 /* Make the dma buffer to read by cpu */ 391 dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys, 392 tspi->dma_buf_size, DMA_TO_DEVICE); 393 394 if (tspi->is_packed) { 395 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word; 396 397 memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len); 398 tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word; 399 } else { 400 unsigned int i; 401 unsigned int count; 402 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos; 403 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word; 404 unsigned int write_bytes; 405 406 if (consume > t->len - tspi->cur_pos) 407 consume = t->len - tspi->cur_pos; 408 write_bytes = consume; 409 for (count = 0; count < tspi->curr_dma_words; count++) { 410 u32 x = 0; 411 412 for (i = 0; consume && (i < tspi->bytes_per_word); 413 i++, consume--) 414 x |= (u32)(*tx_buf++) << (i * 8); 415 tspi->tx_dma_buf[count] = x; 416 } 417 418 tspi->cur_tx_pos += write_bytes; 419 } 420 421 /* Make the dma buffer to read by dma */ 422 dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys, 423 tspi->dma_buf_size, DMA_TO_DEVICE); 424 } 425 426 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf( 427 struct tegra_spi_data *tspi, struct spi_transfer *t) 428 { 429 /* Make the dma buffer to read by cpu */ 430 dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys, 431 tspi->dma_buf_size, DMA_FROM_DEVICE); 432 433 if (tspi->is_packed) { 434 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word; 435 436 memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len); 437 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word; 438 } else { 439 unsigned int i; 440 unsigned int count; 441 unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos; 442 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1; 443 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word; 444 unsigned int read_bytes; 445 446 if (consume > t->len - tspi->cur_pos) 447 consume = t->len - tspi->cur_pos; 448 read_bytes = consume; 449 for (count = 0; count < tspi->curr_dma_words; count++) { 450 u32 x = tspi->rx_dma_buf[count] & rx_mask; 451 452 for (i = 0; consume && (i < tspi->bytes_per_word); 453 i++, consume--) 454 *rx_buf++ = (x >> (i*8)) & 0xFF; 455 } 456 457 tspi->cur_rx_pos += read_bytes; 458 } 459 460 /* Make the dma buffer to read by dma */ 461 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys, 462 tspi->dma_buf_size, DMA_FROM_DEVICE); 463 } 464 465 static void tegra_spi_dma_complete(void *args) 466 { 467 struct completion *dma_complete = args; 468 469 complete(dma_complete); 470 } 471 472 static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len) 473 { 474 reinit_completion(&tspi->tx_dma_complete); 475 tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan, 476 tspi->tx_dma_phys, len, DMA_MEM_TO_DEV, 477 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 478 if (!tspi->tx_dma_desc) { 479 dev_err(tspi->dev, "Not able to get desc for Tx\n"); 480 return -EIO; 481 } 482 483 tspi->tx_dma_desc->callback = tegra_spi_dma_complete; 484 tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete; 485 486 dmaengine_submit(tspi->tx_dma_desc); 487 dma_async_issue_pending(tspi->tx_dma_chan); 488 return 0; 489 } 490 491 static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len) 492 { 493 reinit_completion(&tspi->rx_dma_complete); 494 tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan, 495 tspi->rx_dma_phys, len, DMA_DEV_TO_MEM, 496 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 497 if (!tspi->rx_dma_desc) { 498 dev_err(tspi->dev, "Not able to get desc for Rx\n"); 499 return -EIO; 500 } 501 502 tspi->rx_dma_desc->callback = tegra_spi_dma_complete; 503 tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete; 504 505 dmaengine_submit(tspi->rx_dma_desc); 506 dma_async_issue_pending(tspi->rx_dma_chan); 507 return 0; 508 } 509 510 static int tegra_spi_flush_fifos(struct tegra_spi_data *tspi) 511 { 512 unsigned long timeout = jiffies + HZ; 513 u32 status; 514 515 status = tegra_spi_readl(tspi, SPI_FIFO_STATUS); 516 if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) { 517 status |= SPI_RX_FIFO_FLUSH | SPI_TX_FIFO_FLUSH; 518 tegra_spi_writel(tspi, status, SPI_FIFO_STATUS); 519 while ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) { 520 status = tegra_spi_readl(tspi, SPI_FIFO_STATUS); 521 if (time_after(jiffies, timeout)) { 522 dev_err(tspi->dev, 523 "timeout waiting for fifo flush\n"); 524 return -EIO; 525 } 526 527 udelay(1); 528 } 529 } 530 531 return 0; 532 } 533 534 static int tegra_spi_start_dma_based_transfer( 535 struct tegra_spi_data *tspi, struct spi_transfer *t) 536 { 537 u32 val; 538 unsigned int len; 539 int ret = 0; 540 u8 dma_burst; 541 struct dma_slave_config dma_sconfig = {0}; 542 543 val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1); 544 tegra_spi_writel(tspi, val, SPI_DMA_BLK); 545 546 if (tspi->is_packed) 547 len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word, 548 4) * 4; 549 else 550 len = tspi->curr_dma_words * 4; 551 552 /* Set attention level based on length of transfer */ 553 if (len & 0xF) { 554 val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1; 555 dma_burst = 1; 556 } else if (((len) >> 4) & 0x1) { 557 val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4; 558 dma_burst = 4; 559 } else { 560 val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8; 561 dma_burst = 8; 562 } 563 564 if (!tspi->soc_data->has_intr_mask_reg) { 565 if (tspi->cur_direction & DATA_DIR_TX) 566 val |= SPI_IE_TX; 567 568 if (tspi->cur_direction & DATA_DIR_RX) 569 val |= SPI_IE_RX; 570 } 571 572 tegra_spi_writel(tspi, val, SPI_DMA_CTL); 573 tspi->dma_control_reg = val; 574 575 dma_sconfig.device_fc = true; 576 if (tspi->cur_direction & DATA_DIR_TX) { 577 dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO; 578 dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 579 dma_sconfig.dst_maxburst = dma_burst; 580 ret = dmaengine_slave_config(tspi->tx_dma_chan, &dma_sconfig); 581 if (ret < 0) { 582 dev_err(tspi->dev, 583 "DMA slave config failed: %d\n", ret); 584 return ret; 585 } 586 587 tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t); 588 ret = tegra_spi_start_tx_dma(tspi, len); 589 if (ret < 0) { 590 dev_err(tspi->dev, 591 "Starting tx dma failed, err %d\n", ret); 592 return ret; 593 } 594 } 595 596 if (tspi->cur_direction & DATA_DIR_RX) { 597 dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO; 598 dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 599 dma_sconfig.src_maxburst = dma_burst; 600 ret = dmaengine_slave_config(tspi->rx_dma_chan, &dma_sconfig); 601 if (ret < 0) { 602 dev_err(tspi->dev, 603 "DMA slave config failed: %d\n", ret); 604 return ret; 605 } 606 607 /* Make the dma buffer to read by dma */ 608 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys, 609 tspi->dma_buf_size, DMA_FROM_DEVICE); 610 611 ret = tegra_spi_start_rx_dma(tspi, len); 612 if (ret < 0) { 613 dev_err(tspi->dev, 614 "Starting rx dma failed, err %d\n", ret); 615 if (tspi->cur_direction & DATA_DIR_TX) 616 dmaengine_terminate_all(tspi->tx_dma_chan); 617 return ret; 618 } 619 } 620 tspi->is_curr_dma_xfer = true; 621 tspi->dma_control_reg = val; 622 623 val |= SPI_DMA_EN; 624 tegra_spi_writel(tspi, val, SPI_DMA_CTL); 625 return ret; 626 } 627 628 static int tegra_spi_start_cpu_based_transfer( 629 struct tegra_spi_data *tspi, struct spi_transfer *t) 630 { 631 u32 val; 632 unsigned cur_words; 633 634 if (tspi->cur_direction & DATA_DIR_TX) 635 cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t); 636 else 637 cur_words = tspi->curr_dma_words; 638 639 val = SPI_DMA_BLK_SET(cur_words - 1); 640 tegra_spi_writel(tspi, val, SPI_DMA_BLK); 641 642 val = 0; 643 if (tspi->cur_direction & DATA_DIR_TX) 644 val |= SPI_IE_TX; 645 646 if (tspi->cur_direction & DATA_DIR_RX) 647 val |= SPI_IE_RX; 648 649 tegra_spi_writel(tspi, val, SPI_DMA_CTL); 650 tspi->dma_control_reg = val; 651 652 tspi->is_curr_dma_xfer = false; 653 654 val = tspi->command1_reg; 655 val |= SPI_PIO; 656 tegra_spi_writel(tspi, val, SPI_COMMAND1); 657 return 0; 658 } 659 660 static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi, 661 bool dma_to_memory) 662 { 663 struct dma_chan *dma_chan; 664 u32 *dma_buf; 665 dma_addr_t dma_phys; 666 667 dma_chan = dma_request_chan(tspi->dev, dma_to_memory ? "rx" : "tx"); 668 if (IS_ERR(dma_chan)) 669 return dev_err_probe(tspi->dev, PTR_ERR(dma_chan), 670 "Dma channel is not available\n"); 671 672 dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size, 673 &dma_phys, GFP_KERNEL); 674 if (!dma_buf) { 675 dev_err(tspi->dev, " Not able to allocate the dma buffer\n"); 676 dma_release_channel(dma_chan); 677 return -ENOMEM; 678 } 679 680 if (dma_to_memory) { 681 tspi->rx_dma_chan = dma_chan; 682 tspi->rx_dma_buf = dma_buf; 683 tspi->rx_dma_phys = dma_phys; 684 } else { 685 tspi->tx_dma_chan = dma_chan; 686 tspi->tx_dma_buf = dma_buf; 687 tspi->tx_dma_phys = dma_phys; 688 } 689 return 0; 690 } 691 692 static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi, 693 bool dma_to_memory) 694 { 695 u32 *dma_buf; 696 dma_addr_t dma_phys; 697 struct dma_chan *dma_chan; 698 699 if (dma_to_memory) { 700 dma_buf = tspi->rx_dma_buf; 701 dma_chan = tspi->rx_dma_chan; 702 dma_phys = tspi->rx_dma_phys; 703 tspi->rx_dma_chan = NULL; 704 tspi->rx_dma_buf = NULL; 705 } else { 706 dma_buf = tspi->tx_dma_buf; 707 dma_chan = tspi->tx_dma_chan; 708 dma_phys = tspi->tx_dma_phys; 709 tspi->tx_dma_buf = NULL; 710 tspi->tx_dma_chan = NULL; 711 } 712 if (!dma_chan) 713 return; 714 715 dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys); 716 dma_release_channel(dma_chan); 717 } 718 719 static int tegra_spi_set_hw_cs_timing(struct spi_device *spi) 720 { 721 struct tegra_spi_data *tspi = spi_controller_get_devdata(spi->controller); 722 struct spi_delay *setup = &spi->cs_setup; 723 struct spi_delay *hold = &spi->cs_hold; 724 struct spi_delay *inactive = &spi->cs_inactive; 725 u8 setup_dly, hold_dly; 726 u32 setup_hold; 727 u32 spi_cs_timing; 728 u32 inactive_cycles; 729 u8 cs_state; 730 731 if (setup->unit != SPI_DELAY_UNIT_SCK || 732 hold->unit != SPI_DELAY_UNIT_SCK || 733 inactive->unit != SPI_DELAY_UNIT_SCK) { 734 dev_err(&spi->dev, 735 "Invalid delay unit %d, should be SPI_DELAY_UNIT_SCK\n", 736 SPI_DELAY_UNIT_SCK); 737 return -EINVAL; 738 } 739 740 setup_dly = min_t(u8, setup->value, MAX_SETUP_HOLD_CYCLES); 741 hold_dly = min_t(u8, hold->value, MAX_SETUP_HOLD_CYCLES); 742 if (setup_dly && hold_dly) { 743 setup_hold = SPI_SETUP_HOLD(setup_dly - 1, hold_dly - 1); 744 spi_cs_timing = SPI_CS_SETUP_HOLD(tspi->spi_cs_timing1, 745 spi_get_chipselect(spi, 0), 746 setup_hold); 747 if (tspi->spi_cs_timing1 != spi_cs_timing) { 748 tspi->spi_cs_timing1 = spi_cs_timing; 749 tegra_spi_writel(tspi, spi_cs_timing, SPI_CS_TIMING1); 750 } 751 } 752 753 inactive_cycles = min_t(u8, inactive->value, MAX_INACTIVE_CYCLES); 754 if (inactive_cycles) 755 inactive_cycles--; 756 cs_state = inactive_cycles ? 0 : 1; 757 spi_cs_timing = tspi->spi_cs_timing2; 758 SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(spi_cs_timing, spi_get_chipselect(spi, 0), 759 cs_state); 760 SPI_SET_CYCLES_BETWEEN_PACKETS(spi_cs_timing, spi_get_chipselect(spi, 0), 761 inactive_cycles); 762 if (tspi->spi_cs_timing2 != spi_cs_timing) { 763 tspi->spi_cs_timing2 = spi_cs_timing; 764 tegra_spi_writel(tspi, spi_cs_timing, SPI_CS_TIMING2); 765 } 766 767 return 0; 768 } 769 770 static u32 tegra_spi_setup_transfer_one(struct spi_device *spi, 771 struct spi_transfer *t, 772 bool is_first_of_msg, 773 bool is_single_xfer) 774 { 775 struct tegra_spi_data *tspi = spi_controller_get_devdata(spi->controller); 776 struct tegra_spi_client_data *cdata = spi->controller_data; 777 u32 speed = t->speed_hz; 778 u8 bits_per_word = t->bits_per_word; 779 u32 command1, command2; 780 int req_mode; 781 u32 tx_tap = 0, rx_tap = 0; 782 783 if (speed != tspi->cur_speed) { 784 clk_set_rate(tspi->clk, speed); 785 tspi->cur_speed = speed; 786 } 787 788 tspi->cur_spi = spi; 789 tspi->cur_pos = 0; 790 tspi->cur_rx_pos = 0; 791 tspi->cur_tx_pos = 0; 792 tspi->curr_xfer = t; 793 794 if (is_first_of_msg) { 795 tegra_spi_clear_status(tspi); 796 797 command1 = tspi->def_command1_reg; 798 command1 |= SPI_BIT_LENGTH(bits_per_word - 1); 799 800 command1 &= ~SPI_CONTROL_MODE_MASK; 801 req_mode = spi->mode & 0x3; 802 if (req_mode == SPI_MODE_0) 803 command1 |= SPI_CONTROL_MODE_0; 804 else if (req_mode == SPI_MODE_1) 805 command1 |= SPI_CONTROL_MODE_1; 806 else if (req_mode == SPI_MODE_2) 807 command1 |= SPI_CONTROL_MODE_2; 808 else if (req_mode == SPI_MODE_3) 809 command1 |= SPI_CONTROL_MODE_3; 810 811 if (spi->mode & SPI_LSB_FIRST) 812 command1 |= SPI_LSBIT_FE; 813 else 814 command1 &= ~SPI_LSBIT_FE; 815 816 if (spi->mode & SPI_3WIRE) 817 command1 |= SPI_BIDIROE; 818 else 819 command1 &= ~SPI_BIDIROE; 820 821 if (tspi->cs_control) { 822 if (tspi->cs_control != spi) 823 tegra_spi_writel(tspi, command1, SPI_COMMAND1); 824 tspi->cs_control = NULL; 825 } else 826 tegra_spi_writel(tspi, command1, SPI_COMMAND1); 827 828 /* GPIO based chip select control */ 829 if (spi_get_csgpiod(spi, 0)) 830 gpiod_set_value(spi_get_csgpiod(spi, 0), 1); 831 832 if (is_single_xfer && !(t->cs_change)) { 833 tspi->use_hw_based_cs = true; 834 command1 &= ~(SPI_CS_SW_HW | SPI_CS_SW_VAL); 835 } else { 836 tspi->use_hw_based_cs = false; 837 command1 |= SPI_CS_SW_HW; 838 if (spi->mode & SPI_CS_HIGH) 839 command1 |= SPI_CS_SW_VAL; 840 else 841 command1 &= ~SPI_CS_SW_VAL; 842 } 843 844 if (tspi->last_used_cs != spi_get_chipselect(spi, 0)) { 845 if (cdata && cdata->tx_clk_tap_delay) 846 tx_tap = cdata->tx_clk_tap_delay; 847 if (cdata && cdata->rx_clk_tap_delay) 848 rx_tap = cdata->rx_clk_tap_delay; 849 command2 = SPI_TX_TAP_DELAY(tx_tap) | 850 SPI_RX_TAP_DELAY(rx_tap); 851 if (command2 != tspi->def_command2_reg) 852 tegra_spi_writel(tspi, command2, SPI_COMMAND2); 853 tspi->last_used_cs = spi_get_chipselect(spi, 0); 854 } 855 856 } else { 857 command1 = tspi->command1_reg; 858 command1 &= ~SPI_BIT_LENGTH(~0); 859 command1 |= SPI_BIT_LENGTH(bits_per_word - 1); 860 } 861 862 return command1; 863 } 864 865 static int tegra_spi_start_transfer_one(struct spi_device *spi, 866 struct spi_transfer *t, u32 command1) 867 { 868 struct tegra_spi_data *tspi = spi_controller_get_devdata(spi->controller); 869 unsigned total_fifo_words; 870 int ret; 871 872 total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t); 873 874 if (t->rx_nbits == SPI_NBITS_DUAL || t->tx_nbits == SPI_NBITS_DUAL) 875 command1 |= SPI_BOTH_EN_BIT; 876 else 877 command1 &= ~SPI_BOTH_EN_BIT; 878 879 if (tspi->is_packed) 880 command1 |= SPI_PACKED; 881 else 882 command1 &= ~SPI_PACKED; 883 884 command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN); 885 tspi->cur_direction = 0; 886 if (t->rx_buf) { 887 command1 |= SPI_RX_EN; 888 tspi->cur_direction |= DATA_DIR_RX; 889 } 890 if (t->tx_buf) { 891 command1 |= SPI_TX_EN; 892 tspi->cur_direction |= DATA_DIR_TX; 893 } 894 command1 |= SPI_CS_SEL(spi_get_chipselect(spi, 0)); 895 tegra_spi_writel(tspi, command1, SPI_COMMAND1); 896 tspi->command1_reg = command1; 897 898 dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n", 899 tspi->def_command1_reg, (unsigned)command1); 900 901 ret = tegra_spi_flush_fifos(tspi); 902 if (ret < 0) 903 return ret; 904 if (total_fifo_words > SPI_FIFO_DEPTH) 905 ret = tegra_spi_start_dma_based_transfer(tspi, t); 906 else 907 ret = tegra_spi_start_cpu_based_transfer(tspi, t); 908 return ret; 909 } 910 911 static struct tegra_spi_client_data 912 *tegra_spi_parse_cdata_dt(struct spi_device *spi) 913 { 914 struct tegra_spi_client_data *cdata; 915 struct device_node *target_np; 916 917 target_np = spi->dev.of_node; 918 if (!target_np) { 919 dev_dbg(&spi->dev, "device node not found\n"); 920 return NULL; 921 } 922 923 cdata = kzalloc(sizeof(*cdata), GFP_KERNEL); 924 if (!cdata) 925 return NULL; 926 927 of_property_read_u32(target_np, "nvidia,tx-clk-tap-delay", 928 &cdata->tx_clk_tap_delay); 929 of_property_read_u32(target_np, "nvidia,rx-clk-tap-delay", 930 &cdata->rx_clk_tap_delay); 931 return cdata; 932 } 933 934 static void tegra_spi_cleanup(struct spi_device *spi) 935 { 936 struct tegra_spi_client_data *cdata = spi->controller_data; 937 938 spi->controller_data = NULL; 939 if (spi->dev.of_node) 940 kfree(cdata); 941 } 942 943 static int tegra_spi_setup(struct spi_device *spi) 944 { 945 struct tegra_spi_data *tspi = spi_controller_get_devdata(spi->controller); 946 struct tegra_spi_client_data *cdata = spi->controller_data; 947 u32 val; 948 unsigned long flags; 949 int ret; 950 951 dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n", 952 spi->bits_per_word, 953 spi->mode & SPI_CPOL ? "" : "~", 954 spi->mode & SPI_CPHA ? "" : "~", 955 spi->max_speed_hz); 956 957 if (!cdata) { 958 cdata = tegra_spi_parse_cdata_dt(spi); 959 spi->controller_data = cdata; 960 } 961 962 ret = pm_runtime_resume_and_get(tspi->dev); 963 if (ret < 0) { 964 dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret); 965 if (cdata) 966 tegra_spi_cleanup(spi); 967 return ret; 968 } 969 970 if (tspi->soc_data->has_intr_mask_reg) { 971 val = tegra_spi_readl(tspi, SPI_INTR_MASK); 972 val &= ~SPI_INTR_ALL_MASK; 973 tegra_spi_writel(tspi, val, SPI_INTR_MASK); 974 } 975 976 spin_lock_irqsave(&tspi->lock, flags); 977 /* GPIO based chip select control */ 978 if (spi_get_csgpiod(spi, 0)) 979 gpiod_set_value(spi_get_csgpiod(spi, 0), 0); 980 981 val = tspi->def_command1_reg; 982 if (spi->mode & SPI_CS_HIGH) 983 val &= ~SPI_CS_POL_INACTIVE(spi_get_chipselect(spi, 0)); 984 else 985 val |= SPI_CS_POL_INACTIVE(spi_get_chipselect(spi, 0)); 986 tspi->def_command1_reg = val; 987 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1); 988 spin_unlock_irqrestore(&tspi->lock, flags); 989 990 pm_runtime_put(tspi->dev); 991 return 0; 992 } 993 994 static void tegra_spi_transfer_end(struct spi_device *spi) 995 { 996 struct tegra_spi_data *tspi = spi_controller_get_devdata(spi->controller); 997 int cs_val = (spi->mode & SPI_CS_HIGH) ? 0 : 1; 998 999 /* GPIO based chip select control */ 1000 if (spi_get_csgpiod(spi, 0)) 1001 gpiod_set_value(spi_get_csgpiod(spi, 0), 0); 1002 1003 if (!tspi->use_hw_based_cs) { 1004 if (cs_val) 1005 tspi->command1_reg |= SPI_CS_SW_VAL; 1006 else 1007 tspi->command1_reg &= ~SPI_CS_SW_VAL; 1008 tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1); 1009 } 1010 1011 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1); 1012 } 1013 1014 static void tegra_spi_dump_regs(struct tegra_spi_data *tspi) 1015 { 1016 dev_dbg(tspi->dev, "============ SPI REGISTER DUMP ============\n"); 1017 dev_dbg(tspi->dev, "Command1: 0x%08x | Command2: 0x%08x\n", 1018 tegra_spi_readl(tspi, SPI_COMMAND1), 1019 tegra_spi_readl(tspi, SPI_COMMAND2)); 1020 dev_dbg(tspi->dev, "DMA_CTL: 0x%08x | DMA_BLK: 0x%08x\n", 1021 tegra_spi_readl(tspi, SPI_DMA_CTL), 1022 tegra_spi_readl(tspi, SPI_DMA_BLK)); 1023 dev_dbg(tspi->dev, "TRANS_STAT: 0x%08x | FIFO_STATUS: 0x%08x\n", 1024 tegra_spi_readl(tspi, SPI_TRANS_STATUS), 1025 tegra_spi_readl(tspi, SPI_FIFO_STATUS)); 1026 } 1027 1028 static int tegra_spi_transfer_one_message(struct spi_controller *host, 1029 struct spi_message *msg) 1030 { 1031 bool is_first_msg = true; 1032 struct tegra_spi_data *tspi = spi_controller_get_devdata(host); 1033 struct spi_transfer *xfer; 1034 struct spi_device *spi = msg->spi; 1035 int ret; 1036 bool skip = false; 1037 int single_xfer; 1038 1039 msg->status = 0; 1040 msg->actual_length = 0; 1041 1042 single_xfer = list_is_singular(&msg->transfers); 1043 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1044 u32 cmd1; 1045 1046 reinit_completion(&tspi->xfer_completion); 1047 1048 cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg, 1049 single_xfer); 1050 1051 if (!xfer->len) { 1052 ret = 0; 1053 skip = true; 1054 goto complete_xfer; 1055 } 1056 1057 ret = tegra_spi_start_transfer_one(spi, xfer, cmd1); 1058 if (ret < 0) { 1059 dev_err(tspi->dev, 1060 "spi can not start transfer, err %d\n", ret); 1061 goto complete_xfer; 1062 } 1063 1064 is_first_msg = false; 1065 ret = wait_for_completion_timeout(&tspi->xfer_completion, 1066 SPI_DMA_TIMEOUT); 1067 if (WARN_ON(ret == 0)) { 1068 dev_err(tspi->dev, "spi transfer timeout\n"); 1069 if (tspi->is_curr_dma_xfer && 1070 (tspi->cur_direction & DATA_DIR_TX)) 1071 dmaengine_terminate_all(tspi->tx_dma_chan); 1072 if (tspi->is_curr_dma_xfer && 1073 (tspi->cur_direction & DATA_DIR_RX)) 1074 dmaengine_terminate_all(tspi->rx_dma_chan); 1075 ret = -EIO; 1076 tegra_spi_dump_regs(tspi); 1077 tegra_spi_flush_fifos(tspi); 1078 reset_control_assert(tspi->rst); 1079 udelay(2); 1080 reset_control_deassert(tspi->rst); 1081 tspi->last_used_cs = host->num_chipselect + 1; 1082 goto complete_xfer; 1083 } 1084 1085 if (tspi->tx_status || tspi->rx_status) { 1086 dev_err(tspi->dev, "Error in Transfer\n"); 1087 ret = -EIO; 1088 tegra_spi_dump_regs(tspi); 1089 goto complete_xfer; 1090 } 1091 msg->actual_length += xfer->len; 1092 1093 complete_xfer: 1094 if (ret < 0 || skip) { 1095 tegra_spi_transfer_end(spi); 1096 spi_transfer_delay_exec(xfer); 1097 goto exit; 1098 } else if (list_is_last(&xfer->transfer_list, 1099 &msg->transfers)) { 1100 if (xfer->cs_change) 1101 tspi->cs_control = spi; 1102 else { 1103 tegra_spi_transfer_end(spi); 1104 spi_transfer_delay_exec(xfer); 1105 } 1106 } else if (xfer->cs_change) { 1107 tegra_spi_transfer_end(spi); 1108 spi_transfer_delay_exec(xfer); 1109 } 1110 1111 } 1112 ret = 0; 1113 exit: 1114 msg->status = ret; 1115 spi_finalize_current_message(host); 1116 return ret; 1117 } 1118 1119 static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi) 1120 { 1121 struct spi_transfer *t = tspi->curr_xfer; 1122 unsigned long flags; 1123 1124 spin_lock_irqsave(&tspi->lock, flags); 1125 if (tspi->tx_status || tspi->rx_status) { 1126 dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n", 1127 tspi->status_reg); 1128 dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n", 1129 tspi->command1_reg, tspi->dma_control_reg); 1130 tegra_spi_dump_regs(tspi); 1131 tegra_spi_flush_fifos(tspi); 1132 complete(&tspi->xfer_completion); 1133 spin_unlock_irqrestore(&tspi->lock, flags); 1134 reset_control_assert(tspi->rst); 1135 udelay(2); 1136 reset_control_deassert(tspi->rst); 1137 return IRQ_HANDLED; 1138 } 1139 1140 if (tspi->cur_direction & DATA_DIR_RX) 1141 tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t); 1142 1143 if (tspi->cur_direction & DATA_DIR_TX) 1144 tspi->cur_pos = tspi->cur_tx_pos; 1145 else 1146 tspi->cur_pos = tspi->cur_rx_pos; 1147 1148 if (tspi->cur_pos == t->len) { 1149 complete(&tspi->xfer_completion); 1150 goto exit; 1151 } 1152 1153 tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t); 1154 tegra_spi_start_cpu_based_transfer(tspi, t); 1155 exit: 1156 spin_unlock_irqrestore(&tspi->lock, flags); 1157 return IRQ_HANDLED; 1158 } 1159 1160 static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi) 1161 { 1162 struct spi_transfer *t = tspi->curr_xfer; 1163 long wait_status; 1164 int err = 0; 1165 unsigned total_fifo_words; 1166 unsigned long flags; 1167 1168 /* Abort dmas if any error */ 1169 if (tspi->cur_direction & DATA_DIR_TX) { 1170 if (tspi->tx_status) { 1171 dmaengine_terminate_all(tspi->tx_dma_chan); 1172 err += 1; 1173 } else { 1174 wait_status = wait_for_completion_interruptible_timeout( 1175 &tspi->tx_dma_complete, SPI_DMA_TIMEOUT); 1176 if (wait_status <= 0) { 1177 dmaengine_terminate_all(tspi->tx_dma_chan); 1178 dev_err(tspi->dev, "TxDma Xfer failed\n"); 1179 err += 1; 1180 } 1181 } 1182 } 1183 1184 if (tspi->cur_direction & DATA_DIR_RX) { 1185 if (tspi->rx_status) { 1186 dmaengine_terminate_all(tspi->rx_dma_chan); 1187 err += 2; 1188 } else { 1189 wait_status = wait_for_completion_interruptible_timeout( 1190 &tspi->rx_dma_complete, SPI_DMA_TIMEOUT); 1191 if (wait_status <= 0) { 1192 dmaengine_terminate_all(tspi->rx_dma_chan); 1193 dev_err(tspi->dev, "RxDma Xfer failed\n"); 1194 err += 2; 1195 } 1196 } 1197 } 1198 1199 spin_lock_irqsave(&tspi->lock, flags); 1200 if (err) { 1201 dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n", 1202 tspi->status_reg); 1203 dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n", 1204 tspi->command1_reg, tspi->dma_control_reg); 1205 tegra_spi_dump_regs(tspi); 1206 tegra_spi_flush_fifos(tspi); 1207 complete(&tspi->xfer_completion); 1208 spin_unlock_irqrestore(&tspi->lock, flags); 1209 reset_control_assert(tspi->rst); 1210 udelay(2); 1211 reset_control_deassert(tspi->rst); 1212 return IRQ_HANDLED; 1213 } 1214 1215 if (tspi->cur_direction & DATA_DIR_RX) 1216 tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t); 1217 1218 if (tspi->cur_direction & DATA_DIR_TX) 1219 tspi->cur_pos = tspi->cur_tx_pos; 1220 else 1221 tspi->cur_pos = tspi->cur_rx_pos; 1222 1223 if (tspi->cur_pos == t->len) { 1224 complete(&tspi->xfer_completion); 1225 goto exit; 1226 } 1227 1228 /* Continue transfer in current message */ 1229 total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, 1230 tspi, t); 1231 if (total_fifo_words > SPI_FIFO_DEPTH) 1232 err = tegra_spi_start_dma_based_transfer(tspi, t); 1233 else 1234 err = tegra_spi_start_cpu_based_transfer(tspi, t); 1235 1236 exit: 1237 spin_unlock_irqrestore(&tspi->lock, flags); 1238 return IRQ_HANDLED; 1239 } 1240 1241 static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data) 1242 { 1243 struct tegra_spi_data *tspi = context_data; 1244 1245 if (!tspi->is_curr_dma_xfer) 1246 return handle_cpu_based_xfer(tspi); 1247 return handle_dma_based_xfer(tspi); 1248 } 1249 1250 static irqreturn_t tegra_spi_isr(int irq, void *context_data) 1251 { 1252 struct tegra_spi_data *tspi = context_data; 1253 1254 tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS); 1255 if (tspi->cur_direction & DATA_DIR_TX) 1256 tspi->tx_status = tspi->status_reg & 1257 (SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF); 1258 1259 if (tspi->cur_direction & DATA_DIR_RX) 1260 tspi->rx_status = tspi->status_reg & 1261 (SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF); 1262 tegra_spi_clear_status(tspi); 1263 1264 return IRQ_WAKE_THREAD; 1265 } 1266 1267 static struct tegra_spi_soc_data tegra114_spi_soc_data = { 1268 .has_intr_mask_reg = false, 1269 }; 1270 1271 static struct tegra_spi_soc_data tegra124_spi_soc_data = { 1272 .has_intr_mask_reg = false, 1273 }; 1274 1275 static struct tegra_spi_soc_data tegra210_spi_soc_data = { 1276 .has_intr_mask_reg = true, 1277 }; 1278 1279 static const struct of_device_id tegra_spi_of_match[] = { 1280 { 1281 .compatible = "nvidia,tegra114-spi", 1282 .data = &tegra114_spi_soc_data, 1283 }, { 1284 .compatible = "nvidia,tegra124-spi", 1285 .data = &tegra124_spi_soc_data, 1286 }, { 1287 .compatible = "nvidia,tegra210-spi", 1288 .data = &tegra210_spi_soc_data, 1289 }, 1290 {} 1291 }; 1292 MODULE_DEVICE_TABLE(of, tegra_spi_of_match); 1293 1294 static int tegra_spi_probe(struct platform_device *pdev) 1295 { 1296 struct spi_controller *host; 1297 struct tegra_spi_data *tspi; 1298 struct resource *r; 1299 int ret, spi_irq; 1300 int bus_num; 1301 1302 host = spi_alloc_host(&pdev->dev, sizeof(*tspi)); 1303 if (!host) { 1304 dev_err(&pdev->dev, "host allocation failed\n"); 1305 return -ENOMEM; 1306 } 1307 platform_set_drvdata(pdev, host); 1308 tspi = spi_controller_get_devdata(host); 1309 1310 if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency", 1311 &host->max_speed_hz)) 1312 host->max_speed_hz = 25000000; /* 25MHz */ 1313 1314 /* the spi->mode bits understood by this driver: */ 1315 host->use_gpio_descriptors = true; 1316 host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST | 1317 SPI_TX_DUAL | SPI_RX_DUAL | SPI_3WIRE; 1318 host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1319 host->setup = tegra_spi_setup; 1320 host->cleanup = tegra_spi_cleanup; 1321 host->transfer_one_message = tegra_spi_transfer_one_message; 1322 host->set_cs_timing = tegra_spi_set_hw_cs_timing; 1323 host->num_chipselect = MAX_CHIP_SELECT; 1324 host->auto_runtime_pm = true; 1325 bus_num = of_alias_get_id(pdev->dev.of_node, "spi"); 1326 if (bus_num >= 0) 1327 host->bus_num = bus_num; 1328 1329 tspi->host = host; 1330 tspi->dev = &pdev->dev; 1331 spin_lock_init(&tspi->lock); 1332 1333 tspi->soc_data = of_device_get_match_data(&pdev->dev); 1334 if (!tspi->soc_data) { 1335 dev_err(&pdev->dev, "unsupported tegra\n"); 1336 ret = -ENODEV; 1337 goto exit_free_host; 1338 } 1339 1340 tspi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &r); 1341 if (IS_ERR(tspi->base)) { 1342 ret = PTR_ERR(tspi->base); 1343 goto exit_free_host; 1344 } 1345 tspi->phys = r->start; 1346 1347 spi_irq = platform_get_irq(pdev, 0); 1348 if (spi_irq < 0) { 1349 ret = spi_irq; 1350 goto exit_free_host; 1351 } 1352 tspi->irq = spi_irq; 1353 1354 tspi->clk = devm_clk_get(&pdev->dev, "spi"); 1355 if (IS_ERR(tspi->clk)) { 1356 dev_err(&pdev->dev, "can not get clock\n"); 1357 ret = PTR_ERR(tspi->clk); 1358 goto exit_free_host; 1359 } 1360 1361 tspi->rst = devm_reset_control_get_exclusive(&pdev->dev, "spi"); 1362 if (IS_ERR(tspi->rst)) { 1363 dev_err(&pdev->dev, "can not get reset\n"); 1364 ret = PTR_ERR(tspi->rst); 1365 goto exit_free_host; 1366 } 1367 1368 tspi->max_buf_size = SPI_FIFO_DEPTH << 2; 1369 tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN; 1370 1371 ret = tegra_spi_init_dma_param(tspi, true); 1372 if (ret < 0) 1373 goto exit_free_host; 1374 ret = tegra_spi_init_dma_param(tspi, false); 1375 if (ret < 0) 1376 goto exit_rx_dma_free; 1377 tspi->max_buf_size = tspi->dma_buf_size; 1378 init_completion(&tspi->tx_dma_complete); 1379 init_completion(&tspi->rx_dma_complete); 1380 1381 init_completion(&tspi->xfer_completion); 1382 1383 pm_runtime_enable(&pdev->dev); 1384 if (!pm_runtime_enabled(&pdev->dev)) { 1385 ret = tegra_spi_runtime_resume(&pdev->dev); 1386 if (ret) 1387 goto exit_pm_disable; 1388 } 1389 1390 ret = pm_runtime_resume_and_get(&pdev->dev); 1391 if (ret < 0) { 1392 dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret); 1393 goto exit_pm_disable; 1394 } 1395 1396 reset_control_assert(tspi->rst); 1397 udelay(2); 1398 reset_control_deassert(tspi->rst); 1399 tspi->def_command1_reg = SPI_M_S; 1400 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1); 1401 tspi->spi_cs_timing1 = tegra_spi_readl(tspi, SPI_CS_TIMING1); 1402 tspi->spi_cs_timing2 = tegra_spi_readl(tspi, SPI_CS_TIMING2); 1403 tspi->def_command2_reg = tegra_spi_readl(tspi, SPI_COMMAND2); 1404 tspi->last_used_cs = host->num_chipselect + 1; 1405 pm_runtime_put(&pdev->dev); 1406 ret = request_threaded_irq(tspi->irq, tegra_spi_isr, 1407 tegra_spi_isr_thread, IRQF_ONESHOT, 1408 dev_name(&pdev->dev), tspi); 1409 if (ret < 0) { 1410 dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n", 1411 tspi->irq); 1412 goto exit_pm_disable; 1413 } 1414 1415 host->dev.of_node = pdev->dev.of_node; 1416 ret = devm_spi_register_controller(&pdev->dev, host); 1417 if (ret < 0) { 1418 dev_err(&pdev->dev, "can not register to host err %d\n", ret); 1419 goto exit_free_irq; 1420 } 1421 return ret; 1422 1423 exit_free_irq: 1424 free_irq(spi_irq, tspi); 1425 exit_pm_disable: 1426 pm_runtime_disable(&pdev->dev); 1427 if (!pm_runtime_status_suspended(&pdev->dev)) 1428 tegra_spi_runtime_suspend(&pdev->dev); 1429 tegra_spi_deinit_dma_param(tspi, false); 1430 exit_rx_dma_free: 1431 tegra_spi_deinit_dma_param(tspi, true); 1432 exit_free_host: 1433 spi_controller_put(host); 1434 return ret; 1435 } 1436 1437 static void tegra_spi_remove(struct platform_device *pdev) 1438 { 1439 struct spi_controller *host = platform_get_drvdata(pdev); 1440 struct tegra_spi_data *tspi = spi_controller_get_devdata(host); 1441 1442 free_irq(tspi->irq, tspi); 1443 1444 if (tspi->tx_dma_chan) 1445 tegra_spi_deinit_dma_param(tspi, false); 1446 1447 if (tspi->rx_dma_chan) 1448 tegra_spi_deinit_dma_param(tspi, true); 1449 1450 pm_runtime_disable(&pdev->dev); 1451 if (!pm_runtime_status_suspended(&pdev->dev)) 1452 tegra_spi_runtime_suspend(&pdev->dev); 1453 } 1454 1455 #ifdef CONFIG_PM_SLEEP 1456 static int tegra_spi_suspend(struct device *dev) 1457 { 1458 struct spi_controller *host = dev_get_drvdata(dev); 1459 1460 return spi_controller_suspend(host); 1461 } 1462 1463 static int tegra_spi_resume(struct device *dev) 1464 { 1465 struct spi_controller *host = dev_get_drvdata(dev); 1466 struct tegra_spi_data *tspi = spi_controller_get_devdata(host); 1467 int ret; 1468 1469 ret = pm_runtime_resume_and_get(dev); 1470 if (ret < 0) { 1471 dev_err(dev, "pm runtime failed, e = %d\n", ret); 1472 return ret; 1473 } 1474 tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1); 1475 tegra_spi_writel(tspi, tspi->def_command2_reg, SPI_COMMAND2); 1476 tspi->last_used_cs = host->num_chipselect + 1; 1477 pm_runtime_put(dev); 1478 1479 return spi_controller_resume(host); 1480 } 1481 #endif 1482 1483 static int tegra_spi_runtime_suspend(struct device *dev) 1484 { 1485 struct spi_controller *host = dev_get_drvdata(dev); 1486 struct tegra_spi_data *tspi = spi_controller_get_devdata(host); 1487 1488 /* Flush all write which are in PPSB queue by reading back */ 1489 tegra_spi_readl(tspi, SPI_COMMAND1); 1490 1491 clk_disable_unprepare(tspi->clk); 1492 return 0; 1493 } 1494 1495 static int tegra_spi_runtime_resume(struct device *dev) 1496 { 1497 struct spi_controller *host = dev_get_drvdata(dev); 1498 struct tegra_spi_data *tspi = spi_controller_get_devdata(host); 1499 int ret; 1500 1501 ret = clk_prepare_enable(tspi->clk); 1502 if (ret < 0) { 1503 dev_err(tspi->dev, "clk_prepare failed: %d\n", ret); 1504 return ret; 1505 } 1506 return 0; 1507 } 1508 1509 static const struct dev_pm_ops tegra_spi_pm_ops = { 1510 SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend, 1511 tegra_spi_runtime_resume, NULL) 1512 SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume) 1513 }; 1514 static struct platform_driver tegra_spi_driver = { 1515 .driver = { 1516 .name = "spi-tegra114", 1517 .pm = &tegra_spi_pm_ops, 1518 .of_match_table = tegra_spi_of_match, 1519 }, 1520 .probe = tegra_spi_probe, 1521 .remove = tegra_spi_remove, 1522 }; 1523 module_platform_driver(tegra_spi_driver); 1524 1525 MODULE_ALIAS("platform:spi-tegra114"); 1526 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver"); 1527 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>"); 1528 MODULE_LICENSE("GPL v2"); 1529