1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2012 - 2014 Allwinner Tech 4 * Pan Nan <pannan@allwinnertech.com> 5 * 6 * Copyright (C) 2014 Maxime Ripard 7 * Maxime Ripard <maxime.ripard@free-electrons.com> 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/delay.h> 12 #include <linux/device.h> 13 #include <linux/interrupt.h> 14 #include <linux/io.h> 15 #include <linux/module.h> 16 #include <linux/of_device.h> 17 #include <linux/platform_device.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/reset.h> 20 21 #include <linux/spi/spi.h> 22 23 #define SUN6I_FIFO_DEPTH 128 24 #define SUN8I_FIFO_DEPTH 64 25 26 #define SUN6I_GBL_CTL_REG 0x04 27 #define SUN6I_GBL_CTL_BUS_ENABLE BIT(0) 28 #define SUN6I_GBL_CTL_MASTER BIT(1) 29 #define SUN6I_GBL_CTL_TP BIT(7) 30 #define SUN6I_GBL_CTL_RST BIT(31) 31 32 #define SUN6I_TFR_CTL_REG 0x08 33 #define SUN6I_TFR_CTL_CPHA BIT(0) 34 #define SUN6I_TFR_CTL_CPOL BIT(1) 35 #define SUN6I_TFR_CTL_SPOL BIT(2) 36 #define SUN6I_TFR_CTL_CS_MASK 0x30 37 #define SUN6I_TFR_CTL_CS(cs) (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK) 38 #define SUN6I_TFR_CTL_CS_MANUAL BIT(6) 39 #define SUN6I_TFR_CTL_CS_LEVEL BIT(7) 40 #define SUN6I_TFR_CTL_DHB BIT(8) 41 #define SUN6I_TFR_CTL_FBS BIT(12) 42 #define SUN6I_TFR_CTL_XCH BIT(31) 43 44 #define SUN6I_INT_CTL_REG 0x10 45 #define SUN6I_INT_CTL_RF_RDY BIT(0) 46 #define SUN6I_INT_CTL_TF_ERQ BIT(4) 47 #define SUN6I_INT_CTL_RF_OVF BIT(8) 48 #define SUN6I_INT_CTL_TC BIT(12) 49 50 #define SUN6I_INT_STA_REG 0x14 51 52 #define SUN6I_FIFO_CTL_REG 0x18 53 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK 0xff 54 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS 0 55 #define SUN6I_FIFO_CTL_RF_RST BIT(15) 56 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK 0xff 57 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS 16 58 #define SUN6I_FIFO_CTL_TF_RST BIT(31) 59 60 #define SUN6I_FIFO_STA_REG 0x1c 61 #define SUN6I_FIFO_STA_RF_CNT_MASK 0x7f 62 #define SUN6I_FIFO_STA_RF_CNT_BITS 0 63 #define SUN6I_FIFO_STA_TF_CNT_MASK 0x7f 64 #define SUN6I_FIFO_STA_TF_CNT_BITS 16 65 66 #define SUN6I_CLK_CTL_REG 0x24 67 #define SUN6I_CLK_CTL_CDR2_MASK 0xff 68 #define SUN6I_CLK_CTL_CDR2(div) (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0) 69 #define SUN6I_CLK_CTL_CDR1_MASK 0xf 70 #define SUN6I_CLK_CTL_CDR1(div) (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8) 71 #define SUN6I_CLK_CTL_DRS BIT(12) 72 73 #define SUN6I_MAX_XFER_SIZE 0xffffff 74 75 #define SUN6I_BURST_CNT_REG 0x30 76 #define SUN6I_BURST_CNT(cnt) ((cnt) & SUN6I_MAX_XFER_SIZE) 77 78 #define SUN6I_XMIT_CNT_REG 0x34 79 #define SUN6I_XMIT_CNT(cnt) ((cnt) & SUN6I_MAX_XFER_SIZE) 80 81 #define SUN6I_BURST_CTL_CNT_REG 0x38 82 #define SUN6I_BURST_CTL_CNT_STC(cnt) ((cnt) & SUN6I_MAX_XFER_SIZE) 83 84 #define SUN6I_TXDATA_REG 0x200 85 #define SUN6I_RXDATA_REG 0x300 86 87 struct sun6i_spi { 88 struct spi_master *master; 89 void __iomem *base_addr; 90 struct clk *hclk; 91 struct clk *mclk; 92 struct reset_control *rstc; 93 94 struct completion done; 95 96 const u8 *tx_buf; 97 u8 *rx_buf; 98 int len; 99 unsigned long fifo_depth; 100 }; 101 102 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg) 103 { 104 return readl(sspi->base_addr + reg); 105 } 106 107 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value) 108 { 109 writel(value, sspi->base_addr + reg); 110 } 111 112 static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi) 113 { 114 u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG); 115 116 reg >>= SUN6I_FIFO_STA_TF_CNT_BITS; 117 118 return reg & SUN6I_FIFO_STA_TF_CNT_MASK; 119 } 120 121 static inline void sun6i_spi_enable_interrupt(struct sun6i_spi *sspi, u32 mask) 122 { 123 u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG); 124 125 reg |= mask; 126 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg); 127 } 128 129 static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask) 130 { 131 u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG); 132 133 reg &= ~mask; 134 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg); 135 } 136 137 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len) 138 { 139 u32 reg, cnt; 140 u8 byte; 141 142 /* See how much data is available */ 143 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG); 144 reg &= SUN6I_FIFO_STA_RF_CNT_MASK; 145 cnt = reg >> SUN6I_FIFO_STA_RF_CNT_BITS; 146 147 if (len > cnt) 148 len = cnt; 149 150 while (len--) { 151 byte = readb(sspi->base_addr + SUN6I_RXDATA_REG); 152 if (sspi->rx_buf) 153 *sspi->rx_buf++ = byte; 154 } 155 } 156 157 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len) 158 { 159 u32 cnt; 160 u8 byte; 161 162 /* See how much data we can fit */ 163 cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi); 164 165 len = min3(len, (int)cnt, sspi->len); 166 167 while (len--) { 168 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0; 169 writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG); 170 sspi->len--; 171 } 172 } 173 174 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable) 175 { 176 struct sun6i_spi *sspi = spi_master_get_devdata(spi->master); 177 u32 reg; 178 179 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG); 180 reg &= ~SUN6I_TFR_CTL_CS_MASK; 181 reg |= SUN6I_TFR_CTL_CS(spi->chip_select); 182 183 if (enable) 184 reg |= SUN6I_TFR_CTL_CS_LEVEL; 185 else 186 reg &= ~SUN6I_TFR_CTL_CS_LEVEL; 187 188 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg); 189 } 190 191 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi) 192 { 193 return SUN6I_MAX_XFER_SIZE - 1; 194 } 195 196 static int sun6i_spi_transfer_one(struct spi_master *master, 197 struct spi_device *spi, 198 struct spi_transfer *tfr) 199 { 200 struct sun6i_spi *sspi = spi_master_get_devdata(master); 201 unsigned int mclk_rate, div, timeout; 202 unsigned int start, end, tx_time; 203 unsigned int trig_level; 204 unsigned int tx_len = 0; 205 int ret = 0; 206 u32 reg; 207 208 if (tfr->len > SUN6I_MAX_XFER_SIZE) 209 return -EINVAL; 210 211 reinit_completion(&sspi->done); 212 sspi->tx_buf = tfr->tx_buf; 213 sspi->rx_buf = tfr->rx_buf; 214 sspi->len = tfr->len; 215 216 /* Clear pending interrupts */ 217 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0); 218 219 /* Reset FIFO */ 220 sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, 221 SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST); 222 223 /* 224 * Setup FIFO interrupt trigger level 225 * Here we choose 3/4 of the full fifo depth, as it's the hardcoded 226 * value used in old generation of Allwinner SPI controller. 227 * (See spi-sun4i.c) 228 */ 229 trig_level = sspi->fifo_depth / 4 * 3; 230 sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, 231 (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) | 232 (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS)); 233 234 /* 235 * Setup the transfer control register: Chip Select, 236 * polarities, etc. 237 */ 238 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG); 239 240 if (spi->mode & SPI_CPOL) 241 reg |= SUN6I_TFR_CTL_CPOL; 242 else 243 reg &= ~SUN6I_TFR_CTL_CPOL; 244 245 if (spi->mode & SPI_CPHA) 246 reg |= SUN6I_TFR_CTL_CPHA; 247 else 248 reg &= ~SUN6I_TFR_CTL_CPHA; 249 250 if (spi->mode & SPI_LSB_FIRST) 251 reg |= SUN6I_TFR_CTL_FBS; 252 else 253 reg &= ~SUN6I_TFR_CTL_FBS; 254 255 /* 256 * If it's a TX only transfer, we don't want to fill the RX 257 * FIFO with bogus data 258 */ 259 if (sspi->rx_buf) 260 reg &= ~SUN6I_TFR_CTL_DHB; 261 else 262 reg |= SUN6I_TFR_CTL_DHB; 263 264 /* We want to control the chip select manually */ 265 reg |= SUN6I_TFR_CTL_CS_MANUAL; 266 267 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg); 268 269 /* Ensure that we have a parent clock fast enough */ 270 mclk_rate = clk_get_rate(sspi->mclk); 271 if (mclk_rate < (2 * tfr->speed_hz)) { 272 clk_set_rate(sspi->mclk, 2 * tfr->speed_hz); 273 mclk_rate = clk_get_rate(sspi->mclk); 274 } 275 276 /* 277 * Setup clock divider. 278 * 279 * We have two choices there. Either we can use the clock 280 * divide rate 1, which is calculated thanks to this formula: 281 * SPI_CLK = MOD_CLK / (2 ^ cdr) 282 * Or we can use CDR2, which is calculated with the formula: 283 * SPI_CLK = MOD_CLK / (2 * (cdr + 1)) 284 * Wether we use the former or the latter is set through the 285 * DRS bit. 286 * 287 * First try CDR2, and if we can't reach the expected 288 * frequency, fall back to CDR1. 289 */ 290 div = mclk_rate / (2 * tfr->speed_hz); 291 if (div <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) { 292 if (div > 0) 293 div--; 294 295 reg = SUN6I_CLK_CTL_CDR2(div) | SUN6I_CLK_CTL_DRS; 296 } else { 297 div = ilog2(mclk_rate) - ilog2(tfr->speed_hz); 298 reg = SUN6I_CLK_CTL_CDR1(div); 299 } 300 301 sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg); 302 303 /* Setup the transfer now... */ 304 if (sspi->tx_buf) 305 tx_len = tfr->len; 306 307 /* Setup the counters */ 308 sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, SUN6I_BURST_CNT(tfr->len)); 309 sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, SUN6I_XMIT_CNT(tx_len)); 310 sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, 311 SUN6I_BURST_CTL_CNT_STC(tx_len)); 312 313 /* Fill the TX FIFO */ 314 sun6i_spi_fill_fifo(sspi, sspi->fifo_depth); 315 316 /* Enable the interrupts */ 317 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC); 318 sun6i_spi_enable_interrupt(sspi, SUN6I_INT_CTL_TC | 319 SUN6I_INT_CTL_RF_RDY); 320 if (tx_len > sspi->fifo_depth) 321 sun6i_spi_enable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ); 322 323 /* Start the transfer */ 324 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG); 325 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH); 326 327 tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U); 328 start = jiffies; 329 timeout = wait_for_completion_timeout(&sspi->done, 330 msecs_to_jiffies(tx_time)); 331 end = jiffies; 332 if (!timeout) { 333 dev_warn(&master->dev, 334 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms", 335 dev_name(&spi->dev), tfr->len, tfr->speed_hz, 336 jiffies_to_msecs(end - start), tx_time); 337 ret = -ETIMEDOUT; 338 goto out; 339 } 340 341 out: 342 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0); 343 344 return ret; 345 } 346 347 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id) 348 { 349 struct sun6i_spi *sspi = dev_id; 350 u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG); 351 352 /* Transfer complete */ 353 if (status & SUN6I_INT_CTL_TC) { 354 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC); 355 sun6i_spi_drain_fifo(sspi, sspi->fifo_depth); 356 complete(&sspi->done); 357 return IRQ_HANDLED; 358 } 359 360 /* Receive FIFO 3/4 full */ 361 if (status & SUN6I_INT_CTL_RF_RDY) { 362 sun6i_spi_drain_fifo(sspi, SUN6I_FIFO_DEPTH); 363 /* Only clear the interrupt _after_ draining the FIFO */ 364 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY); 365 return IRQ_HANDLED; 366 } 367 368 /* Transmit FIFO 3/4 empty */ 369 if (status & SUN6I_INT_CTL_TF_ERQ) { 370 sun6i_spi_fill_fifo(sspi, SUN6I_FIFO_DEPTH); 371 372 if (!sspi->len) 373 /* nothing left to transmit */ 374 sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ); 375 376 /* Only clear the interrupt _after_ re-seeding the FIFO */ 377 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ); 378 379 return IRQ_HANDLED; 380 } 381 382 return IRQ_NONE; 383 } 384 385 static int sun6i_spi_runtime_resume(struct device *dev) 386 { 387 struct spi_master *master = dev_get_drvdata(dev); 388 struct sun6i_spi *sspi = spi_master_get_devdata(master); 389 int ret; 390 391 ret = clk_prepare_enable(sspi->hclk); 392 if (ret) { 393 dev_err(dev, "Couldn't enable AHB clock\n"); 394 goto out; 395 } 396 397 ret = clk_prepare_enable(sspi->mclk); 398 if (ret) { 399 dev_err(dev, "Couldn't enable module clock\n"); 400 goto err; 401 } 402 403 ret = reset_control_deassert(sspi->rstc); 404 if (ret) { 405 dev_err(dev, "Couldn't deassert the device from reset\n"); 406 goto err2; 407 } 408 409 sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, 410 SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP); 411 412 return 0; 413 414 err2: 415 clk_disable_unprepare(sspi->mclk); 416 err: 417 clk_disable_unprepare(sspi->hclk); 418 out: 419 return ret; 420 } 421 422 static int sun6i_spi_runtime_suspend(struct device *dev) 423 { 424 struct spi_master *master = dev_get_drvdata(dev); 425 struct sun6i_spi *sspi = spi_master_get_devdata(master); 426 427 reset_control_assert(sspi->rstc); 428 clk_disable_unprepare(sspi->mclk); 429 clk_disable_unprepare(sspi->hclk); 430 431 return 0; 432 } 433 434 static int sun6i_spi_probe(struct platform_device *pdev) 435 { 436 struct spi_master *master; 437 struct sun6i_spi *sspi; 438 int ret = 0, irq; 439 440 master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi)); 441 if (!master) { 442 dev_err(&pdev->dev, "Unable to allocate SPI Master\n"); 443 return -ENOMEM; 444 } 445 446 platform_set_drvdata(pdev, master); 447 sspi = spi_master_get_devdata(master); 448 449 sspi->base_addr = devm_platform_ioremap_resource(pdev, 0); 450 if (IS_ERR(sspi->base_addr)) { 451 ret = PTR_ERR(sspi->base_addr); 452 goto err_free_master; 453 } 454 455 irq = platform_get_irq(pdev, 0); 456 if (irq < 0) { 457 ret = -ENXIO; 458 goto err_free_master; 459 } 460 461 ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler, 462 0, "sun6i-spi", sspi); 463 if (ret) { 464 dev_err(&pdev->dev, "Cannot request IRQ\n"); 465 goto err_free_master; 466 } 467 468 sspi->master = master; 469 sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev); 470 471 master->max_speed_hz = 100 * 1000 * 1000; 472 master->min_speed_hz = 3 * 1000; 473 master->use_gpio_descriptors = true; 474 master->set_cs = sun6i_spi_set_cs; 475 master->transfer_one = sun6i_spi_transfer_one; 476 master->num_chipselect = 4; 477 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST; 478 master->bits_per_word_mask = SPI_BPW_MASK(8); 479 master->dev.of_node = pdev->dev.of_node; 480 master->auto_runtime_pm = true; 481 master->max_transfer_size = sun6i_spi_max_transfer_size; 482 483 sspi->hclk = devm_clk_get(&pdev->dev, "ahb"); 484 if (IS_ERR(sspi->hclk)) { 485 dev_err(&pdev->dev, "Unable to acquire AHB clock\n"); 486 ret = PTR_ERR(sspi->hclk); 487 goto err_free_master; 488 } 489 490 sspi->mclk = devm_clk_get(&pdev->dev, "mod"); 491 if (IS_ERR(sspi->mclk)) { 492 dev_err(&pdev->dev, "Unable to acquire module clock\n"); 493 ret = PTR_ERR(sspi->mclk); 494 goto err_free_master; 495 } 496 497 init_completion(&sspi->done); 498 499 sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL); 500 if (IS_ERR(sspi->rstc)) { 501 dev_err(&pdev->dev, "Couldn't get reset controller\n"); 502 ret = PTR_ERR(sspi->rstc); 503 goto err_free_master; 504 } 505 506 /* 507 * This wake-up/shutdown pattern is to be able to have the 508 * device woken up, even if runtime_pm is disabled 509 */ 510 ret = sun6i_spi_runtime_resume(&pdev->dev); 511 if (ret) { 512 dev_err(&pdev->dev, "Couldn't resume the device\n"); 513 goto err_free_master; 514 } 515 516 pm_runtime_set_active(&pdev->dev); 517 pm_runtime_enable(&pdev->dev); 518 pm_runtime_idle(&pdev->dev); 519 520 ret = devm_spi_register_master(&pdev->dev, master); 521 if (ret) { 522 dev_err(&pdev->dev, "cannot register SPI master\n"); 523 goto err_pm_disable; 524 } 525 526 return 0; 527 528 err_pm_disable: 529 pm_runtime_disable(&pdev->dev); 530 sun6i_spi_runtime_suspend(&pdev->dev); 531 err_free_master: 532 spi_master_put(master); 533 return ret; 534 } 535 536 static int sun6i_spi_remove(struct platform_device *pdev) 537 { 538 pm_runtime_force_suspend(&pdev->dev); 539 540 return 0; 541 } 542 543 static const struct of_device_id sun6i_spi_match[] = { 544 { .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH }, 545 { .compatible = "allwinner,sun8i-h3-spi", .data = (void *)SUN8I_FIFO_DEPTH }, 546 {} 547 }; 548 MODULE_DEVICE_TABLE(of, sun6i_spi_match); 549 550 static const struct dev_pm_ops sun6i_spi_pm_ops = { 551 .runtime_resume = sun6i_spi_runtime_resume, 552 .runtime_suspend = sun6i_spi_runtime_suspend, 553 }; 554 555 static struct platform_driver sun6i_spi_driver = { 556 .probe = sun6i_spi_probe, 557 .remove = sun6i_spi_remove, 558 .driver = { 559 .name = "sun6i-spi", 560 .of_match_table = sun6i_spi_match, 561 .pm = &sun6i_spi_pm_ops, 562 }, 563 }; 564 module_platform_driver(sun6i_spi_driver); 565 566 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>"); 567 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>"); 568 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver"); 569 MODULE_LICENSE("GPL"); 570