xref: /linux/drivers/spi/spi-sun6i.c (revision 0b364cf53b20204e92bac7c6ebd1ee7d3ec62931)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012 - 2014 Allwinner Tech
4  * Pan Nan <pannan@allwinnertech.com>
5  *
6  * Copyright (C) 2014 Maxime Ripard
7  * Maxime Ripard <maxime.ripard@free-electrons.com>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/reset.h>
21 #include <linux/dmaengine.h>
22 
23 #include <linux/spi/spi.h>
24 
25 #define SUN6I_AUTOSUSPEND_TIMEOUT	2000
26 
27 #define SUN6I_FIFO_DEPTH		128
28 #define SUN8I_FIFO_DEPTH		64
29 
30 #define SUN6I_GBL_CTL_REG		0x04
31 #define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
32 #define SUN6I_GBL_CTL_MASTER			BIT(1)
33 #define SUN6I_GBL_CTL_TP			BIT(7)
34 #define SUN6I_GBL_CTL_RST			BIT(31)
35 
36 #define SUN6I_TFR_CTL_REG		0x08
37 #define SUN6I_TFR_CTL_CPHA			BIT(0)
38 #define SUN6I_TFR_CTL_CPOL			BIT(1)
39 #define SUN6I_TFR_CTL_SPOL			BIT(2)
40 #define SUN6I_TFR_CTL_CS_MASK			0x30
41 #define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
42 #define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
43 #define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
44 #define SUN6I_TFR_CTL_DHB			BIT(8)
45 #define SUN6I_TFR_CTL_SDC			BIT(11)
46 #define SUN6I_TFR_CTL_FBS			BIT(12)
47 #define SUN6I_TFR_CTL_SDM			BIT(13)
48 #define SUN6I_TFR_CTL_XCH			BIT(31)
49 
50 #define SUN6I_INT_CTL_REG		0x10
51 #define SUN6I_INT_CTL_RF_RDY			BIT(0)
52 #define SUN6I_INT_CTL_TF_ERQ			BIT(4)
53 #define SUN6I_INT_CTL_RF_OVF			BIT(8)
54 #define SUN6I_INT_CTL_TC			BIT(12)
55 
56 #define SUN6I_INT_STA_REG		0x14
57 
58 #define SUN6I_FIFO_CTL_REG		0x18
59 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK	0xff
60 #define SUN6I_FIFO_CTL_RF_DRQ_EN		BIT(8)
61 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS	0
62 #define SUN6I_FIFO_CTL_RF_RST			BIT(15)
63 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK	0xff
64 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS	16
65 #define SUN6I_FIFO_CTL_TF_DRQ_EN		BIT(24)
66 #define SUN6I_FIFO_CTL_TF_RST			BIT(31)
67 
68 #define SUN6I_FIFO_STA_REG		0x1c
69 #define SUN6I_FIFO_STA_RF_CNT_MASK		GENMASK(7, 0)
70 #define SUN6I_FIFO_STA_TF_CNT_MASK		GENMASK(23, 16)
71 
72 #define SUN6I_CLK_CTL_REG		0x24
73 #define SUN6I_CLK_CTL_CDR2_MASK			0xff
74 #define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
75 #define SUN6I_CLK_CTL_CDR1_MASK			0xf
76 #define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
77 #define SUN6I_CLK_CTL_DRS			BIT(12)
78 
79 #define SUN6I_MAX_XFER_SIZE		0xffffff
80 
81 #define SUN6I_BURST_CNT_REG		0x30
82 
83 #define SUN6I_XMIT_CNT_REG		0x34
84 
85 #define SUN6I_BURST_CTL_CNT_REG		0x38
86 #define SUN6I_BURST_CTL_CNT_STC_MASK		GENMASK(23, 0)
87 #define SUN6I_BURST_CTL_CNT_DRM			BIT(28)
88 #define SUN6I_BURST_CTL_CNT_QUAD_EN		BIT(29)
89 
90 #define SUN6I_TXDATA_REG		0x200
91 #define SUN6I_RXDATA_REG		0x300
92 
93 struct sun6i_spi_cfg {
94 	unsigned long		fifo_depth;
95 	bool			has_clk_ctl;
96 	u32			mode_bits;
97 };
98 
99 struct sun6i_spi {
100 	struct spi_controller	*host;
101 	void __iomem		*base_addr;
102 	dma_addr_t		dma_addr_rx;
103 	dma_addr_t		dma_addr_tx;
104 	struct clk		*hclk;
105 	struct clk		*mclk;
106 	struct reset_control	*rstc;
107 
108 	struct completion	done;
109 	struct completion	dma_rx_done;
110 
111 	const u8		*tx_buf;
112 	u8			*rx_buf;
113 	int			len;
114 	const struct sun6i_spi_cfg *cfg;
115 };
116 
117 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
118 {
119 	return readl(sspi->base_addr + reg);
120 }
121 
122 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
123 {
124 	writel(value, sspi->base_addr + reg);
125 }
126 
127 static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
128 {
129 	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
130 
131 	return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
132 }
133 
134 static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
135 {
136 	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
137 
138 	return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
139 }
140 
141 static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
142 {
143 	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
144 
145 	reg &= ~mask;
146 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
147 }
148 
149 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi)
150 {
151 	u32 len;
152 	u8 byte;
153 
154 	/* See how much data is available */
155 	len = sun6i_spi_get_rx_fifo_count(sspi);
156 
157 	while (len--) {
158 		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
159 		if (sspi->rx_buf)
160 			*sspi->rx_buf++ = byte;
161 	}
162 }
163 
164 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi)
165 {
166 	u32 cnt;
167 	int len;
168 	u8 byte;
169 
170 	/* See how much data we can fit */
171 	cnt = sspi->cfg->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
172 
173 	len = min((int)cnt, sspi->len);
174 
175 	while (len--) {
176 		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
177 		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
178 		sspi->len--;
179 	}
180 }
181 
182 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
183 {
184 	struct sun6i_spi *sspi = spi_controller_get_devdata(spi->controller);
185 	u32 reg;
186 
187 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
188 	reg &= ~SUN6I_TFR_CTL_CS_MASK;
189 	reg |= SUN6I_TFR_CTL_CS(spi_get_chipselect(spi, 0));
190 
191 	if (enable)
192 		reg |= SUN6I_TFR_CTL_CS_LEVEL;
193 	else
194 		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
195 
196 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
197 }
198 
199 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
200 {
201 	return SUN6I_MAX_XFER_SIZE - 1;
202 }
203 
204 static void sun6i_spi_dma_rx_cb(void *param)
205 {
206 	struct sun6i_spi *sspi = param;
207 
208 	complete(&sspi->dma_rx_done);
209 }
210 
211 static int sun6i_spi_prepare_dma(struct sun6i_spi *sspi,
212 				 struct spi_transfer *tfr)
213 {
214 	struct dma_async_tx_descriptor *rxdesc, *txdesc;
215 	struct spi_controller *host = sspi->host;
216 
217 	rxdesc = NULL;
218 	if (tfr->rx_buf) {
219 		struct dma_slave_config rxconf = {
220 			.direction = DMA_DEV_TO_MEM,
221 			.src_addr = sspi->dma_addr_rx,
222 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
223 			.src_maxburst = 8,
224 		};
225 
226 		dmaengine_slave_config(host->dma_rx, &rxconf);
227 
228 		rxdesc = dmaengine_prep_slave_sg(host->dma_rx,
229 						 tfr->rx_sg.sgl,
230 						 tfr->rx_sg.nents,
231 						 DMA_DEV_TO_MEM,
232 						 DMA_PREP_INTERRUPT);
233 		if (!rxdesc)
234 			return -EINVAL;
235 		rxdesc->callback_param = sspi;
236 		rxdesc->callback = sun6i_spi_dma_rx_cb;
237 	}
238 
239 	txdesc = NULL;
240 	if (tfr->tx_buf) {
241 		struct dma_slave_config txconf = {
242 			.direction = DMA_MEM_TO_DEV,
243 			.dst_addr = sspi->dma_addr_tx,
244 			.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
245 			.dst_maxburst = 8,
246 		};
247 
248 		dmaengine_slave_config(host->dma_tx, &txconf);
249 
250 		txdesc = dmaengine_prep_slave_sg(host->dma_tx,
251 						 tfr->tx_sg.sgl,
252 						 tfr->tx_sg.nents,
253 						 DMA_MEM_TO_DEV,
254 						 DMA_PREP_INTERRUPT);
255 		if (!txdesc) {
256 			if (rxdesc)
257 				dmaengine_terminate_sync(host->dma_rx);
258 			return -EINVAL;
259 		}
260 	}
261 
262 	if (tfr->rx_buf) {
263 		dmaengine_submit(rxdesc);
264 		dma_async_issue_pending(host->dma_rx);
265 	}
266 
267 	if (tfr->tx_buf) {
268 		dmaengine_submit(txdesc);
269 		dma_async_issue_pending(host->dma_tx);
270 	}
271 
272 	return 0;
273 }
274 
275 static int sun6i_spi_transfer_one(struct spi_controller *host,
276 				  struct spi_device *spi,
277 				  struct spi_transfer *tfr)
278 {
279 	struct sun6i_spi *sspi = spi_controller_get_devdata(host);
280 	unsigned int div, div_cdr1, div_cdr2;
281 	unsigned long time_left;
282 	unsigned int start, end, tx_time;
283 	unsigned int trig_level;
284 	unsigned int tx_len = 0, rx_len = 0, nbits = 0;
285 	bool use_dma;
286 	int ret = 0;
287 	u32 reg;
288 
289 	if (tfr->len > SUN6I_MAX_XFER_SIZE)
290 		return -EINVAL;
291 
292 	reinit_completion(&sspi->done);
293 	reinit_completion(&sspi->dma_rx_done);
294 	sspi->tx_buf = tfr->tx_buf;
295 	sspi->rx_buf = tfr->rx_buf;
296 	sspi->len = tfr->len;
297 	use_dma = host->can_dma ? host->can_dma(host, spi, tfr) : false;
298 
299 	/* Clear pending interrupts */
300 	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
301 
302 	/* Reset FIFO */
303 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
304 			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
305 
306 	reg = 0;
307 
308 	if (!use_dma) {
309 		/*
310 		 * Setup FIFO interrupt trigger level
311 		 * Here we choose 3/4 of the full fifo depth, as it's
312 		 * the hardcoded value used in old generation of Allwinner
313 		 * SPI controller. (See spi-sun4i.c)
314 		 */
315 		trig_level = sspi->cfg->fifo_depth / 4 * 3;
316 	} else {
317 		/*
318 		 * Setup FIFO DMA request trigger level
319 		 * We choose 1/2 of the full fifo depth, that value will
320 		 * be used as DMA burst length.
321 		 */
322 		trig_level = sspi->cfg->fifo_depth / 2;
323 
324 		if (tfr->tx_buf)
325 			reg |= SUN6I_FIFO_CTL_TF_DRQ_EN;
326 		if (tfr->rx_buf)
327 			reg |= SUN6I_FIFO_CTL_RF_DRQ_EN;
328 	}
329 
330 	reg |= (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
331 	       (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS);
332 
333 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, reg);
334 
335 	/*
336 	 * Setup the transfer control register: Chip Select,
337 	 * polarities, etc.
338 	 */
339 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
340 
341 	if (spi->mode & SPI_CPOL)
342 		reg |= SUN6I_TFR_CTL_CPOL;
343 	else
344 		reg &= ~SUN6I_TFR_CTL_CPOL;
345 
346 	if (spi->mode & SPI_CPHA)
347 		reg |= SUN6I_TFR_CTL_CPHA;
348 	else
349 		reg &= ~SUN6I_TFR_CTL_CPHA;
350 
351 	if (spi->mode & SPI_LSB_FIRST)
352 		reg |= SUN6I_TFR_CTL_FBS;
353 	else
354 		reg &= ~SUN6I_TFR_CTL_FBS;
355 
356 	/*
357 	 * If it's a TX only transfer, we don't want to fill the RX
358 	 * FIFO with bogus data
359 	 */
360 	if (sspi->rx_buf) {
361 		reg &= ~SUN6I_TFR_CTL_DHB;
362 		rx_len = tfr->len;
363 	} else {
364 		reg |= SUN6I_TFR_CTL_DHB;
365 	}
366 
367 	/* We want to control the chip select manually */
368 	reg |= SUN6I_TFR_CTL_CS_MANUAL;
369 
370 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
371 
372 	if (sspi->cfg->has_clk_ctl) {
373 		unsigned int mclk_rate = clk_get_rate(sspi->mclk);
374 
375 		/* Ensure that we have a parent clock fast enough */
376 		if (mclk_rate < (2 * tfr->speed_hz)) {
377 			clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
378 			mclk_rate = clk_get_rate(sspi->mclk);
379 		}
380 
381 		/*
382 		 * Setup clock divider.
383 		 *
384 		 * We have two choices there. Either we can use the clock
385 		 * divide rate 1, which is calculated thanks to this formula:
386 		 * SPI_CLK = MOD_CLK / (2 ^ cdr)
387 		 * Or we can use CDR2, which is calculated with the formula:
388 		 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
389 		 * Wether we use the former or the latter is set through the
390 		 * DRS bit.
391 		 *
392 		 * First try CDR2, and if we can't reach the expected
393 		 * frequency, fall back to CDR1.
394 		 */
395 		div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
396 		div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
397 		if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
398 			reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
399 			tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
400 		} else {
401 			div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
402 			reg = SUN6I_CLK_CTL_CDR1(div);
403 			tfr->effective_speed_hz = mclk_rate / (1 << div);
404 		}
405 
406 		sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
407 	} else {
408 		clk_set_rate(sspi->mclk, tfr->speed_hz);
409 		tfr->effective_speed_hz = clk_get_rate(sspi->mclk);
410 
411 		/*
412 		 * Configure work mode.
413 		 *
414 		 * There are three work modes depending on the controller clock
415 		 * frequency:
416 		 * - normal sample mode           : CLK <= 24MHz SDM=1 SDC=0
417 		 * - delay half-cycle sample mode : CLK <= 40MHz SDM=0 SDC=0
418 		 * - delay one-cycle sample mode  : CLK >= 80MHz SDM=0 SDC=1
419 		 */
420 		reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
421 		reg &= ~(SUN6I_TFR_CTL_SDM | SUN6I_TFR_CTL_SDC);
422 
423 		if (tfr->effective_speed_hz <= 24000000)
424 			reg |= SUN6I_TFR_CTL_SDM;
425 		else if (tfr->effective_speed_hz >= 80000000)
426 			reg |= SUN6I_TFR_CTL_SDC;
427 
428 		sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
429 	}
430 
431 	/* Finally enable the bus - doing so before might raise SCK to HIGH */
432 	reg = sun6i_spi_read(sspi, SUN6I_GBL_CTL_REG);
433 	reg |= SUN6I_GBL_CTL_BUS_ENABLE;
434 	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, reg);
435 
436 	/* Setup the transfer now... */
437 	if (sspi->tx_buf) {
438 		tx_len = tfr->len;
439 		nbits = tfr->tx_nbits;
440 	} else if (tfr->rx_buf) {
441 		nbits = tfr->rx_nbits;
442 	}
443 
444 	switch (nbits) {
445 	case SPI_NBITS_DUAL:
446 		reg = SUN6I_BURST_CTL_CNT_DRM;
447 		break;
448 	case SPI_NBITS_QUAD:
449 		reg = SUN6I_BURST_CTL_CNT_QUAD_EN;
450 		break;
451 	case SPI_NBITS_SINGLE:
452 	default:
453 		reg = FIELD_PREP(SUN6I_BURST_CTL_CNT_STC_MASK, tx_len);
454 	}
455 
456 	/* Setup the counters */
457 	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, reg);
458 	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
459 	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
460 
461 	if (!use_dma) {
462 		/* Fill the TX FIFO */
463 		sun6i_spi_fill_fifo(sspi);
464 	} else {
465 		ret = sun6i_spi_prepare_dma(sspi, tfr);
466 		if (ret) {
467 			dev_warn(&host->dev,
468 				 "%s: prepare DMA failed, ret=%d",
469 				 dev_name(&spi->dev), ret);
470 			return ret;
471 		}
472 	}
473 
474 	/* Enable the interrupts */
475 	reg = SUN6I_INT_CTL_TC;
476 
477 	if (!use_dma) {
478 		if (rx_len > sspi->cfg->fifo_depth)
479 			reg |= SUN6I_INT_CTL_RF_RDY;
480 		if (tx_len > sspi->cfg->fifo_depth)
481 			reg |= SUN6I_INT_CTL_TF_ERQ;
482 	}
483 
484 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
485 
486 	/* Start the transfer */
487 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
488 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
489 
490 	tx_time = spi_controller_xfer_timeout(host, tfr);
491 	start = jiffies;
492 	time_left = wait_for_completion_timeout(&sspi->done,
493 						msecs_to_jiffies(tx_time));
494 
495 	if (!use_dma) {
496 		sun6i_spi_drain_fifo(sspi);
497 	} else {
498 		if (time_left && rx_len) {
499 			/*
500 			 * Even though RX on the peripheral side has finished
501 			 * RX DMA might still be in flight
502 			 */
503 			time_left = wait_for_completion_timeout(&sspi->dma_rx_done,
504 								time_left);
505 			if (!time_left)
506 				dev_warn(&host->dev, "RX DMA timeout\n");
507 		}
508 	}
509 
510 	end = jiffies;
511 	if (!time_left) {
512 		dev_warn(&host->dev,
513 			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
514 			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
515 			 jiffies_to_msecs(end - start), tx_time);
516 		ret = -ETIMEDOUT;
517 	}
518 
519 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
520 
521 	if (ret && use_dma) {
522 		dmaengine_terminate_sync(host->dma_rx);
523 		dmaengine_terminate_sync(host->dma_tx);
524 	}
525 
526 	return ret;
527 }
528 
529 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
530 {
531 	struct sun6i_spi *sspi = dev_id;
532 	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
533 
534 	/* Transfer complete */
535 	if (status & SUN6I_INT_CTL_TC) {
536 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
537 		complete(&sspi->done);
538 		return IRQ_HANDLED;
539 	}
540 
541 	/* Receive FIFO 3/4 full */
542 	if (status & SUN6I_INT_CTL_RF_RDY) {
543 		sun6i_spi_drain_fifo(sspi);
544 		/* Only clear the interrupt _after_ draining the FIFO */
545 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
546 		return IRQ_HANDLED;
547 	}
548 
549 	/* Transmit FIFO 3/4 empty */
550 	if (status & SUN6I_INT_CTL_TF_ERQ) {
551 		sun6i_spi_fill_fifo(sspi);
552 
553 		if (!sspi->len)
554 			/* nothing left to transmit */
555 			sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
556 
557 		/* Only clear the interrupt _after_ re-seeding the FIFO */
558 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
559 
560 		return IRQ_HANDLED;
561 	}
562 
563 	return IRQ_NONE;
564 }
565 
566 static int sun6i_spi_runtime_resume(struct device *dev)
567 {
568 	struct spi_controller *host = dev_get_drvdata(dev);
569 	struct sun6i_spi *sspi = spi_controller_get_devdata(host);
570 	int ret;
571 
572 	ret = clk_prepare_enable(sspi->hclk);
573 	if (ret) {
574 		dev_err(dev, "Couldn't enable AHB clock\n");
575 		goto out;
576 	}
577 
578 	ret = clk_prepare_enable(sspi->mclk);
579 	if (ret) {
580 		dev_err(dev, "Couldn't enable module clock\n");
581 		goto err;
582 	}
583 
584 	ret = reset_control_deassert(sspi->rstc);
585 	if (ret) {
586 		dev_err(dev, "Couldn't deassert the device from reset\n");
587 		goto err2;
588 	}
589 
590 	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
591 			SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
592 
593 	return 0;
594 
595 err2:
596 	clk_disable_unprepare(sspi->mclk);
597 err:
598 	clk_disable_unprepare(sspi->hclk);
599 out:
600 	return ret;
601 }
602 
603 static int sun6i_spi_runtime_suspend(struct device *dev)
604 {
605 	struct spi_controller *host = dev_get_drvdata(dev);
606 	struct sun6i_spi *sspi = spi_controller_get_devdata(host);
607 
608 	reset_control_assert(sspi->rstc);
609 	clk_disable_unprepare(sspi->mclk);
610 	clk_disable_unprepare(sspi->hclk);
611 
612 	return 0;
613 }
614 
615 static bool sun6i_spi_can_dma(struct spi_controller *host,
616 			      struct spi_device *spi,
617 			      struct spi_transfer *xfer)
618 {
619 	struct sun6i_spi *sspi = spi_controller_get_devdata(host);
620 
621 	/*
622 	 * If the number of spi words to transfer is less or equal than
623 	 * the fifo length we can just fill the fifo and wait for a single
624 	 * irq, so don't bother setting up dma
625 	 */
626 	return xfer->len > sspi->cfg->fifo_depth;
627 }
628 
629 static int sun6i_spi_probe(struct platform_device *pdev)
630 {
631 	struct spi_controller *host;
632 	struct sun6i_spi *sspi;
633 	struct resource *mem;
634 	int ret = 0, irq;
635 
636 	host = spi_alloc_host(&pdev->dev, sizeof(struct sun6i_spi));
637 	if (!host) {
638 		dev_err(&pdev->dev, "Unable to allocate SPI Host\n");
639 		return -ENOMEM;
640 	}
641 
642 	platform_set_drvdata(pdev, host);
643 	sspi = spi_controller_get_devdata(host);
644 
645 	sspi->base_addr = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
646 	if (IS_ERR(sspi->base_addr)) {
647 		ret = PTR_ERR(sspi->base_addr);
648 		goto err_free_host;
649 	}
650 
651 	irq = platform_get_irq(pdev, 0);
652 	if (irq < 0) {
653 		ret = -ENXIO;
654 		goto err_free_host;
655 	}
656 
657 	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
658 			       0, "sun6i-spi", sspi);
659 	if (ret) {
660 		dev_err(&pdev->dev, "Cannot request IRQ\n");
661 		goto err_free_host;
662 	}
663 
664 	sspi->host = host;
665 	sspi->cfg = of_device_get_match_data(&pdev->dev);
666 
667 	host->max_speed_hz = 100 * 1000 * 1000;
668 	host->min_speed_hz = 3 * 1000;
669 	host->use_gpio_descriptors = true;
670 	host->set_cs = sun6i_spi_set_cs;
671 	host->transfer_one = sun6i_spi_transfer_one;
672 	host->num_chipselect = 4;
673 	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST |
674 			  sspi->cfg->mode_bits;
675 	host->bits_per_word_mask = SPI_BPW_MASK(8);
676 	host->dev.of_node = pdev->dev.of_node;
677 	host->auto_runtime_pm = true;
678 	host->max_transfer_size = sun6i_spi_max_transfer_size;
679 
680 	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
681 	if (IS_ERR(sspi->hclk)) {
682 		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
683 		ret = PTR_ERR(sspi->hclk);
684 		goto err_free_host;
685 	}
686 
687 	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
688 	if (IS_ERR(sspi->mclk)) {
689 		dev_err(&pdev->dev, "Unable to acquire module clock\n");
690 		ret = PTR_ERR(sspi->mclk);
691 		goto err_free_host;
692 	}
693 
694 	init_completion(&sspi->done);
695 	init_completion(&sspi->dma_rx_done);
696 
697 	sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
698 	if (IS_ERR(sspi->rstc)) {
699 		dev_err(&pdev->dev, "Couldn't get reset controller\n");
700 		ret = PTR_ERR(sspi->rstc);
701 		goto err_free_host;
702 	}
703 
704 	host->dma_tx = dma_request_chan(&pdev->dev, "tx");
705 	if (IS_ERR(host->dma_tx)) {
706 		/* Check tx to see if we need defer probing driver */
707 		if (PTR_ERR(host->dma_tx) == -EPROBE_DEFER) {
708 			ret = -EPROBE_DEFER;
709 			goto err_free_host;
710 		}
711 		dev_warn(&pdev->dev, "Failed to request TX DMA channel\n");
712 		host->dma_tx = NULL;
713 	}
714 
715 	host->dma_rx = dma_request_chan(&pdev->dev, "rx");
716 	if (IS_ERR(host->dma_rx)) {
717 		if (PTR_ERR(host->dma_rx) == -EPROBE_DEFER) {
718 			ret = -EPROBE_DEFER;
719 			goto err_free_dma_tx;
720 		}
721 		dev_warn(&pdev->dev, "Failed to request RX DMA channel\n");
722 		host->dma_rx = NULL;
723 	}
724 
725 	if (host->dma_tx && host->dma_rx) {
726 		sspi->dma_addr_tx = mem->start + SUN6I_TXDATA_REG;
727 		sspi->dma_addr_rx = mem->start + SUN6I_RXDATA_REG;
728 		host->can_dma = sun6i_spi_can_dma;
729 	}
730 
731 	/*
732 	 * This wake-up/shutdown pattern is to be able to have the
733 	 * device woken up, even if runtime_pm is disabled
734 	 */
735 	ret = sun6i_spi_runtime_resume(&pdev->dev);
736 	if (ret) {
737 		dev_err(&pdev->dev, "Couldn't resume the device\n");
738 		goto err_free_dma_rx;
739 	}
740 
741 	pm_runtime_set_autosuspend_delay(&pdev->dev, SUN6I_AUTOSUSPEND_TIMEOUT);
742 	pm_runtime_use_autosuspend(&pdev->dev);
743 	pm_runtime_set_active(&pdev->dev);
744 	pm_runtime_enable(&pdev->dev);
745 
746 	ret = devm_spi_register_controller(&pdev->dev, host);
747 	if (ret) {
748 		dev_err(&pdev->dev, "cannot register SPI host\n");
749 		goto err_pm_disable;
750 	}
751 
752 	return 0;
753 
754 err_pm_disable:
755 	pm_runtime_disable(&pdev->dev);
756 	sun6i_spi_runtime_suspend(&pdev->dev);
757 err_free_dma_rx:
758 	if (host->dma_rx)
759 		dma_release_channel(host->dma_rx);
760 err_free_dma_tx:
761 	if (host->dma_tx)
762 		dma_release_channel(host->dma_tx);
763 err_free_host:
764 	spi_controller_put(host);
765 	return ret;
766 }
767 
768 static void sun6i_spi_remove(struct platform_device *pdev)
769 {
770 	struct spi_controller *host = platform_get_drvdata(pdev);
771 
772 	pm_runtime_force_suspend(&pdev->dev);
773 
774 	if (host->dma_tx)
775 		dma_release_channel(host->dma_tx);
776 	if (host->dma_rx)
777 		dma_release_channel(host->dma_rx);
778 }
779 
780 static const struct sun6i_spi_cfg sun6i_a31_spi_cfg = {
781 	.fifo_depth	= SUN6I_FIFO_DEPTH,
782 	.has_clk_ctl	= true,
783 };
784 
785 static const struct sun6i_spi_cfg sun8i_h3_spi_cfg = {
786 	.fifo_depth	= SUN8I_FIFO_DEPTH,
787 	.has_clk_ctl	= true,
788 };
789 
790 static const struct sun6i_spi_cfg sun50i_r329_spi_cfg = {
791 	.fifo_depth	= SUN8I_FIFO_DEPTH,
792 	.mode_bits	= SPI_RX_DUAL | SPI_TX_DUAL | SPI_RX_QUAD | SPI_TX_QUAD,
793 };
794 
795 static const struct of_device_id sun6i_spi_match[] = {
796 	{ .compatible = "allwinner,sun6i-a31-spi", .data = &sun6i_a31_spi_cfg },
797 	{ .compatible = "allwinner,sun8i-h3-spi",  .data = &sun8i_h3_spi_cfg },
798 	{
799 		.compatible = "allwinner,sun50i-r329-spi",
800 		.data = &sun50i_r329_spi_cfg
801 	},
802 	{}
803 };
804 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
805 
806 static const struct dev_pm_ops sun6i_spi_pm_ops = {
807 	.runtime_resume		= sun6i_spi_runtime_resume,
808 	.runtime_suspend	= sun6i_spi_runtime_suspend,
809 };
810 
811 static struct platform_driver sun6i_spi_driver = {
812 	.probe	= sun6i_spi_probe,
813 	.remove_new = sun6i_spi_remove,
814 	.driver	= {
815 		.name		= "sun6i-spi",
816 		.of_match_table	= sun6i_spi_match,
817 		.pm		= &sun6i_spi_pm_ops,
818 	},
819 };
820 module_platform_driver(sun6i_spi_driver);
821 
822 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
823 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
824 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
825 MODULE_LICENSE("GPL");
826