xref: /linux/drivers/spi/spi-sun4i.c (revision da5b2ad1c2f18834cb1ce429e2e5a5cf5cbdf21b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012 - 2014 Allwinner Tech
4  * Pan Nan <pannan@allwinnertech.com>
5  *
6  * Copyright (C) 2014 Maxime Ripard
7  * Maxime Ripard <maxime.ripard@free-electrons.com>
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/module.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 
19 #include <linux/spi/spi.h>
20 
21 #define SUN4I_FIFO_DEPTH		64
22 
23 #define SUN4I_RXDATA_REG		0x00
24 
25 #define SUN4I_TXDATA_REG		0x04
26 
27 #define SUN4I_CTL_REG			0x08
28 #define SUN4I_CTL_ENABLE			BIT(0)
29 #define SUN4I_CTL_MASTER			BIT(1)
30 #define SUN4I_CTL_CPHA				BIT(2)
31 #define SUN4I_CTL_CPOL				BIT(3)
32 #define SUN4I_CTL_CS_ACTIVE_LOW			BIT(4)
33 #define SUN4I_CTL_LMTF				BIT(6)
34 #define SUN4I_CTL_TF_RST			BIT(8)
35 #define SUN4I_CTL_RF_RST			BIT(9)
36 #define SUN4I_CTL_XCH				BIT(10)
37 #define SUN4I_CTL_CS_MASK			0x3000
38 #define SUN4I_CTL_CS(cs)			(((cs) << 12) & SUN4I_CTL_CS_MASK)
39 #define SUN4I_CTL_DHB				BIT(15)
40 #define SUN4I_CTL_CS_MANUAL			BIT(16)
41 #define SUN4I_CTL_CS_LEVEL			BIT(17)
42 #define SUN4I_CTL_TP				BIT(18)
43 
44 #define SUN4I_INT_CTL_REG		0x0c
45 #define SUN4I_INT_CTL_RF_F34			BIT(4)
46 #define SUN4I_INT_CTL_TF_E34			BIT(12)
47 #define SUN4I_INT_CTL_TC			BIT(16)
48 
49 #define SUN4I_INT_STA_REG		0x10
50 
51 #define SUN4I_DMA_CTL_REG		0x14
52 
53 #define SUN4I_WAIT_REG			0x18
54 
55 #define SUN4I_CLK_CTL_REG		0x1c
56 #define SUN4I_CLK_CTL_CDR2_MASK			0xff
57 #define SUN4I_CLK_CTL_CDR2(div)			((div) & SUN4I_CLK_CTL_CDR2_MASK)
58 #define SUN4I_CLK_CTL_CDR1_MASK			0xf
59 #define SUN4I_CLK_CTL_CDR1(div)			(((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8)
60 #define SUN4I_CLK_CTL_DRS			BIT(12)
61 
62 #define SUN4I_MAX_XFER_SIZE			0xffffff
63 
64 #define SUN4I_BURST_CNT_REG		0x20
65 #define SUN4I_BURST_CNT(cnt)			((cnt) & SUN4I_MAX_XFER_SIZE)
66 
67 #define SUN4I_XMIT_CNT_REG		0x24
68 #define SUN4I_XMIT_CNT(cnt)			((cnt) & SUN4I_MAX_XFER_SIZE)
69 
70 
71 #define SUN4I_FIFO_STA_REG		0x28
72 #define SUN4I_FIFO_STA_RF_CNT_MASK		0x7f
73 #define SUN4I_FIFO_STA_RF_CNT_BITS		0
74 #define SUN4I_FIFO_STA_TF_CNT_MASK		0x7f
75 #define SUN4I_FIFO_STA_TF_CNT_BITS		16
76 
77 struct sun4i_spi {
78 	struct spi_controller	*host;
79 	void __iomem		*base_addr;
80 	struct clk		*hclk;
81 	struct clk		*mclk;
82 
83 	struct completion	done;
84 
85 	const u8		*tx_buf;
86 	u8			*rx_buf;
87 	int			len;
88 };
89 
90 static inline u32 sun4i_spi_read(struct sun4i_spi *sspi, u32 reg)
91 {
92 	return readl(sspi->base_addr + reg);
93 }
94 
95 static inline void sun4i_spi_write(struct sun4i_spi *sspi, u32 reg, u32 value)
96 {
97 	writel(value, sspi->base_addr + reg);
98 }
99 
100 static inline u32 sun4i_spi_get_tx_fifo_count(struct sun4i_spi *sspi)
101 {
102 	u32 reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
103 
104 	reg >>= SUN4I_FIFO_STA_TF_CNT_BITS;
105 
106 	return reg & SUN4I_FIFO_STA_TF_CNT_MASK;
107 }
108 
109 static inline void sun4i_spi_enable_interrupt(struct sun4i_spi *sspi, u32 mask)
110 {
111 	u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG);
112 
113 	reg |= mask;
114 	sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg);
115 }
116 
117 static inline void sun4i_spi_disable_interrupt(struct sun4i_spi *sspi, u32 mask)
118 {
119 	u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG);
120 
121 	reg &= ~mask;
122 	sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg);
123 }
124 
125 static inline void sun4i_spi_drain_fifo(struct sun4i_spi *sspi, int len)
126 {
127 	u32 reg, cnt;
128 	u8 byte;
129 
130 	/* See how much data is available */
131 	reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
132 	reg &= SUN4I_FIFO_STA_RF_CNT_MASK;
133 	cnt = reg >> SUN4I_FIFO_STA_RF_CNT_BITS;
134 
135 	if (len > cnt)
136 		len = cnt;
137 
138 	while (len--) {
139 		byte = readb(sspi->base_addr + SUN4I_RXDATA_REG);
140 		if (sspi->rx_buf)
141 			*sspi->rx_buf++ = byte;
142 	}
143 }
144 
145 static inline void sun4i_spi_fill_fifo(struct sun4i_spi *sspi, int len)
146 {
147 	u32 cnt;
148 	u8 byte;
149 
150 	/* See how much data we can fit */
151 	cnt = SUN4I_FIFO_DEPTH - sun4i_spi_get_tx_fifo_count(sspi);
152 
153 	len = min3(len, (int)cnt, sspi->len);
154 
155 	while (len--) {
156 		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
157 		writeb(byte, sspi->base_addr + SUN4I_TXDATA_REG);
158 		sspi->len--;
159 	}
160 }
161 
162 static void sun4i_spi_set_cs(struct spi_device *spi, bool enable)
163 {
164 	struct sun4i_spi *sspi = spi_controller_get_devdata(spi->controller);
165 	u32 reg;
166 
167 	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
168 
169 	reg &= ~SUN4I_CTL_CS_MASK;
170 	reg |= SUN4I_CTL_CS(spi_get_chipselect(spi, 0));
171 
172 	/* We want to control the chip select manually */
173 	reg |= SUN4I_CTL_CS_MANUAL;
174 
175 	if (enable)
176 		reg |= SUN4I_CTL_CS_LEVEL;
177 	else
178 		reg &= ~SUN4I_CTL_CS_LEVEL;
179 
180 	/*
181 	 * Even though this looks irrelevant since we are supposed to
182 	 * be controlling the chip select manually, this bit also
183 	 * controls the levels of the chip select for inactive
184 	 * devices.
185 	 *
186 	 * If we don't set it, the chip select level will go low by
187 	 * default when the device is idle, which is not really
188 	 * expected in the common case where the chip select is active
189 	 * low.
190 	 */
191 	if (spi->mode & SPI_CS_HIGH)
192 		reg &= ~SUN4I_CTL_CS_ACTIVE_LOW;
193 	else
194 		reg |= SUN4I_CTL_CS_ACTIVE_LOW;
195 
196 	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
197 }
198 
199 static size_t sun4i_spi_max_transfer_size(struct spi_device *spi)
200 {
201 	return SUN4I_MAX_XFER_SIZE - 1;
202 }
203 
204 static int sun4i_spi_transfer_one(struct spi_controller *host,
205 				  struct spi_device *spi,
206 				  struct spi_transfer *tfr)
207 {
208 	struct sun4i_spi *sspi = spi_controller_get_devdata(host);
209 	unsigned int mclk_rate, div;
210 	unsigned long time_left;
211 	unsigned int start, end, tx_time;
212 	unsigned int tx_len = 0;
213 	int ret = 0;
214 	u32 reg;
215 
216 	/* We don't support transfer larger than the FIFO */
217 	if (tfr->len > SUN4I_MAX_XFER_SIZE)
218 		return -EMSGSIZE;
219 
220 	if (tfr->tx_buf && tfr->len >= SUN4I_MAX_XFER_SIZE)
221 		return -EMSGSIZE;
222 
223 	reinit_completion(&sspi->done);
224 	sspi->tx_buf = tfr->tx_buf;
225 	sspi->rx_buf = tfr->rx_buf;
226 	sspi->len = tfr->len;
227 
228 	/* Clear pending interrupts */
229 	sun4i_spi_write(sspi, SUN4I_INT_STA_REG, ~0);
230 
231 
232 	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
233 
234 	/* Reset FIFOs */
235 	sun4i_spi_write(sspi, SUN4I_CTL_REG,
236 			reg | SUN4I_CTL_RF_RST | SUN4I_CTL_TF_RST);
237 
238 	/*
239 	 * Setup the transfer control register: Chip Select,
240 	 * polarities, etc.
241 	 */
242 	if (spi->mode & SPI_CPOL)
243 		reg |= SUN4I_CTL_CPOL;
244 	else
245 		reg &= ~SUN4I_CTL_CPOL;
246 
247 	if (spi->mode & SPI_CPHA)
248 		reg |= SUN4I_CTL_CPHA;
249 	else
250 		reg &= ~SUN4I_CTL_CPHA;
251 
252 	if (spi->mode & SPI_LSB_FIRST)
253 		reg |= SUN4I_CTL_LMTF;
254 	else
255 		reg &= ~SUN4I_CTL_LMTF;
256 
257 
258 	/*
259 	 * If it's a TX only transfer, we don't want to fill the RX
260 	 * FIFO with bogus data
261 	 */
262 	if (sspi->rx_buf)
263 		reg &= ~SUN4I_CTL_DHB;
264 	else
265 		reg |= SUN4I_CTL_DHB;
266 
267 	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
268 
269 	/* Ensure that we have a parent clock fast enough */
270 	mclk_rate = clk_get_rate(sspi->mclk);
271 	if (mclk_rate < (2 * tfr->speed_hz)) {
272 		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
273 		mclk_rate = clk_get_rate(sspi->mclk);
274 	}
275 
276 	/*
277 	 * Setup clock divider.
278 	 *
279 	 * We have two choices there. Either we can use the clock
280 	 * divide rate 1, which is calculated thanks to this formula:
281 	 * SPI_CLK = MOD_CLK / (2 ^ (cdr + 1))
282 	 * Or we can use CDR2, which is calculated with the formula:
283 	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
284 	 * Whether we use the former or the latter is set through the
285 	 * DRS bit.
286 	 *
287 	 * First try CDR2, and if we can't reach the expected
288 	 * frequency, fall back to CDR1.
289 	 */
290 	div = mclk_rate / (2 * tfr->speed_hz);
291 	if (div <= (SUN4I_CLK_CTL_CDR2_MASK + 1)) {
292 		if (div > 0)
293 			div--;
294 
295 		reg = SUN4I_CLK_CTL_CDR2(div) | SUN4I_CLK_CTL_DRS;
296 	} else {
297 		div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
298 		reg = SUN4I_CLK_CTL_CDR1(div);
299 	}
300 
301 	sun4i_spi_write(sspi, SUN4I_CLK_CTL_REG, reg);
302 
303 	/* Setup the transfer now... */
304 	if (sspi->tx_buf)
305 		tx_len = tfr->len;
306 
307 	/* Setup the counters */
308 	sun4i_spi_write(sspi, SUN4I_BURST_CNT_REG, SUN4I_BURST_CNT(tfr->len));
309 	sun4i_spi_write(sspi, SUN4I_XMIT_CNT_REG, SUN4I_XMIT_CNT(tx_len));
310 
311 	/*
312 	 * Fill the TX FIFO
313 	 * Filling the FIFO fully causes timeout for some reason
314 	 * at least on spi2 on A10s
315 	 */
316 	sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH - 1);
317 
318 	/* Enable the interrupts */
319 	sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TC |
320 					 SUN4I_INT_CTL_RF_F34);
321 	/* Only enable Tx FIFO interrupt if we really need it */
322 	if (tx_len > SUN4I_FIFO_DEPTH)
323 		sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TF_E34);
324 
325 	/* Start the transfer */
326 	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
327 	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg | SUN4I_CTL_XCH);
328 
329 	tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
330 	start = jiffies;
331 	time_left = wait_for_completion_timeout(&sspi->done,
332 						msecs_to_jiffies(tx_time));
333 	end = jiffies;
334 	if (!time_left) {
335 		dev_warn(&host->dev,
336 			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
337 			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
338 			 jiffies_to_msecs(end - start), tx_time);
339 		ret = -ETIMEDOUT;
340 		goto out;
341 	}
342 
343 
344 out:
345 	sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, 0);
346 
347 	return ret;
348 }
349 
350 static irqreturn_t sun4i_spi_handler(int irq, void *dev_id)
351 {
352 	struct sun4i_spi *sspi = dev_id;
353 	u32 status = sun4i_spi_read(sspi, SUN4I_INT_STA_REG);
354 
355 	/* Transfer complete */
356 	if (status & SUN4I_INT_CTL_TC) {
357 		sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TC);
358 		sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
359 		complete(&sspi->done);
360 		return IRQ_HANDLED;
361 	}
362 
363 	/* Receive FIFO 3/4 full */
364 	if (status & SUN4I_INT_CTL_RF_F34) {
365 		sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
366 		/* Only clear the interrupt _after_ draining the FIFO */
367 		sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_RF_F34);
368 		return IRQ_HANDLED;
369 	}
370 
371 	/* Transmit FIFO 3/4 empty */
372 	if (status & SUN4I_INT_CTL_TF_E34) {
373 		sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH);
374 
375 		if (!sspi->len)
376 			/* nothing left to transmit */
377 			sun4i_spi_disable_interrupt(sspi, SUN4I_INT_CTL_TF_E34);
378 
379 		/* Only clear the interrupt _after_ re-seeding the FIFO */
380 		sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TF_E34);
381 
382 		return IRQ_HANDLED;
383 	}
384 
385 	return IRQ_NONE;
386 }
387 
388 static int sun4i_spi_runtime_resume(struct device *dev)
389 {
390 	struct spi_controller *host = dev_get_drvdata(dev);
391 	struct sun4i_spi *sspi = spi_controller_get_devdata(host);
392 	int ret;
393 
394 	ret = clk_prepare_enable(sspi->hclk);
395 	if (ret) {
396 		dev_err(dev, "Couldn't enable AHB clock\n");
397 		goto out;
398 	}
399 
400 	ret = clk_prepare_enable(sspi->mclk);
401 	if (ret) {
402 		dev_err(dev, "Couldn't enable module clock\n");
403 		goto err;
404 	}
405 
406 	sun4i_spi_write(sspi, SUN4I_CTL_REG,
407 			SUN4I_CTL_ENABLE | SUN4I_CTL_MASTER | SUN4I_CTL_TP);
408 
409 	return 0;
410 
411 err:
412 	clk_disable_unprepare(sspi->hclk);
413 out:
414 	return ret;
415 }
416 
417 static int sun4i_spi_runtime_suspend(struct device *dev)
418 {
419 	struct spi_controller *host = dev_get_drvdata(dev);
420 	struct sun4i_spi *sspi = spi_controller_get_devdata(host);
421 
422 	clk_disable_unprepare(sspi->mclk);
423 	clk_disable_unprepare(sspi->hclk);
424 
425 	return 0;
426 }
427 
428 static int sun4i_spi_probe(struct platform_device *pdev)
429 {
430 	struct spi_controller *host;
431 	struct sun4i_spi *sspi;
432 	int ret = 0, irq;
433 
434 	host = spi_alloc_host(&pdev->dev, sizeof(struct sun4i_spi));
435 	if (!host) {
436 		dev_err(&pdev->dev, "Unable to allocate SPI Host\n");
437 		return -ENOMEM;
438 	}
439 
440 	platform_set_drvdata(pdev, host);
441 	sspi = spi_controller_get_devdata(host);
442 
443 	sspi->base_addr = devm_platform_ioremap_resource(pdev, 0);
444 	if (IS_ERR(sspi->base_addr)) {
445 		ret = PTR_ERR(sspi->base_addr);
446 		goto err_free_host;
447 	}
448 
449 	irq = platform_get_irq(pdev, 0);
450 	if (irq < 0) {
451 		ret = -ENXIO;
452 		goto err_free_host;
453 	}
454 
455 	ret = devm_request_irq(&pdev->dev, irq, sun4i_spi_handler,
456 			       0, "sun4i-spi", sspi);
457 	if (ret) {
458 		dev_err(&pdev->dev, "Cannot request IRQ\n");
459 		goto err_free_host;
460 	}
461 
462 	sspi->host = host;
463 	host->max_speed_hz = 100 * 1000 * 1000;
464 	host->min_speed_hz = 3 * 1000;
465 	host->set_cs = sun4i_spi_set_cs;
466 	host->transfer_one = sun4i_spi_transfer_one;
467 	host->num_chipselect = 4;
468 	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
469 	host->bits_per_word_mask = SPI_BPW_MASK(8);
470 	host->dev.of_node = pdev->dev.of_node;
471 	host->auto_runtime_pm = true;
472 	host->max_transfer_size = sun4i_spi_max_transfer_size;
473 
474 	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
475 	if (IS_ERR(sspi->hclk)) {
476 		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
477 		ret = PTR_ERR(sspi->hclk);
478 		goto err_free_host;
479 	}
480 
481 	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
482 	if (IS_ERR(sspi->mclk)) {
483 		dev_err(&pdev->dev, "Unable to acquire module clock\n");
484 		ret = PTR_ERR(sspi->mclk);
485 		goto err_free_host;
486 	}
487 
488 	init_completion(&sspi->done);
489 
490 	/*
491 	 * This wake-up/shutdown pattern is to be able to have the
492 	 * device woken up, even if runtime_pm is disabled
493 	 */
494 	ret = sun4i_spi_runtime_resume(&pdev->dev);
495 	if (ret) {
496 		dev_err(&pdev->dev, "Couldn't resume the device\n");
497 		goto err_free_host;
498 	}
499 
500 	pm_runtime_set_active(&pdev->dev);
501 	pm_runtime_enable(&pdev->dev);
502 	pm_runtime_idle(&pdev->dev);
503 
504 	ret = devm_spi_register_controller(&pdev->dev, host);
505 	if (ret) {
506 		dev_err(&pdev->dev, "cannot register SPI host\n");
507 		goto err_pm_disable;
508 	}
509 
510 	return 0;
511 
512 err_pm_disable:
513 	pm_runtime_disable(&pdev->dev);
514 	sun4i_spi_runtime_suspend(&pdev->dev);
515 err_free_host:
516 	spi_controller_put(host);
517 	return ret;
518 }
519 
520 static void sun4i_spi_remove(struct platform_device *pdev)
521 {
522 	pm_runtime_force_suspend(&pdev->dev);
523 }
524 
525 static const struct of_device_id sun4i_spi_match[] = {
526 	{ .compatible = "allwinner,sun4i-a10-spi", },
527 	{}
528 };
529 MODULE_DEVICE_TABLE(of, sun4i_spi_match);
530 
531 static const struct dev_pm_ops sun4i_spi_pm_ops = {
532 	.runtime_resume		= sun4i_spi_runtime_resume,
533 	.runtime_suspend	= sun4i_spi_runtime_suspend,
534 };
535 
536 static struct platform_driver sun4i_spi_driver = {
537 	.probe	= sun4i_spi_probe,
538 	.remove_new = sun4i_spi_remove,
539 	.driver	= {
540 		.name		= "sun4i-spi",
541 		.of_match_table	= sun4i_spi_match,
542 		.pm		= &sun4i_spi_pm_ops,
543 	},
544 };
545 module_platform_driver(sun4i_spi_driver);
546 
547 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
548 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
549 MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver");
550 MODULE_LICENSE("GPL");
551