1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2012 - 2014 Allwinner Tech 4 * Pan Nan <pannan@allwinnertech.com> 5 * 6 * Copyright (C) 2014 Maxime Ripard 7 * Maxime Ripard <maxime.ripard@free-electrons.com> 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/delay.h> 12 #include <linux/device.h> 13 #include <linux/interrupt.h> 14 #include <linux/io.h> 15 #include <linux/module.h> 16 #include <linux/platform_device.h> 17 #include <linux/pm_runtime.h> 18 19 #include <linux/spi/spi.h> 20 21 #define SUN4I_FIFO_DEPTH 64 22 23 #define SUN4I_RXDATA_REG 0x00 24 25 #define SUN4I_TXDATA_REG 0x04 26 27 #define SUN4I_CTL_REG 0x08 28 #define SUN4I_CTL_ENABLE BIT(0) 29 #define SUN4I_CTL_MASTER BIT(1) 30 #define SUN4I_CTL_CPHA BIT(2) 31 #define SUN4I_CTL_CPOL BIT(3) 32 #define SUN4I_CTL_CS_ACTIVE_LOW BIT(4) 33 #define SUN4I_CTL_LMTF BIT(6) 34 #define SUN4I_CTL_TF_RST BIT(8) 35 #define SUN4I_CTL_RF_RST BIT(9) 36 #define SUN4I_CTL_XCH BIT(10) 37 #define SUN4I_CTL_CS_MASK 0x3000 38 #define SUN4I_CTL_CS(cs) (((cs) << 12) & SUN4I_CTL_CS_MASK) 39 #define SUN4I_CTL_DHB BIT(15) 40 #define SUN4I_CTL_CS_MANUAL BIT(16) 41 #define SUN4I_CTL_CS_LEVEL BIT(17) 42 #define SUN4I_CTL_TP BIT(18) 43 44 #define SUN4I_INT_CTL_REG 0x0c 45 #define SUN4I_INT_CTL_RF_F34 BIT(4) 46 #define SUN4I_INT_CTL_TF_E34 BIT(12) 47 #define SUN4I_INT_CTL_TC BIT(16) 48 49 #define SUN4I_INT_STA_REG 0x10 50 51 #define SUN4I_DMA_CTL_REG 0x14 52 53 #define SUN4I_WAIT_REG 0x18 54 55 #define SUN4I_CLK_CTL_REG 0x1c 56 #define SUN4I_CLK_CTL_CDR2_MASK 0xff 57 #define SUN4I_CLK_CTL_CDR2(div) ((div) & SUN4I_CLK_CTL_CDR2_MASK) 58 #define SUN4I_CLK_CTL_CDR1_MASK 0xf 59 #define SUN4I_CLK_CTL_CDR1(div) (((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8) 60 #define SUN4I_CLK_CTL_DRS BIT(12) 61 62 #define SUN4I_MAX_XFER_SIZE 0xffffff 63 64 #define SUN4I_BURST_CNT_REG 0x20 65 #define SUN4I_BURST_CNT(cnt) ((cnt) & SUN4I_MAX_XFER_SIZE) 66 67 #define SUN4I_XMIT_CNT_REG 0x24 68 #define SUN4I_XMIT_CNT(cnt) ((cnt) & SUN4I_MAX_XFER_SIZE) 69 70 71 #define SUN4I_FIFO_STA_REG 0x28 72 #define SUN4I_FIFO_STA_RF_CNT_MASK 0x7f 73 #define SUN4I_FIFO_STA_RF_CNT_BITS 0 74 #define SUN4I_FIFO_STA_TF_CNT_MASK 0x7f 75 #define SUN4I_FIFO_STA_TF_CNT_BITS 16 76 77 struct sun4i_spi { 78 struct spi_controller *host; 79 void __iomem *base_addr; 80 struct clk *hclk; 81 struct clk *mclk; 82 83 struct completion done; 84 85 const u8 *tx_buf; 86 u8 *rx_buf; 87 int len; 88 }; 89 90 static inline u32 sun4i_spi_read(struct sun4i_spi *sspi, u32 reg) 91 { 92 return readl(sspi->base_addr + reg); 93 } 94 95 static inline void sun4i_spi_write(struct sun4i_spi *sspi, u32 reg, u32 value) 96 { 97 writel(value, sspi->base_addr + reg); 98 } 99 100 static inline u32 sun4i_spi_get_tx_fifo_count(struct sun4i_spi *sspi) 101 { 102 u32 reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG); 103 104 reg >>= SUN4I_FIFO_STA_TF_CNT_BITS; 105 106 return reg & SUN4I_FIFO_STA_TF_CNT_MASK; 107 } 108 109 static inline void sun4i_spi_enable_interrupt(struct sun4i_spi *sspi, u32 mask) 110 { 111 u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG); 112 113 reg |= mask; 114 sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg); 115 } 116 117 static inline void sun4i_spi_disable_interrupt(struct sun4i_spi *sspi, u32 mask) 118 { 119 u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG); 120 121 reg &= ~mask; 122 sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg); 123 } 124 125 static inline void sun4i_spi_drain_fifo(struct sun4i_spi *sspi, int len) 126 { 127 u32 reg, cnt; 128 u8 byte; 129 130 /* See how much data is available */ 131 reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG); 132 reg &= SUN4I_FIFO_STA_RF_CNT_MASK; 133 cnt = reg >> SUN4I_FIFO_STA_RF_CNT_BITS; 134 135 if (len > cnt) 136 len = cnt; 137 138 while (len--) { 139 byte = readb(sspi->base_addr + SUN4I_RXDATA_REG); 140 if (sspi->rx_buf) 141 *sspi->rx_buf++ = byte; 142 } 143 } 144 145 static inline void sun4i_spi_fill_fifo(struct sun4i_spi *sspi, int len) 146 { 147 u32 cnt; 148 u8 byte; 149 150 /* See how much data we can fit */ 151 cnt = SUN4I_FIFO_DEPTH - sun4i_spi_get_tx_fifo_count(sspi); 152 153 len = min3(len, (int)cnt, sspi->len); 154 155 while (len--) { 156 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0; 157 writeb(byte, sspi->base_addr + SUN4I_TXDATA_REG); 158 sspi->len--; 159 } 160 } 161 162 static void sun4i_spi_set_cs(struct spi_device *spi, bool enable) 163 { 164 struct sun4i_spi *sspi = spi_controller_get_devdata(spi->controller); 165 u32 reg; 166 167 reg = sun4i_spi_read(sspi, SUN4I_CTL_REG); 168 169 reg &= ~SUN4I_CTL_CS_MASK; 170 reg |= SUN4I_CTL_CS(spi_get_chipselect(spi, 0)); 171 172 /* We want to control the chip select manually */ 173 reg |= SUN4I_CTL_CS_MANUAL; 174 175 if (enable) 176 reg |= SUN4I_CTL_CS_LEVEL; 177 else 178 reg &= ~SUN4I_CTL_CS_LEVEL; 179 180 /* 181 * Even though this looks irrelevant since we are supposed to 182 * be controlling the chip select manually, this bit also 183 * controls the levels of the chip select for inactive 184 * devices. 185 * 186 * If we don't set it, the chip select level will go low by 187 * default when the device is idle, which is not really 188 * expected in the common case where the chip select is active 189 * low. 190 */ 191 if (spi->mode & SPI_CS_HIGH) 192 reg &= ~SUN4I_CTL_CS_ACTIVE_LOW; 193 else 194 reg |= SUN4I_CTL_CS_ACTIVE_LOW; 195 196 sun4i_spi_write(sspi, SUN4I_CTL_REG, reg); 197 } 198 199 static size_t sun4i_spi_max_transfer_size(struct spi_device *spi) 200 { 201 return SUN4I_MAX_XFER_SIZE - 1; 202 } 203 204 static int sun4i_spi_transfer_one(struct spi_controller *host, 205 struct spi_device *spi, 206 struct spi_transfer *tfr) 207 { 208 struct sun4i_spi *sspi = spi_controller_get_devdata(host); 209 unsigned int mclk_rate, div; 210 unsigned long time_left; 211 unsigned int start, end, tx_time; 212 unsigned int tx_len = 0; 213 int ret = 0; 214 u32 reg; 215 216 /* We don't support transfer larger than the FIFO */ 217 if (tfr->len > SUN4I_MAX_XFER_SIZE) 218 return -EMSGSIZE; 219 220 if (tfr->tx_buf && tfr->len >= SUN4I_MAX_XFER_SIZE) 221 return -EMSGSIZE; 222 223 reinit_completion(&sspi->done); 224 sspi->tx_buf = tfr->tx_buf; 225 sspi->rx_buf = tfr->rx_buf; 226 sspi->len = tfr->len; 227 228 /* Clear pending interrupts */ 229 sun4i_spi_write(sspi, SUN4I_INT_STA_REG, ~0); 230 231 232 reg = sun4i_spi_read(sspi, SUN4I_CTL_REG); 233 234 /* Reset FIFOs */ 235 sun4i_spi_write(sspi, SUN4I_CTL_REG, 236 reg | SUN4I_CTL_RF_RST | SUN4I_CTL_TF_RST); 237 238 /* 239 * Setup the transfer control register: Chip Select, 240 * polarities, etc. 241 */ 242 if (spi->mode & SPI_CPOL) 243 reg |= SUN4I_CTL_CPOL; 244 else 245 reg &= ~SUN4I_CTL_CPOL; 246 247 if (spi->mode & SPI_CPHA) 248 reg |= SUN4I_CTL_CPHA; 249 else 250 reg &= ~SUN4I_CTL_CPHA; 251 252 if (spi->mode & SPI_LSB_FIRST) 253 reg |= SUN4I_CTL_LMTF; 254 else 255 reg &= ~SUN4I_CTL_LMTF; 256 257 258 /* 259 * If it's a TX only transfer, we don't want to fill the RX 260 * FIFO with bogus data 261 */ 262 if (sspi->rx_buf) 263 reg &= ~SUN4I_CTL_DHB; 264 else 265 reg |= SUN4I_CTL_DHB; 266 267 sun4i_spi_write(sspi, SUN4I_CTL_REG, reg); 268 269 /* Ensure that we have a parent clock fast enough */ 270 mclk_rate = clk_get_rate(sspi->mclk); 271 if (mclk_rate < (2 * tfr->speed_hz)) { 272 clk_set_rate(sspi->mclk, 2 * tfr->speed_hz); 273 mclk_rate = clk_get_rate(sspi->mclk); 274 } 275 276 /* 277 * Setup clock divider. 278 * 279 * We have two choices there. Either we can use the clock 280 * divide rate 1, which is calculated thanks to this formula: 281 * SPI_CLK = MOD_CLK / (2 ^ (cdr + 1)) 282 * Or we can use CDR2, which is calculated with the formula: 283 * SPI_CLK = MOD_CLK / (2 * (cdr + 1)) 284 * Whether we use the former or the latter is set through the 285 * DRS bit. 286 * 287 * First try CDR2, and if we can't reach the expected 288 * frequency, fall back to CDR1. 289 */ 290 div = mclk_rate / (2 * tfr->speed_hz); 291 if (div <= (SUN4I_CLK_CTL_CDR2_MASK + 1)) { 292 if (div > 0) 293 div--; 294 295 reg = SUN4I_CLK_CTL_CDR2(div) | SUN4I_CLK_CTL_DRS; 296 } else { 297 div = ilog2(mclk_rate) - ilog2(tfr->speed_hz); 298 reg = SUN4I_CLK_CTL_CDR1(div); 299 } 300 301 sun4i_spi_write(sspi, SUN4I_CLK_CTL_REG, reg); 302 303 /* Setup the transfer now... */ 304 if (sspi->tx_buf) 305 tx_len = tfr->len; 306 307 /* Setup the counters */ 308 sun4i_spi_write(sspi, SUN4I_BURST_CNT_REG, SUN4I_BURST_CNT(tfr->len)); 309 sun4i_spi_write(sspi, SUN4I_XMIT_CNT_REG, SUN4I_XMIT_CNT(tx_len)); 310 311 /* 312 * Fill the TX FIFO 313 * Filling the FIFO fully causes timeout for some reason 314 * at least on spi2 on A10s 315 */ 316 sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH - 1); 317 318 /* Enable the interrupts */ 319 sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TC | 320 SUN4I_INT_CTL_RF_F34); 321 /* Only enable Tx FIFO interrupt if we really need it */ 322 if (tx_len > SUN4I_FIFO_DEPTH) 323 sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TF_E34); 324 325 /* Start the transfer */ 326 reg = sun4i_spi_read(sspi, SUN4I_CTL_REG); 327 sun4i_spi_write(sspi, SUN4I_CTL_REG, reg | SUN4I_CTL_XCH); 328 329 tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U); 330 start = jiffies; 331 time_left = wait_for_completion_timeout(&sspi->done, 332 msecs_to_jiffies(tx_time)); 333 end = jiffies; 334 if (!time_left) { 335 dev_warn(&host->dev, 336 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms", 337 dev_name(&spi->dev), tfr->len, tfr->speed_hz, 338 jiffies_to_msecs(end - start), tx_time); 339 ret = -ETIMEDOUT; 340 goto out; 341 } 342 343 344 out: 345 sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, 0); 346 347 return ret; 348 } 349 350 static irqreturn_t sun4i_spi_handler(int irq, void *dev_id) 351 { 352 struct sun4i_spi *sspi = dev_id; 353 u32 status = sun4i_spi_read(sspi, SUN4I_INT_STA_REG); 354 355 /* Transfer complete */ 356 if (status & SUN4I_INT_CTL_TC) { 357 sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TC); 358 sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH); 359 complete(&sspi->done); 360 return IRQ_HANDLED; 361 } 362 363 /* Receive FIFO 3/4 full */ 364 if (status & SUN4I_INT_CTL_RF_F34) { 365 sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH); 366 /* Only clear the interrupt _after_ draining the FIFO */ 367 sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_RF_F34); 368 return IRQ_HANDLED; 369 } 370 371 /* Transmit FIFO 3/4 empty */ 372 if (status & SUN4I_INT_CTL_TF_E34) { 373 sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH); 374 375 if (!sspi->len) 376 /* nothing left to transmit */ 377 sun4i_spi_disable_interrupt(sspi, SUN4I_INT_CTL_TF_E34); 378 379 /* Only clear the interrupt _after_ re-seeding the FIFO */ 380 sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TF_E34); 381 382 return IRQ_HANDLED; 383 } 384 385 return IRQ_NONE; 386 } 387 388 static int sun4i_spi_runtime_resume(struct device *dev) 389 { 390 struct spi_controller *host = dev_get_drvdata(dev); 391 struct sun4i_spi *sspi = spi_controller_get_devdata(host); 392 int ret; 393 394 ret = clk_prepare_enable(sspi->hclk); 395 if (ret) { 396 dev_err(dev, "Couldn't enable AHB clock\n"); 397 goto out; 398 } 399 400 ret = clk_prepare_enable(sspi->mclk); 401 if (ret) { 402 dev_err(dev, "Couldn't enable module clock\n"); 403 goto err; 404 } 405 406 sun4i_spi_write(sspi, SUN4I_CTL_REG, 407 SUN4I_CTL_ENABLE | SUN4I_CTL_MASTER | SUN4I_CTL_TP); 408 409 return 0; 410 411 err: 412 clk_disable_unprepare(sspi->hclk); 413 out: 414 return ret; 415 } 416 417 static int sun4i_spi_runtime_suspend(struct device *dev) 418 { 419 struct spi_controller *host = dev_get_drvdata(dev); 420 struct sun4i_spi *sspi = spi_controller_get_devdata(host); 421 422 clk_disable_unprepare(sspi->mclk); 423 clk_disable_unprepare(sspi->hclk); 424 425 return 0; 426 } 427 428 static int sun4i_spi_probe(struct platform_device *pdev) 429 { 430 struct spi_controller *host; 431 struct sun4i_spi *sspi; 432 int ret = 0, irq; 433 434 host = spi_alloc_host(&pdev->dev, sizeof(struct sun4i_spi)); 435 if (!host) { 436 dev_err(&pdev->dev, "Unable to allocate SPI Host\n"); 437 return -ENOMEM; 438 } 439 440 platform_set_drvdata(pdev, host); 441 sspi = spi_controller_get_devdata(host); 442 443 sspi->base_addr = devm_platform_ioremap_resource(pdev, 0); 444 if (IS_ERR(sspi->base_addr)) { 445 ret = PTR_ERR(sspi->base_addr); 446 goto err_free_host; 447 } 448 449 irq = platform_get_irq(pdev, 0); 450 if (irq < 0) { 451 ret = -ENXIO; 452 goto err_free_host; 453 } 454 455 ret = devm_request_irq(&pdev->dev, irq, sun4i_spi_handler, 456 0, "sun4i-spi", sspi); 457 if (ret) { 458 dev_err(&pdev->dev, "Cannot request IRQ\n"); 459 goto err_free_host; 460 } 461 462 sspi->host = host; 463 host->max_speed_hz = 100 * 1000 * 1000; 464 host->min_speed_hz = 3 * 1000; 465 host->set_cs = sun4i_spi_set_cs; 466 host->transfer_one = sun4i_spi_transfer_one; 467 host->num_chipselect = 4; 468 host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST; 469 host->bits_per_word_mask = SPI_BPW_MASK(8); 470 host->dev.of_node = pdev->dev.of_node; 471 host->auto_runtime_pm = true; 472 host->max_transfer_size = sun4i_spi_max_transfer_size; 473 474 sspi->hclk = devm_clk_get(&pdev->dev, "ahb"); 475 if (IS_ERR(sspi->hclk)) { 476 dev_err(&pdev->dev, "Unable to acquire AHB clock\n"); 477 ret = PTR_ERR(sspi->hclk); 478 goto err_free_host; 479 } 480 481 sspi->mclk = devm_clk_get(&pdev->dev, "mod"); 482 if (IS_ERR(sspi->mclk)) { 483 dev_err(&pdev->dev, "Unable to acquire module clock\n"); 484 ret = PTR_ERR(sspi->mclk); 485 goto err_free_host; 486 } 487 488 init_completion(&sspi->done); 489 490 /* 491 * This wake-up/shutdown pattern is to be able to have the 492 * device woken up, even if runtime_pm is disabled 493 */ 494 ret = sun4i_spi_runtime_resume(&pdev->dev); 495 if (ret) { 496 dev_err(&pdev->dev, "Couldn't resume the device\n"); 497 goto err_free_host; 498 } 499 500 pm_runtime_set_active(&pdev->dev); 501 pm_runtime_enable(&pdev->dev); 502 pm_runtime_idle(&pdev->dev); 503 504 ret = devm_spi_register_controller(&pdev->dev, host); 505 if (ret) { 506 dev_err(&pdev->dev, "cannot register SPI host\n"); 507 goto err_pm_disable; 508 } 509 510 return 0; 511 512 err_pm_disable: 513 pm_runtime_disable(&pdev->dev); 514 sun4i_spi_runtime_suspend(&pdev->dev); 515 err_free_host: 516 spi_controller_put(host); 517 return ret; 518 } 519 520 static void sun4i_spi_remove(struct platform_device *pdev) 521 { 522 pm_runtime_force_suspend(&pdev->dev); 523 } 524 525 static const struct of_device_id sun4i_spi_match[] = { 526 { .compatible = "allwinner,sun4i-a10-spi", }, 527 {} 528 }; 529 MODULE_DEVICE_TABLE(of, sun4i_spi_match); 530 531 static const struct dev_pm_ops sun4i_spi_pm_ops = { 532 .runtime_resume = sun4i_spi_runtime_resume, 533 .runtime_suspend = sun4i_spi_runtime_suspend, 534 }; 535 536 static struct platform_driver sun4i_spi_driver = { 537 .probe = sun4i_spi_probe, 538 .remove = sun4i_spi_remove, 539 .driver = { 540 .name = "sun4i-spi", 541 .of_match_table = sun4i_spi_match, 542 .pm = &sun4i_spi_pm_ops, 543 }, 544 }; 545 module_platform_driver(sun4i_spi_driver); 546 547 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>"); 548 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>"); 549 MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver"); 550 MODULE_LICENSE("GPL"); 551