xref: /linux/drivers/spi/spi-sun4i.c (revision 3f0a50f345f78183f6e9b39c2f45ca5dcaa511ca)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012 - 2014 Allwinner Tech
4  * Pan Nan <pannan@allwinnertech.com>
5  *
6  * Copyright (C) 2014 Maxime Ripard
7  * Maxime Ripard <maxime.ripard@free-electrons.com>
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/module.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 
19 #include <linux/spi/spi.h>
20 
21 #define SUN4I_FIFO_DEPTH		64
22 
23 #define SUN4I_RXDATA_REG		0x00
24 
25 #define SUN4I_TXDATA_REG		0x04
26 
27 #define SUN4I_CTL_REG			0x08
28 #define SUN4I_CTL_ENABLE			BIT(0)
29 #define SUN4I_CTL_MASTER			BIT(1)
30 #define SUN4I_CTL_CPHA				BIT(2)
31 #define SUN4I_CTL_CPOL				BIT(3)
32 #define SUN4I_CTL_CS_ACTIVE_LOW			BIT(4)
33 #define SUN4I_CTL_LMTF				BIT(6)
34 #define SUN4I_CTL_TF_RST			BIT(8)
35 #define SUN4I_CTL_RF_RST			BIT(9)
36 #define SUN4I_CTL_XCH				BIT(10)
37 #define SUN4I_CTL_CS_MASK			0x3000
38 #define SUN4I_CTL_CS(cs)			(((cs) << 12) & SUN4I_CTL_CS_MASK)
39 #define SUN4I_CTL_DHB				BIT(15)
40 #define SUN4I_CTL_CS_MANUAL			BIT(16)
41 #define SUN4I_CTL_CS_LEVEL			BIT(17)
42 #define SUN4I_CTL_TP				BIT(18)
43 
44 #define SUN4I_INT_CTL_REG		0x0c
45 #define SUN4I_INT_CTL_RF_F34			BIT(4)
46 #define SUN4I_INT_CTL_TF_E34			BIT(12)
47 #define SUN4I_INT_CTL_TC			BIT(16)
48 
49 #define SUN4I_INT_STA_REG		0x10
50 
51 #define SUN4I_DMA_CTL_REG		0x14
52 
53 #define SUN4I_WAIT_REG			0x18
54 
55 #define SUN4I_CLK_CTL_REG		0x1c
56 #define SUN4I_CLK_CTL_CDR2_MASK			0xff
57 #define SUN4I_CLK_CTL_CDR2(div)			((div) & SUN4I_CLK_CTL_CDR2_MASK)
58 #define SUN4I_CLK_CTL_CDR1_MASK			0xf
59 #define SUN4I_CLK_CTL_CDR1(div)			(((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8)
60 #define SUN4I_CLK_CTL_DRS			BIT(12)
61 
62 #define SUN4I_MAX_XFER_SIZE			0xffffff
63 
64 #define SUN4I_BURST_CNT_REG		0x20
65 #define SUN4I_BURST_CNT(cnt)			((cnt) & SUN4I_MAX_XFER_SIZE)
66 
67 #define SUN4I_XMIT_CNT_REG		0x24
68 #define SUN4I_XMIT_CNT(cnt)			((cnt) & SUN4I_MAX_XFER_SIZE)
69 
70 
71 #define SUN4I_FIFO_STA_REG		0x28
72 #define SUN4I_FIFO_STA_RF_CNT_MASK		0x7f
73 #define SUN4I_FIFO_STA_RF_CNT_BITS		0
74 #define SUN4I_FIFO_STA_TF_CNT_MASK		0x7f
75 #define SUN4I_FIFO_STA_TF_CNT_BITS		16
76 
77 struct sun4i_spi {
78 	struct spi_master	*master;
79 	void __iomem		*base_addr;
80 	struct clk		*hclk;
81 	struct clk		*mclk;
82 
83 	struct completion	done;
84 
85 	const u8		*tx_buf;
86 	u8			*rx_buf;
87 	int			len;
88 };
89 
90 static inline u32 sun4i_spi_read(struct sun4i_spi *sspi, u32 reg)
91 {
92 	return readl(sspi->base_addr + reg);
93 }
94 
95 static inline void sun4i_spi_write(struct sun4i_spi *sspi, u32 reg, u32 value)
96 {
97 	writel(value, sspi->base_addr + reg);
98 }
99 
100 static inline u32 sun4i_spi_get_tx_fifo_count(struct sun4i_spi *sspi)
101 {
102 	u32 reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
103 
104 	reg >>= SUN4I_FIFO_STA_TF_CNT_BITS;
105 
106 	return reg & SUN4I_FIFO_STA_TF_CNT_MASK;
107 }
108 
109 static inline void sun4i_spi_enable_interrupt(struct sun4i_spi *sspi, u32 mask)
110 {
111 	u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG);
112 
113 	reg |= mask;
114 	sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg);
115 }
116 
117 static inline void sun4i_spi_disable_interrupt(struct sun4i_spi *sspi, u32 mask)
118 {
119 	u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG);
120 
121 	reg &= ~mask;
122 	sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg);
123 }
124 
125 static inline void sun4i_spi_drain_fifo(struct sun4i_spi *sspi, int len)
126 {
127 	u32 reg, cnt;
128 	u8 byte;
129 
130 	/* See how much data is available */
131 	reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
132 	reg &= SUN4I_FIFO_STA_RF_CNT_MASK;
133 	cnt = reg >> SUN4I_FIFO_STA_RF_CNT_BITS;
134 
135 	if (len > cnt)
136 		len = cnt;
137 
138 	while (len--) {
139 		byte = readb(sspi->base_addr + SUN4I_RXDATA_REG);
140 		if (sspi->rx_buf)
141 			*sspi->rx_buf++ = byte;
142 	}
143 }
144 
145 static inline void sun4i_spi_fill_fifo(struct sun4i_spi *sspi, int len)
146 {
147 	u32 cnt;
148 	u8 byte;
149 
150 	/* See how much data we can fit */
151 	cnt = SUN4I_FIFO_DEPTH - sun4i_spi_get_tx_fifo_count(sspi);
152 
153 	len = min3(len, (int)cnt, sspi->len);
154 
155 	while (len--) {
156 		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
157 		writeb(byte, sspi->base_addr + SUN4I_TXDATA_REG);
158 		sspi->len--;
159 	}
160 }
161 
162 static void sun4i_spi_set_cs(struct spi_device *spi, bool enable)
163 {
164 	struct sun4i_spi *sspi = spi_master_get_devdata(spi->master);
165 	u32 reg;
166 
167 	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
168 
169 	reg &= ~SUN4I_CTL_CS_MASK;
170 	reg |= SUN4I_CTL_CS(spi->chip_select);
171 
172 	/* We want to control the chip select manually */
173 	reg |= SUN4I_CTL_CS_MANUAL;
174 
175 	if (enable)
176 		reg |= SUN4I_CTL_CS_LEVEL;
177 	else
178 		reg &= ~SUN4I_CTL_CS_LEVEL;
179 
180 	/*
181 	 * Even though this looks irrelevant since we are supposed to
182 	 * be controlling the chip select manually, this bit also
183 	 * controls the levels of the chip select for inactive
184 	 * devices.
185 	 *
186 	 * If we don't set it, the chip select level will go low by
187 	 * default when the device is idle, which is not really
188 	 * expected in the common case where the chip select is active
189 	 * low.
190 	 */
191 	if (spi->mode & SPI_CS_HIGH)
192 		reg &= ~SUN4I_CTL_CS_ACTIVE_LOW;
193 	else
194 		reg |= SUN4I_CTL_CS_ACTIVE_LOW;
195 
196 	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
197 }
198 
199 static size_t sun4i_spi_max_transfer_size(struct spi_device *spi)
200 {
201 	return SUN4I_MAX_XFER_SIZE - 1;
202 }
203 
204 static int sun4i_spi_transfer_one(struct spi_master *master,
205 				  struct spi_device *spi,
206 				  struct spi_transfer *tfr)
207 {
208 	struct sun4i_spi *sspi = spi_master_get_devdata(master);
209 	unsigned int mclk_rate, div, timeout;
210 	unsigned int start, end, tx_time;
211 	unsigned int tx_len = 0;
212 	int ret = 0;
213 	u32 reg;
214 
215 	/* We don't support transfer larger than the FIFO */
216 	if (tfr->len > SUN4I_MAX_XFER_SIZE)
217 		return -EMSGSIZE;
218 
219 	if (tfr->tx_buf && tfr->len >= SUN4I_MAX_XFER_SIZE)
220 		return -EMSGSIZE;
221 
222 	reinit_completion(&sspi->done);
223 	sspi->tx_buf = tfr->tx_buf;
224 	sspi->rx_buf = tfr->rx_buf;
225 	sspi->len = tfr->len;
226 
227 	/* Clear pending interrupts */
228 	sun4i_spi_write(sspi, SUN4I_INT_STA_REG, ~0);
229 
230 
231 	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
232 
233 	/* Reset FIFOs */
234 	sun4i_spi_write(sspi, SUN4I_CTL_REG,
235 			reg | SUN4I_CTL_RF_RST | SUN4I_CTL_TF_RST);
236 
237 	/*
238 	 * Setup the transfer control register: Chip Select,
239 	 * polarities, etc.
240 	 */
241 	if (spi->mode & SPI_CPOL)
242 		reg |= SUN4I_CTL_CPOL;
243 	else
244 		reg &= ~SUN4I_CTL_CPOL;
245 
246 	if (spi->mode & SPI_CPHA)
247 		reg |= SUN4I_CTL_CPHA;
248 	else
249 		reg &= ~SUN4I_CTL_CPHA;
250 
251 	if (spi->mode & SPI_LSB_FIRST)
252 		reg |= SUN4I_CTL_LMTF;
253 	else
254 		reg &= ~SUN4I_CTL_LMTF;
255 
256 
257 	/*
258 	 * If it's a TX only transfer, we don't want to fill the RX
259 	 * FIFO with bogus data
260 	 */
261 	if (sspi->rx_buf)
262 		reg &= ~SUN4I_CTL_DHB;
263 	else
264 		reg |= SUN4I_CTL_DHB;
265 
266 	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
267 
268 	/* Ensure that we have a parent clock fast enough */
269 	mclk_rate = clk_get_rate(sspi->mclk);
270 	if (mclk_rate < (2 * tfr->speed_hz)) {
271 		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
272 		mclk_rate = clk_get_rate(sspi->mclk);
273 	}
274 
275 	/*
276 	 * Setup clock divider.
277 	 *
278 	 * We have two choices there. Either we can use the clock
279 	 * divide rate 1, which is calculated thanks to this formula:
280 	 * SPI_CLK = MOD_CLK / (2 ^ (cdr + 1))
281 	 * Or we can use CDR2, which is calculated with the formula:
282 	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
283 	 * Whether we use the former or the latter is set through the
284 	 * DRS bit.
285 	 *
286 	 * First try CDR2, and if we can't reach the expected
287 	 * frequency, fall back to CDR1.
288 	 */
289 	div = mclk_rate / (2 * tfr->speed_hz);
290 	if (div <= (SUN4I_CLK_CTL_CDR2_MASK + 1)) {
291 		if (div > 0)
292 			div--;
293 
294 		reg = SUN4I_CLK_CTL_CDR2(div) | SUN4I_CLK_CTL_DRS;
295 	} else {
296 		div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
297 		reg = SUN4I_CLK_CTL_CDR1(div);
298 	}
299 
300 	sun4i_spi_write(sspi, SUN4I_CLK_CTL_REG, reg);
301 
302 	/* Setup the transfer now... */
303 	if (sspi->tx_buf)
304 		tx_len = tfr->len;
305 
306 	/* Setup the counters */
307 	sun4i_spi_write(sspi, SUN4I_BURST_CNT_REG, SUN4I_BURST_CNT(tfr->len));
308 	sun4i_spi_write(sspi, SUN4I_XMIT_CNT_REG, SUN4I_XMIT_CNT(tx_len));
309 
310 	/*
311 	 * Fill the TX FIFO
312 	 * Filling the FIFO fully causes timeout for some reason
313 	 * at least on spi2 on A10s
314 	 */
315 	sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH - 1);
316 
317 	/* Enable the interrupts */
318 	sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TC |
319 					 SUN4I_INT_CTL_RF_F34);
320 	/* Only enable Tx FIFO interrupt if we really need it */
321 	if (tx_len > SUN4I_FIFO_DEPTH)
322 		sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TF_E34);
323 
324 	/* Start the transfer */
325 	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
326 	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg | SUN4I_CTL_XCH);
327 
328 	tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
329 	start = jiffies;
330 	timeout = wait_for_completion_timeout(&sspi->done,
331 					      msecs_to_jiffies(tx_time));
332 	end = jiffies;
333 	if (!timeout) {
334 		dev_warn(&master->dev,
335 			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
336 			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
337 			 jiffies_to_msecs(end - start), tx_time);
338 		ret = -ETIMEDOUT;
339 		goto out;
340 	}
341 
342 
343 out:
344 	sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, 0);
345 
346 	return ret;
347 }
348 
349 static irqreturn_t sun4i_spi_handler(int irq, void *dev_id)
350 {
351 	struct sun4i_spi *sspi = dev_id;
352 	u32 status = sun4i_spi_read(sspi, SUN4I_INT_STA_REG);
353 
354 	/* Transfer complete */
355 	if (status & SUN4I_INT_CTL_TC) {
356 		sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TC);
357 		sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
358 		complete(&sspi->done);
359 		return IRQ_HANDLED;
360 	}
361 
362 	/* Receive FIFO 3/4 full */
363 	if (status & SUN4I_INT_CTL_RF_F34) {
364 		sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
365 		/* Only clear the interrupt _after_ draining the FIFO */
366 		sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_RF_F34);
367 		return IRQ_HANDLED;
368 	}
369 
370 	/* Transmit FIFO 3/4 empty */
371 	if (status & SUN4I_INT_CTL_TF_E34) {
372 		sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH);
373 
374 		if (!sspi->len)
375 			/* nothing left to transmit */
376 			sun4i_spi_disable_interrupt(sspi, SUN4I_INT_CTL_TF_E34);
377 
378 		/* Only clear the interrupt _after_ re-seeding the FIFO */
379 		sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TF_E34);
380 
381 		return IRQ_HANDLED;
382 	}
383 
384 	return IRQ_NONE;
385 }
386 
387 static int sun4i_spi_runtime_resume(struct device *dev)
388 {
389 	struct spi_master *master = dev_get_drvdata(dev);
390 	struct sun4i_spi *sspi = spi_master_get_devdata(master);
391 	int ret;
392 
393 	ret = clk_prepare_enable(sspi->hclk);
394 	if (ret) {
395 		dev_err(dev, "Couldn't enable AHB clock\n");
396 		goto out;
397 	}
398 
399 	ret = clk_prepare_enable(sspi->mclk);
400 	if (ret) {
401 		dev_err(dev, "Couldn't enable module clock\n");
402 		goto err;
403 	}
404 
405 	sun4i_spi_write(sspi, SUN4I_CTL_REG,
406 			SUN4I_CTL_ENABLE | SUN4I_CTL_MASTER | SUN4I_CTL_TP);
407 
408 	return 0;
409 
410 err:
411 	clk_disable_unprepare(sspi->hclk);
412 out:
413 	return ret;
414 }
415 
416 static int sun4i_spi_runtime_suspend(struct device *dev)
417 {
418 	struct spi_master *master = dev_get_drvdata(dev);
419 	struct sun4i_spi *sspi = spi_master_get_devdata(master);
420 
421 	clk_disable_unprepare(sspi->mclk);
422 	clk_disable_unprepare(sspi->hclk);
423 
424 	return 0;
425 }
426 
427 static int sun4i_spi_probe(struct platform_device *pdev)
428 {
429 	struct spi_master *master;
430 	struct sun4i_spi *sspi;
431 	int ret = 0, irq;
432 
433 	master = spi_alloc_master(&pdev->dev, sizeof(struct sun4i_spi));
434 	if (!master) {
435 		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
436 		return -ENOMEM;
437 	}
438 
439 	platform_set_drvdata(pdev, master);
440 	sspi = spi_master_get_devdata(master);
441 
442 	sspi->base_addr = devm_platform_ioremap_resource(pdev, 0);
443 	if (IS_ERR(sspi->base_addr)) {
444 		ret = PTR_ERR(sspi->base_addr);
445 		goto err_free_master;
446 	}
447 
448 	irq = platform_get_irq(pdev, 0);
449 	if (irq < 0) {
450 		ret = -ENXIO;
451 		goto err_free_master;
452 	}
453 
454 	ret = devm_request_irq(&pdev->dev, irq, sun4i_spi_handler,
455 			       0, "sun4i-spi", sspi);
456 	if (ret) {
457 		dev_err(&pdev->dev, "Cannot request IRQ\n");
458 		goto err_free_master;
459 	}
460 
461 	sspi->master = master;
462 	master->max_speed_hz = 100 * 1000 * 1000;
463 	master->min_speed_hz = 3 * 1000;
464 	master->set_cs = sun4i_spi_set_cs;
465 	master->transfer_one = sun4i_spi_transfer_one;
466 	master->num_chipselect = 4;
467 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
468 	master->bits_per_word_mask = SPI_BPW_MASK(8);
469 	master->dev.of_node = pdev->dev.of_node;
470 	master->auto_runtime_pm = true;
471 	master->max_transfer_size = sun4i_spi_max_transfer_size;
472 
473 	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
474 	if (IS_ERR(sspi->hclk)) {
475 		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
476 		ret = PTR_ERR(sspi->hclk);
477 		goto err_free_master;
478 	}
479 
480 	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
481 	if (IS_ERR(sspi->mclk)) {
482 		dev_err(&pdev->dev, "Unable to acquire module clock\n");
483 		ret = PTR_ERR(sspi->mclk);
484 		goto err_free_master;
485 	}
486 
487 	init_completion(&sspi->done);
488 
489 	/*
490 	 * This wake-up/shutdown pattern is to be able to have the
491 	 * device woken up, even if runtime_pm is disabled
492 	 */
493 	ret = sun4i_spi_runtime_resume(&pdev->dev);
494 	if (ret) {
495 		dev_err(&pdev->dev, "Couldn't resume the device\n");
496 		goto err_free_master;
497 	}
498 
499 	pm_runtime_set_active(&pdev->dev);
500 	pm_runtime_enable(&pdev->dev);
501 	pm_runtime_idle(&pdev->dev);
502 
503 	ret = devm_spi_register_master(&pdev->dev, master);
504 	if (ret) {
505 		dev_err(&pdev->dev, "cannot register SPI master\n");
506 		goto err_pm_disable;
507 	}
508 
509 	return 0;
510 
511 err_pm_disable:
512 	pm_runtime_disable(&pdev->dev);
513 	sun4i_spi_runtime_suspend(&pdev->dev);
514 err_free_master:
515 	spi_master_put(master);
516 	return ret;
517 }
518 
519 static int sun4i_spi_remove(struct platform_device *pdev)
520 {
521 	pm_runtime_force_suspend(&pdev->dev);
522 
523 	return 0;
524 }
525 
526 static const struct of_device_id sun4i_spi_match[] = {
527 	{ .compatible = "allwinner,sun4i-a10-spi", },
528 	{}
529 };
530 MODULE_DEVICE_TABLE(of, sun4i_spi_match);
531 
532 static const struct dev_pm_ops sun4i_spi_pm_ops = {
533 	.runtime_resume		= sun4i_spi_runtime_resume,
534 	.runtime_suspend	= sun4i_spi_runtime_suspend,
535 };
536 
537 static struct platform_driver sun4i_spi_driver = {
538 	.probe	= sun4i_spi_probe,
539 	.remove	= sun4i_spi_remove,
540 	.driver	= {
541 		.name		= "sun4i-spi",
542 		.of_match_table	= sun4i_spi_match,
543 		.pm		= &sun4i_spi_pm_ops,
544 	},
545 };
546 module_platform_driver(sun4i_spi_driver);
547 
548 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
549 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
550 MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver");
551 MODULE_LICENSE("GPL");
552