xref: /linux/drivers/spi/spi-sun4i.c (revision 2a2c74b2efcb1a0ca3fdcb5fbb96ad8de6a29177)
1 /*
2  * Copyright (C) 2012 - 2014 Allwinner Tech
3  * Pan Nan <pannan@allwinnertech.com>
4  *
5  * Copyright (C) 2014 Maxime Ripard
6  * Maxime Ripard <maxime.ripard@free-electrons.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/workqueue.h>
23 
24 #include <linux/spi/spi.h>
25 
26 #define SUN4I_FIFO_DEPTH		64
27 
28 #define SUN4I_RXDATA_REG		0x00
29 
30 #define SUN4I_TXDATA_REG		0x04
31 
32 #define SUN4I_CTL_REG			0x08
33 #define SUN4I_CTL_ENABLE			BIT(0)
34 #define SUN4I_CTL_MASTER			BIT(1)
35 #define SUN4I_CTL_CPHA				BIT(2)
36 #define SUN4I_CTL_CPOL				BIT(3)
37 #define SUN4I_CTL_CS_ACTIVE_LOW			BIT(4)
38 #define SUN4I_CTL_LMTF				BIT(6)
39 #define SUN4I_CTL_TF_RST			BIT(8)
40 #define SUN4I_CTL_RF_RST			BIT(9)
41 #define SUN4I_CTL_XCH				BIT(10)
42 #define SUN4I_CTL_CS_MASK			0x3000
43 #define SUN4I_CTL_CS(cs)			(((cs) << 12) & SUN4I_CTL_CS_MASK)
44 #define SUN4I_CTL_DHB				BIT(15)
45 #define SUN4I_CTL_CS_MANUAL			BIT(16)
46 #define SUN4I_CTL_CS_LEVEL			BIT(17)
47 #define SUN4I_CTL_TP				BIT(18)
48 
49 #define SUN4I_INT_CTL_REG		0x0c
50 #define SUN4I_INT_CTL_TC			BIT(16)
51 
52 #define SUN4I_INT_STA_REG		0x10
53 
54 #define SUN4I_DMA_CTL_REG		0x14
55 
56 #define SUN4I_WAIT_REG			0x18
57 
58 #define SUN4I_CLK_CTL_REG		0x1c
59 #define SUN4I_CLK_CTL_CDR2_MASK			0xff
60 #define SUN4I_CLK_CTL_CDR2(div)			((div) & SUN4I_CLK_CTL_CDR2_MASK)
61 #define SUN4I_CLK_CTL_CDR1_MASK			0xf
62 #define SUN4I_CLK_CTL_CDR1(div)			(((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8)
63 #define SUN4I_CLK_CTL_DRS			BIT(12)
64 
65 #define SUN4I_BURST_CNT_REG		0x20
66 #define SUN4I_BURST_CNT(cnt)			((cnt) & 0xffffff)
67 
68 #define SUN4I_XMIT_CNT_REG		0x24
69 #define SUN4I_XMIT_CNT(cnt)			((cnt) & 0xffffff)
70 
71 #define SUN4I_FIFO_STA_REG		0x28
72 #define SUN4I_FIFO_STA_RF_CNT_MASK		0x7f
73 #define SUN4I_FIFO_STA_RF_CNT_BITS		0
74 #define SUN4I_FIFO_STA_TF_CNT_MASK		0x7f
75 #define SUN4I_FIFO_STA_TF_CNT_BITS		16
76 
77 struct sun4i_spi {
78 	struct spi_master	*master;
79 	void __iomem		*base_addr;
80 	struct clk		*hclk;
81 	struct clk		*mclk;
82 
83 	struct completion	done;
84 
85 	const u8		*tx_buf;
86 	u8			*rx_buf;
87 	int			len;
88 };
89 
90 static inline u32 sun4i_spi_read(struct sun4i_spi *sspi, u32 reg)
91 {
92 	return readl(sspi->base_addr + reg);
93 }
94 
95 static inline void sun4i_spi_write(struct sun4i_spi *sspi, u32 reg, u32 value)
96 {
97 	writel(value, sspi->base_addr + reg);
98 }
99 
100 static inline void sun4i_spi_drain_fifo(struct sun4i_spi *sspi, int len)
101 {
102 	u32 reg, cnt;
103 	u8 byte;
104 
105 	/* See how much data is available */
106 	reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
107 	reg &= SUN4I_FIFO_STA_RF_CNT_MASK;
108 	cnt = reg >> SUN4I_FIFO_STA_RF_CNT_BITS;
109 
110 	if (len > cnt)
111 		len = cnt;
112 
113 	while (len--) {
114 		byte = readb(sspi->base_addr + SUN4I_RXDATA_REG);
115 		if (sspi->rx_buf)
116 			*sspi->rx_buf++ = byte;
117 	}
118 }
119 
120 static inline void sun4i_spi_fill_fifo(struct sun4i_spi *sspi, int len)
121 {
122 	u8 byte;
123 
124 	if (len > sspi->len)
125 		len = sspi->len;
126 
127 	while (len--) {
128 		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
129 		writeb(byte, sspi->base_addr + SUN4I_TXDATA_REG);
130 		sspi->len--;
131 	}
132 }
133 
134 static void sun4i_spi_set_cs(struct spi_device *spi, bool enable)
135 {
136 	struct sun4i_spi *sspi = spi_master_get_devdata(spi->master);
137 	u32 reg;
138 
139 	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
140 
141 	reg &= ~SUN4I_CTL_CS_MASK;
142 	reg |= SUN4I_CTL_CS(spi->chip_select);
143 
144 	if (enable)
145 		reg |= SUN4I_CTL_CS_LEVEL;
146 	else
147 		reg &= ~SUN4I_CTL_CS_LEVEL;
148 
149 	/*
150 	 * Even though this looks irrelevant since we are supposed to
151 	 * be controlling the chip select manually, this bit also
152 	 * controls the levels of the chip select for inactive
153 	 * devices.
154 	 *
155 	 * If we don't set it, the chip select level will go low by
156 	 * default when the device is idle, which is not really
157 	 * expected in the common case where the chip select is active
158 	 * low.
159 	 */
160 	if (spi->mode & SPI_CS_HIGH)
161 		reg &= ~SUN4I_CTL_CS_ACTIVE_LOW;
162 	else
163 		reg |= SUN4I_CTL_CS_ACTIVE_LOW;
164 
165 	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
166 }
167 
168 static int sun4i_spi_transfer_one(struct spi_master *master,
169 				  struct spi_device *spi,
170 				  struct spi_transfer *tfr)
171 {
172 	struct sun4i_spi *sspi = spi_master_get_devdata(master);
173 	unsigned int mclk_rate, div, timeout;
174 	unsigned int tx_len = 0;
175 	int ret = 0;
176 	u32 reg;
177 
178 	/* We don't support transfer larger than the FIFO */
179 	if (tfr->len > SUN4I_FIFO_DEPTH)
180 		return -EINVAL;
181 
182 	reinit_completion(&sspi->done);
183 	sspi->tx_buf = tfr->tx_buf;
184 	sspi->rx_buf = tfr->rx_buf;
185 	sspi->len = tfr->len;
186 
187 	/* Clear pending interrupts */
188 	sun4i_spi_write(sspi, SUN4I_INT_STA_REG, ~0);
189 
190 
191 	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
192 
193 	/* Reset FIFOs */
194 	sun4i_spi_write(sspi, SUN4I_CTL_REG,
195 			reg | SUN4I_CTL_RF_RST | SUN4I_CTL_TF_RST);
196 
197 	/*
198 	 * Setup the transfer control register: Chip Select,
199 	 * polarities, etc.
200 	 */
201 	if (spi->mode & SPI_CPOL)
202 		reg |= SUN4I_CTL_CPOL;
203 	else
204 		reg &= ~SUN4I_CTL_CPOL;
205 
206 	if (spi->mode & SPI_CPHA)
207 		reg |= SUN4I_CTL_CPHA;
208 	else
209 		reg &= ~SUN4I_CTL_CPHA;
210 
211 	if (spi->mode & SPI_LSB_FIRST)
212 		reg |= SUN4I_CTL_LMTF;
213 	else
214 		reg &= ~SUN4I_CTL_LMTF;
215 
216 
217 	/*
218 	 * If it's a TX only transfer, we don't want to fill the RX
219 	 * FIFO with bogus data
220 	 */
221 	if (sspi->rx_buf)
222 		reg &= ~SUN4I_CTL_DHB;
223 	else
224 		reg |= SUN4I_CTL_DHB;
225 
226 	/* We want to control the chip select manually */
227 	reg |= SUN4I_CTL_CS_MANUAL;
228 
229 	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
230 
231 	/* Ensure that we have a parent clock fast enough */
232 	mclk_rate = clk_get_rate(sspi->mclk);
233 	if (mclk_rate < (2 * spi->max_speed_hz)) {
234 		clk_set_rate(sspi->mclk, 2 * spi->max_speed_hz);
235 		mclk_rate = clk_get_rate(sspi->mclk);
236 	}
237 
238 	/*
239 	 * Setup clock divider.
240 	 *
241 	 * We have two choices there. Either we can use the clock
242 	 * divide rate 1, which is calculated thanks to this formula:
243 	 * SPI_CLK = MOD_CLK / (2 ^ (cdr + 1))
244 	 * Or we can use CDR2, which is calculated with the formula:
245 	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
246 	 * Wether we use the former or the latter is set through the
247 	 * DRS bit.
248 	 *
249 	 * First try CDR2, and if we can't reach the expected
250 	 * frequency, fall back to CDR1.
251 	 */
252 	div = mclk_rate / (2 * spi->max_speed_hz);
253 	if (div <= (SUN4I_CLK_CTL_CDR2_MASK + 1)) {
254 		if (div > 0)
255 			div--;
256 
257 		reg = SUN4I_CLK_CTL_CDR2(div) | SUN4I_CLK_CTL_DRS;
258 	} else {
259 		div = ilog2(mclk_rate) - ilog2(spi->max_speed_hz);
260 		reg = SUN4I_CLK_CTL_CDR1(div);
261 	}
262 
263 	sun4i_spi_write(sspi, SUN4I_CLK_CTL_REG, reg);
264 
265 	/* Setup the transfer now... */
266 	if (sspi->tx_buf)
267 		tx_len = tfr->len;
268 
269 	/* Setup the counters */
270 	sun4i_spi_write(sspi, SUN4I_BURST_CNT_REG, SUN4I_BURST_CNT(tfr->len));
271 	sun4i_spi_write(sspi, SUN4I_XMIT_CNT_REG, SUN4I_XMIT_CNT(tx_len));
272 
273 	/* Fill the TX FIFO */
274 	sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH);
275 
276 	/* Enable the interrupts */
277 	sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, SUN4I_INT_CTL_TC);
278 
279 	/* Start the transfer */
280 	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
281 	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg | SUN4I_CTL_XCH);
282 
283 	timeout = wait_for_completion_timeout(&sspi->done,
284 					      msecs_to_jiffies(1000));
285 	if (!timeout) {
286 		ret = -ETIMEDOUT;
287 		goto out;
288 	}
289 
290 	sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
291 
292 out:
293 	sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, 0);
294 
295 	return ret;
296 }
297 
298 static irqreturn_t sun4i_spi_handler(int irq, void *dev_id)
299 {
300 	struct sun4i_spi *sspi = dev_id;
301 	u32 status = sun4i_spi_read(sspi, SUN4I_INT_STA_REG);
302 
303 	/* Transfer complete */
304 	if (status & SUN4I_INT_CTL_TC) {
305 		sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TC);
306 		complete(&sspi->done);
307 		return IRQ_HANDLED;
308 	}
309 
310 	return IRQ_NONE;
311 }
312 
313 static int sun4i_spi_runtime_resume(struct device *dev)
314 {
315 	struct spi_master *master = dev_get_drvdata(dev);
316 	struct sun4i_spi *sspi = spi_master_get_devdata(master);
317 	int ret;
318 
319 	ret = clk_prepare_enable(sspi->hclk);
320 	if (ret) {
321 		dev_err(dev, "Couldn't enable AHB clock\n");
322 		goto out;
323 	}
324 
325 	ret = clk_prepare_enable(sspi->mclk);
326 	if (ret) {
327 		dev_err(dev, "Couldn't enable module clock\n");
328 		goto err;
329 	}
330 
331 	sun4i_spi_write(sspi, SUN4I_CTL_REG,
332 			SUN4I_CTL_ENABLE | SUN4I_CTL_MASTER | SUN4I_CTL_TP);
333 
334 	return 0;
335 
336 err:
337 	clk_disable_unprepare(sspi->hclk);
338 out:
339 	return ret;
340 }
341 
342 static int sun4i_spi_runtime_suspend(struct device *dev)
343 {
344 	struct spi_master *master = dev_get_drvdata(dev);
345 	struct sun4i_spi *sspi = spi_master_get_devdata(master);
346 
347 	clk_disable_unprepare(sspi->mclk);
348 	clk_disable_unprepare(sspi->hclk);
349 
350 	return 0;
351 }
352 
353 static int sun4i_spi_probe(struct platform_device *pdev)
354 {
355 	struct spi_master *master;
356 	struct sun4i_spi *sspi;
357 	struct resource	*res;
358 	int ret = 0, irq;
359 
360 	master = spi_alloc_master(&pdev->dev, sizeof(struct sun4i_spi));
361 	if (!master) {
362 		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
363 		return -ENOMEM;
364 	}
365 
366 	platform_set_drvdata(pdev, master);
367 	sspi = spi_master_get_devdata(master);
368 
369 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
370 	sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
371 	if (IS_ERR(sspi->base_addr)) {
372 		ret = PTR_ERR(sspi->base_addr);
373 		goto err_free_master;
374 	}
375 
376 	irq = platform_get_irq(pdev, 0);
377 	if (irq < 0) {
378 		dev_err(&pdev->dev, "No spi IRQ specified\n");
379 		ret = -ENXIO;
380 		goto err_free_master;
381 	}
382 
383 	ret = devm_request_irq(&pdev->dev, irq, sun4i_spi_handler,
384 			       0, "sun4i-spi", sspi);
385 	if (ret) {
386 		dev_err(&pdev->dev, "Cannot request IRQ\n");
387 		goto err_free_master;
388 	}
389 
390 	sspi->master = master;
391 	master->set_cs = sun4i_spi_set_cs;
392 	master->transfer_one = sun4i_spi_transfer_one;
393 	master->num_chipselect = 4;
394 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
395 	master->bits_per_word_mask = SPI_BPW_MASK(8);
396 	master->dev.of_node = pdev->dev.of_node;
397 	master->auto_runtime_pm = true;
398 
399 	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
400 	if (IS_ERR(sspi->hclk)) {
401 		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
402 		ret = PTR_ERR(sspi->hclk);
403 		goto err_free_master;
404 	}
405 
406 	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
407 	if (IS_ERR(sspi->mclk)) {
408 		dev_err(&pdev->dev, "Unable to acquire module clock\n");
409 		ret = PTR_ERR(sspi->mclk);
410 		goto err_free_master;
411 	}
412 
413 	init_completion(&sspi->done);
414 
415 	/*
416 	 * This wake-up/shutdown pattern is to be able to have the
417 	 * device woken up, even if runtime_pm is disabled
418 	 */
419 	ret = sun4i_spi_runtime_resume(&pdev->dev);
420 	if (ret) {
421 		dev_err(&pdev->dev, "Couldn't resume the device\n");
422 		goto err_free_master;
423 	}
424 
425 	pm_runtime_set_active(&pdev->dev);
426 	pm_runtime_enable(&pdev->dev);
427 	pm_runtime_idle(&pdev->dev);
428 
429 	ret = devm_spi_register_master(&pdev->dev, master);
430 	if (ret) {
431 		dev_err(&pdev->dev, "cannot register SPI master\n");
432 		goto err_pm_disable;
433 	}
434 
435 	return 0;
436 
437 err_pm_disable:
438 	pm_runtime_disable(&pdev->dev);
439 	sun4i_spi_runtime_suspend(&pdev->dev);
440 err_free_master:
441 	spi_master_put(master);
442 	return ret;
443 }
444 
445 static int sun4i_spi_remove(struct platform_device *pdev)
446 {
447 	pm_runtime_disable(&pdev->dev);
448 
449 	return 0;
450 }
451 
452 static const struct of_device_id sun4i_spi_match[] = {
453 	{ .compatible = "allwinner,sun4i-a10-spi", },
454 	{}
455 };
456 MODULE_DEVICE_TABLE(of, sun4i_spi_match);
457 
458 static const struct dev_pm_ops sun4i_spi_pm_ops = {
459 	.runtime_resume		= sun4i_spi_runtime_resume,
460 	.runtime_suspend	= sun4i_spi_runtime_suspend,
461 };
462 
463 static struct platform_driver sun4i_spi_driver = {
464 	.probe	= sun4i_spi_probe,
465 	.remove	= sun4i_spi_remove,
466 	.driver	= {
467 		.name		= "sun4i-spi",
468 		.owner		= THIS_MODULE,
469 		.of_match_table	= sun4i_spi_match,
470 		.pm		= &sun4i_spi_pm_ops,
471 	},
472 };
473 module_platform_driver(sun4i_spi_driver);
474 
475 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
476 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
477 MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver");
478 MODULE_LICENSE("GPL");
479