xref: /linux/drivers/spi/spi-stm32.c (revision fdfc374af5dc345fbb9686921fa60176c1c41da0)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // STMicroelectronics STM32 SPI Controller driver
4 //
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7 
8 #include <linux/bitfield.h>
9 #include <linux/debugfs.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dmaengine.h>
13 #include <linux/interrupt.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/of_platform.h>
17 #include <linux/pinctrl/consumer.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/reset.h>
20 #include <linux/spi/spi.h>
21 
22 #define DRIVER_NAME "spi_stm32"
23 
24 /* STM32F4 SPI registers */
25 #define STM32F4_SPI_CR1			0x00
26 #define STM32F4_SPI_CR2			0x04
27 #define STM32F4_SPI_SR			0x08
28 #define STM32F4_SPI_DR			0x0C
29 #define STM32F4_SPI_I2SCFGR		0x1C
30 
31 /* STM32F4_SPI_CR1 bit fields */
32 #define STM32F4_SPI_CR1_CPHA		BIT(0)
33 #define STM32F4_SPI_CR1_CPOL		BIT(1)
34 #define STM32F4_SPI_CR1_MSTR		BIT(2)
35 #define STM32F4_SPI_CR1_BR_SHIFT	3
36 #define STM32F4_SPI_CR1_BR		GENMASK(5, 3)
37 #define STM32F4_SPI_CR1_SPE		BIT(6)
38 #define STM32F4_SPI_CR1_LSBFRST		BIT(7)
39 #define STM32F4_SPI_CR1_SSI		BIT(8)
40 #define STM32F4_SPI_CR1_SSM		BIT(9)
41 #define STM32F4_SPI_CR1_RXONLY		BIT(10)
42 #define STM32F4_SPI_CR1_DFF		BIT(11)
43 #define STM32F4_SPI_CR1_CRCNEXT		BIT(12)
44 #define STM32F4_SPI_CR1_CRCEN		BIT(13)
45 #define STM32F4_SPI_CR1_BIDIOE		BIT(14)
46 #define STM32F4_SPI_CR1_BIDIMODE	BIT(15)
47 #define STM32F4_SPI_CR1_BR_MIN		0
48 #define STM32F4_SPI_CR1_BR_MAX		(GENMASK(5, 3) >> 3)
49 
50 /* STM32F4_SPI_CR2 bit fields */
51 #define STM32F4_SPI_CR2_RXDMAEN		BIT(0)
52 #define STM32F4_SPI_CR2_TXDMAEN		BIT(1)
53 #define STM32F4_SPI_CR2_SSOE		BIT(2)
54 #define STM32F4_SPI_CR2_FRF		BIT(4)
55 #define STM32F4_SPI_CR2_ERRIE		BIT(5)
56 #define STM32F4_SPI_CR2_RXNEIE		BIT(6)
57 #define STM32F4_SPI_CR2_TXEIE		BIT(7)
58 
59 /* STM32F4_SPI_SR bit fields */
60 #define STM32F4_SPI_SR_RXNE		BIT(0)
61 #define STM32F4_SPI_SR_TXE		BIT(1)
62 #define STM32F4_SPI_SR_CHSIDE		BIT(2)
63 #define STM32F4_SPI_SR_UDR		BIT(3)
64 #define STM32F4_SPI_SR_CRCERR		BIT(4)
65 #define STM32F4_SPI_SR_MODF		BIT(5)
66 #define STM32F4_SPI_SR_OVR		BIT(6)
67 #define STM32F4_SPI_SR_BSY		BIT(7)
68 #define STM32F4_SPI_SR_FRE		BIT(8)
69 
70 /* STM32F4_SPI_I2SCFGR bit fields */
71 #define STM32F4_SPI_I2SCFGR_I2SMOD	BIT(11)
72 
73 /* STM32F4 SPI Baud Rate min/max divisor */
74 #define STM32F4_SPI_BR_DIV_MIN		(2 << STM32F4_SPI_CR1_BR_MIN)
75 #define STM32F4_SPI_BR_DIV_MAX		(2 << STM32F4_SPI_CR1_BR_MAX)
76 
77 /* STM32H7 SPI registers */
78 #define STM32H7_SPI_CR1			0x00
79 #define STM32H7_SPI_CR2			0x04
80 #define STM32H7_SPI_CFG1		0x08
81 #define STM32H7_SPI_CFG2		0x0C
82 #define STM32H7_SPI_IER			0x10
83 #define STM32H7_SPI_SR			0x14
84 #define STM32H7_SPI_IFCR		0x18
85 #define STM32H7_SPI_TXDR		0x20
86 #define STM32H7_SPI_RXDR		0x30
87 #define STM32H7_SPI_I2SCFGR		0x50
88 
89 /* STM32H7_SPI_CR1 bit fields */
90 #define STM32H7_SPI_CR1_SPE		BIT(0)
91 #define STM32H7_SPI_CR1_MASRX		BIT(8)
92 #define STM32H7_SPI_CR1_CSTART		BIT(9)
93 #define STM32H7_SPI_CR1_CSUSP		BIT(10)
94 #define STM32H7_SPI_CR1_HDDIR		BIT(11)
95 #define STM32H7_SPI_CR1_SSI		BIT(12)
96 
97 /* STM32H7_SPI_CR2 bit fields */
98 #define STM32H7_SPI_CR2_TSIZE		GENMASK(15, 0)
99 #define STM32H7_SPI_TSIZE_MAX		GENMASK(15, 0)
100 
101 /* STM32H7_SPI_CFG1 bit fields */
102 #define STM32H7_SPI_CFG1_DSIZE		GENMASK(4, 0)
103 #define STM32H7_SPI_CFG1_FTHLV		GENMASK(8, 5)
104 #define STM32H7_SPI_CFG1_RXDMAEN	BIT(14)
105 #define STM32H7_SPI_CFG1_TXDMAEN	BIT(15)
106 #define STM32H7_SPI_CFG1_MBR		GENMASK(30, 28)
107 #define STM32H7_SPI_CFG1_MBR_SHIFT	28
108 #define STM32H7_SPI_CFG1_MBR_MIN	0
109 #define STM32H7_SPI_CFG1_MBR_MAX	(GENMASK(30, 28) >> 28)
110 
111 /* STM32H7_SPI_CFG2 bit fields */
112 #define STM32H7_SPI_CFG2_MIDI		GENMASK(7, 4)
113 #define STM32H7_SPI_CFG2_COMM		GENMASK(18, 17)
114 #define STM32H7_SPI_CFG2_SP		GENMASK(21, 19)
115 #define STM32H7_SPI_CFG2_MASTER		BIT(22)
116 #define STM32H7_SPI_CFG2_LSBFRST	BIT(23)
117 #define STM32H7_SPI_CFG2_CPHA		BIT(24)
118 #define STM32H7_SPI_CFG2_CPOL		BIT(25)
119 #define STM32H7_SPI_CFG2_SSM		BIT(26)
120 #define STM32H7_SPI_CFG2_SSIOP		BIT(28)
121 #define STM32H7_SPI_CFG2_AFCNTR		BIT(31)
122 
123 /* STM32H7_SPI_IER bit fields */
124 #define STM32H7_SPI_IER_RXPIE		BIT(0)
125 #define STM32H7_SPI_IER_TXPIE		BIT(1)
126 #define STM32H7_SPI_IER_DXPIE		BIT(2)
127 #define STM32H7_SPI_IER_EOTIE		BIT(3)
128 #define STM32H7_SPI_IER_TXTFIE		BIT(4)
129 #define STM32H7_SPI_IER_OVRIE		BIT(6)
130 #define STM32H7_SPI_IER_MODFIE		BIT(9)
131 #define STM32H7_SPI_IER_ALL		GENMASK(10, 0)
132 
133 /* STM32H7_SPI_SR bit fields */
134 #define STM32H7_SPI_SR_RXP		BIT(0)
135 #define STM32H7_SPI_SR_TXP		BIT(1)
136 #define STM32H7_SPI_SR_EOT		BIT(3)
137 #define STM32H7_SPI_SR_OVR		BIT(6)
138 #define STM32H7_SPI_SR_MODF		BIT(9)
139 #define STM32H7_SPI_SR_SUSP		BIT(11)
140 #define STM32H7_SPI_SR_RXPLVL		GENMASK(14, 13)
141 #define STM32H7_SPI_SR_RXWNE		BIT(15)
142 
143 /* STM32H7_SPI_IFCR bit fields */
144 #define STM32H7_SPI_IFCR_ALL		GENMASK(11, 3)
145 
146 /* STM32H7_SPI_I2SCFGR bit fields */
147 #define STM32H7_SPI_I2SCFGR_I2SMOD	BIT(0)
148 
149 /* STM32H7 SPI Master Baud Rate min/max divisor */
150 #define STM32H7_SPI_MBR_DIV_MIN		(2 << STM32H7_SPI_CFG1_MBR_MIN)
151 #define STM32H7_SPI_MBR_DIV_MAX		(2 << STM32H7_SPI_CFG1_MBR_MAX)
152 
153 /* STM32H7 SPI Communication mode */
154 #define STM32H7_SPI_FULL_DUPLEX		0
155 #define STM32H7_SPI_SIMPLEX_TX		1
156 #define STM32H7_SPI_SIMPLEX_RX		2
157 #define STM32H7_SPI_HALF_DUPLEX		3
158 
159 /* SPI Communication type */
160 #define SPI_FULL_DUPLEX		0
161 #define SPI_SIMPLEX_TX		1
162 #define SPI_SIMPLEX_RX		2
163 #define SPI_3WIRE_TX		3
164 #define SPI_3WIRE_RX		4
165 
166 #define STM32_SPI_AUTOSUSPEND_DELAY		1	/* 1 ms */
167 
168 /*
169  * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
170  * without fifo buffers.
171  */
172 #define SPI_DMA_MIN_BYTES	16
173 
174 /* STM32 SPI driver helpers */
175 #define STM32_SPI_MASTER_MODE(stm32_spi) (!(stm32_spi)->device_mode)
176 #define STM32_SPI_DEVICE_MODE(stm32_spi) ((stm32_spi)->device_mode)
177 
178 /**
179  * struct stm32_spi_reg - stm32 SPI register & bitfield desc
180  * @reg:		register offset
181  * @mask:		bitfield mask
182  * @shift:		left shift
183  */
184 struct stm32_spi_reg {
185 	int reg;
186 	int mask;
187 	int shift;
188 };
189 
190 /**
191  * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
192  * @en: enable register and SPI enable bit
193  * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
194  * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
195  * @cpol: clock polarity register and polarity bit
196  * @cpha: clock phase register and phase bit
197  * @lsb_first: LSB transmitted first register and bit
198  * @cs_high: chips select active value
199  * @br: baud rate register and bitfields
200  * @rx: SPI RX data register
201  * @tx: SPI TX data register
202  */
203 struct stm32_spi_regspec {
204 	const struct stm32_spi_reg en;
205 	const struct stm32_spi_reg dma_rx_en;
206 	const struct stm32_spi_reg dma_tx_en;
207 	const struct stm32_spi_reg cpol;
208 	const struct stm32_spi_reg cpha;
209 	const struct stm32_spi_reg lsb_first;
210 	const struct stm32_spi_reg cs_high;
211 	const struct stm32_spi_reg br;
212 	const struct stm32_spi_reg rx;
213 	const struct stm32_spi_reg tx;
214 };
215 
216 struct stm32_spi;
217 
218 /**
219  * struct stm32_spi_cfg - stm32 compatible configuration data
220  * @regs: registers descriptions
221  * @get_fifo_size: routine to get fifo size
222  * @get_bpw_mask: routine to get bits per word mask
223  * @disable: routine to disable controller
224  * @config: routine to configure controller as SPI Master
225  * @set_bpw: routine to configure registers to for bits per word
226  * @set_mode: routine to configure registers to desired mode
227  * @set_data_idleness: optional routine to configure registers to desired idle
228  * time between frames (if driver has this functionality)
229  * @set_number_of_data: optional routine to configure registers to desired
230  * number of data (if driver has this functionality)
231  * @transfer_one_dma_start: routine to start transfer a single spi_transfer
232  * using DMA
233  * @dma_rx_cb: routine to call after DMA RX channel operation is complete
234  * @dma_tx_cb: routine to call after DMA TX channel operation is complete
235  * @transfer_one_irq: routine to configure interrupts for driver
236  * @irq_handler_event: Interrupt handler for SPI controller events
237  * @irq_handler_thread: thread of interrupt handler for SPI controller
238  * @baud_rate_div_min: minimum baud rate divisor
239  * @baud_rate_div_max: maximum baud rate divisor
240  * @has_fifo: boolean to know if fifo is used for driver
241  * @has_device_mode: is this compatible capable to switch on device mode
242  * @flags: compatible specific SPI controller flags used at registration time
243  */
244 struct stm32_spi_cfg {
245 	const struct stm32_spi_regspec *regs;
246 	int (*get_fifo_size)(struct stm32_spi *spi);
247 	int (*get_bpw_mask)(struct stm32_spi *spi);
248 	void (*disable)(struct stm32_spi *spi);
249 	int (*config)(struct stm32_spi *spi);
250 	void (*set_bpw)(struct stm32_spi *spi);
251 	int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
252 	void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
253 	int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
254 	void (*transfer_one_dma_start)(struct stm32_spi *spi);
255 	void (*dma_rx_cb)(void *data);
256 	void (*dma_tx_cb)(void *data);
257 	int (*transfer_one_irq)(struct stm32_spi *spi);
258 	irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
259 	irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
260 	unsigned int baud_rate_div_min;
261 	unsigned int baud_rate_div_max;
262 	bool has_fifo;
263 	bool has_device_mode;
264 	u16 flags;
265 };
266 
267 /**
268  * struct stm32_spi - private data of the SPI controller
269  * @dev: driver model representation of the controller
270  * @ctrl: controller interface
271  * @cfg: compatible configuration data
272  * @base: virtual memory area
273  * @clk: hw kernel clock feeding the SPI clock generator
274  * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
275  * @lock: prevent I/O concurrent access
276  * @irq: SPI controller interrupt line
277  * @fifo_size: size of the embedded fifo in bytes
278  * @cur_midi: master inter-data idleness in ns
279  * @cur_speed: speed configured in Hz
280  * @cur_bpw: number of bits in a single SPI data frame
281  * @cur_fthlv: fifo threshold level (data frames in a single data packet)
282  * @cur_comm: SPI communication mode
283  * @cur_xferlen: current transfer length in bytes
284  * @cur_usedma: boolean to know if dma is used in current transfer
285  * @tx_buf: data to be written, or NULL
286  * @rx_buf: data to be read, or NULL
287  * @tx_len: number of data to be written in bytes
288  * @rx_len: number of data to be read in bytes
289  * @dma_tx: dma channel for TX transfer
290  * @dma_rx: dma channel for RX transfer
291  * @phys_addr: SPI registers physical base address
292  * @device_mode: the controller is configured as SPI device
293  */
294 struct stm32_spi {
295 	struct device *dev;
296 	struct spi_controller *ctrl;
297 	const struct stm32_spi_cfg *cfg;
298 	void __iomem *base;
299 	struct clk *clk;
300 	u32 clk_rate;
301 	spinlock_t lock; /* prevent I/O concurrent access */
302 	int irq;
303 	unsigned int fifo_size;
304 
305 	unsigned int cur_midi;
306 	unsigned int cur_speed;
307 	unsigned int cur_bpw;
308 	unsigned int cur_fthlv;
309 	unsigned int cur_comm;
310 	unsigned int cur_xferlen;
311 	bool cur_usedma;
312 
313 	const void *tx_buf;
314 	void *rx_buf;
315 	int tx_len;
316 	int rx_len;
317 	struct dma_chan *dma_tx;
318 	struct dma_chan *dma_rx;
319 	dma_addr_t phys_addr;
320 
321 	bool device_mode;
322 };
323 
324 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
325 	.en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
326 
327 	.dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
328 	.dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
329 
330 	.cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
331 	.cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
332 	.lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
333 	.cs_high = {},
334 	.br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
335 
336 	.rx = { STM32F4_SPI_DR },
337 	.tx = { STM32F4_SPI_DR },
338 };
339 
340 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
341 	/* SPI data transfer is enabled but spi_ker_ck is idle.
342 	 * CFG1 and CFG2 registers are write protected when SPE is enabled.
343 	 */
344 	.en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
345 
346 	.dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
347 	.dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
348 
349 	.cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
350 	.cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
351 	.lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
352 	.cs_high = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_SSIOP },
353 	.br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
354 		STM32H7_SPI_CFG1_MBR_SHIFT },
355 
356 	.rx = { STM32H7_SPI_RXDR },
357 	.tx = { STM32H7_SPI_TXDR },
358 };
359 
360 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
361 				      u32 offset, u32 bits)
362 {
363 	writel_relaxed(readl_relaxed(spi->base + offset) | bits,
364 		       spi->base + offset);
365 }
366 
367 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
368 				      u32 offset, u32 bits)
369 {
370 	writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
371 		       spi->base + offset);
372 }
373 
374 /**
375  * stm32h7_spi_get_fifo_size - Return fifo size
376  * @spi: pointer to the spi controller data structure
377  */
378 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
379 {
380 	unsigned long flags;
381 	u32 count = 0;
382 
383 	spin_lock_irqsave(&spi->lock, flags);
384 
385 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
386 
387 	while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
388 		writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
389 
390 	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
391 
392 	spin_unlock_irqrestore(&spi->lock, flags);
393 
394 	dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
395 
396 	return count;
397 }
398 
399 /**
400  * stm32f4_spi_get_bpw_mask - Return bits per word mask
401  * @spi: pointer to the spi controller data structure
402  */
403 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
404 {
405 	dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
406 	return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
407 }
408 
409 /**
410  * stm32h7_spi_get_bpw_mask - Return bits per word mask
411  * @spi: pointer to the spi controller data structure
412  */
413 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
414 {
415 	unsigned long flags;
416 	u32 cfg1, max_bpw;
417 
418 	spin_lock_irqsave(&spi->lock, flags);
419 
420 	/*
421 	 * The most significant bit at DSIZE bit field is reserved when the
422 	 * maximum data size of periperal instances is limited to 16-bit
423 	 */
424 	stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
425 
426 	cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
427 	max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1;
428 
429 	spin_unlock_irqrestore(&spi->lock, flags);
430 
431 	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
432 
433 	return SPI_BPW_RANGE_MASK(4, max_bpw);
434 }
435 
436 /**
437  * stm32_spi_prepare_mbr - Determine baud rate divisor value
438  * @spi: pointer to the spi controller data structure
439  * @speed_hz: requested speed
440  * @min_div: minimum baud rate divisor
441  * @max_div: maximum baud rate divisor
442  *
443  * Return baud rate divisor value in case of success or -EINVAL
444  */
445 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
446 				 u32 min_div, u32 max_div)
447 {
448 	u32 div, mbrdiv;
449 
450 	/* Ensure spi->clk_rate is even */
451 	div = DIV_ROUND_CLOSEST(spi->clk_rate & ~0x1, speed_hz);
452 
453 	/*
454 	 * SPI framework set xfer->speed_hz to ctrl->max_speed_hz if
455 	 * xfer->speed_hz is greater than ctrl->max_speed_hz, and it returns
456 	 * an error when xfer->speed_hz is lower than ctrl->min_speed_hz, so
457 	 * no need to check it there.
458 	 * However, we need to ensure the following calculations.
459 	 */
460 	if ((div < min_div) || (div > max_div))
461 		return -EINVAL;
462 
463 	/* Determine the first power of 2 greater than or equal to div */
464 	if (div & (div - 1))
465 		mbrdiv = fls(div);
466 	else
467 		mbrdiv = fls(div) - 1;
468 
469 	spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
470 
471 	return mbrdiv - 1;
472 }
473 
474 /**
475  * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
476  * @spi: pointer to the spi controller data structure
477  * @xfer_len: length of the message to be transferred
478  */
479 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
480 {
481 	u32 packet, bpw;
482 
483 	/* data packet should not exceed 1/2 of fifo space */
484 	packet = clamp(xfer_len, 1U, spi->fifo_size / 2);
485 
486 	/* align packet size with data registers access */
487 	bpw = DIV_ROUND_UP(spi->cur_bpw, 8);
488 	return DIV_ROUND_UP(packet, bpw);
489 }
490 
491 /**
492  * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
493  * @spi: pointer to the spi controller data structure
494  *
495  * Read from tx_buf depends on remaining bytes to avoid to read beyond
496  * tx_buf end.
497  */
498 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
499 {
500 	if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
501 				  STM32F4_SPI_SR_TXE)) {
502 		u32 offs = spi->cur_xferlen - spi->tx_len;
503 
504 		if (spi->cur_bpw == 16) {
505 			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
506 
507 			writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
508 			spi->tx_len -= sizeof(u16);
509 		} else {
510 			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
511 
512 			writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
513 			spi->tx_len -= sizeof(u8);
514 		}
515 	}
516 
517 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
518 }
519 
520 /**
521  * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
522  * @spi: pointer to the spi controller data structure
523  *
524  * Read from tx_buf depends on remaining bytes to avoid to read beyond
525  * tx_buf end.
526  */
527 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
528 {
529 	while ((spi->tx_len > 0) &&
530 		       (readl_relaxed(spi->base + STM32H7_SPI_SR) &
531 			STM32H7_SPI_SR_TXP)) {
532 		u32 offs = spi->cur_xferlen - spi->tx_len;
533 
534 		if (spi->tx_len >= sizeof(u32)) {
535 			const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
536 
537 			writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
538 			spi->tx_len -= sizeof(u32);
539 		} else if (spi->tx_len >= sizeof(u16)) {
540 			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
541 
542 			writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
543 			spi->tx_len -= sizeof(u16);
544 		} else {
545 			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
546 
547 			writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
548 			spi->tx_len -= sizeof(u8);
549 		}
550 	}
551 
552 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
553 }
554 
555 /**
556  * stm32f4_spi_read_rx - Read bytes from Receive Data Register
557  * @spi: pointer to the spi controller data structure
558  *
559  * Write in rx_buf depends on remaining bytes to avoid to write beyond
560  * rx_buf end.
561  */
562 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
563 {
564 	if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
565 				  STM32F4_SPI_SR_RXNE)) {
566 		u32 offs = spi->cur_xferlen - spi->rx_len;
567 
568 		if (spi->cur_bpw == 16) {
569 			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
570 
571 			*rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
572 			spi->rx_len -= sizeof(u16);
573 		} else {
574 			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
575 
576 			*rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
577 			spi->rx_len -= sizeof(u8);
578 		}
579 	}
580 
581 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
582 }
583 
584 /**
585  * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
586  * @spi: pointer to the spi controller data structure
587  *
588  * Write in rx_buf depends on remaining bytes to avoid to write beyond
589  * rx_buf end.
590  */
591 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi)
592 {
593 	u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
594 	u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
595 
596 	while ((spi->rx_len > 0) &&
597 	       ((sr & STM32H7_SPI_SR_RXP) ||
598 		((sr & STM32H7_SPI_SR_EOT) &&
599 		 ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
600 		u32 offs = spi->cur_xferlen - spi->rx_len;
601 
602 		if ((spi->rx_len >= sizeof(u32)) ||
603 		    (sr & STM32H7_SPI_SR_RXWNE)) {
604 			u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
605 
606 			*rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
607 			spi->rx_len -= sizeof(u32);
608 		} else if ((spi->rx_len >= sizeof(u16)) ||
609 			   (!(sr & STM32H7_SPI_SR_RXWNE) &&
610 			    (rxplvl >= 2 || spi->cur_bpw > 8))) {
611 			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
612 
613 			*rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
614 			spi->rx_len -= sizeof(u16);
615 		} else {
616 			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
617 
618 			*rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
619 			spi->rx_len -= sizeof(u8);
620 		}
621 
622 		sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
623 		rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
624 	}
625 
626 	dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n",
627 		__func__, spi->rx_len, sr);
628 }
629 
630 /**
631  * stm32_spi_enable - Enable SPI controller
632  * @spi: pointer to the spi controller data structure
633  */
634 static void stm32_spi_enable(struct stm32_spi *spi)
635 {
636 	dev_dbg(spi->dev, "enable controller\n");
637 
638 	stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
639 			   spi->cfg->regs->en.mask);
640 }
641 
642 /**
643  * stm32f4_spi_disable - Disable SPI controller
644  * @spi: pointer to the spi controller data structure
645  */
646 static void stm32f4_spi_disable(struct stm32_spi *spi)
647 {
648 	unsigned long flags;
649 	u32 sr;
650 
651 	dev_dbg(spi->dev, "disable controller\n");
652 
653 	spin_lock_irqsave(&spi->lock, flags);
654 
655 	if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
656 	      STM32F4_SPI_CR1_SPE)) {
657 		spin_unlock_irqrestore(&spi->lock, flags);
658 		return;
659 	}
660 
661 	/* Disable interrupts */
662 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
663 						 STM32F4_SPI_CR2_RXNEIE |
664 						 STM32F4_SPI_CR2_ERRIE);
665 
666 	/* Wait until BSY = 0 */
667 	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
668 					      sr, !(sr & STM32F4_SPI_SR_BSY),
669 					      10, 100000) < 0) {
670 		dev_warn(spi->dev, "disabling condition timeout\n");
671 	}
672 
673 	if (spi->cur_usedma && spi->dma_tx)
674 		dmaengine_terminate_async(spi->dma_tx);
675 	if (spi->cur_usedma && spi->dma_rx)
676 		dmaengine_terminate_async(spi->dma_rx);
677 
678 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
679 
680 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
681 						 STM32F4_SPI_CR2_RXDMAEN);
682 
683 	/* Sequence to clear OVR flag */
684 	readl_relaxed(spi->base + STM32F4_SPI_DR);
685 	readl_relaxed(spi->base + STM32F4_SPI_SR);
686 
687 	spin_unlock_irqrestore(&spi->lock, flags);
688 }
689 
690 /**
691  * stm32h7_spi_disable - Disable SPI controller
692  * @spi: pointer to the spi controller data structure
693  *
694  * RX-Fifo is flushed when SPI controller is disabled.
695  */
696 static void stm32h7_spi_disable(struct stm32_spi *spi)
697 {
698 	unsigned long flags;
699 	u32 cr1;
700 
701 	dev_dbg(spi->dev, "disable controller\n");
702 
703 	spin_lock_irqsave(&spi->lock, flags);
704 
705 	cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
706 
707 	if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
708 		spin_unlock_irqrestore(&spi->lock, flags);
709 		return;
710 	}
711 
712 	if (spi->cur_usedma && spi->dma_tx)
713 		dmaengine_terminate_async(spi->dma_tx);
714 	if (spi->cur_usedma && spi->dma_rx)
715 		dmaengine_terminate_async(spi->dma_rx);
716 
717 	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
718 
719 	stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
720 						STM32H7_SPI_CFG1_RXDMAEN);
721 
722 	/* Disable interrupts and clear status flags */
723 	writel_relaxed(0, spi->base + STM32H7_SPI_IER);
724 	writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
725 
726 	spin_unlock_irqrestore(&spi->lock, flags);
727 }
728 
729 /**
730  * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
731  * @ctrl: controller interface
732  * @spi_dev: pointer to the spi device
733  * @transfer: pointer to spi transfer
734  *
735  * If driver has fifo and the current transfer size is greater than fifo size,
736  * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
737  */
738 static bool stm32_spi_can_dma(struct spi_controller *ctrl,
739 			      struct spi_device *spi_dev,
740 			      struct spi_transfer *transfer)
741 {
742 	unsigned int dma_size;
743 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
744 
745 	if (spi->cfg->has_fifo)
746 		dma_size = spi->fifo_size;
747 	else
748 		dma_size = SPI_DMA_MIN_BYTES;
749 
750 	dev_dbg(spi->dev, "%s: %s\n", __func__,
751 		(transfer->len > dma_size) ? "true" : "false");
752 
753 	return (transfer->len > dma_size);
754 }
755 
756 /**
757  * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
758  * @irq: interrupt line
759  * @dev_id: SPI controller ctrl interface
760  */
761 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
762 {
763 	struct spi_controller *ctrl = dev_id;
764 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
765 	u32 sr, mask = 0;
766 	bool end = false;
767 
768 	spin_lock(&spi->lock);
769 
770 	sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
771 	/*
772 	 * BSY flag is not handled in interrupt but it is normal behavior when
773 	 * this flag is set.
774 	 */
775 	sr &= ~STM32F4_SPI_SR_BSY;
776 
777 	if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
778 				 spi->cur_comm == SPI_3WIRE_TX)) {
779 		/* OVR flag shouldn't be handled for TX only mode */
780 		sr &= ~(STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE);
781 		mask |= STM32F4_SPI_SR_TXE;
782 	}
783 
784 	if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
785 				spi->cur_comm == SPI_SIMPLEX_RX ||
786 				spi->cur_comm == SPI_3WIRE_RX)) {
787 		/* TXE flag is set and is handled when RXNE flag occurs */
788 		sr &= ~STM32F4_SPI_SR_TXE;
789 		mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
790 	}
791 
792 	if (!(sr & mask)) {
793 		dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
794 		spin_unlock(&spi->lock);
795 		return IRQ_NONE;
796 	}
797 
798 	if (sr & STM32F4_SPI_SR_OVR) {
799 		dev_warn(spi->dev, "Overrun: received value discarded\n");
800 
801 		/* Sequence to clear OVR flag */
802 		readl_relaxed(spi->base + STM32F4_SPI_DR);
803 		readl_relaxed(spi->base + STM32F4_SPI_SR);
804 
805 		/*
806 		 * If overrun is detected, it means that something went wrong,
807 		 * so stop the current transfer. Transfer can wait for next
808 		 * RXNE but DR is already read and end never happens.
809 		 */
810 		end = true;
811 		goto end_irq;
812 	}
813 
814 	if (sr & STM32F4_SPI_SR_TXE) {
815 		if (spi->tx_buf)
816 			stm32f4_spi_write_tx(spi);
817 		if (spi->tx_len == 0)
818 			end = true;
819 	}
820 
821 	if (sr & STM32F4_SPI_SR_RXNE) {
822 		stm32f4_spi_read_rx(spi);
823 		if (spi->rx_len == 0)
824 			end = true;
825 		else if (spi->tx_buf)/* Load data for discontinuous mode */
826 			stm32f4_spi_write_tx(spi);
827 	}
828 
829 end_irq:
830 	if (end) {
831 		/* Immediately disable interrupts to do not generate new one */
832 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
833 					STM32F4_SPI_CR2_TXEIE |
834 					STM32F4_SPI_CR2_RXNEIE |
835 					STM32F4_SPI_CR2_ERRIE);
836 		spin_unlock(&spi->lock);
837 		return IRQ_WAKE_THREAD;
838 	}
839 
840 	spin_unlock(&spi->lock);
841 	return IRQ_HANDLED;
842 }
843 
844 /**
845  * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
846  * @irq: interrupt line
847  * @dev_id: SPI controller interface
848  */
849 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
850 {
851 	struct spi_controller *ctrl = dev_id;
852 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
853 
854 	spi_finalize_current_transfer(ctrl);
855 	stm32f4_spi_disable(spi);
856 
857 	return IRQ_HANDLED;
858 }
859 
860 /**
861  * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
862  * @irq: interrupt line
863  * @dev_id: SPI controller interface
864  */
865 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
866 {
867 	struct spi_controller *ctrl = dev_id;
868 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
869 	u32 sr, ier, mask;
870 	unsigned long flags;
871 	bool end = false;
872 
873 	spin_lock_irqsave(&spi->lock, flags);
874 
875 	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
876 	ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
877 
878 	mask = ier;
879 	/*
880 	 * EOTIE enables irq from EOT, SUSP and TXC events. We need to set
881 	 * SUSP to acknowledge it later. TXC is automatically cleared
882 	 */
883 
884 	mask |= STM32H7_SPI_SR_SUSP;
885 	/*
886 	 * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP
887 	 * are set. So in case of Full-Duplex, need to poll TXP and RXP event.
888 	 */
889 	if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma)
890 		mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP;
891 
892 	if (!(sr & mask)) {
893 		dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
894 			 sr, ier);
895 		spin_unlock_irqrestore(&spi->lock, flags);
896 		return IRQ_NONE;
897 	}
898 
899 	if (sr & STM32H7_SPI_SR_SUSP) {
900 		static DEFINE_RATELIMIT_STATE(rs,
901 					      DEFAULT_RATELIMIT_INTERVAL * 10,
902 					      1);
903 		ratelimit_set_flags(&rs, RATELIMIT_MSG_ON_RELEASE);
904 		if (__ratelimit(&rs))
905 			dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
906 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
907 			stm32h7_spi_read_rxfifo(spi);
908 		/*
909 		 * If communication is suspended while using DMA, it means
910 		 * that something went wrong, so stop the current transfer
911 		 */
912 		if (spi->cur_usedma)
913 			end = true;
914 	}
915 
916 	if (sr & STM32H7_SPI_SR_MODF) {
917 		dev_warn(spi->dev, "Mode fault: transfer aborted\n");
918 		end = true;
919 	}
920 
921 	if (sr & STM32H7_SPI_SR_OVR) {
922 		dev_err(spi->dev, "Overrun: RX data lost\n");
923 		end = true;
924 	}
925 
926 	if (sr & STM32H7_SPI_SR_EOT) {
927 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
928 			stm32h7_spi_read_rxfifo(spi);
929 		if (!spi->cur_usedma ||
930 		    (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX))
931 			end = true;
932 	}
933 
934 	if (sr & STM32H7_SPI_SR_TXP)
935 		if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
936 			stm32h7_spi_write_txfifo(spi);
937 
938 	if (sr & STM32H7_SPI_SR_RXP)
939 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
940 			stm32h7_spi_read_rxfifo(spi);
941 
942 	writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
943 
944 	spin_unlock_irqrestore(&spi->lock, flags);
945 
946 	if (end) {
947 		stm32h7_spi_disable(spi);
948 		spi_finalize_current_transfer(ctrl);
949 	}
950 
951 	return IRQ_HANDLED;
952 }
953 
954 /**
955  * stm32_spi_prepare_msg - set up the controller to transfer a single message
956  * @ctrl: controller interface
957  * @msg: pointer to spi message
958  */
959 static int stm32_spi_prepare_msg(struct spi_controller *ctrl,
960 				 struct spi_message *msg)
961 {
962 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
963 	struct spi_device *spi_dev = msg->spi;
964 	struct device_node *np = spi_dev->dev.of_node;
965 	unsigned long flags;
966 	u32 clrb = 0, setb = 0;
967 
968 	/* SPI slave device may need time between data frames */
969 	spi->cur_midi = 0;
970 	if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
971 		dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
972 
973 	if (spi_dev->mode & SPI_CPOL)
974 		setb |= spi->cfg->regs->cpol.mask;
975 	else
976 		clrb |= spi->cfg->regs->cpol.mask;
977 
978 	if (spi_dev->mode & SPI_CPHA)
979 		setb |= spi->cfg->regs->cpha.mask;
980 	else
981 		clrb |= spi->cfg->regs->cpha.mask;
982 
983 	if (spi_dev->mode & SPI_LSB_FIRST)
984 		setb |= spi->cfg->regs->lsb_first.mask;
985 	else
986 		clrb |= spi->cfg->regs->lsb_first.mask;
987 
988 	if (STM32_SPI_DEVICE_MODE(spi) && spi_dev->mode & SPI_CS_HIGH)
989 		setb |= spi->cfg->regs->cs_high.mask;
990 	else
991 		clrb |= spi->cfg->regs->cs_high.mask;
992 
993 	dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
994 		!!(spi_dev->mode & SPI_CPOL),
995 		!!(spi_dev->mode & SPI_CPHA),
996 		!!(spi_dev->mode & SPI_LSB_FIRST),
997 		!!(spi_dev->mode & SPI_CS_HIGH));
998 
999 	/* On STM32H7, messages should not exceed a maximum size setted
1000 	 * afterward via the set_number_of_data function. In order to
1001 	 * ensure that, split large messages into several messages
1002 	 */
1003 	if (spi->cfg->set_number_of_data) {
1004 		int ret;
1005 
1006 		ret = spi_split_transfers_maxwords(ctrl, msg,
1007 						   STM32H7_SPI_TSIZE_MAX,
1008 						   GFP_KERNEL | GFP_DMA);
1009 		if (ret)
1010 			return ret;
1011 	}
1012 
1013 	spin_lock_irqsave(&spi->lock, flags);
1014 
1015 	/* CPOL, CPHA and LSB FIRST bits have common register */
1016 	if (clrb || setb)
1017 		writel_relaxed(
1018 			(readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1019 			 ~clrb) | setb,
1020 			spi->base + spi->cfg->regs->cpol.reg);
1021 
1022 	spin_unlock_irqrestore(&spi->lock, flags);
1023 
1024 	return 0;
1025 }
1026 
1027 /**
1028  * stm32f4_spi_dma_tx_cb - dma callback
1029  * @data: pointer to the spi controller data structure
1030  *
1031  * DMA callback is called when the transfer is complete for DMA TX channel.
1032  */
1033 static void stm32f4_spi_dma_tx_cb(void *data)
1034 {
1035 	struct stm32_spi *spi = data;
1036 
1037 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1038 		spi_finalize_current_transfer(spi->ctrl);
1039 		stm32f4_spi_disable(spi);
1040 	}
1041 }
1042 
1043 /**
1044  * stm32_spi_dma_rx_cb - dma callback
1045  * @data: pointer to the spi controller data structure
1046  *
1047  * DMA callback is called when the transfer is complete for DMA RX channel.
1048  */
1049 static void stm32_spi_dma_rx_cb(void *data)
1050 {
1051 	struct stm32_spi *spi = data;
1052 
1053 	spi_finalize_current_transfer(spi->ctrl);
1054 	spi->cfg->disable(spi);
1055 }
1056 
1057 /**
1058  * stm32_spi_dma_config - configure dma slave channel depending on current
1059  *			  transfer bits_per_word.
1060  * @spi: pointer to the spi controller data structure
1061  * @dma_conf: pointer to the dma_slave_config structure
1062  * @dir: direction of the dma transfer
1063  */
1064 static void stm32_spi_dma_config(struct stm32_spi *spi,
1065 				 struct dma_slave_config *dma_conf,
1066 				 enum dma_transfer_direction dir)
1067 {
1068 	enum dma_slave_buswidth buswidth;
1069 	u32 maxburst;
1070 
1071 	if (spi->cur_bpw <= 8)
1072 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1073 	else if (spi->cur_bpw <= 16)
1074 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1075 	else
1076 		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1077 
1078 	if (spi->cfg->has_fifo) {
1079 		/* Valid for DMA Half or Full Fifo threshold */
1080 		if (spi->cur_fthlv == 2)
1081 			maxburst = 1;
1082 		else
1083 			maxburst = spi->cur_fthlv;
1084 	} else {
1085 		maxburst = 1;
1086 	}
1087 
1088 	memset(dma_conf, 0, sizeof(struct dma_slave_config));
1089 	dma_conf->direction = dir;
1090 	if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1091 		dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1092 		dma_conf->src_addr_width = buswidth;
1093 		dma_conf->src_maxburst = maxburst;
1094 
1095 		dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1096 			buswidth, maxburst);
1097 	} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1098 		dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1099 		dma_conf->dst_addr_width = buswidth;
1100 		dma_conf->dst_maxburst = maxburst;
1101 
1102 		dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1103 			buswidth, maxburst);
1104 	}
1105 }
1106 
1107 /**
1108  * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1109  *				  interrupts
1110  * @spi: pointer to the spi controller data structure
1111  *
1112  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1113  * in progress.
1114  */
1115 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1116 {
1117 	unsigned long flags;
1118 	u32 cr2 = 0;
1119 
1120 	/* Enable the interrupts relative to the current communication mode */
1121 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1122 		cr2 |= STM32F4_SPI_CR2_TXEIE;
1123 	} else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1124 				spi->cur_comm == SPI_SIMPLEX_RX ||
1125 				spi->cur_comm == SPI_3WIRE_RX) {
1126 		/* In transmit-only mode, the OVR flag is set in the SR register
1127 		 * since the received data are never read. Therefore set OVR
1128 		 * interrupt only when rx buffer is available.
1129 		 */
1130 		cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1131 	} else {
1132 		return -EINVAL;
1133 	}
1134 
1135 	spin_lock_irqsave(&spi->lock, flags);
1136 
1137 	stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1138 
1139 	stm32_spi_enable(spi);
1140 
1141 	/* starting data transfer when buffer is loaded */
1142 	if (spi->tx_buf)
1143 		stm32f4_spi_write_tx(spi);
1144 
1145 	spin_unlock_irqrestore(&spi->lock, flags);
1146 
1147 	return 1;
1148 }
1149 
1150 /**
1151  * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1152  *				  interrupts
1153  * @spi: pointer to the spi controller data structure
1154  *
1155  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1156  * in progress.
1157  */
1158 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1159 {
1160 	unsigned long flags;
1161 	u32 ier = 0;
1162 
1163 	/* Enable the interrupts relative to the current communication mode */
1164 	if (spi->tx_buf && spi->rx_buf)	/* Full Duplex */
1165 		ier |= STM32H7_SPI_IER_DXPIE;
1166 	else if (spi->tx_buf)		/* Half-Duplex TX dir or Simplex TX */
1167 		ier |= STM32H7_SPI_IER_TXPIE;
1168 	else if (spi->rx_buf)		/* Half-Duplex RX dir or Simplex RX */
1169 		ier |= STM32H7_SPI_IER_RXPIE;
1170 
1171 	/* Enable the interrupts relative to the end of transfer */
1172 	ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1173 	       STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1174 
1175 	spin_lock_irqsave(&spi->lock, flags);
1176 
1177 	stm32_spi_enable(spi);
1178 
1179 	/* Be sure to have data in fifo before starting data transfer */
1180 	if (spi->tx_buf)
1181 		stm32h7_spi_write_txfifo(spi);
1182 
1183 	if (STM32_SPI_MASTER_MODE(spi))
1184 		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1185 
1186 	writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1187 
1188 	spin_unlock_irqrestore(&spi->lock, flags);
1189 
1190 	return 1;
1191 }
1192 
1193 /**
1194  * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1195  *					transfer using DMA
1196  * @spi: pointer to the spi controller data structure
1197  */
1198 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1199 {
1200 	/* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1201 	if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1202 	    spi->cur_comm == SPI_FULL_DUPLEX) {
1203 		/*
1204 		 * In transmit-only mode, the OVR flag is set in the SR register
1205 		 * since the received data are never read. Therefore set OVR
1206 		 * interrupt only when rx buffer is available.
1207 		 */
1208 		stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1209 	}
1210 
1211 	stm32_spi_enable(spi);
1212 }
1213 
1214 /**
1215  * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1216  *					transfer using DMA
1217  * @spi: pointer to the spi controller data structure
1218  */
1219 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1220 {
1221 	uint32_t ier = STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1222 
1223 	/* Enable the interrupts */
1224 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX)
1225 		ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE;
1226 
1227 	stm32_spi_set_bits(spi, STM32H7_SPI_IER, ier);
1228 
1229 	stm32_spi_enable(spi);
1230 
1231 	if (STM32_SPI_MASTER_MODE(spi))
1232 		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1233 }
1234 
1235 /**
1236  * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1237  * @spi: pointer to the spi controller data structure
1238  * @xfer: pointer to the spi_transfer structure
1239  *
1240  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1241  * in progress.
1242  */
1243 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1244 				      struct spi_transfer *xfer)
1245 {
1246 	struct dma_slave_config tx_dma_conf, rx_dma_conf;
1247 	struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1248 	unsigned long flags;
1249 
1250 	spin_lock_irqsave(&spi->lock, flags);
1251 
1252 	rx_dma_desc = NULL;
1253 	if (spi->rx_buf && spi->dma_rx) {
1254 		stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1255 		dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1256 
1257 		/* Enable Rx DMA request */
1258 		stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1259 				   spi->cfg->regs->dma_rx_en.mask);
1260 
1261 		rx_dma_desc = dmaengine_prep_slave_sg(
1262 					spi->dma_rx, xfer->rx_sg.sgl,
1263 					xfer->rx_sg.nents,
1264 					rx_dma_conf.direction,
1265 					DMA_PREP_INTERRUPT);
1266 	}
1267 
1268 	tx_dma_desc = NULL;
1269 	if (spi->tx_buf && spi->dma_tx) {
1270 		stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1271 		dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1272 
1273 		tx_dma_desc = dmaengine_prep_slave_sg(
1274 					spi->dma_tx, xfer->tx_sg.sgl,
1275 					xfer->tx_sg.nents,
1276 					tx_dma_conf.direction,
1277 					DMA_PREP_INTERRUPT);
1278 	}
1279 
1280 	if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1281 	    (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1282 		goto dma_desc_error;
1283 
1284 	if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1285 		goto dma_desc_error;
1286 
1287 	if (rx_dma_desc) {
1288 		rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1289 		rx_dma_desc->callback_param = spi;
1290 
1291 		if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1292 			dev_err(spi->dev, "Rx DMA submit failed\n");
1293 			goto dma_desc_error;
1294 		}
1295 		/* Enable Rx DMA channel */
1296 		dma_async_issue_pending(spi->dma_rx);
1297 	}
1298 
1299 	if (tx_dma_desc) {
1300 		if (spi->cur_comm == SPI_SIMPLEX_TX ||
1301 		    spi->cur_comm == SPI_3WIRE_TX) {
1302 			tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1303 			tx_dma_desc->callback_param = spi;
1304 		}
1305 
1306 		if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1307 			dev_err(spi->dev, "Tx DMA submit failed\n");
1308 			goto dma_submit_error;
1309 		}
1310 		/* Enable Tx DMA channel */
1311 		dma_async_issue_pending(spi->dma_tx);
1312 
1313 		/* Enable Tx DMA request */
1314 		stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1315 				   spi->cfg->regs->dma_tx_en.mask);
1316 	}
1317 
1318 	spi->cfg->transfer_one_dma_start(spi);
1319 
1320 	spin_unlock_irqrestore(&spi->lock, flags);
1321 
1322 	return 1;
1323 
1324 dma_submit_error:
1325 	if (spi->dma_rx)
1326 		dmaengine_terminate_sync(spi->dma_rx);
1327 
1328 dma_desc_error:
1329 	stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1330 			   spi->cfg->regs->dma_rx_en.mask);
1331 
1332 	spin_unlock_irqrestore(&spi->lock, flags);
1333 
1334 	dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1335 
1336 	spi->cur_usedma = false;
1337 	return spi->cfg->transfer_one_irq(spi);
1338 }
1339 
1340 /**
1341  * stm32f4_spi_set_bpw - Configure bits per word
1342  * @spi: pointer to the spi controller data structure
1343  */
1344 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1345 {
1346 	if (spi->cur_bpw == 16)
1347 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1348 	else
1349 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1350 }
1351 
1352 /**
1353  * stm32h7_spi_set_bpw - configure bits per word
1354  * @spi: pointer to the spi controller data structure
1355  */
1356 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1357 {
1358 	u32 bpw, fthlv;
1359 	u32 cfg1_clrb = 0, cfg1_setb = 0;
1360 
1361 	bpw = spi->cur_bpw - 1;
1362 
1363 	cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1364 	cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw);
1365 
1366 	spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1367 	fthlv = spi->cur_fthlv - 1;
1368 
1369 	cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1370 	cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv);
1371 
1372 	writel_relaxed(
1373 		(readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1374 		 ~cfg1_clrb) | cfg1_setb,
1375 		spi->base + STM32H7_SPI_CFG1);
1376 }
1377 
1378 /**
1379  * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1380  * @spi: pointer to the spi controller data structure
1381  * @mbrdiv: baud rate divisor value
1382  */
1383 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1384 {
1385 	u32 clrb = 0, setb = 0;
1386 
1387 	clrb |= spi->cfg->regs->br.mask;
1388 	setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask;
1389 
1390 	writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1391 			~clrb) | setb,
1392 		       spi->base + spi->cfg->regs->br.reg);
1393 }
1394 
1395 /**
1396  * stm32_spi_communication_type - return transfer communication type
1397  * @spi_dev: pointer to the spi device
1398  * @transfer: pointer to spi transfer
1399  */
1400 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1401 						 struct spi_transfer *transfer)
1402 {
1403 	unsigned int type = SPI_FULL_DUPLEX;
1404 
1405 	if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1406 		/*
1407 		 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1408 		 * is forbidden and unvalidated by SPI subsystem so depending
1409 		 * on the valid buffer, we can determine the direction of the
1410 		 * transfer.
1411 		 */
1412 		if (!transfer->tx_buf)
1413 			type = SPI_3WIRE_RX;
1414 		else
1415 			type = SPI_3WIRE_TX;
1416 	} else {
1417 		if (!transfer->tx_buf)
1418 			type = SPI_SIMPLEX_RX;
1419 		else if (!transfer->rx_buf)
1420 			type = SPI_SIMPLEX_TX;
1421 	}
1422 
1423 	return type;
1424 }
1425 
1426 /**
1427  * stm32f4_spi_set_mode - configure communication mode
1428  * @spi: pointer to the spi controller data structure
1429  * @comm_type: type of communication to configure
1430  */
1431 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1432 {
1433 	if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1434 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1435 					STM32F4_SPI_CR1_BIDIMODE |
1436 					STM32F4_SPI_CR1_BIDIOE);
1437 	} else if (comm_type == SPI_FULL_DUPLEX ||
1438 				comm_type == SPI_SIMPLEX_RX) {
1439 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1440 					STM32F4_SPI_CR1_BIDIMODE |
1441 					STM32F4_SPI_CR1_BIDIOE);
1442 	} else if (comm_type == SPI_3WIRE_RX) {
1443 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1444 					STM32F4_SPI_CR1_BIDIMODE);
1445 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1446 					STM32F4_SPI_CR1_BIDIOE);
1447 	} else {
1448 		return -EINVAL;
1449 	}
1450 
1451 	return 0;
1452 }
1453 
1454 /**
1455  * stm32h7_spi_set_mode - configure communication mode
1456  * @spi: pointer to the spi controller data structure
1457  * @comm_type: type of communication to configure
1458  */
1459 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1460 {
1461 	u32 mode;
1462 	u32 cfg2_clrb = 0, cfg2_setb = 0;
1463 
1464 	if (comm_type == SPI_3WIRE_RX) {
1465 		mode = STM32H7_SPI_HALF_DUPLEX;
1466 		stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1467 	} else if (comm_type == SPI_3WIRE_TX) {
1468 		mode = STM32H7_SPI_HALF_DUPLEX;
1469 		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1470 	} else if (comm_type == SPI_SIMPLEX_RX) {
1471 		mode = STM32H7_SPI_SIMPLEX_RX;
1472 	} else if (comm_type == SPI_SIMPLEX_TX) {
1473 		mode = STM32H7_SPI_SIMPLEX_TX;
1474 	} else {
1475 		mode = STM32H7_SPI_FULL_DUPLEX;
1476 	}
1477 
1478 	cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1479 	cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode);
1480 
1481 	writel_relaxed(
1482 		(readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1483 		 ~cfg2_clrb) | cfg2_setb,
1484 		spi->base + STM32H7_SPI_CFG2);
1485 
1486 	return 0;
1487 }
1488 
1489 /**
1490  * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1491  *			       consecutive data frames in master mode
1492  * @spi: pointer to the spi controller data structure
1493  * @len: transfer len
1494  */
1495 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1496 {
1497 	u32 cfg2_clrb = 0, cfg2_setb = 0;
1498 
1499 	cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1500 	if ((len > 1) && (spi->cur_midi > 0)) {
1501 		u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed);
1502 		u32 midi = min_t(u32,
1503 				 DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1504 				 FIELD_GET(STM32H7_SPI_CFG2_MIDI,
1505 				 STM32H7_SPI_CFG2_MIDI));
1506 
1507 
1508 		dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1509 			sck_period_ns, midi, midi * sck_period_ns);
1510 		cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi);
1511 	}
1512 
1513 	writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1514 			~cfg2_clrb) | cfg2_setb,
1515 		       spi->base + STM32H7_SPI_CFG2);
1516 }
1517 
1518 /**
1519  * stm32h7_spi_number_of_data - configure number of data at current transfer
1520  * @spi: pointer to the spi controller data structure
1521  * @nb_words: transfer length (in words)
1522  */
1523 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1524 {
1525 	if (nb_words <= STM32H7_SPI_TSIZE_MAX) {
1526 		writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words),
1527 			       spi->base + STM32H7_SPI_CR2);
1528 	} else {
1529 		return -EMSGSIZE;
1530 	}
1531 
1532 	return 0;
1533 }
1534 
1535 /**
1536  * stm32_spi_transfer_one_setup - common setup to transfer a single
1537  *				  spi_transfer either using DMA or
1538  *				  interrupts.
1539  * @spi: pointer to the spi controller data structure
1540  * @spi_dev: pointer to the spi device
1541  * @transfer: pointer to spi transfer
1542  */
1543 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1544 					struct spi_device *spi_dev,
1545 					struct spi_transfer *transfer)
1546 {
1547 	unsigned long flags;
1548 	unsigned int comm_type;
1549 	int nb_words, ret = 0;
1550 	int mbr;
1551 
1552 	spin_lock_irqsave(&spi->lock, flags);
1553 
1554 	spi->cur_xferlen = transfer->len;
1555 
1556 	spi->cur_bpw = transfer->bits_per_word;
1557 	spi->cfg->set_bpw(spi);
1558 
1559 	/* Update spi->cur_speed with real clock speed */
1560 	if (STM32_SPI_MASTER_MODE(spi)) {
1561 		mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1562 					    spi->cfg->baud_rate_div_min,
1563 					    spi->cfg->baud_rate_div_max);
1564 		if (mbr < 0) {
1565 			ret = mbr;
1566 			goto out;
1567 		}
1568 
1569 		transfer->speed_hz = spi->cur_speed;
1570 		stm32_spi_set_mbr(spi, mbr);
1571 	}
1572 
1573 	comm_type = stm32_spi_communication_type(spi_dev, transfer);
1574 	ret = spi->cfg->set_mode(spi, comm_type);
1575 	if (ret < 0)
1576 		goto out;
1577 
1578 	spi->cur_comm = comm_type;
1579 
1580 	if (STM32_SPI_MASTER_MODE(spi) && spi->cfg->set_data_idleness)
1581 		spi->cfg->set_data_idleness(spi, transfer->len);
1582 
1583 	if (spi->cur_bpw <= 8)
1584 		nb_words = transfer->len;
1585 	else if (spi->cur_bpw <= 16)
1586 		nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1587 	else
1588 		nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1589 
1590 	if (spi->cfg->set_number_of_data) {
1591 		ret = spi->cfg->set_number_of_data(spi, nb_words);
1592 		if (ret < 0)
1593 			goto out;
1594 	}
1595 
1596 	dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1597 		spi->cur_comm);
1598 	dev_dbg(spi->dev,
1599 		"data frame of %d-bit, data packet of %d data frames\n",
1600 		spi->cur_bpw, spi->cur_fthlv);
1601 	if (STM32_SPI_MASTER_MODE(spi))
1602 		dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1603 	dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1604 		spi->cur_xferlen, nb_words);
1605 	dev_dbg(spi->dev, "dma %s\n",
1606 		(spi->cur_usedma) ? "enabled" : "disabled");
1607 
1608 out:
1609 	spin_unlock_irqrestore(&spi->lock, flags);
1610 
1611 	return ret;
1612 }
1613 
1614 /**
1615  * stm32_spi_transfer_one - transfer a single spi_transfer
1616  * @ctrl: controller interface
1617  * @spi_dev: pointer to the spi device
1618  * @transfer: pointer to spi transfer
1619  *
1620  * It must return 0 if the transfer is finished or 1 if the transfer is still
1621  * in progress.
1622  */
1623 static int stm32_spi_transfer_one(struct spi_controller *ctrl,
1624 				  struct spi_device *spi_dev,
1625 				  struct spi_transfer *transfer)
1626 {
1627 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1628 	int ret;
1629 
1630 	spi->tx_buf = transfer->tx_buf;
1631 	spi->rx_buf = transfer->rx_buf;
1632 	spi->tx_len = spi->tx_buf ? transfer->len : 0;
1633 	spi->rx_len = spi->rx_buf ? transfer->len : 0;
1634 
1635 	spi->cur_usedma = (ctrl->can_dma &&
1636 			   ctrl->can_dma(ctrl, spi_dev, transfer));
1637 
1638 	ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1639 	if (ret) {
1640 		dev_err(spi->dev, "SPI transfer setup failed\n");
1641 		return ret;
1642 	}
1643 
1644 	if (spi->cur_usedma)
1645 		return stm32_spi_transfer_one_dma(spi, transfer);
1646 	else
1647 		return spi->cfg->transfer_one_irq(spi);
1648 }
1649 
1650 /**
1651  * stm32_spi_unprepare_msg - relax the hardware
1652  * @ctrl: controller interface
1653  * @msg: pointer to the spi message
1654  */
1655 static int stm32_spi_unprepare_msg(struct spi_controller *ctrl,
1656 				   struct spi_message *msg)
1657 {
1658 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1659 
1660 	spi->cfg->disable(spi);
1661 
1662 	return 0;
1663 }
1664 
1665 /**
1666  * stm32f4_spi_config - Configure SPI controller as SPI master
1667  * @spi: pointer to the spi controller data structure
1668  */
1669 static int stm32f4_spi_config(struct stm32_spi *spi)
1670 {
1671 	unsigned long flags;
1672 
1673 	spin_lock_irqsave(&spi->lock, flags);
1674 
1675 	/* Ensure I2SMOD bit is kept cleared */
1676 	stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1677 			   STM32F4_SPI_I2SCFGR_I2SMOD);
1678 
1679 	/*
1680 	 * - SS input value high
1681 	 * - transmitter half duplex direction
1682 	 * - Set the master mode (default Motorola mode)
1683 	 * - Consider 1 master/n slaves configuration and
1684 	 *   SS input value is determined by the SSI bit
1685 	 */
1686 	stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1687 						 STM32F4_SPI_CR1_BIDIOE |
1688 						 STM32F4_SPI_CR1_MSTR |
1689 						 STM32F4_SPI_CR1_SSM);
1690 
1691 	spin_unlock_irqrestore(&spi->lock, flags);
1692 
1693 	return 0;
1694 }
1695 
1696 /**
1697  * stm32h7_spi_config - Configure SPI controller
1698  * @spi: pointer to the spi controller data structure
1699  */
1700 static int stm32h7_spi_config(struct stm32_spi *spi)
1701 {
1702 	unsigned long flags;
1703 	u32 cr1 = 0, cfg2 = 0;
1704 
1705 	spin_lock_irqsave(&spi->lock, flags);
1706 
1707 	/* Ensure I2SMOD bit is kept cleared */
1708 	stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1709 			   STM32H7_SPI_I2SCFGR_I2SMOD);
1710 
1711 	if (STM32_SPI_DEVICE_MODE(spi)) {
1712 		/* Use native device select */
1713 		cfg2 &= ~STM32H7_SPI_CFG2_SSM;
1714 	} else {
1715 		/*
1716 		 * - Transmitter half duplex direction
1717 		 * - Automatic communication suspend when RX-Fifo is full
1718 		 * - SS input value high
1719 		 */
1720 		cr1 |= STM32H7_SPI_CR1_HDDIR | STM32H7_SPI_CR1_MASRX | STM32H7_SPI_CR1_SSI;
1721 
1722 		/*
1723 		 * - Set the master mode (default Motorola mode)
1724 		 * - Consider 1 master/n devices configuration and
1725 		 *   SS input value is determined by the SSI bit
1726 		 * - keep control of all associated GPIOs
1727 		 */
1728 		cfg2 |= STM32H7_SPI_CFG2_MASTER | STM32H7_SPI_CFG2_SSM | STM32H7_SPI_CFG2_AFCNTR;
1729 	}
1730 
1731 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, cr1);
1732 	stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, cfg2);
1733 
1734 	spin_unlock_irqrestore(&spi->lock, flags);
1735 
1736 	return 0;
1737 }
1738 
1739 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1740 	.regs = &stm32f4_spi_regspec,
1741 	.get_bpw_mask = stm32f4_spi_get_bpw_mask,
1742 	.disable = stm32f4_spi_disable,
1743 	.config = stm32f4_spi_config,
1744 	.set_bpw = stm32f4_spi_set_bpw,
1745 	.set_mode = stm32f4_spi_set_mode,
1746 	.transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1747 	.dma_tx_cb = stm32f4_spi_dma_tx_cb,
1748 	.dma_rx_cb = stm32_spi_dma_rx_cb,
1749 	.transfer_one_irq = stm32f4_spi_transfer_one_irq,
1750 	.irq_handler_event = stm32f4_spi_irq_event,
1751 	.irq_handler_thread = stm32f4_spi_irq_thread,
1752 	.baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1753 	.baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1754 	.has_fifo = false,
1755 	.has_device_mode = false,
1756 	.flags = SPI_CONTROLLER_MUST_TX,
1757 };
1758 
1759 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1760 	.regs = &stm32h7_spi_regspec,
1761 	.get_fifo_size = stm32h7_spi_get_fifo_size,
1762 	.get_bpw_mask = stm32h7_spi_get_bpw_mask,
1763 	.disable = stm32h7_spi_disable,
1764 	.config = stm32h7_spi_config,
1765 	.set_bpw = stm32h7_spi_set_bpw,
1766 	.set_mode = stm32h7_spi_set_mode,
1767 	.set_data_idleness = stm32h7_spi_data_idleness,
1768 	.set_number_of_data = stm32h7_spi_number_of_data,
1769 	.transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1770 	.dma_rx_cb = stm32_spi_dma_rx_cb,
1771 	/*
1772 	 * dma_tx_cb is not necessary since in case of TX, dma is followed by
1773 	 * SPI access hence handling is performed within the SPI interrupt
1774 	 */
1775 	.transfer_one_irq = stm32h7_spi_transfer_one_irq,
1776 	.irq_handler_thread = stm32h7_spi_irq_thread,
1777 	.baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1778 	.baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1779 	.has_fifo = true,
1780 	.has_device_mode = true,
1781 };
1782 
1783 static const struct of_device_id stm32_spi_of_match[] = {
1784 	{ .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1785 	{ .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1786 	{},
1787 };
1788 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1789 
1790 static int stm32h7_spi_device_abort(struct spi_controller *ctrl)
1791 {
1792 	spi_finalize_current_transfer(ctrl);
1793 	return 0;
1794 }
1795 
1796 static int stm32_spi_probe(struct platform_device *pdev)
1797 {
1798 	struct spi_controller *ctrl;
1799 	struct stm32_spi *spi;
1800 	struct resource *res;
1801 	struct reset_control *rst;
1802 	struct device_node *np = pdev->dev.of_node;
1803 	bool device_mode;
1804 	int ret;
1805 	const struct stm32_spi_cfg *cfg = of_device_get_match_data(&pdev->dev);
1806 
1807 	device_mode = of_property_read_bool(np, "spi-slave");
1808 	if (!cfg->has_device_mode && device_mode) {
1809 		dev_err(&pdev->dev, "spi-slave not supported\n");
1810 		return -EPERM;
1811 	}
1812 
1813 	if (device_mode)
1814 		ctrl = devm_spi_alloc_slave(&pdev->dev, sizeof(struct stm32_spi));
1815 	else
1816 		ctrl = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1817 	if (!ctrl) {
1818 		dev_err(&pdev->dev, "spi controller allocation failed\n");
1819 		return -ENOMEM;
1820 	}
1821 	platform_set_drvdata(pdev, ctrl);
1822 
1823 	spi = spi_controller_get_devdata(ctrl);
1824 	spi->dev = &pdev->dev;
1825 	spi->ctrl = ctrl;
1826 	spi->device_mode = device_mode;
1827 	spin_lock_init(&spi->lock);
1828 
1829 	spi->cfg = cfg;
1830 
1831 	spi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1832 	if (IS_ERR(spi->base))
1833 		return PTR_ERR(spi->base);
1834 
1835 	spi->phys_addr = (dma_addr_t)res->start;
1836 
1837 	spi->irq = platform_get_irq(pdev, 0);
1838 	if (spi->irq <= 0)
1839 		return spi->irq;
1840 
1841 	ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1842 					spi->cfg->irq_handler_event,
1843 					spi->cfg->irq_handler_thread,
1844 					IRQF_ONESHOT, pdev->name, ctrl);
1845 	if (ret) {
1846 		dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1847 			ret);
1848 		return ret;
1849 	}
1850 
1851 	spi->clk = devm_clk_get(&pdev->dev, NULL);
1852 	if (IS_ERR(spi->clk)) {
1853 		ret = PTR_ERR(spi->clk);
1854 		dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1855 		return ret;
1856 	}
1857 
1858 	ret = clk_prepare_enable(spi->clk);
1859 	if (ret) {
1860 		dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1861 		return ret;
1862 	}
1863 	spi->clk_rate = clk_get_rate(spi->clk);
1864 	if (!spi->clk_rate) {
1865 		dev_err(&pdev->dev, "clk rate = 0\n");
1866 		ret = -EINVAL;
1867 		goto err_clk_disable;
1868 	}
1869 
1870 	rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
1871 	if (rst) {
1872 		if (IS_ERR(rst)) {
1873 			ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
1874 					    "failed to get reset\n");
1875 			goto err_clk_disable;
1876 		}
1877 
1878 		reset_control_assert(rst);
1879 		udelay(2);
1880 		reset_control_deassert(rst);
1881 	}
1882 
1883 	if (spi->cfg->has_fifo)
1884 		spi->fifo_size = spi->cfg->get_fifo_size(spi);
1885 
1886 	ret = spi->cfg->config(spi);
1887 	if (ret) {
1888 		dev_err(&pdev->dev, "controller configuration failed: %d\n",
1889 			ret);
1890 		goto err_clk_disable;
1891 	}
1892 
1893 	ctrl->dev.of_node = pdev->dev.of_node;
1894 	ctrl->auto_runtime_pm = true;
1895 	ctrl->bus_num = pdev->id;
1896 	ctrl->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1897 			  SPI_3WIRE;
1898 	ctrl->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1899 	ctrl->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1900 	ctrl->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1901 	ctrl->use_gpio_descriptors = true;
1902 	ctrl->prepare_message = stm32_spi_prepare_msg;
1903 	ctrl->transfer_one = stm32_spi_transfer_one;
1904 	ctrl->unprepare_message = stm32_spi_unprepare_msg;
1905 	ctrl->flags = spi->cfg->flags;
1906 	if (STM32_SPI_DEVICE_MODE(spi))
1907 		ctrl->slave_abort = stm32h7_spi_device_abort;
1908 
1909 	spi->dma_tx = dma_request_chan(spi->dev, "tx");
1910 	if (IS_ERR(spi->dma_tx)) {
1911 		ret = PTR_ERR(spi->dma_tx);
1912 		spi->dma_tx = NULL;
1913 		if (ret == -EPROBE_DEFER)
1914 			goto err_clk_disable;
1915 
1916 		dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1917 	} else {
1918 		ctrl->dma_tx = spi->dma_tx;
1919 	}
1920 
1921 	spi->dma_rx = dma_request_chan(spi->dev, "rx");
1922 	if (IS_ERR(spi->dma_rx)) {
1923 		ret = PTR_ERR(spi->dma_rx);
1924 		spi->dma_rx = NULL;
1925 		if (ret == -EPROBE_DEFER)
1926 			goto err_dma_release;
1927 
1928 		dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1929 	} else {
1930 		ctrl->dma_rx = spi->dma_rx;
1931 	}
1932 
1933 	if (spi->dma_tx || spi->dma_rx)
1934 		ctrl->can_dma = stm32_spi_can_dma;
1935 
1936 	pm_runtime_set_autosuspend_delay(&pdev->dev,
1937 					 STM32_SPI_AUTOSUSPEND_DELAY);
1938 	pm_runtime_use_autosuspend(&pdev->dev);
1939 	pm_runtime_set_active(&pdev->dev);
1940 	pm_runtime_get_noresume(&pdev->dev);
1941 	pm_runtime_enable(&pdev->dev);
1942 
1943 	ret = spi_register_controller(ctrl);
1944 	if (ret) {
1945 		dev_err(&pdev->dev, "spi controller registration failed: %d\n",
1946 			ret);
1947 		goto err_pm_disable;
1948 	}
1949 
1950 	pm_runtime_mark_last_busy(&pdev->dev);
1951 	pm_runtime_put_autosuspend(&pdev->dev);
1952 
1953 	dev_info(&pdev->dev, "driver initialized (%s mode)\n",
1954 		 STM32_SPI_MASTER_MODE(spi) ? "master" : "device");
1955 
1956 	return 0;
1957 
1958 err_pm_disable:
1959 	pm_runtime_disable(&pdev->dev);
1960 	pm_runtime_put_noidle(&pdev->dev);
1961 	pm_runtime_set_suspended(&pdev->dev);
1962 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1963 err_dma_release:
1964 	if (spi->dma_tx)
1965 		dma_release_channel(spi->dma_tx);
1966 	if (spi->dma_rx)
1967 		dma_release_channel(spi->dma_rx);
1968 err_clk_disable:
1969 	clk_disable_unprepare(spi->clk);
1970 
1971 	return ret;
1972 }
1973 
1974 static void stm32_spi_remove(struct platform_device *pdev)
1975 {
1976 	struct spi_controller *ctrl = platform_get_drvdata(pdev);
1977 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1978 
1979 	pm_runtime_get_sync(&pdev->dev);
1980 
1981 	spi_unregister_controller(ctrl);
1982 	spi->cfg->disable(spi);
1983 
1984 	pm_runtime_disable(&pdev->dev);
1985 	pm_runtime_put_noidle(&pdev->dev);
1986 	pm_runtime_set_suspended(&pdev->dev);
1987 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1988 
1989 	if (ctrl->dma_tx)
1990 		dma_release_channel(ctrl->dma_tx);
1991 	if (ctrl->dma_rx)
1992 		dma_release_channel(ctrl->dma_rx);
1993 
1994 	clk_disable_unprepare(spi->clk);
1995 
1996 
1997 	pinctrl_pm_select_sleep_state(&pdev->dev);
1998 }
1999 
2000 static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev)
2001 {
2002 	struct spi_controller *ctrl = dev_get_drvdata(dev);
2003 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2004 
2005 	clk_disable_unprepare(spi->clk);
2006 
2007 	return pinctrl_pm_select_sleep_state(dev);
2008 }
2009 
2010 static int __maybe_unused stm32_spi_runtime_resume(struct device *dev)
2011 {
2012 	struct spi_controller *ctrl = dev_get_drvdata(dev);
2013 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2014 	int ret;
2015 
2016 	ret = pinctrl_pm_select_default_state(dev);
2017 	if (ret)
2018 		return ret;
2019 
2020 	return clk_prepare_enable(spi->clk);
2021 }
2022 
2023 static int __maybe_unused stm32_spi_suspend(struct device *dev)
2024 {
2025 	struct spi_controller *ctrl = dev_get_drvdata(dev);
2026 	int ret;
2027 
2028 	ret = spi_controller_suspend(ctrl);
2029 	if (ret)
2030 		return ret;
2031 
2032 	return pm_runtime_force_suspend(dev);
2033 }
2034 
2035 static int __maybe_unused stm32_spi_resume(struct device *dev)
2036 {
2037 	struct spi_controller *ctrl = dev_get_drvdata(dev);
2038 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2039 	int ret;
2040 
2041 	ret = pm_runtime_force_resume(dev);
2042 	if (ret)
2043 		return ret;
2044 
2045 	ret = spi_controller_resume(ctrl);
2046 	if (ret) {
2047 		clk_disable_unprepare(spi->clk);
2048 		return ret;
2049 	}
2050 
2051 	ret = pm_runtime_resume_and_get(dev);
2052 	if (ret < 0) {
2053 		dev_err(dev, "Unable to power device:%d\n", ret);
2054 		return ret;
2055 	}
2056 
2057 	spi->cfg->config(spi);
2058 
2059 	pm_runtime_mark_last_busy(dev);
2060 	pm_runtime_put_autosuspend(dev);
2061 
2062 	return 0;
2063 }
2064 
2065 static const struct dev_pm_ops stm32_spi_pm_ops = {
2066 	SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2067 	SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2068 			   stm32_spi_runtime_resume, NULL)
2069 };
2070 
2071 static struct platform_driver stm32_spi_driver = {
2072 	.probe = stm32_spi_probe,
2073 	.remove_new = stm32_spi_remove,
2074 	.driver = {
2075 		.name = DRIVER_NAME,
2076 		.pm = &stm32_spi_pm_ops,
2077 		.of_match_table = stm32_spi_of_match,
2078 	},
2079 };
2080 
2081 module_platform_driver(stm32_spi_driver);
2082 
2083 MODULE_ALIAS("platform:" DRIVER_NAME);
2084 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2085 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2086 MODULE_LICENSE("GPL v2");
2087