1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // STMicroelectronics STM32 SPI Controller driver 4 // 5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved 6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics. 7 8 #include <linux/bitfield.h> 9 #include <linux/debugfs.h> 10 #include <linux/clk.h> 11 #include <linux/delay.h> 12 #include <linux/dmaengine.h> 13 #include <linux/interrupt.h> 14 #include <linux/iopoll.h> 15 #include <linux/module.h> 16 #include <linux/of_platform.h> 17 #include <linux/pinctrl/consumer.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/reset.h> 20 #include <linux/spi/spi.h> 21 22 #define DRIVER_NAME "spi_stm32" 23 24 /* STM32F4 SPI registers */ 25 #define STM32F4_SPI_CR1 0x00 26 #define STM32F4_SPI_CR2 0x04 27 #define STM32F4_SPI_SR 0x08 28 #define STM32F4_SPI_DR 0x0C 29 #define STM32F4_SPI_I2SCFGR 0x1C 30 31 /* STM32F4_SPI_CR1 bit fields */ 32 #define STM32F4_SPI_CR1_CPHA BIT(0) 33 #define STM32F4_SPI_CR1_CPOL BIT(1) 34 #define STM32F4_SPI_CR1_MSTR BIT(2) 35 #define STM32F4_SPI_CR1_BR_SHIFT 3 36 #define STM32F4_SPI_CR1_BR GENMASK(5, 3) 37 #define STM32F4_SPI_CR1_SPE BIT(6) 38 #define STM32F4_SPI_CR1_LSBFRST BIT(7) 39 #define STM32F4_SPI_CR1_SSI BIT(8) 40 #define STM32F4_SPI_CR1_SSM BIT(9) 41 #define STM32F4_SPI_CR1_RXONLY BIT(10) 42 #define STM32F4_SPI_CR1_DFF BIT(11) 43 #define STM32F4_SPI_CR1_CRCNEXT BIT(12) 44 #define STM32F4_SPI_CR1_CRCEN BIT(13) 45 #define STM32F4_SPI_CR1_BIDIOE BIT(14) 46 #define STM32F4_SPI_CR1_BIDIMODE BIT(15) 47 #define STM32F4_SPI_CR1_BR_MIN 0 48 #define STM32F4_SPI_CR1_BR_MAX (GENMASK(5, 3) >> 3) 49 50 /* STM32F4_SPI_CR2 bit fields */ 51 #define STM32F4_SPI_CR2_RXDMAEN BIT(0) 52 #define STM32F4_SPI_CR2_TXDMAEN BIT(1) 53 #define STM32F4_SPI_CR2_SSOE BIT(2) 54 #define STM32F4_SPI_CR2_FRF BIT(4) 55 #define STM32F4_SPI_CR2_ERRIE BIT(5) 56 #define STM32F4_SPI_CR2_RXNEIE BIT(6) 57 #define STM32F4_SPI_CR2_TXEIE BIT(7) 58 59 /* STM32F4_SPI_SR bit fields */ 60 #define STM32F4_SPI_SR_RXNE BIT(0) 61 #define STM32F4_SPI_SR_TXE BIT(1) 62 #define STM32F4_SPI_SR_CHSIDE BIT(2) 63 #define STM32F4_SPI_SR_UDR BIT(3) 64 #define STM32F4_SPI_SR_CRCERR BIT(4) 65 #define STM32F4_SPI_SR_MODF BIT(5) 66 #define STM32F4_SPI_SR_OVR BIT(6) 67 #define STM32F4_SPI_SR_BSY BIT(7) 68 #define STM32F4_SPI_SR_FRE BIT(8) 69 70 /* STM32F4_SPI_I2SCFGR bit fields */ 71 #define STM32F4_SPI_I2SCFGR_I2SMOD BIT(11) 72 73 /* STM32F4 SPI Baud Rate min/max divisor */ 74 #define STM32F4_SPI_BR_DIV_MIN (2 << STM32F4_SPI_CR1_BR_MIN) 75 #define STM32F4_SPI_BR_DIV_MAX (2 << STM32F4_SPI_CR1_BR_MAX) 76 77 /* STM32H7 SPI registers */ 78 #define STM32H7_SPI_CR1 0x00 79 #define STM32H7_SPI_CR2 0x04 80 #define STM32H7_SPI_CFG1 0x08 81 #define STM32H7_SPI_CFG2 0x0C 82 #define STM32H7_SPI_IER 0x10 83 #define STM32H7_SPI_SR 0x14 84 #define STM32H7_SPI_IFCR 0x18 85 #define STM32H7_SPI_TXDR 0x20 86 #define STM32H7_SPI_RXDR 0x30 87 #define STM32H7_SPI_I2SCFGR 0x50 88 89 /* STM32H7_SPI_CR1 bit fields */ 90 #define STM32H7_SPI_CR1_SPE BIT(0) 91 #define STM32H7_SPI_CR1_MASRX BIT(8) 92 #define STM32H7_SPI_CR1_CSTART BIT(9) 93 #define STM32H7_SPI_CR1_CSUSP BIT(10) 94 #define STM32H7_SPI_CR1_HDDIR BIT(11) 95 #define STM32H7_SPI_CR1_SSI BIT(12) 96 97 /* STM32H7_SPI_CR2 bit fields */ 98 #define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0) 99 #define STM32H7_SPI_TSIZE_MAX GENMASK(15, 0) 100 101 /* STM32H7_SPI_CFG1 bit fields */ 102 #define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0) 103 #define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5) 104 #define STM32H7_SPI_CFG1_RXDMAEN BIT(14) 105 #define STM32H7_SPI_CFG1_TXDMAEN BIT(15) 106 #define STM32H7_SPI_CFG1_MBR GENMASK(30, 28) 107 #define STM32H7_SPI_CFG1_MBR_SHIFT 28 108 #define STM32H7_SPI_CFG1_MBR_MIN 0 109 #define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28) 110 111 /* STM32H7_SPI_CFG2 bit fields */ 112 #define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4) 113 #define STM32H7_SPI_CFG2_COMM GENMASK(18, 17) 114 #define STM32H7_SPI_CFG2_SP GENMASK(21, 19) 115 #define STM32H7_SPI_CFG2_MASTER BIT(22) 116 #define STM32H7_SPI_CFG2_LSBFRST BIT(23) 117 #define STM32H7_SPI_CFG2_CPHA BIT(24) 118 #define STM32H7_SPI_CFG2_CPOL BIT(25) 119 #define STM32H7_SPI_CFG2_SSM BIT(26) 120 #define STM32H7_SPI_CFG2_SSIOP BIT(28) 121 #define STM32H7_SPI_CFG2_AFCNTR BIT(31) 122 123 /* STM32H7_SPI_IER bit fields */ 124 #define STM32H7_SPI_IER_RXPIE BIT(0) 125 #define STM32H7_SPI_IER_TXPIE BIT(1) 126 #define STM32H7_SPI_IER_DXPIE BIT(2) 127 #define STM32H7_SPI_IER_EOTIE BIT(3) 128 #define STM32H7_SPI_IER_TXTFIE BIT(4) 129 #define STM32H7_SPI_IER_OVRIE BIT(6) 130 #define STM32H7_SPI_IER_MODFIE BIT(9) 131 #define STM32H7_SPI_IER_ALL GENMASK(10, 0) 132 133 /* STM32H7_SPI_SR bit fields */ 134 #define STM32H7_SPI_SR_RXP BIT(0) 135 #define STM32H7_SPI_SR_TXP BIT(1) 136 #define STM32H7_SPI_SR_EOT BIT(3) 137 #define STM32H7_SPI_SR_OVR BIT(6) 138 #define STM32H7_SPI_SR_MODF BIT(9) 139 #define STM32H7_SPI_SR_SUSP BIT(11) 140 #define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13) 141 #define STM32H7_SPI_SR_RXWNE BIT(15) 142 143 /* STM32H7_SPI_IFCR bit fields */ 144 #define STM32H7_SPI_IFCR_ALL GENMASK(11, 3) 145 146 /* STM32H7_SPI_I2SCFGR bit fields */ 147 #define STM32H7_SPI_I2SCFGR_I2SMOD BIT(0) 148 149 /* STM32H7 SPI Master Baud Rate min/max divisor */ 150 #define STM32H7_SPI_MBR_DIV_MIN (2 << STM32H7_SPI_CFG1_MBR_MIN) 151 #define STM32H7_SPI_MBR_DIV_MAX (2 << STM32H7_SPI_CFG1_MBR_MAX) 152 153 /* STM32H7 SPI Communication mode */ 154 #define STM32H7_SPI_FULL_DUPLEX 0 155 #define STM32H7_SPI_SIMPLEX_TX 1 156 #define STM32H7_SPI_SIMPLEX_RX 2 157 #define STM32H7_SPI_HALF_DUPLEX 3 158 159 /* SPI Communication type */ 160 #define SPI_FULL_DUPLEX 0 161 #define SPI_SIMPLEX_TX 1 162 #define SPI_SIMPLEX_RX 2 163 #define SPI_3WIRE_TX 3 164 #define SPI_3WIRE_RX 4 165 166 #define STM32_SPI_AUTOSUSPEND_DELAY 1 /* 1 ms */ 167 168 /* 169 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers 170 * without fifo buffers. 171 */ 172 #define SPI_DMA_MIN_BYTES 16 173 174 /* STM32 SPI driver helpers */ 175 #define STM32_SPI_MASTER_MODE(stm32_spi) (!(stm32_spi)->device_mode) 176 #define STM32_SPI_DEVICE_MODE(stm32_spi) ((stm32_spi)->device_mode) 177 178 /** 179 * struct stm32_spi_reg - stm32 SPI register & bitfield desc 180 * @reg: register offset 181 * @mask: bitfield mask 182 * @shift: left shift 183 */ 184 struct stm32_spi_reg { 185 int reg; 186 int mask; 187 int shift; 188 }; 189 190 /** 191 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data 192 * @en: enable register and SPI enable bit 193 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit 194 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit 195 * @cpol: clock polarity register and polarity bit 196 * @cpha: clock phase register and phase bit 197 * @lsb_first: LSB transmitted first register and bit 198 * @cs_high: chips select active value 199 * @br: baud rate register and bitfields 200 * @rx: SPI RX data register 201 * @tx: SPI TX data register 202 */ 203 struct stm32_spi_regspec { 204 const struct stm32_spi_reg en; 205 const struct stm32_spi_reg dma_rx_en; 206 const struct stm32_spi_reg dma_tx_en; 207 const struct stm32_spi_reg cpol; 208 const struct stm32_spi_reg cpha; 209 const struct stm32_spi_reg lsb_first; 210 const struct stm32_spi_reg cs_high; 211 const struct stm32_spi_reg br; 212 const struct stm32_spi_reg rx; 213 const struct stm32_spi_reg tx; 214 }; 215 216 struct stm32_spi; 217 218 /** 219 * struct stm32_spi_cfg - stm32 compatible configuration data 220 * @regs: registers descriptions 221 * @get_fifo_size: routine to get fifo size 222 * @get_bpw_mask: routine to get bits per word mask 223 * @disable: routine to disable controller 224 * @config: routine to configure controller as SPI Master 225 * @set_bpw: routine to configure registers to for bits per word 226 * @set_mode: routine to configure registers to desired mode 227 * @set_data_idleness: optional routine to configure registers to desired idle 228 * time between frames (if driver has this functionality) 229 * @set_number_of_data: optional routine to configure registers to desired 230 * number of data (if driver has this functionality) 231 * @transfer_one_dma_start: routine to start transfer a single spi_transfer 232 * using DMA 233 * @dma_rx_cb: routine to call after DMA RX channel operation is complete 234 * @dma_tx_cb: routine to call after DMA TX channel operation is complete 235 * @transfer_one_irq: routine to configure interrupts for driver 236 * @irq_handler_event: Interrupt handler for SPI controller events 237 * @irq_handler_thread: thread of interrupt handler for SPI controller 238 * @baud_rate_div_min: minimum baud rate divisor 239 * @baud_rate_div_max: maximum baud rate divisor 240 * @has_fifo: boolean to know if fifo is used for driver 241 * @has_device_mode: is this compatible capable to switch on device mode 242 * @flags: compatible specific SPI controller flags used at registration time 243 */ 244 struct stm32_spi_cfg { 245 const struct stm32_spi_regspec *regs; 246 int (*get_fifo_size)(struct stm32_spi *spi); 247 int (*get_bpw_mask)(struct stm32_spi *spi); 248 void (*disable)(struct stm32_spi *spi); 249 int (*config)(struct stm32_spi *spi); 250 void (*set_bpw)(struct stm32_spi *spi); 251 int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type); 252 void (*set_data_idleness)(struct stm32_spi *spi, u32 length); 253 int (*set_number_of_data)(struct stm32_spi *spi, u32 length); 254 void (*transfer_one_dma_start)(struct stm32_spi *spi); 255 void (*dma_rx_cb)(void *data); 256 void (*dma_tx_cb)(void *data); 257 int (*transfer_one_irq)(struct stm32_spi *spi); 258 irqreturn_t (*irq_handler_event)(int irq, void *dev_id); 259 irqreturn_t (*irq_handler_thread)(int irq, void *dev_id); 260 unsigned int baud_rate_div_min; 261 unsigned int baud_rate_div_max; 262 bool has_fifo; 263 bool has_device_mode; 264 u16 flags; 265 }; 266 267 /** 268 * struct stm32_spi - private data of the SPI controller 269 * @dev: driver model representation of the controller 270 * @ctrl: controller interface 271 * @cfg: compatible configuration data 272 * @base: virtual memory area 273 * @clk: hw kernel clock feeding the SPI clock generator 274 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator 275 * @lock: prevent I/O concurrent access 276 * @irq: SPI controller interrupt line 277 * @fifo_size: size of the embedded fifo in bytes 278 * @cur_midi: master inter-data idleness in ns 279 * @cur_speed: speed configured in Hz 280 * @cur_bpw: number of bits in a single SPI data frame 281 * @cur_fthlv: fifo threshold level (data frames in a single data packet) 282 * @cur_comm: SPI communication mode 283 * @cur_xferlen: current transfer length in bytes 284 * @cur_usedma: boolean to know if dma is used in current transfer 285 * @tx_buf: data to be written, or NULL 286 * @rx_buf: data to be read, or NULL 287 * @tx_len: number of data to be written in bytes 288 * @rx_len: number of data to be read in bytes 289 * @dma_tx: dma channel for TX transfer 290 * @dma_rx: dma channel for RX transfer 291 * @phys_addr: SPI registers physical base address 292 * @device_mode: the controller is configured as SPI device 293 */ 294 struct stm32_spi { 295 struct device *dev; 296 struct spi_controller *ctrl; 297 const struct stm32_spi_cfg *cfg; 298 void __iomem *base; 299 struct clk *clk; 300 u32 clk_rate; 301 spinlock_t lock; /* prevent I/O concurrent access */ 302 int irq; 303 unsigned int fifo_size; 304 305 unsigned int cur_midi; 306 unsigned int cur_speed; 307 unsigned int cur_bpw; 308 unsigned int cur_fthlv; 309 unsigned int cur_comm; 310 unsigned int cur_xferlen; 311 bool cur_usedma; 312 313 const void *tx_buf; 314 void *rx_buf; 315 int tx_len; 316 int rx_len; 317 struct dma_chan *dma_tx; 318 struct dma_chan *dma_rx; 319 dma_addr_t phys_addr; 320 321 bool device_mode; 322 }; 323 324 static const struct stm32_spi_regspec stm32f4_spi_regspec = { 325 .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE }, 326 327 .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN }, 328 .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN }, 329 330 .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL }, 331 .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA }, 332 .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST }, 333 .cs_high = {}, 334 .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT }, 335 336 .rx = { STM32F4_SPI_DR }, 337 .tx = { STM32F4_SPI_DR }, 338 }; 339 340 static const struct stm32_spi_regspec stm32h7_spi_regspec = { 341 /* SPI data transfer is enabled but spi_ker_ck is idle. 342 * CFG1 and CFG2 registers are write protected when SPE is enabled. 343 */ 344 .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE }, 345 346 .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN }, 347 .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN }, 348 349 .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL }, 350 .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA }, 351 .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST }, 352 .cs_high = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_SSIOP }, 353 .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR, 354 STM32H7_SPI_CFG1_MBR_SHIFT }, 355 356 .rx = { STM32H7_SPI_RXDR }, 357 .tx = { STM32H7_SPI_TXDR }, 358 }; 359 360 static inline void stm32_spi_set_bits(struct stm32_spi *spi, 361 u32 offset, u32 bits) 362 { 363 writel_relaxed(readl_relaxed(spi->base + offset) | bits, 364 spi->base + offset); 365 } 366 367 static inline void stm32_spi_clr_bits(struct stm32_spi *spi, 368 u32 offset, u32 bits) 369 { 370 writel_relaxed(readl_relaxed(spi->base + offset) & ~bits, 371 spi->base + offset); 372 } 373 374 /** 375 * stm32h7_spi_get_fifo_size - Return fifo size 376 * @spi: pointer to the spi controller data structure 377 */ 378 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi) 379 { 380 unsigned long flags; 381 u32 count = 0; 382 383 spin_lock_irqsave(&spi->lock, flags); 384 385 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 386 387 while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP) 388 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR); 389 390 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 391 392 spin_unlock_irqrestore(&spi->lock, flags); 393 394 dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count); 395 396 return count; 397 } 398 399 /** 400 * stm32f4_spi_get_bpw_mask - Return bits per word mask 401 * @spi: pointer to the spi controller data structure 402 */ 403 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi) 404 { 405 dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n"); 406 return SPI_BPW_MASK(8) | SPI_BPW_MASK(16); 407 } 408 409 /** 410 * stm32h7_spi_get_bpw_mask - Return bits per word mask 411 * @spi: pointer to the spi controller data structure 412 */ 413 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi) 414 { 415 unsigned long flags; 416 u32 cfg1, max_bpw; 417 418 spin_lock_irqsave(&spi->lock, flags); 419 420 /* 421 * The most significant bit at DSIZE bit field is reserved when the 422 * maximum data size of periperal instances is limited to 16-bit 423 */ 424 stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE); 425 426 cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1); 427 max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1; 428 429 spin_unlock_irqrestore(&spi->lock, flags); 430 431 dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw); 432 433 return SPI_BPW_RANGE_MASK(4, max_bpw); 434 } 435 436 /** 437 * stm32_spi_prepare_mbr - Determine baud rate divisor value 438 * @spi: pointer to the spi controller data structure 439 * @speed_hz: requested speed 440 * @min_div: minimum baud rate divisor 441 * @max_div: maximum baud rate divisor 442 * 443 * Return baud rate divisor value in case of success or -EINVAL 444 */ 445 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz, 446 u32 min_div, u32 max_div) 447 { 448 u32 div, mbrdiv; 449 450 /* Ensure spi->clk_rate is even */ 451 div = DIV_ROUND_CLOSEST(spi->clk_rate & ~0x1, speed_hz); 452 453 /* 454 * SPI framework set xfer->speed_hz to ctrl->max_speed_hz if 455 * xfer->speed_hz is greater than ctrl->max_speed_hz, and it returns 456 * an error when xfer->speed_hz is lower than ctrl->min_speed_hz, so 457 * no need to check it there. 458 * However, we need to ensure the following calculations. 459 */ 460 if ((div < min_div) || (div > max_div)) 461 return -EINVAL; 462 463 /* Determine the first power of 2 greater than or equal to div */ 464 if (div & (div - 1)) 465 mbrdiv = fls(div); 466 else 467 mbrdiv = fls(div) - 1; 468 469 spi->cur_speed = spi->clk_rate / (1 << mbrdiv); 470 471 return mbrdiv - 1; 472 } 473 474 /** 475 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level 476 * @spi: pointer to the spi controller data structure 477 * @xfer_len: length of the message to be transferred 478 */ 479 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len) 480 { 481 u32 packet, bpw; 482 483 /* data packet should not exceed 1/2 of fifo space */ 484 packet = clamp(xfer_len, 1U, spi->fifo_size / 2); 485 486 /* align packet size with data registers access */ 487 bpw = DIV_ROUND_UP(spi->cur_bpw, 8); 488 return DIV_ROUND_UP(packet, bpw); 489 } 490 491 /** 492 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register 493 * @spi: pointer to the spi controller data structure 494 * 495 * Read from tx_buf depends on remaining bytes to avoid to read beyond 496 * tx_buf end. 497 */ 498 static void stm32f4_spi_write_tx(struct stm32_spi *spi) 499 { 500 if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) & 501 STM32F4_SPI_SR_TXE)) { 502 u32 offs = spi->cur_xferlen - spi->tx_len; 503 504 if (spi->cur_bpw == 16) { 505 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs); 506 507 writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR); 508 spi->tx_len -= sizeof(u16); 509 } else { 510 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs); 511 512 writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR); 513 spi->tx_len -= sizeof(u8); 514 } 515 } 516 517 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len); 518 } 519 520 /** 521 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register 522 * @spi: pointer to the spi controller data structure 523 * 524 * Read from tx_buf depends on remaining bytes to avoid to read beyond 525 * tx_buf end. 526 */ 527 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi) 528 { 529 while ((spi->tx_len > 0) && 530 (readl_relaxed(spi->base + STM32H7_SPI_SR) & 531 STM32H7_SPI_SR_TXP)) { 532 u32 offs = spi->cur_xferlen - spi->tx_len; 533 534 if (spi->tx_len >= sizeof(u32)) { 535 const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs); 536 537 writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR); 538 spi->tx_len -= sizeof(u32); 539 } else if (spi->tx_len >= sizeof(u16)) { 540 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs); 541 542 writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR); 543 spi->tx_len -= sizeof(u16); 544 } else { 545 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs); 546 547 writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR); 548 spi->tx_len -= sizeof(u8); 549 } 550 } 551 552 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len); 553 } 554 555 /** 556 * stm32f4_spi_read_rx - Read bytes from Receive Data Register 557 * @spi: pointer to the spi controller data structure 558 * 559 * Write in rx_buf depends on remaining bytes to avoid to write beyond 560 * rx_buf end. 561 */ 562 static void stm32f4_spi_read_rx(struct stm32_spi *spi) 563 { 564 if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) & 565 STM32F4_SPI_SR_RXNE)) { 566 u32 offs = spi->cur_xferlen - spi->rx_len; 567 568 if (spi->cur_bpw == 16) { 569 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs); 570 571 *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR); 572 spi->rx_len -= sizeof(u16); 573 } else { 574 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs); 575 576 *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR); 577 spi->rx_len -= sizeof(u8); 578 } 579 } 580 581 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len); 582 } 583 584 /** 585 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register 586 * @spi: pointer to the spi controller data structure 587 * 588 * Write in rx_buf depends on remaining bytes to avoid to write beyond 589 * rx_buf end. 590 */ 591 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi) 592 { 593 u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 594 u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr); 595 596 while ((spi->rx_len > 0) && 597 ((sr & STM32H7_SPI_SR_RXP) || 598 ((sr & STM32H7_SPI_SR_EOT) && 599 ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) { 600 u32 offs = spi->cur_xferlen - spi->rx_len; 601 602 if ((spi->rx_len >= sizeof(u32)) || 603 (sr & STM32H7_SPI_SR_RXWNE)) { 604 u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs); 605 606 *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR); 607 spi->rx_len -= sizeof(u32); 608 } else if ((spi->rx_len >= sizeof(u16)) || 609 (!(sr & STM32H7_SPI_SR_RXWNE) && 610 (rxplvl >= 2 || spi->cur_bpw > 8))) { 611 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs); 612 613 *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR); 614 spi->rx_len -= sizeof(u16); 615 } else { 616 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs); 617 618 *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR); 619 spi->rx_len -= sizeof(u8); 620 } 621 622 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 623 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr); 624 } 625 626 dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n", 627 __func__, spi->rx_len, sr); 628 } 629 630 /** 631 * stm32_spi_enable - Enable SPI controller 632 * @spi: pointer to the spi controller data structure 633 */ 634 static void stm32_spi_enable(struct stm32_spi *spi) 635 { 636 dev_dbg(spi->dev, "enable controller\n"); 637 638 stm32_spi_set_bits(spi, spi->cfg->regs->en.reg, 639 spi->cfg->regs->en.mask); 640 } 641 642 /** 643 * stm32f4_spi_disable - Disable SPI controller 644 * @spi: pointer to the spi controller data structure 645 */ 646 static void stm32f4_spi_disable(struct stm32_spi *spi) 647 { 648 unsigned long flags; 649 u32 sr; 650 651 dev_dbg(spi->dev, "disable controller\n"); 652 653 spin_lock_irqsave(&spi->lock, flags); 654 655 if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) & 656 STM32F4_SPI_CR1_SPE)) { 657 spin_unlock_irqrestore(&spi->lock, flags); 658 return; 659 } 660 661 /* Disable interrupts */ 662 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE | 663 STM32F4_SPI_CR2_RXNEIE | 664 STM32F4_SPI_CR2_ERRIE); 665 666 /* Wait until BSY = 0 */ 667 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR, 668 sr, !(sr & STM32F4_SPI_SR_BSY), 669 10, 100000) < 0) { 670 dev_warn(spi->dev, "disabling condition timeout\n"); 671 } 672 673 if (spi->cur_usedma && spi->dma_tx) 674 dmaengine_terminate_async(spi->dma_tx); 675 if (spi->cur_usedma && spi->dma_rx) 676 dmaengine_terminate_async(spi->dma_rx); 677 678 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE); 679 680 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN | 681 STM32F4_SPI_CR2_RXDMAEN); 682 683 /* Sequence to clear OVR flag */ 684 readl_relaxed(spi->base + STM32F4_SPI_DR); 685 readl_relaxed(spi->base + STM32F4_SPI_SR); 686 687 spin_unlock_irqrestore(&spi->lock, flags); 688 } 689 690 /** 691 * stm32h7_spi_disable - Disable SPI controller 692 * @spi: pointer to the spi controller data structure 693 * 694 * RX-Fifo is flushed when SPI controller is disabled. 695 */ 696 static void stm32h7_spi_disable(struct stm32_spi *spi) 697 { 698 unsigned long flags; 699 u32 cr1; 700 701 dev_dbg(spi->dev, "disable controller\n"); 702 703 spin_lock_irqsave(&spi->lock, flags); 704 705 cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1); 706 707 if (!(cr1 & STM32H7_SPI_CR1_SPE)) { 708 spin_unlock_irqrestore(&spi->lock, flags); 709 return; 710 } 711 712 if (spi->cur_usedma && spi->dma_tx) 713 dmaengine_terminate_async(spi->dma_tx); 714 if (spi->cur_usedma && spi->dma_rx) 715 dmaengine_terminate_async(spi->dma_rx); 716 717 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 718 719 stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN | 720 STM32H7_SPI_CFG1_RXDMAEN); 721 722 /* Disable interrupts and clear status flags */ 723 writel_relaxed(0, spi->base + STM32H7_SPI_IER); 724 writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR); 725 726 spin_unlock_irqrestore(&spi->lock, flags); 727 } 728 729 /** 730 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use 731 * @ctrl: controller interface 732 * @spi_dev: pointer to the spi device 733 * @transfer: pointer to spi transfer 734 * 735 * If driver has fifo and the current transfer size is greater than fifo size, 736 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes. 737 */ 738 static bool stm32_spi_can_dma(struct spi_controller *ctrl, 739 struct spi_device *spi_dev, 740 struct spi_transfer *transfer) 741 { 742 unsigned int dma_size; 743 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 744 745 if (spi->cfg->has_fifo) 746 dma_size = spi->fifo_size; 747 else 748 dma_size = SPI_DMA_MIN_BYTES; 749 750 dev_dbg(spi->dev, "%s: %s\n", __func__, 751 (transfer->len > dma_size) ? "true" : "false"); 752 753 return (transfer->len > dma_size); 754 } 755 756 /** 757 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events 758 * @irq: interrupt line 759 * @dev_id: SPI controller ctrl interface 760 */ 761 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id) 762 { 763 struct spi_controller *ctrl = dev_id; 764 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 765 u32 sr, mask = 0; 766 bool end = false; 767 768 spin_lock(&spi->lock); 769 770 sr = readl_relaxed(spi->base + STM32F4_SPI_SR); 771 /* 772 * BSY flag is not handled in interrupt but it is normal behavior when 773 * this flag is set. 774 */ 775 sr &= ~STM32F4_SPI_SR_BSY; 776 777 if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX || 778 spi->cur_comm == SPI_3WIRE_TX)) { 779 /* OVR flag shouldn't be handled for TX only mode */ 780 sr &= ~(STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE); 781 mask |= STM32F4_SPI_SR_TXE; 782 } 783 784 if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX || 785 spi->cur_comm == SPI_SIMPLEX_RX || 786 spi->cur_comm == SPI_3WIRE_RX)) { 787 /* TXE flag is set and is handled when RXNE flag occurs */ 788 sr &= ~STM32F4_SPI_SR_TXE; 789 mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR; 790 } 791 792 if (!(sr & mask)) { 793 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr); 794 spin_unlock(&spi->lock); 795 return IRQ_NONE; 796 } 797 798 if (sr & STM32F4_SPI_SR_OVR) { 799 dev_warn(spi->dev, "Overrun: received value discarded\n"); 800 801 /* Sequence to clear OVR flag */ 802 readl_relaxed(spi->base + STM32F4_SPI_DR); 803 readl_relaxed(spi->base + STM32F4_SPI_SR); 804 805 /* 806 * If overrun is detected, it means that something went wrong, 807 * so stop the current transfer. Transfer can wait for next 808 * RXNE but DR is already read and end never happens. 809 */ 810 end = true; 811 goto end_irq; 812 } 813 814 if (sr & STM32F4_SPI_SR_TXE) { 815 if (spi->tx_buf) 816 stm32f4_spi_write_tx(spi); 817 if (spi->tx_len == 0) 818 end = true; 819 } 820 821 if (sr & STM32F4_SPI_SR_RXNE) { 822 stm32f4_spi_read_rx(spi); 823 if (spi->rx_len == 0) 824 end = true; 825 else if (spi->tx_buf)/* Load data for discontinuous mode */ 826 stm32f4_spi_write_tx(spi); 827 } 828 829 end_irq: 830 if (end) { 831 /* Immediately disable interrupts to do not generate new one */ 832 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, 833 STM32F4_SPI_CR2_TXEIE | 834 STM32F4_SPI_CR2_RXNEIE | 835 STM32F4_SPI_CR2_ERRIE); 836 spin_unlock(&spi->lock); 837 return IRQ_WAKE_THREAD; 838 } 839 840 spin_unlock(&spi->lock); 841 return IRQ_HANDLED; 842 } 843 844 /** 845 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller 846 * @irq: interrupt line 847 * @dev_id: SPI controller interface 848 */ 849 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id) 850 { 851 struct spi_controller *ctrl = dev_id; 852 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 853 854 spi_finalize_current_transfer(ctrl); 855 stm32f4_spi_disable(spi); 856 857 return IRQ_HANDLED; 858 } 859 860 /** 861 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller 862 * @irq: interrupt line 863 * @dev_id: SPI controller interface 864 */ 865 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id) 866 { 867 struct spi_controller *ctrl = dev_id; 868 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 869 u32 sr, ier, mask; 870 unsigned long flags; 871 bool end = false; 872 873 spin_lock_irqsave(&spi->lock, flags); 874 875 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 876 ier = readl_relaxed(spi->base + STM32H7_SPI_IER); 877 878 mask = ier; 879 /* 880 * EOTIE enables irq from EOT, SUSP and TXC events. We need to set 881 * SUSP to acknowledge it later. TXC is automatically cleared 882 */ 883 884 mask |= STM32H7_SPI_SR_SUSP; 885 /* 886 * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP 887 * are set. So in case of Full-Duplex, need to poll TXP and RXP event. 888 */ 889 if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma) 890 mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP; 891 892 if (!(sr & mask)) { 893 dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n", 894 sr, ier); 895 spin_unlock_irqrestore(&spi->lock, flags); 896 return IRQ_NONE; 897 } 898 899 if (sr & STM32H7_SPI_SR_SUSP) { 900 static DEFINE_RATELIMIT_STATE(rs, 901 DEFAULT_RATELIMIT_INTERVAL * 10, 902 1); 903 ratelimit_set_flags(&rs, RATELIMIT_MSG_ON_RELEASE); 904 if (__ratelimit(&rs)) 905 dev_dbg_ratelimited(spi->dev, "Communication suspended\n"); 906 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 907 stm32h7_spi_read_rxfifo(spi); 908 /* 909 * If communication is suspended while using DMA, it means 910 * that something went wrong, so stop the current transfer 911 */ 912 if (spi->cur_usedma) 913 end = true; 914 } 915 916 if (sr & STM32H7_SPI_SR_MODF) { 917 dev_warn(spi->dev, "Mode fault: transfer aborted\n"); 918 end = true; 919 } 920 921 if (sr & STM32H7_SPI_SR_OVR) { 922 dev_err(spi->dev, "Overrun: RX data lost\n"); 923 end = true; 924 } 925 926 if (sr & STM32H7_SPI_SR_EOT) { 927 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 928 stm32h7_spi_read_rxfifo(spi); 929 if (!spi->cur_usedma || 930 (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX)) 931 end = true; 932 } 933 934 if (sr & STM32H7_SPI_SR_TXP) 935 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0))) 936 stm32h7_spi_write_txfifo(spi); 937 938 if (sr & STM32H7_SPI_SR_RXP) 939 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 940 stm32h7_spi_read_rxfifo(spi); 941 942 writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR); 943 944 spin_unlock_irqrestore(&spi->lock, flags); 945 946 if (end) { 947 stm32h7_spi_disable(spi); 948 spi_finalize_current_transfer(ctrl); 949 } 950 951 return IRQ_HANDLED; 952 } 953 954 /** 955 * stm32_spi_prepare_msg - set up the controller to transfer a single message 956 * @ctrl: controller interface 957 * @msg: pointer to spi message 958 */ 959 static int stm32_spi_prepare_msg(struct spi_controller *ctrl, 960 struct spi_message *msg) 961 { 962 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 963 struct spi_device *spi_dev = msg->spi; 964 struct device_node *np = spi_dev->dev.of_node; 965 unsigned long flags; 966 u32 clrb = 0, setb = 0; 967 968 /* SPI slave device may need time between data frames */ 969 spi->cur_midi = 0; 970 if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi)) 971 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi); 972 973 if (spi_dev->mode & SPI_CPOL) 974 setb |= spi->cfg->regs->cpol.mask; 975 else 976 clrb |= spi->cfg->regs->cpol.mask; 977 978 if (spi_dev->mode & SPI_CPHA) 979 setb |= spi->cfg->regs->cpha.mask; 980 else 981 clrb |= spi->cfg->regs->cpha.mask; 982 983 if (spi_dev->mode & SPI_LSB_FIRST) 984 setb |= spi->cfg->regs->lsb_first.mask; 985 else 986 clrb |= spi->cfg->regs->lsb_first.mask; 987 988 if (STM32_SPI_DEVICE_MODE(spi) && spi_dev->mode & SPI_CS_HIGH) 989 setb |= spi->cfg->regs->cs_high.mask; 990 else 991 clrb |= spi->cfg->regs->cs_high.mask; 992 993 dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n", 994 !!(spi_dev->mode & SPI_CPOL), 995 !!(spi_dev->mode & SPI_CPHA), 996 !!(spi_dev->mode & SPI_LSB_FIRST), 997 !!(spi_dev->mode & SPI_CS_HIGH)); 998 999 /* On STM32H7, messages should not exceed a maximum size setted 1000 * afterward via the set_number_of_data function. In order to 1001 * ensure that, split large messages into several messages 1002 */ 1003 if (spi->cfg->set_number_of_data) { 1004 int ret; 1005 1006 ret = spi_split_transfers_maxwords(ctrl, msg, 1007 STM32H7_SPI_TSIZE_MAX, 1008 GFP_KERNEL | GFP_DMA); 1009 if (ret) 1010 return ret; 1011 } 1012 1013 spin_lock_irqsave(&spi->lock, flags); 1014 1015 /* CPOL, CPHA and LSB FIRST bits have common register */ 1016 if (clrb || setb) 1017 writel_relaxed( 1018 (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) & 1019 ~clrb) | setb, 1020 spi->base + spi->cfg->regs->cpol.reg); 1021 1022 spin_unlock_irqrestore(&spi->lock, flags); 1023 1024 return 0; 1025 } 1026 1027 /** 1028 * stm32f4_spi_dma_tx_cb - dma callback 1029 * @data: pointer to the spi controller data structure 1030 * 1031 * DMA callback is called when the transfer is complete for DMA TX channel. 1032 */ 1033 static void stm32f4_spi_dma_tx_cb(void *data) 1034 { 1035 struct stm32_spi *spi = data; 1036 1037 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) { 1038 spi_finalize_current_transfer(spi->ctrl); 1039 stm32f4_spi_disable(spi); 1040 } 1041 } 1042 1043 /** 1044 * stm32_spi_dma_rx_cb - dma callback 1045 * @data: pointer to the spi controller data structure 1046 * 1047 * DMA callback is called when the transfer is complete for DMA RX channel. 1048 */ 1049 static void stm32_spi_dma_rx_cb(void *data) 1050 { 1051 struct stm32_spi *spi = data; 1052 1053 spi_finalize_current_transfer(spi->ctrl); 1054 spi->cfg->disable(spi); 1055 } 1056 1057 /** 1058 * stm32_spi_dma_config - configure dma slave channel depending on current 1059 * transfer bits_per_word. 1060 * @spi: pointer to the spi controller data structure 1061 * @dma_conf: pointer to the dma_slave_config structure 1062 * @dir: direction of the dma transfer 1063 */ 1064 static void stm32_spi_dma_config(struct stm32_spi *spi, 1065 struct dma_slave_config *dma_conf, 1066 enum dma_transfer_direction dir) 1067 { 1068 enum dma_slave_buswidth buswidth; 1069 u32 maxburst; 1070 1071 if (spi->cur_bpw <= 8) 1072 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; 1073 else if (spi->cur_bpw <= 16) 1074 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; 1075 else 1076 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES; 1077 1078 if (spi->cfg->has_fifo) { 1079 /* Valid for DMA Half or Full Fifo threshold */ 1080 if (spi->cur_fthlv == 2) 1081 maxburst = 1; 1082 else 1083 maxburst = spi->cur_fthlv; 1084 } else { 1085 maxburst = 1; 1086 } 1087 1088 memset(dma_conf, 0, sizeof(struct dma_slave_config)); 1089 dma_conf->direction = dir; 1090 if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */ 1091 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg; 1092 dma_conf->src_addr_width = buswidth; 1093 dma_conf->src_maxburst = maxburst; 1094 1095 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n", 1096 buswidth, maxburst); 1097 } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */ 1098 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg; 1099 dma_conf->dst_addr_width = buswidth; 1100 dma_conf->dst_maxburst = maxburst; 1101 1102 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n", 1103 buswidth, maxburst); 1104 } 1105 } 1106 1107 /** 1108 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using 1109 * interrupts 1110 * @spi: pointer to the spi controller data structure 1111 * 1112 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1113 * in progress. 1114 */ 1115 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi) 1116 { 1117 unsigned long flags; 1118 u32 cr2 = 0; 1119 1120 /* Enable the interrupts relative to the current communication mode */ 1121 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) { 1122 cr2 |= STM32F4_SPI_CR2_TXEIE; 1123 } else if (spi->cur_comm == SPI_FULL_DUPLEX || 1124 spi->cur_comm == SPI_SIMPLEX_RX || 1125 spi->cur_comm == SPI_3WIRE_RX) { 1126 /* In transmit-only mode, the OVR flag is set in the SR register 1127 * since the received data are never read. Therefore set OVR 1128 * interrupt only when rx buffer is available. 1129 */ 1130 cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE; 1131 } else { 1132 return -EINVAL; 1133 } 1134 1135 spin_lock_irqsave(&spi->lock, flags); 1136 1137 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2); 1138 1139 stm32_spi_enable(spi); 1140 1141 /* starting data transfer when buffer is loaded */ 1142 if (spi->tx_buf) 1143 stm32f4_spi_write_tx(spi); 1144 1145 spin_unlock_irqrestore(&spi->lock, flags); 1146 1147 return 1; 1148 } 1149 1150 /** 1151 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using 1152 * interrupts 1153 * @spi: pointer to the spi controller data structure 1154 * 1155 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1156 * in progress. 1157 */ 1158 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi) 1159 { 1160 unsigned long flags; 1161 u32 ier = 0; 1162 1163 /* Enable the interrupts relative to the current communication mode */ 1164 if (spi->tx_buf && spi->rx_buf) /* Full Duplex */ 1165 ier |= STM32H7_SPI_IER_DXPIE; 1166 else if (spi->tx_buf) /* Half-Duplex TX dir or Simplex TX */ 1167 ier |= STM32H7_SPI_IER_TXPIE; 1168 else if (spi->rx_buf) /* Half-Duplex RX dir or Simplex RX */ 1169 ier |= STM32H7_SPI_IER_RXPIE; 1170 1171 /* Enable the interrupts relative to the end of transfer */ 1172 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE | 1173 STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE; 1174 1175 spin_lock_irqsave(&spi->lock, flags); 1176 1177 stm32_spi_enable(spi); 1178 1179 /* Be sure to have data in fifo before starting data transfer */ 1180 if (spi->tx_buf) 1181 stm32h7_spi_write_txfifo(spi); 1182 1183 if (STM32_SPI_MASTER_MODE(spi)) 1184 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART); 1185 1186 writel_relaxed(ier, spi->base + STM32H7_SPI_IER); 1187 1188 spin_unlock_irqrestore(&spi->lock, flags); 1189 1190 return 1; 1191 } 1192 1193 /** 1194 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start 1195 * transfer using DMA 1196 * @spi: pointer to the spi controller data structure 1197 */ 1198 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi) 1199 { 1200 /* In DMA mode end of transfer is handled by DMA TX or RX callback. */ 1201 if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX || 1202 spi->cur_comm == SPI_FULL_DUPLEX) { 1203 /* 1204 * In transmit-only mode, the OVR flag is set in the SR register 1205 * since the received data are never read. Therefore set OVR 1206 * interrupt only when rx buffer is available. 1207 */ 1208 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE); 1209 } 1210 1211 stm32_spi_enable(spi); 1212 } 1213 1214 /** 1215 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start 1216 * transfer using DMA 1217 * @spi: pointer to the spi controller data structure 1218 */ 1219 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi) 1220 { 1221 uint32_t ier = STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE; 1222 1223 /* Enable the interrupts */ 1224 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) 1225 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE; 1226 1227 stm32_spi_set_bits(spi, STM32H7_SPI_IER, ier); 1228 1229 stm32_spi_enable(spi); 1230 1231 if (STM32_SPI_MASTER_MODE(spi)) 1232 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART); 1233 } 1234 1235 /** 1236 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA 1237 * @spi: pointer to the spi controller data structure 1238 * @xfer: pointer to the spi_transfer structure 1239 * 1240 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1241 * in progress. 1242 */ 1243 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi, 1244 struct spi_transfer *xfer) 1245 { 1246 struct dma_slave_config tx_dma_conf, rx_dma_conf; 1247 struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc; 1248 unsigned long flags; 1249 1250 spin_lock_irqsave(&spi->lock, flags); 1251 1252 rx_dma_desc = NULL; 1253 if (spi->rx_buf && spi->dma_rx) { 1254 stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM); 1255 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf); 1256 1257 /* Enable Rx DMA request */ 1258 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg, 1259 spi->cfg->regs->dma_rx_en.mask); 1260 1261 rx_dma_desc = dmaengine_prep_slave_sg( 1262 spi->dma_rx, xfer->rx_sg.sgl, 1263 xfer->rx_sg.nents, 1264 rx_dma_conf.direction, 1265 DMA_PREP_INTERRUPT); 1266 } 1267 1268 tx_dma_desc = NULL; 1269 if (spi->tx_buf && spi->dma_tx) { 1270 stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV); 1271 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf); 1272 1273 tx_dma_desc = dmaengine_prep_slave_sg( 1274 spi->dma_tx, xfer->tx_sg.sgl, 1275 xfer->tx_sg.nents, 1276 tx_dma_conf.direction, 1277 DMA_PREP_INTERRUPT); 1278 } 1279 1280 if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) || 1281 (spi->rx_buf && spi->dma_rx && !rx_dma_desc)) 1282 goto dma_desc_error; 1283 1284 if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc)) 1285 goto dma_desc_error; 1286 1287 if (rx_dma_desc) { 1288 rx_dma_desc->callback = spi->cfg->dma_rx_cb; 1289 rx_dma_desc->callback_param = spi; 1290 1291 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) { 1292 dev_err(spi->dev, "Rx DMA submit failed\n"); 1293 goto dma_desc_error; 1294 } 1295 /* Enable Rx DMA channel */ 1296 dma_async_issue_pending(spi->dma_rx); 1297 } 1298 1299 if (tx_dma_desc) { 1300 if (spi->cur_comm == SPI_SIMPLEX_TX || 1301 spi->cur_comm == SPI_3WIRE_TX) { 1302 tx_dma_desc->callback = spi->cfg->dma_tx_cb; 1303 tx_dma_desc->callback_param = spi; 1304 } 1305 1306 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) { 1307 dev_err(spi->dev, "Tx DMA submit failed\n"); 1308 goto dma_submit_error; 1309 } 1310 /* Enable Tx DMA channel */ 1311 dma_async_issue_pending(spi->dma_tx); 1312 1313 /* Enable Tx DMA request */ 1314 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg, 1315 spi->cfg->regs->dma_tx_en.mask); 1316 } 1317 1318 spi->cfg->transfer_one_dma_start(spi); 1319 1320 spin_unlock_irqrestore(&spi->lock, flags); 1321 1322 return 1; 1323 1324 dma_submit_error: 1325 if (spi->dma_rx) 1326 dmaengine_terminate_sync(spi->dma_rx); 1327 1328 dma_desc_error: 1329 stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg, 1330 spi->cfg->regs->dma_rx_en.mask); 1331 1332 spin_unlock_irqrestore(&spi->lock, flags); 1333 1334 dev_info(spi->dev, "DMA issue: fall back to irq transfer\n"); 1335 1336 spi->cur_usedma = false; 1337 return spi->cfg->transfer_one_irq(spi); 1338 } 1339 1340 /** 1341 * stm32f4_spi_set_bpw - Configure bits per word 1342 * @spi: pointer to the spi controller data structure 1343 */ 1344 static void stm32f4_spi_set_bpw(struct stm32_spi *spi) 1345 { 1346 if (spi->cur_bpw == 16) 1347 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF); 1348 else 1349 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF); 1350 } 1351 1352 /** 1353 * stm32h7_spi_set_bpw - configure bits per word 1354 * @spi: pointer to the spi controller data structure 1355 */ 1356 static void stm32h7_spi_set_bpw(struct stm32_spi *spi) 1357 { 1358 u32 bpw, fthlv; 1359 u32 cfg1_clrb = 0, cfg1_setb = 0; 1360 1361 bpw = spi->cur_bpw - 1; 1362 1363 cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE; 1364 cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw); 1365 1366 spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen); 1367 fthlv = spi->cur_fthlv - 1; 1368 1369 cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV; 1370 cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv); 1371 1372 writel_relaxed( 1373 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) & 1374 ~cfg1_clrb) | cfg1_setb, 1375 spi->base + STM32H7_SPI_CFG1); 1376 } 1377 1378 /** 1379 * stm32_spi_set_mbr - Configure baud rate divisor in master mode 1380 * @spi: pointer to the spi controller data structure 1381 * @mbrdiv: baud rate divisor value 1382 */ 1383 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv) 1384 { 1385 u32 clrb = 0, setb = 0; 1386 1387 clrb |= spi->cfg->regs->br.mask; 1388 setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask; 1389 1390 writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) & 1391 ~clrb) | setb, 1392 spi->base + spi->cfg->regs->br.reg); 1393 } 1394 1395 /** 1396 * stm32_spi_communication_type - return transfer communication type 1397 * @spi_dev: pointer to the spi device 1398 * @transfer: pointer to spi transfer 1399 */ 1400 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev, 1401 struct spi_transfer *transfer) 1402 { 1403 unsigned int type = SPI_FULL_DUPLEX; 1404 1405 if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */ 1406 /* 1407 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL 1408 * is forbidden and unvalidated by SPI subsystem so depending 1409 * on the valid buffer, we can determine the direction of the 1410 * transfer. 1411 */ 1412 if (!transfer->tx_buf) 1413 type = SPI_3WIRE_RX; 1414 else 1415 type = SPI_3WIRE_TX; 1416 } else { 1417 if (!transfer->tx_buf) 1418 type = SPI_SIMPLEX_RX; 1419 else if (!transfer->rx_buf) 1420 type = SPI_SIMPLEX_TX; 1421 } 1422 1423 return type; 1424 } 1425 1426 /** 1427 * stm32f4_spi_set_mode - configure communication mode 1428 * @spi: pointer to the spi controller data structure 1429 * @comm_type: type of communication to configure 1430 */ 1431 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type) 1432 { 1433 if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) { 1434 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, 1435 STM32F4_SPI_CR1_BIDIMODE | 1436 STM32F4_SPI_CR1_BIDIOE); 1437 } else if (comm_type == SPI_FULL_DUPLEX || 1438 comm_type == SPI_SIMPLEX_RX) { 1439 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, 1440 STM32F4_SPI_CR1_BIDIMODE | 1441 STM32F4_SPI_CR1_BIDIOE); 1442 } else if (comm_type == SPI_3WIRE_RX) { 1443 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, 1444 STM32F4_SPI_CR1_BIDIMODE); 1445 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, 1446 STM32F4_SPI_CR1_BIDIOE); 1447 } else { 1448 return -EINVAL; 1449 } 1450 1451 return 0; 1452 } 1453 1454 /** 1455 * stm32h7_spi_set_mode - configure communication mode 1456 * @spi: pointer to the spi controller data structure 1457 * @comm_type: type of communication to configure 1458 */ 1459 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type) 1460 { 1461 u32 mode; 1462 u32 cfg2_clrb = 0, cfg2_setb = 0; 1463 1464 if (comm_type == SPI_3WIRE_RX) { 1465 mode = STM32H7_SPI_HALF_DUPLEX; 1466 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR); 1467 } else if (comm_type == SPI_3WIRE_TX) { 1468 mode = STM32H7_SPI_HALF_DUPLEX; 1469 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR); 1470 } else if (comm_type == SPI_SIMPLEX_RX) { 1471 mode = STM32H7_SPI_SIMPLEX_RX; 1472 } else if (comm_type == SPI_SIMPLEX_TX) { 1473 mode = STM32H7_SPI_SIMPLEX_TX; 1474 } else { 1475 mode = STM32H7_SPI_FULL_DUPLEX; 1476 } 1477 1478 cfg2_clrb |= STM32H7_SPI_CFG2_COMM; 1479 cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode); 1480 1481 writel_relaxed( 1482 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) & 1483 ~cfg2_clrb) | cfg2_setb, 1484 spi->base + STM32H7_SPI_CFG2); 1485 1486 return 0; 1487 } 1488 1489 /** 1490 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two 1491 * consecutive data frames in master mode 1492 * @spi: pointer to the spi controller data structure 1493 * @len: transfer len 1494 */ 1495 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len) 1496 { 1497 u32 cfg2_clrb = 0, cfg2_setb = 0; 1498 1499 cfg2_clrb |= STM32H7_SPI_CFG2_MIDI; 1500 if ((len > 1) && (spi->cur_midi > 0)) { 1501 u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed); 1502 u32 midi = min_t(u32, 1503 DIV_ROUND_UP(spi->cur_midi, sck_period_ns), 1504 FIELD_GET(STM32H7_SPI_CFG2_MIDI, 1505 STM32H7_SPI_CFG2_MIDI)); 1506 1507 1508 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n", 1509 sck_period_ns, midi, midi * sck_period_ns); 1510 cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi); 1511 } 1512 1513 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) & 1514 ~cfg2_clrb) | cfg2_setb, 1515 spi->base + STM32H7_SPI_CFG2); 1516 } 1517 1518 /** 1519 * stm32h7_spi_number_of_data - configure number of data at current transfer 1520 * @spi: pointer to the spi controller data structure 1521 * @nb_words: transfer length (in words) 1522 */ 1523 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words) 1524 { 1525 if (nb_words <= STM32H7_SPI_TSIZE_MAX) { 1526 writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words), 1527 spi->base + STM32H7_SPI_CR2); 1528 } else { 1529 return -EMSGSIZE; 1530 } 1531 1532 return 0; 1533 } 1534 1535 /** 1536 * stm32_spi_transfer_one_setup - common setup to transfer a single 1537 * spi_transfer either using DMA or 1538 * interrupts. 1539 * @spi: pointer to the spi controller data structure 1540 * @spi_dev: pointer to the spi device 1541 * @transfer: pointer to spi transfer 1542 */ 1543 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi, 1544 struct spi_device *spi_dev, 1545 struct spi_transfer *transfer) 1546 { 1547 unsigned long flags; 1548 unsigned int comm_type; 1549 int nb_words, ret = 0; 1550 int mbr; 1551 1552 spin_lock_irqsave(&spi->lock, flags); 1553 1554 spi->cur_xferlen = transfer->len; 1555 1556 spi->cur_bpw = transfer->bits_per_word; 1557 spi->cfg->set_bpw(spi); 1558 1559 /* Update spi->cur_speed with real clock speed */ 1560 if (STM32_SPI_MASTER_MODE(spi)) { 1561 mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz, 1562 spi->cfg->baud_rate_div_min, 1563 spi->cfg->baud_rate_div_max); 1564 if (mbr < 0) { 1565 ret = mbr; 1566 goto out; 1567 } 1568 1569 transfer->speed_hz = spi->cur_speed; 1570 stm32_spi_set_mbr(spi, mbr); 1571 } 1572 1573 comm_type = stm32_spi_communication_type(spi_dev, transfer); 1574 ret = spi->cfg->set_mode(spi, comm_type); 1575 if (ret < 0) 1576 goto out; 1577 1578 spi->cur_comm = comm_type; 1579 1580 if (STM32_SPI_MASTER_MODE(spi) && spi->cfg->set_data_idleness) 1581 spi->cfg->set_data_idleness(spi, transfer->len); 1582 1583 if (spi->cur_bpw <= 8) 1584 nb_words = transfer->len; 1585 else if (spi->cur_bpw <= 16) 1586 nb_words = DIV_ROUND_UP(transfer->len * 8, 16); 1587 else 1588 nb_words = DIV_ROUND_UP(transfer->len * 8, 32); 1589 1590 if (spi->cfg->set_number_of_data) { 1591 ret = spi->cfg->set_number_of_data(spi, nb_words); 1592 if (ret < 0) 1593 goto out; 1594 } 1595 1596 dev_dbg(spi->dev, "transfer communication mode set to %d\n", 1597 spi->cur_comm); 1598 dev_dbg(spi->dev, 1599 "data frame of %d-bit, data packet of %d data frames\n", 1600 spi->cur_bpw, spi->cur_fthlv); 1601 if (STM32_SPI_MASTER_MODE(spi)) 1602 dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed); 1603 dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n", 1604 spi->cur_xferlen, nb_words); 1605 dev_dbg(spi->dev, "dma %s\n", 1606 (spi->cur_usedma) ? "enabled" : "disabled"); 1607 1608 out: 1609 spin_unlock_irqrestore(&spi->lock, flags); 1610 1611 return ret; 1612 } 1613 1614 /** 1615 * stm32_spi_transfer_one - transfer a single spi_transfer 1616 * @ctrl: controller interface 1617 * @spi_dev: pointer to the spi device 1618 * @transfer: pointer to spi transfer 1619 * 1620 * It must return 0 if the transfer is finished or 1 if the transfer is still 1621 * in progress. 1622 */ 1623 static int stm32_spi_transfer_one(struct spi_controller *ctrl, 1624 struct spi_device *spi_dev, 1625 struct spi_transfer *transfer) 1626 { 1627 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 1628 int ret; 1629 1630 spi->tx_buf = transfer->tx_buf; 1631 spi->rx_buf = transfer->rx_buf; 1632 spi->tx_len = spi->tx_buf ? transfer->len : 0; 1633 spi->rx_len = spi->rx_buf ? transfer->len : 0; 1634 1635 spi->cur_usedma = (ctrl->can_dma && 1636 ctrl->can_dma(ctrl, spi_dev, transfer)); 1637 1638 ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer); 1639 if (ret) { 1640 dev_err(spi->dev, "SPI transfer setup failed\n"); 1641 return ret; 1642 } 1643 1644 if (spi->cur_usedma) 1645 return stm32_spi_transfer_one_dma(spi, transfer); 1646 else 1647 return spi->cfg->transfer_one_irq(spi); 1648 } 1649 1650 /** 1651 * stm32_spi_unprepare_msg - relax the hardware 1652 * @ctrl: controller interface 1653 * @msg: pointer to the spi message 1654 */ 1655 static int stm32_spi_unprepare_msg(struct spi_controller *ctrl, 1656 struct spi_message *msg) 1657 { 1658 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 1659 1660 spi->cfg->disable(spi); 1661 1662 return 0; 1663 } 1664 1665 /** 1666 * stm32f4_spi_config - Configure SPI controller as SPI master 1667 * @spi: pointer to the spi controller data structure 1668 */ 1669 static int stm32f4_spi_config(struct stm32_spi *spi) 1670 { 1671 unsigned long flags; 1672 1673 spin_lock_irqsave(&spi->lock, flags); 1674 1675 /* Ensure I2SMOD bit is kept cleared */ 1676 stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR, 1677 STM32F4_SPI_I2SCFGR_I2SMOD); 1678 1679 /* 1680 * - SS input value high 1681 * - transmitter half duplex direction 1682 * - Set the master mode (default Motorola mode) 1683 * - Consider 1 master/n slaves configuration and 1684 * SS input value is determined by the SSI bit 1685 */ 1686 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI | 1687 STM32F4_SPI_CR1_BIDIOE | 1688 STM32F4_SPI_CR1_MSTR | 1689 STM32F4_SPI_CR1_SSM); 1690 1691 spin_unlock_irqrestore(&spi->lock, flags); 1692 1693 return 0; 1694 } 1695 1696 /** 1697 * stm32h7_spi_config - Configure SPI controller 1698 * @spi: pointer to the spi controller data structure 1699 */ 1700 static int stm32h7_spi_config(struct stm32_spi *spi) 1701 { 1702 unsigned long flags; 1703 u32 cr1 = 0, cfg2 = 0; 1704 1705 spin_lock_irqsave(&spi->lock, flags); 1706 1707 /* Ensure I2SMOD bit is kept cleared */ 1708 stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR, 1709 STM32H7_SPI_I2SCFGR_I2SMOD); 1710 1711 if (STM32_SPI_DEVICE_MODE(spi)) { 1712 /* Use native device select */ 1713 cfg2 &= ~STM32H7_SPI_CFG2_SSM; 1714 } else { 1715 /* 1716 * - Transmitter half duplex direction 1717 * - Automatic communication suspend when RX-Fifo is full 1718 * - SS input value high 1719 */ 1720 cr1 |= STM32H7_SPI_CR1_HDDIR | STM32H7_SPI_CR1_MASRX | STM32H7_SPI_CR1_SSI; 1721 1722 /* 1723 * - Set the master mode (default Motorola mode) 1724 * - Consider 1 master/n devices configuration and 1725 * SS input value is determined by the SSI bit 1726 * - keep control of all associated GPIOs 1727 */ 1728 cfg2 |= STM32H7_SPI_CFG2_MASTER | STM32H7_SPI_CFG2_SSM | STM32H7_SPI_CFG2_AFCNTR; 1729 } 1730 1731 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, cr1); 1732 stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, cfg2); 1733 1734 spin_unlock_irqrestore(&spi->lock, flags); 1735 1736 return 0; 1737 } 1738 1739 static const struct stm32_spi_cfg stm32f4_spi_cfg = { 1740 .regs = &stm32f4_spi_regspec, 1741 .get_bpw_mask = stm32f4_spi_get_bpw_mask, 1742 .disable = stm32f4_spi_disable, 1743 .config = stm32f4_spi_config, 1744 .set_bpw = stm32f4_spi_set_bpw, 1745 .set_mode = stm32f4_spi_set_mode, 1746 .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start, 1747 .dma_tx_cb = stm32f4_spi_dma_tx_cb, 1748 .dma_rx_cb = stm32_spi_dma_rx_cb, 1749 .transfer_one_irq = stm32f4_spi_transfer_one_irq, 1750 .irq_handler_event = stm32f4_spi_irq_event, 1751 .irq_handler_thread = stm32f4_spi_irq_thread, 1752 .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN, 1753 .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX, 1754 .has_fifo = false, 1755 .has_device_mode = false, 1756 .flags = SPI_CONTROLLER_MUST_TX, 1757 }; 1758 1759 static const struct stm32_spi_cfg stm32h7_spi_cfg = { 1760 .regs = &stm32h7_spi_regspec, 1761 .get_fifo_size = stm32h7_spi_get_fifo_size, 1762 .get_bpw_mask = stm32h7_spi_get_bpw_mask, 1763 .disable = stm32h7_spi_disable, 1764 .config = stm32h7_spi_config, 1765 .set_bpw = stm32h7_spi_set_bpw, 1766 .set_mode = stm32h7_spi_set_mode, 1767 .set_data_idleness = stm32h7_spi_data_idleness, 1768 .set_number_of_data = stm32h7_spi_number_of_data, 1769 .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start, 1770 .dma_rx_cb = stm32_spi_dma_rx_cb, 1771 /* 1772 * dma_tx_cb is not necessary since in case of TX, dma is followed by 1773 * SPI access hence handling is performed within the SPI interrupt 1774 */ 1775 .transfer_one_irq = stm32h7_spi_transfer_one_irq, 1776 .irq_handler_thread = stm32h7_spi_irq_thread, 1777 .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN, 1778 .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX, 1779 .has_fifo = true, 1780 .has_device_mode = true, 1781 }; 1782 1783 static const struct of_device_id stm32_spi_of_match[] = { 1784 { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg }, 1785 { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg }, 1786 {}, 1787 }; 1788 MODULE_DEVICE_TABLE(of, stm32_spi_of_match); 1789 1790 static int stm32h7_spi_device_abort(struct spi_controller *ctrl) 1791 { 1792 spi_finalize_current_transfer(ctrl); 1793 return 0; 1794 } 1795 1796 static int stm32_spi_probe(struct platform_device *pdev) 1797 { 1798 struct spi_controller *ctrl; 1799 struct stm32_spi *spi; 1800 struct resource *res; 1801 struct reset_control *rst; 1802 struct device_node *np = pdev->dev.of_node; 1803 bool device_mode; 1804 int ret; 1805 const struct stm32_spi_cfg *cfg = of_device_get_match_data(&pdev->dev); 1806 1807 device_mode = of_property_read_bool(np, "spi-slave"); 1808 if (!cfg->has_device_mode && device_mode) { 1809 dev_err(&pdev->dev, "spi-slave not supported\n"); 1810 return -EPERM; 1811 } 1812 1813 if (device_mode) 1814 ctrl = devm_spi_alloc_slave(&pdev->dev, sizeof(struct stm32_spi)); 1815 else 1816 ctrl = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi)); 1817 if (!ctrl) { 1818 dev_err(&pdev->dev, "spi controller allocation failed\n"); 1819 return -ENOMEM; 1820 } 1821 platform_set_drvdata(pdev, ctrl); 1822 1823 spi = spi_controller_get_devdata(ctrl); 1824 spi->dev = &pdev->dev; 1825 spi->ctrl = ctrl; 1826 spi->device_mode = device_mode; 1827 spin_lock_init(&spi->lock); 1828 1829 spi->cfg = cfg; 1830 1831 spi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 1832 if (IS_ERR(spi->base)) 1833 return PTR_ERR(spi->base); 1834 1835 spi->phys_addr = (dma_addr_t)res->start; 1836 1837 spi->irq = platform_get_irq(pdev, 0); 1838 if (spi->irq <= 0) 1839 return spi->irq; 1840 1841 ret = devm_request_threaded_irq(&pdev->dev, spi->irq, 1842 spi->cfg->irq_handler_event, 1843 spi->cfg->irq_handler_thread, 1844 IRQF_ONESHOT, pdev->name, ctrl); 1845 if (ret) { 1846 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq, 1847 ret); 1848 return ret; 1849 } 1850 1851 spi->clk = devm_clk_get(&pdev->dev, NULL); 1852 if (IS_ERR(spi->clk)) { 1853 ret = PTR_ERR(spi->clk); 1854 dev_err(&pdev->dev, "clk get failed: %d\n", ret); 1855 return ret; 1856 } 1857 1858 ret = clk_prepare_enable(spi->clk); 1859 if (ret) { 1860 dev_err(&pdev->dev, "clk enable failed: %d\n", ret); 1861 return ret; 1862 } 1863 spi->clk_rate = clk_get_rate(spi->clk); 1864 if (!spi->clk_rate) { 1865 dev_err(&pdev->dev, "clk rate = 0\n"); 1866 ret = -EINVAL; 1867 goto err_clk_disable; 1868 } 1869 1870 rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL); 1871 if (rst) { 1872 if (IS_ERR(rst)) { 1873 ret = dev_err_probe(&pdev->dev, PTR_ERR(rst), 1874 "failed to get reset\n"); 1875 goto err_clk_disable; 1876 } 1877 1878 reset_control_assert(rst); 1879 udelay(2); 1880 reset_control_deassert(rst); 1881 } 1882 1883 if (spi->cfg->has_fifo) 1884 spi->fifo_size = spi->cfg->get_fifo_size(spi); 1885 1886 ret = spi->cfg->config(spi); 1887 if (ret) { 1888 dev_err(&pdev->dev, "controller configuration failed: %d\n", 1889 ret); 1890 goto err_clk_disable; 1891 } 1892 1893 ctrl->dev.of_node = pdev->dev.of_node; 1894 ctrl->auto_runtime_pm = true; 1895 ctrl->bus_num = pdev->id; 1896 ctrl->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST | 1897 SPI_3WIRE; 1898 ctrl->bits_per_word_mask = spi->cfg->get_bpw_mask(spi); 1899 ctrl->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min; 1900 ctrl->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max; 1901 ctrl->use_gpio_descriptors = true; 1902 ctrl->prepare_message = stm32_spi_prepare_msg; 1903 ctrl->transfer_one = stm32_spi_transfer_one; 1904 ctrl->unprepare_message = stm32_spi_unprepare_msg; 1905 ctrl->flags = spi->cfg->flags; 1906 if (STM32_SPI_DEVICE_MODE(spi)) 1907 ctrl->slave_abort = stm32h7_spi_device_abort; 1908 1909 spi->dma_tx = dma_request_chan(spi->dev, "tx"); 1910 if (IS_ERR(spi->dma_tx)) { 1911 ret = PTR_ERR(spi->dma_tx); 1912 spi->dma_tx = NULL; 1913 if (ret == -EPROBE_DEFER) 1914 goto err_clk_disable; 1915 1916 dev_warn(&pdev->dev, "failed to request tx dma channel\n"); 1917 } else { 1918 ctrl->dma_tx = spi->dma_tx; 1919 } 1920 1921 spi->dma_rx = dma_request_chan(spi->dev, "rx"); 1922 if (IS_ERR(spi->dma_rx)) { 1923 ret = PTR_ERR(spi->dma_rx); 1924 spi->dma_rx = NULL; 1925 if (ret == -EPROBE_DEFER) 1926 goto err_dma_release; 1927 1928 dev_warn(&pdev->dev, "failed to request rx dma channel\n"); 1929 } else { 1930 ctrl->dma_rx = spi->dma_rx; 1931 } 1932 1933 if (spi->dma_tx || spi->dma_rx) 1934 ctrl->can_dma = stm32_spi_can_dma; 1935 1936 pm_runtime_set_autosuspend_delay(&pdev->dev, 1937 STM32_SPI_AUTOSUSPEND_DELAY); 1938 pm_runtime_use_autosuspend(&pdev->dev); 1939 pm_runtime_set_active(&pdev->dev); 1940 pm_runtime_get_noresume(&pdev->dev); 1941 pm_runtime_enable(&pdev->dev); 1942 1943 ret = spi_register_controller(ctrl); 1944 if (ret) { 1945 dev_err(&pdev->dev, "spi controller registration failed: %d\n", 1946 ret); 1947 goto err_pm_disable; 1948 } 1949 1950 pm_runtime_mark_last_busy(&pdev->dev); 1951 pm_runtime_put_autosuspend(&pdev->dev); 1952 1953 dev_info(&pdev->dev, "driver initialized (%s mode)\n", 1954 STM32_SPI_MASTER_MODE(spi) ? "master" : "device"); 1955 1956 return 0; 1957 1958 err_pm_disable: 1959 pm_runtime_disable(&pdev->dev); 1960 pm_runtime_put_noidle(&pdev->dev); 1961 pm_runtime_set_suspended(&pdev->dev); 1962 pm_runtime_dont_use_autosuspend(&pdev->dev); 1963 err_dma_release: 1964 if (spi->dma_tx) 1965 dma_release_channel(spi->dma_tx); 1966 if (spi->dma_rx) 1967 dma_release_channel(spi->dma_rx); 1968 err_clk_disable: 1969 clk_disable_unprepare(spi->clk); 1970 1971 return ret; 1972 } 1973 1974 static void stm32_spi_remove(struct platform_device *pdev) 1975 { 1976 struct spi_controller *ctrl = platform_get_drvdata(pdev); 1977 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 1978 1979 pm_runtime_get_sync(&pdev->dev); 1980 1981 spi_unregister_controller(ctrl); 1982 spi->cfg->disable(spi); 1983 1984 pm_runtime_disable(&pdev->dev); 1985 pm_runtime_put_noidle(&pdev->dev); 1986 pm_runtime_set_suspended(&pdev->dev); 1987 pm_runtime_dont_use_autosuspend(&pdev->dev); 1988 1989 if (ctrl->dma_tx) 1990 dma_release_channel(ctrl->dma_tx); 1991 if (ctrl->dma_rx) 1992 dma_release_channel(ctrl->dma_rx); 1993 1994 clk_disable_unprepare(spi->clk); 1995 1996 1997 pinctrl_pm_select_sleep_state(&pdev->dev); 1998 } 1999 2000 static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev) 2001 { 2002 struct spi_controller *ctrl = dev_get_drvdata(dev); 2003 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 2004 2005 clk_disable_unprepare(spi->clk); 2006 2007 return pinctrl_pm_select_sleep_state(dev); 2008 } 2009 2010 static int __maybe_unused stm32_spi_runtime_resume(struct device *dev) 2011 { 2012 struct spi_controller *ctrl = dev_get_drvdata(dev); 2013 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 2014 int ret; 2015 2016 ret = pinctrl_pm_select_default_state(dev); 2017 if (ret) 2018 return ret; 2019 2020 return clk_prepare_enable(spi->clk); 2021 } 2022 2023 static int __maybe_unused stm32_spi_suspend(struct device *dev) 2024 { 2025 struct spi_controller *ctrl = dev_get_drvdata(dev); 2026 int ret; 2027 2028 ret = spi_controller_suspend(ctrl); 2029 if (ret) 2030 return ret; 2031 2032 return pm_runtime_force_suspend(dev); 2033 } 2034 2035 static int __maybe_unused stm32_spi_resume(struct device *dev) 2036 { 2037 struct spi_controller *ctrl = dev_get_drvdata(dev); 2038 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 2039 int ret; 2040 2041 ret = pm_runtime_force_resume(dev); 2042 if (ret) 2043 return ret; 2044 2045 ret = spi_controller_resume(ctrl); 2046 if (ret) { 2047 clk_disable_unprepare(spi->clk); 2048 return ret; 2049 } 2050 2051 ret = pm_runtime_resume_and_get(dev); 2052 if (ret < 0) { 2053 dev_err(dev, "Unable to power device:%d\n", ret); 2054 return ret; 2055 } 2056 2057 spi->cfg->config(spi); 2058 2059 pm_runtime_mark_last_busy(dev); 2060 pm_runtime_put_autosuspend(dev); 2061 2062 return 0; 2063 } 2064 2065 static const struct dev_pm_ops stm32_spi_pm_ops = { 2066 SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume) 2067 SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend, 2068 stm32_spi_runtime_resume, NULL) 2069 }; 2070 2071 static struct platform_driver stm32_spi_driver = { 2072 .probe = stm32_spi_probe, 2073 .remove_new = stm32_spi_remove, 2074 .driver = { 2075 .name = DRIVER_NAME, 2076 .pm = &stm32_spi_pm_ops, 2077 .of_match_table = stm32_spi_of_match, 2078 }, 2079 }; 2080 2081 module_platform_driver(stm32_spi_driver); 2082 2083 MODULE_ALIAS("platform:" DRIVER_NAME); 2084 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver"); 2085 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>"); 2086 MODULE_LICENSE("GPL v2"); 2087