1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // STMicroelectronics STM32 SPI Controller driver (master mode only) 4 // 5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved 6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics. 7 8 #include <linux/bitfield.h> 9 #include <linux/debugfs.h> 10 #include <linux/clk.h> 11 #include <linux/delay.h> 12 #include <linux/dmaengine.h> 13 #include <linux/interrupt.h> 14 #include <linux/iopoll.h> 15 #include <linux/module.h> 16 #include <linux/of_platform.h> 17 #include <linux/pinctrl/consumer.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/reset.h> 20 #include <linux/spi/spi.h> 21 22 #define DRIVER_NAME "spi_stm32" 23 24 /* STM32F4 SPI registers */ 25 #define STM32F4_SPI_CR1 0x00 26 #define STM32F4_SPI_CR2 0x04 27 #define STM32F4_SPI_SR 0x08 28 #define STM32F4_SPI_DR 0x0C 29 #define STM32F4_SPI_I2SCFGR 0x1C 30 31 /* STM32F4_SPI_CR1 bit fields */ 32 #define STM32F4_SPI_CR1_CPHA BIT(0) 33 #define STM32F4_SPI_CR1_CPOL BIT(1) 34 #define STM32F4_SPI_CR1_MSTR BIT(2) 35 #define STM32F4_SPI_CR1_BR_SHIFT 3 36 #define STM32F4_SPI_CR1_BR GENMASK(5, 3) 37 #define STM32F4_SPI_CR1_SPE BIT(6) 38 #define STM32F4_SPI_CR1_LSBFRST BIT(7) 39 #define STM32F4_SPI_CR1_SSI BIT(8) 40 #define STM32F4_SPI_CR1_SSM BIT(9) 41 #define STM32F4_SPI_CR1_RXONLY BIT(10) 42 #define STM32F4_SPI_CR1_DFF BIT(11) 43 #define STM32F4_SPI_CR1_CRCNEXT BIT(12) 44 #define STM32F4_SPI_CR1_CRCEN BIT(13) 45 #define STM32F4_SPI_CR1_BIDIOE BIT(14) 46 #define STM32F4_SPI_CR1_BIDIMODE BIT(15) 47 #define STM32F4_SPI_CR1_BR_MIN 0 48 #define STM32F4_SPI_CR1_BR_MAX (GENMASK(5, 3) >> 3) 49 50 /* STM32F4_SPI_CR2 bit fields */ 51 #define STM32F4_SPI_CR2_RXDMAEN BIT(0) 52 #define STM32F4_SPI_CR2_TXDMAEN BIT(1) 53 #define STM32F4_SPI_CR2_SSOE BIT(2) 54 #define STM32F4_SPI_CR2_FRF BIT(4) 55 #define STM32F4_SPI_CR2_ERRIE BIT(5) 56 #define STM32F4_SPI_CR2_RXNEIE BIT(6) 57 #define STM32F4_SPI_CR2_TXEIE BIT(7) 58 59 /* STM32F4_SPI_SR bit fields */ 60 #define STM32F4_SPI_SR_RXNE BIT(0) 61 #define STM32F4_SPI_SR_TXE BIT(1) 62 #define STM32F4_SPI_SR_CHSIDE BIT(2) 63 #define STM32F4_SPI_SR_UDR BIT(3) 64 #define STM32F4_SPI_SR_CRCERR BIT(4) 65 #define STM32F4_SPI_SR_MODF BIT(5) 66 #define STM32F4_SPI_SR_OVR BIT(6) 67 #define STM32F4_SPI_SR_BSY BIT(7) 68 #define STM32F4_SPI_SR_FRE BIT(8) 69 70 /* STM32F4_SPI_I2SCFGR bit fields */ 71 #define STM32F4_SPI_I2SCFGR_I2SMOD BIT(11) 72 73 /* STM32F4 SPI Baud Rate min/max divisor */ 74 #define STM32F4_SPI_BR_DIV_MIN (2 << STM32F4_SPI_CR1_BR_MIN) 75 #define STM32F4_SPI_BR_DIV_MAX (2 << STM32F4_SPI_CR1_BR_MAX) 76 77 /* STM32H7 SPI registers */ 78 #define STM32H7_SPI_CR1 0x00 79 #define STM32H7_SPI_CR2 0x04 80 #define STM32H7_SPI_CFG1 0x08 81 #define STM32H7_SPI_CFG2 0x0C 82 #define STM32H7_SPI_IER 0x10 83 #define STM32H7_SPI_SR 0x14 84 #define STM32H7_SPI_IFCR 0x18 85 #define STM32H7_SPI_TXDR 0x20 86 #define STM32H7_SPI_RXDR 0x30 87 #define STM32H7_SPI_I2SCFGR 0x50 88 89 /* STM32H7_SPI_CR1 bit fields */ 90 #define STM32H7_SPI_CR1_SPE BIT(0) 91 #define STM32H7_SPI_CR1_MASRX BIT(8) 92 #define STM32H7_SPI_CR1_CSTART BIT(9) 93 #define STM32H7_SPI_CR1_CSUSP BIT(10) 94 #define STM32H7_SPI_CR1_HDDIR BIT(11) 95 #define STM32H7_SPI_CR1_SSI BIT(12) 96 97 /* STM32H7_SPI_CR2 bit fields */ 98 #define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0) 99 #define STM32H7_SPI_TSIZE_MAX GENMASK(15, 0) 100 101 /* STM32H7_SPI_CFG1 bit fields */ 102 #define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0) 103 #define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5) 104 #define STM32H7_SPI_CFG1_RXDMAEN BIT(14) 105 #define STM32H7_SPI_CFG1_TXDMAEN BIT(15) 106 #define STM32H7_SPI_CFG1_MBR GENMASK(30, 28) 107 #define STM32H7_SPI_CFG1_MBR_SHIFT 28 108 #define STM32H7_SPI_CFG1_MBR_MIN 0 109 #define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28) 110 111 /* STM32H7_SPI_CFG2 bit fields */ 112 #define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4) 113 #define STM32H7_SPI_CFG2_COMM GENMASK(18, 17) 114 #define STM32H7_SPI_CFG2_SP GENMASK(21, 19) 115 #define STM32H7_SPI_CFG2_MASTER BIT(22) 116 #define STM32H7_SPI_CFG2_LSBFRST BIT(23) 117 #define STM32H7_SPI_CFG2_CPHA BIT(24) 118 #define STM32H7_SPI_CFG2_CPOL BIT(25) 119 #define STM32H7_SPI_CFG2_SSM BIT(26) 120 #define STM32H7_SPI_CFG2_AFCNTR BIT(31) 121 122 /* STM32H7_SPI_IER bit fields */ 123 #define STM32H7_SPI_IER_RXPIE BIT(0) 124 #define STM32H7_SPI_IER_TXPIE BIT(1) 125 #define STM32H7_SPI_IER_DXPIE BIT(2) 126 #define STM32H7_SPI_IER_EOTIE BIT(3) 127 #define STM32H7_SPI_IER_TXTFIE BIT(4) 128 #define STM32H7_SPI_IER_OVRIE BIT(6) 129 #define STM32H7_SPI_IER_MODFIE BIT(9) 130 #define STM32H7_SPI_IER_ALL GENMASK(10, 0) 131 132 /* STM32H7_SPI_SR bit fields */ 133 #define STM32H7_SPI_SR_RXP BIT(0) 134 #define STM32H7_SPI_SR_TXP BIT(1) 135 #define STM32H7_SPI_SR_EOT BIT(3) 136 #define STM32H7_SPI_SR_OVR BIT(6) 137 #define STM32H7_SPI_SR_MODF BIT(9) 138 #define STM32H7_SPI_SR_SUSP BIT(11) 139 #define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13) 140 #define STM32H7_SPI_SR_RXWNE BIT(15) 141 142 /* STM32H7_SPI_IFCR bit fields */ 143 #define STM32H7_SPI_IFCR_ALL GENMASK(11, 3) 144 145 /* STM32H7_SPI_I2SCFGR bit fields */ 146 #define STM32H7_SPI_I2SCFGR_I2SMOD BIT(0) 147 148 /* STM32H7 SPI Master Baud Rate min/max divisor */ 149 #define STM32H7_SPI_MBR_DIV_MIN (2 << STM32H7_SPI_CFG1_MBR_MIN) 150 #define STM32H7_SPI_MBR_DIV_MAX (2 << STM32H7_SPI_CFG1_MBR_MAX) 151 152 /* STM32H7 SPI Communication mode */ 153 #define STM32H7_SPI_FULL_DUPLEX 0 154 #define STM32H7_SPI_SIMPLEX_TX 1 155 #define STM32H7_SPI_SIMPLEX_RX 2 156 #define STM32H7_SPI_HALF_DUPLEX 3 157 158 /* SPI Communication type */ 159 #define SPI_FULL_DUPLEX 0 160 #define SPI_SIMPLEX_TX 1 161 #define SPI_SIMPLEX_RX 2 162 #define SPI_3WIRE_TX 3 163 #define SPI_3WIRE_RX 4 164 165 /* 166 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers 167 * without fifo buffers. 168 */ 169 #define SPI_DMA_MIN_BYTES 16 170 171 /** 172 * struct stm32_spi_reg - stm32 SPI register & bitfield desc 173 * @reg: register offset 174 * @mask: bitfield mask 175 * @shift: left shift 176 */ 177 struct stm32_spi_reg { 178 int reg; 179 int mask; 180 int shift; 181 }; 182 183 /** 184 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data 185 * @en: enable register and SPI enable bit 186 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit 187 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit 188 * @cpol: clock polarity register and polarity bit 189 * @cpha: clock phase register and phase bit 190 * @lsb_first: LSB transmitted first register and bit 191 * @br: baud rate register and bitfields 192 * @rx: SPI RX data register 193 * @tx: SPI TX data register 194 */ 195 struct stm32_spi_regspec { 196 const struct stm32_spi_reg en; 197 const struct stm32_spi_reg dma_rx_en; 198 const struct stm32_spi_reg dma_tx_en; 199 const struct stm32_spi_reg cpol; 200 const struct stm32_spi_reg cpha; 201 const struct stm32_spi_reg lsb_first; 202 const struct stm32_spi_reg br; 203 const struct stm32_spi_reg rx; 204 const struct stm32_spi_reg tx; 205 }; 206 207 struct stm32_spi; 208 209 /** 210 * struct stm32_spi_cfg - stm32 compatible configuration data 211 * @regs: registers descriptions 212 * @get_fifo_size: routine to get fifo size 213 * @get_bpw_mask: routine to get bits per word mask 214 * @disable: routine to disable controller 215 * @config: routine to configure controller as SPI Master 216 * @set_bpw: routine to configure registers to for bits per word 217 * @set_mode: routine to configure registers to desired mode 218 * @set_data_idleness: optional routine to configure registers to desired idle 219 * time between frames (if driver has this functionality) 220 * @set_number_of_data: optional routine to configure registers to desired 221 * number of data (if driver has this functionality) 222 * @can_dma: routine to determine if the transfer is eligible for DMA use 223 * @transfer_one_dma_start: routine to start transfer a single spi_transfer 224 * using DMA 225 * @dma_rx_cb: routine to call after DMA RX channel operation is complete 226 * @dma_tx_cb: routine to call after DMA TX channel operation is complete 227 * @transfer_one_irq: routine to configure interrupts for driver 228 * @irq_handler_event: Interrupt handler for SPI controller events 229 * @irq_handler_thread: thread of interrupt handler for SPI controller 230 * @baud_rate_div_min: minimum baud rate divisor 231 * @baud_rate_div_max: maximum baud rate divisor 232 * @has_fifo: boolean to know if fifo is used for driver 233 * @has_startbit: boolean to know if start bit is used to start transfer 234 */ 235 struct stm32_spi_cfg { 236 const struct stm32_spi_regspec *regs; 237 int (*get_fifo_size)(struct stm32_spi *spi); 238 int (*get_bpw_mask)(struct stm32_spi *spi); 239 void (*disable)(struct stm32_spi *spi); 240 int (*config)(struct stm32_spi *spi); 241 void (*set_bpw)(struct stm32_spi *spi); 242 int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type); 243 void (*set_data_idleness)(struct stm32_spi *spi, u32 length); 244 int (*set_number_of_data)(struct stm32_spi *spi, u32 length); 245 void (*transfer_one_dma_start)(struct stm32_spi *spi); 246 void (*dma_rx_cb)(void *data); 247 void (*dma_tx_cb)(void *data); 248 int (*transfer_one_irq)(struct stm32_spi *spi); 249 irqreturn_t (*irq_handler_event)(int irq, void *dev_id); 250 irqreturn_t (*irq_handler_thread)(int irq, void *dev_id); 251 unsigned int baud_rate_div_min; 252 unsigned int baud_rate_div_max; 253 bool has_fifo; 254 }; 255 256 /** 257 * struct stm32_spi - private data of the SPI controller 258 * @dev: driver model representation of the controller 259 * @master: controller master interface 260 * @cfg: compatible configuration data 261 * @base: virtual memory area 262 * @clk: hw kernel clock feeding the SPI clock generator 263 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator 264 * @lock: prevent I/O concurrent access 265 * @irq: SPI controller interrupt line 266 * @fifo_size: size of the embedded fifo in bytes 267 * @cur_midi: master inter-data idleness in ns 268 * @cur_speed: speed configured in Hz 269 * @cur_bpw: number of bits in a single SPI data frame 270 * @cur_fthlv: fifo threshold level (data frames in a single data packet) 271 * @cur_comm: SPI communication mode 272 * @cur_xferlen: current transfer length in bytes 273 * @cur_usedma: boolean to know if dma is used in current transfer 274 * @tx_buf: data to be written, or NULL 275 * @rx_buf: data to be read, or NULL 276 * @tx_len: number of data to be written in bytes 277 * @rx_len: number of data to be read in bytes 278 * @dma_tx: dma channel for TX transfer 279 * @dma_rx: dma channel for RX transfer 280 * @phys_addr: SPI registers physical base address 281 */ 282 struct stm32_spi { 283 struct device *dev; 284 struct spi_master *master; 285 const struct stm32_spi_cfg *cfg; 286 void __iomem *base; 287 struct clk *clk; 288 u32 clk_rate; 289 spinlock_t lock; /* prevent I/O concurrent access */ 290 int irq; 291 unsigned int fifo_size; 292 293 unsigned int cur_midi; 294 unsigned int cur_speed; 295 unsigned int cur_bpw; 296 unsigned int cur_fthlv; 297 unsigned int cur_comm; 298 unsigned int cur_xferlen; 299 bool cur_usedma; 300 301 const void *tx_buf; 302 void *rx_buf; 303 int tx_len; 304 int rx_len; 305 struct dma_chan *dma_tx; 306 struct dma_chan *dma_rx; 307 dma_addr_t phys_addr; 308 }; 309 310 static const struct stm32_spi_regspec stm32f4_spi_regspec = { 311 .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE }, 312 313 .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN }, 314 .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN }, 315 316 .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL }, 317 .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA }, 318 .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST }, 319 .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT }, 320 321 .rx = { STM32F4_SPI_DR }, 322 .tx = { STM32F4_SPI_DR }, 323 }; 324 325 static const struct stm32_spi_regspec stm32h7_spi_regspec = { 326 /* SPI data transfer is enabled but spi_ker_ck is idle. 327 * CFG1 and CFG2 registers are write protected when SPE is enabled. 328 */ 329 .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE }, 330 331 .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN }, 332 .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN }, 333 334 .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL }, 335 .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA }, 336 .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST }, 337 .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR, 338 STM32H7_SPI_CFG1_MBR_SHIFT }, 339 340 .rx = { STM32H7_SPI_RXDR }, 341 .tx = { STM32H7_SPI_TXDR }, 342 }; 343 344 static inline void stm32_spi_set_bits(struct stm32_spi *spi, 345 u32 offset, u32 bits) 346 { 347 writel_relaxed(readl_relaxed(spi->base + offset) | bits, 348 spi->base + offset); 349 } 350 351 static inline void stm32_spi_clr_bits(struct stm32_spi *spi, 352 u32 offset, u32 bits) 353 { 354 writel_relaxed(readl_relaxed(spi->base + offset) & ~bits, 355 spi->base + offset); 356 } 357 358 /** 359 * stm32h7_spi_get_fifo_size - Return fifo size 360 * @spi: pointer to the spi controller data structure 361 */ 362 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi) 363 { 364 unsigned long flags; 365 u32 count = 0; 366 367 spin_lock_irqsave(&spi->lock, flags); 368 369 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 370 371 while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP) 372 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR); 373 374 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 375 376 spin_unlock_irqrestore(&spi->lock, flags); 377 378 dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count); 379 380 return count; 381 } 382 383 /** 384 * stm32f4_spi_get_bpw_mask - Return bits per word mask 385 * @spi: pointer to the spi controller data structure 386 */ 387 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi) 388 { 389 dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n"); 390 return SPI_BPW_MASK(8) | SPI_BPW_MASK(16); 391 } 392 393 /** 394 * stm32h7_spi_get_bpw_mask - Return bits per word mask 395 * @spi: pointer to the spi controller data structure 396 */ 397 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi) 398 { 399 unsigned long flags; 400 u32 cfg1, max_bpw; 401 402 spin_lock_irqsave(&spi->lock, flags); 403 404 /* 405 * The most significant bit at DSIZE bit field is reserved when the 406 * maximum data size of periperal instances is limited to 16-bit 407 */ 408 stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE); 409 410 cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1); 411 max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1; 412 413 spin_unlock_irqrestore(&spi->lock, flags); 414 415 dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw); 416 417 return SPI_BPW_RANGE_MASK(4, max_bpw); 418 } 419 420 /** 421 * stm32_spi_prepare_mbr - Determine baud rate divisor value 422 * @spi: pointer to the spi controller data structure 423 * @speed_hz: requested speed 424 * @min_div: minimum baud rate divisor 425 * @max_div: maximum baud rate divisor 426 * 427 * Return baud rate divisor value in case of success or -EINVAL 428 */ 429 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz, 430 u32 min_div, u32 max_div) 431 { 432 u32 div, mbrdiv; 433 434 /* Ensure spi->clk_rate is even */ 435 div = DIV_ROUND_UP(spi->clk_rate & ~0x1, speed_hz); 436 437 /* 438 * SPI framework set xfer->speed_hz to master->max_speed_hz if 439 * xfer->speed_hz is greater than master->max_speed_hz, and it returns 440 * an error when xfer->speed_hz is lower than master->min_speed_hz, so 441 * no need to check it there. 442 * However, we need to ensure the following calculations. 443 */ 444 if ((div < min_div) || (div > max_div)) 445 return -EINVAL; 446 447 /* Determine the first power of 2 greater than or equal to div */ 448 if (div & (div - 1)) 449 mbrdiv = fls(div); 450 else 451 mbrdiv = fls(div) - 1; 452 453 spi->cur_speed = spi->clk_rate / (1 << mbrdiv); 454 455 return mbrdiv - 1; 456 } 457 458 /** 459 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level 460 * @spi: pointer to the spi controller data structure 461 * @xfer_len: length of the message to be transferred 462 */ 463 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len) 464 { 465 u32 packet, bpw; 466 467 /* data packet should not exceed 1/2 of fifo space */ 468 packet = clamp(xfer_len, 1U, spi->fifo_size / 2); 469 470 /* align packet size with data registers access */ 471 bpw = DIV_ROUND_UP(spi->cur_bpw, 8); 472 return DIV_ROUND_UP(packet, bpw); 473 } 474 475 /** 476 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register 477 * @spi: pointer to the spi controller data structure 478 * 479 * Read from tx_buf depends on remaining bytes to avoid to read beyond 480 * tx_buf end. 481 */ 482 static void stm32f4_spi_write_tx(struct stm32_spi *spi) 483 { 484 if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) & 485 STM32F4_SPI_SR_TXE)) { 486 u32 offs = spi->cur_xferlen - spi->tx_len; 487 488 if (spi->cur_bpw == 16) { 489 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs); 490 491 writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR); 492 spi->tx_len -= sizeof(u16); 493 } else { 494 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs); 495 496 writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR); 497 spi->tx_len -= sizeof(u8); 498 } 499 } 500 501 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len); 502 } 503 504 /** 505 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register 506 * @spi: pointer to the spi controller data structure 507 * 508 * Read from tx_buf depends on remaining bytes to avoid to read beyond 509 * tx_buf end. 510 */ 511 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi) 512 { 513 while ((spi->tx_len > 0) && 514 (readl_relaxed(spi->base + STM32H7_SPI_SR) & 515 STM32H7_SPI_SR_TXP)) { 516 u32 offs = spi->cur_xferlen - spi->tx_len; 517 518 if (spi->tx_len >= sizeof(u32)) { 519 const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs); 520 521 writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR); 522 spi->tx_len -= sizeof(u32); 523 } else if (spi->tx_len >= sizeof(u16)) { 524 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs); 525 526 writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR); 527 spi->tx_len -= sizeof(u16); 528 } else { 529 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs); 530 531 writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR); 532 spi->tx_len -= sizeof(u8); 533 } 534 } 535 536 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len); 537 } 538 539 /** 540 * stm32f4_spi_read_rx - Read bytes from Receive Data Register 541 * @spi: pointer to the spi controller data structure 542 * 543 * Write in rx_buf depends on remaining bytes to avoid to write beyond 544 * rx_buf end. 545 */ 546 static void stm32f4_spi_read_rx(struct stm32_spi *spi) 547 { 548 if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) & 549 STM32F4_SPI_SR_RXNE)) { 550 u32 offs = spi->cur_xferlen - spi->rx_len; 551 552 if (spi->cur_bpw == 16) { 553 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs); 554 555 *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR); 556 spi->rx_len -= sizeof(u16); 557 } else { 558 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs); 559 560 *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR); 561 spi->rx_len -= sizeof(u8); 562 } 563 } 564 565 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len); 566 } 567 568 /** 569 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register 570 * @spi: pointer to the spi controller data structure 571 * @flush: boolean indicating that FIFO should be flushed 572 * 573 * Write in rx_buf depends on remaining bytes to avoid to write beyond 574 * rx_buf end. 575 */ 576 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush) 577 { 578 u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 579 u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr); 580 581 while ((spi->rx_len > 0) && 582 ((sr & STM32H7_SPI_SR_RXP) || 583 (flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) { 584 u32 offs = spi->cur_xferlen - spi->rx_len; 585 586 if ((spi->rx_len >= sizeof(u32)) || 587 (flush && (sr & STM32H7_SPI_SR_RXWNE))) { 588 u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs); 589 590 *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR); 591 spi->rx_len -= sizeof(u32); 592 } else if ((spi->rx_len >= sizeof(u16)) || 593 (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) { 594 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs); 595 596 *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR); 597 spi->rx_len -= sizeof(u16); 598 } else { 599 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs); 600 601 *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR); 602 spi->rx_len -= sizeof(u8); 603 } 604 605 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 606 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr); 607 } 608 609 dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__, 610 flush ? "(flush)" : "", spi->rx_len); 611 } 612 613 /** 614 * stm32_spi_enable - Enable SPI controller 615 * @spi: pointer to the spi controller data structure 616 */ 617 static void stm32_spi_enable(struct stm32_spi *spi) 618 { 619 dev_dbg(spi->dev, "enable controller\n"); 620 621 stm32_spi_set_bits(spi, spi->cfg->regs->en.reg, 622 spi->cfg->regs->en.mask); 623 } 624 625 /** 626 * stm32f4_spi_disable - Disable SPI controller 627 * @spi: pointer to the spi controller data structure 628 */ 629 static void stm32f4_spi_disable(struct stm32_spi *spi) 630 { 631 unsigned long flags; 632 u32 sr; 633 634 dev_dbg(spi->dev, "disable controller\n"); 635 636 spin_lock_irqsave(&spi->lock, flags); 637 638 if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) & 639 STM32F4_SPI_CR1_SPE)) { 640 spin_unlock_irqrestore(&spi->lock, flags); 641 return; 642 } 643 644 /* Disable interrupts */ 645 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE | 646 STM32F4_SPI_CR2_RXNEIE | 647 STM32F4_SPI_CR2_ERRIE); 648 649 /* Wait until BSY = 0 */ 650 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR, 651 sr, !(sr & STM32F4_SPI_SR_BSY), 652 10, 100000) < 0) { 653 dev_warn(spi->dev, "disabling condition timeout\n"); 654 } 655 656 if (spi->cur_usedma && spi->dma_tx) 657 dmaengine_terminate_all(spi->dma_tx); 658 if (spi->cur_usedma && spi->dma_rx) 659 dmaengine_terminate_all(spi->dma_rx); 660 661 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE); 662 663 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN | 664 STM32F4_SPI_CR2_RXDMAEN); 665 666 /* Sequence to clear OVR flag */ 667 readl_relaxed(spi->base + STM32F4_SPI_DR); 668 readl_relaxed(spi->base + STM32F4_SPI_SR); 669 670 spin_unlock_irqrestore(&spi->lock, flags); 671 } 672 673 /** 674 * stm32h7_spi_disable - Disable SPI controller 675 * @spi: pointer to the spi controller data structure 676 * 677 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data 678 * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in 679 * RX-Fifo. 680 * Normally, if TSIZE has been configured, we should relax the hardware at the 681 * reception of the EOT interrupt. But in case of error, EOT will not be 682 * raised. So the subsystem unprepare_message call allows us to properly 683 * complete the transfer from an hardware point of view. 684 */ 685 static void stm32h7_spi_disable(struct stm32_spi *spi) 686 { 687 unsigned long flags; 688 u32 cr1, sr; 689 690 dev_dbg(spi->dev, "disable controller\n"); 691 692 spin_lock_irqsave(&spi->lock, flags); 693 694 cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1); 695 696 if (!(cr1 & STM32H7_SPI_CR1_SPE)) { 697 spin_unlock_irqrestore(&spi->lock, flags); 698 return; 699 } 700 701 /* Wait on EOT or suspend the flow */ 702 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR, 703 sr, !(sr & STM32H7_SPI_SR_EOT), 704 10, 100000) < 0) { 705 if (cr1 & STM32H7_SPI_CR1_CSTART) { 706 writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP, 707 spi->base + STM32H7_SPI_CR1); 708 if (readl_relaxed_poll_timeout_atomic( 709 spi->base + STM32H7_SPI_SR, 710 sr, !(sr & STM32H7_SPI_SR_SUSP), 711 10, 100000) < 0) 712 dev_warn(spi->dev, 713 "Suspend request timeout\n"); 714 } 715 } 716 717 if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0)) 718 stm32h7_spi_read_rxfifo(spi, true); 719 720 if (spi->cur_usedma && spi->dma_tx) 721 dmaengine_terminate_all(spi->dma_tx); 722 if (spi->cur_usedma && spi->dma_rx) 723 dmaengine_terminate_all(spi->dma_rx); 724 725 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 726 727 stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN | 728 STM32H7_SPI_CFG1_RXDMAEN); 729 730 /* Disable interrupts and clear status flags */ 731 writel_relaxed(0, spi->base + STM32H7_SPI_IER); 732 writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR); 733 734 spin_unlock_irqrestore(&spi->lock, flags); 735 } 736 737 /** 738 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use 739 * @master: controller master interface 740 * @spi_dev: pointer to the spi device 741 * @transfer: pointer to spi transfer 742 * 743 * If driver has fifo and the current transfer size is greater than fifo size, 744 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes. 745 */ 746 static bool stm32_spi_can_dma(struct spi_master *master, 747 struct spi_device *spi_dev, 748 struct spi_transfer *transfer) 749 { 750 unsigned int dma_size; 751 struct stm32_spi *spi = spi_master_get_devdata(master); 752 753 if (spi->cfg->has_fifo) 754 dma_size = spi->fifo_size; 755 else 756 dma_size = SPI_DMA_MIN_BYTES; 757 758 dev_dbg(spi->dev, "%s: %s\n", __func__, 759 (transfer->len > dma_size) ? "true" : "false"); 760 761 return (transfer->len > dma_size); 762 } 763 764 /** 765 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events 766 * @irq: interrupt line 767 * @dev_id: SPI controller master interface 768 */ 769 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id) 770 { 771 struct spi_master *master = dev_id; 772 struct stm32_spi *spi = spi_master_get_devdata(master); 773 u32 sr, mask = 0; 774 bool end = false; 775 776 spin_lock(&spi->lock); 777 778 sr = readl_relaxed(spi->base + STM32F4_SPI_SR); 779 /* 780 * BSY flag is not handled in interrupt but it is normal behavior when 781 * this flag is set. 782 */ 783 sr &= ~STM32F4_SPI_SR_BSY; 784 785 if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX || 786 spi->cur_comm == SPI_3WIRE_TX)) { 787 /* OVR flag shouldn't be handled for TX only mode */ 788 sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE; 789 mask |= STM32F4_SPI_SR_TXE; 790 } 791 792 if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX || 793 spi->cur_comm == SPI_SIMPLEX_RX || 794 spi->cur_comm == SPI_3WIRE_RX)) { 795 /* TXE flag is set and is handled when RXNE flag occurs */ 796 sr &= ~STM32F4_SPI_SR_TXE; 797 mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR; 798 } 799 800 if (!(sr & mask)) { 801 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr); 802 spin_unlock(&spi->lock); 803 return IRQ_NONE; 804 } 805 806 if (sr & STM32F4_SPI_SR_OVR) { 807 dev_warn(spi->dev, "Overrun: received value discarded\n"); 808 809 /* Sequence to clear OVR flag */ 810 readl_relaxed(spi->base + STM32F4_SPI_DR); 811 readl_relaxed(spi->base + STM32F4_SPI_SR); 812 813 /* 814 * If overrun is detected, it means that something went wrong, 815 * so stop the current transfer. Transfer can wait for next 816 * RXNE but DR is already read and end never happens. 817 */ 818 end = true; 819 goto end_irq; 820 } 821 822 if (sr & STM32F4_SPI_SR_TXE) { 823 if (spi->tx_buf) 824 stm32f4_spi_write_tx(spi); 825 if (spi->tx_len == 0) 826 end = true; 827 } 828 829 if (sr & STM32F4_SPI_SR_RXNE) { 830 stm32f4_spi_read_rx(spi); 831 if (spi->rx_len == 0) 832 end = true; 833 else if (spi->tx_buf)/* Load data for discontinuous mode */ 834 stm32f4_spi_write_tx(spi); 835 } 836 837 end_irq: 838 if (end) { 839 /* Immediately disable interrupts to do not generate new one */ 840 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, 841 STM32F4_SPI_CR2_TXEIE | 842 STM32F4_SPI_CR2_RXNEIE | 843 STM32F4_SPI_CR2_ERRIE); 844 spin_unlock(&spi->lock); 845 return IRQ_WAKE_THREAD; 846 } 847 848 spin_unlock(&spi->lock); 849 return IRQ_HANDLED; 850 } 851 852 /** 853 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller 854 * @irq: interrupt line 855 * @dev_id: SPI controller master interface 856 */ 857 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id) 858 { 859 struct spi_master *master = dev_id; 860 struct stm32_spi *spi = spi_master_get_devdata(master); 861 862 spi_finalize_current_transfer(master); 863 stm32f4_spi_disable(spi); 864 865 return IRQ_HANDLED; 866 } 867 868 /** 869 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller 870 * @irq: interrupt line 871 * @dev_id: SPI controller master interface 872 */ 873 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id) 874 { 875 struct spi_master *master = dev_id; 876 struct stm32_spi *spi = spi_master_get_devdata(master); 877 u32 sr, ier, mask; 878 unsigned long flags; 879 bool end = false; 880 881 spin_lock_irqsave(&spi->lock, flags); 882 883 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 884 ier = readl_relaxed(spi->base + STM32H7_SPI_IER); 885 886 mask = ier; 887 /* 888 * EOTIE enables irq from EOT, SUSP and TXC events. We need to set 889 * SUSP to acknowledge it later. TXC is automatically cleared 890 */ 891 892 mask |= STM32H7_SPI_SR_SUSP; 893 /* 894 * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP 895 * are set. So in case of Full-Duplex, need to poll TXP and RXP event. 896 */ 897 if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma) 898 mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP; 899 900 if (!(sr & mask)) { 901 dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n", 902 sr, ier); 903 spin_unlock_irqrestore(&spi->lock, flags); 904 return IRQ_NONE; 905 } 906 907 if (sr & STM32H7_SPI_SR_SUSP) { 908 static DEFINE_RATELIMIT_STATE(rs, 909 DEFAULT_RATELIMIT_INTERVAL * 10, 910 1); 911 if (__ratelimit(&rs)) 912 dev_dbg_ratelimited(spi->dev, "Communication suspended\n"); 913 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 914 stm32h7_spi_read_rxfifo(spi, false); 915 /* 916 * If communication is suspended while using DMA, it means 917 * that something went wrong, so stop the current transfer 918 */ 919 if (spi->cur_usedma) 920 end = true; 921 } 922 923 if (sr & STM32H7_SPI_SR_MODF) { 924 dev_warn(spi->dev, "Mode fault: transfer aborted\n"); 925 end = true; 926 } 927 928 if (sr & STM32H7_SPI_SR_OVR) { 929 dev_err(spi->dev, "Overrun: RX data lost\n"); 930 end = true; 931 } 932 933 if (sr & STM32H7_SPI_SR_EOT) { 934 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 935 stm32h7_spi_read_rxfifo(spi, true); 936 end = true; 937 } 938 939 if (sr & STM32H7_SPI_SR_TXP) 940 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0))) 941 stm32h7_spi_write_txfifo(spi); 942 943 if (sr & STM32H7_SPI_SR_RXP) 944 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 945 stm32h7_spi_read_rxfifo(spi, false); 946 947 writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR); 948 949 spin_unlock_irqrestore(&spi->lock, flags); 950 951 if (end) { 952 stm32h7_spi_disable(spi); 953 spi_finalize_current_transfer(master); 954 } 955 956 return IRQ_HANDLED; 957 } 958 959 /** 960 * stm32_spi_prepare_msg - set up the controller to transfer a single message 961 * @master: controller master interface 962 * @msg: pointer to spi message 963 */ 964 static int stm32_spi_prepare_msg(struct spi_master *master, 965 struct spi_message *msg) 966 { 967 struct stm32_spi *spi = spi_master_get_devdata(master); 968 struct spi_device *spi_dev = msg->spi; 969 struct device_node *np = spi_dev->dev.of_node; 970 unsigned long flags; 971 u32 clrb = 0, setb = 0; 972 973 /* SPI slave device may need time between data frames */ 974 spi->cur_midi = 0; 975 if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi)) 976 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi); 977 978 if (spi_dev->mode & SPI_CPOL) 979 setb |= spi->cfg->regs->cpol.mask; 980 else 981 clrb |= spi->cfg->regs->cpol.mask; 982 983 if (spi_dev->mode & SPI_CPHA) 984 setb |= spi->cfg->regs->cpha.mask; 985 else 986 clrb |= spi->cfg->regs->cpha.mask; 987 988 if (spi_dev->mode & SPI_LSB_FIRST) 989 setb |= spi->cfg->regs->lsb_first.mask; 990 else 991 clrb |= spi->cfg->regs->lsb_first.mask; 992 993 dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n", 994 !!(spi_dev->mode & SPI_CPOL), 995 !!(spi_dev->mode & SPI_CPHA), 996 !!(spi_dev->mode & SPI_LSB_FIRST), 997 !!(spi_dev->mode & SPI_CS_HIGH)); 998 999 /* On STM32H7, messages should not exceed a maximum size setted 1000 * afterward via the set_number_of_data function. In order to 1001 * ensure that, split large messages into several messages 1002 */ 1003 if (spi->cfg->set_number_of_data) { 1004 int ret; 1005 1006 ret = spi_split_transfers_maxsize(master, msg, 1007 STM32H7_SPI_TSIZE_MAX, 1008 GFP_KERNEL | GFP_DMA); 1009 if (ret) 1010 return ret; 1011 } 1012 1013 spin_lock_irqsave(&spi->lock, flags); 1014 1015 /* CPOL, CPHA and LSB FIRST bits have common register */ 1016 if (clrb || setb) 1017 writel_relaxed( 1018 (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) & 1019 ~clrb) | setb, 1020 spi->base + spi->cfg->regs->cpol.reg); 1021 1022 spin_unlock_irqrestore(&spi->lock, flags); 1023 1024 return 0; 1025 } 1026 1027 /** 1028 * stm32f4_spi_dma_tx_cb - dma callback 1029 * @data: pointer to the spi controller data structure 1030 * 1031 * DMA callback is called when the transfer is complete for DMA TX channel. 1032 */ 1033 static void stm32f4_spi_dma_tx_cb(void *data) 1034 { 1035 struct stm32_spi *spi = data; 1036 1037 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) { 1038 spi_finalize_current_transfer(spi->master); 1039 stm32f4_spi_disable(spi); 1040 } 1041 } 1042 1043 /** 1044 * stm32f4_spi_dma_rx_cb - dma callback 1045 * @data: pointer to the spi controller data structure 1046 * 1047 * DMA callback is called when the transfer is complete for DMA RX channel. 1048 */ 1049 static void stm32f4_spi_dma_rx_cb(void *data) 1050 { 1051 struct stm32_spi *spi = data; 1052 1053 spi_finalize_current_transfer(spi->master); 1054 stm32f4_spi_disable(spi); 1055 } 1056 1057 /** 1058 * stm32h7_spi_dma_cb - dma callback 1059 * @data: pointer to the spi controller data structure 1060 * 1061 * DMA callback is called when the transfer is complete or when an error 1062 * occurs. If the transfer is complete, EOT flag is raised. 1063 */ 1064 static void stm32h7_spi_dma_cb(void *data) 1065 { 1066 struct stm32_spi *spi = data; 1067 unsigned long flags; 1068 u32 sr; 1069 1070 spin_lock_irqsave(&spi->lock, flags); 1071 1072 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 1073 1074 spin_unlock_irqrestore(&spi->lock, flags); 1075 1076 if (!(sr & STM32H7_SPI_SR_EOT)) 1077 dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr); 1078 1079 /* Now wait for EOT, or SUSP or OVR in case of error */ 1080 } 1081 1082 /** 1083 * stm32_spi_dma_config - configure dma slave channel depending on current 1084 * transfer bits_per_word. 1085 * @spi: pointer to the spi controller data structure 1086 * @dma_conf: pointer to the dma_slave_config structure 1087 * @dir: direction of the dma transfer 1088 */ 1089 static void stm32_spi_dma_config(struct stm32_spi *spi, 1090 struct dma_slave_config *dma_conf, 1091 enum dma_transfer_direction dir) 1092 { 1093 enum dma_slave_buswidth buswidth; 1094 u32 maxburst; 1095 1096 if (spi->cur_bpw <= 8) 1097 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; 1098 else if (spi->cur_bpw <= 16) 1099 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; 1100 else 1101 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES; 1102 1103 if (spi->cfg->has_fifo) { 1104 /* Valid for DMA Half or Full Fifo threshold */ 1105 if (spi->cur_fthlv == 2) 1106 maxburst = 1; 1107 else 1108 maxburst = spi->cur_fthlv; 1109 } else { 1110 maxburst = 1; 1111 } 1112 1113 memset(dma_conf, 0, sizeof(struct dma_slave_config)); 1114 dma_conf->direction = dir; 1115 if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */ 1116 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg; 1117 dma_conf->src_addr_width = buswidth; 1118 dma_conf->src_maxburst = maxburst; 1119 1120 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n", 1121 buswidth, maxburst); 1122 } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */ 1123 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg; 1124 dma_conf->dst_addr_width = buswidth; 1125 dma_conf->dst_maxburst = maxburst; 1126 1127 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n", 1128 buswidth, maxburst); 1129 } 1130 } 1131 1132 /** 1133 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using 1134 * interrupts 1135 * @spi: pointer to the spi controller data structure 1136 * 1137 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1138 * in progress. 1139 */ 1140 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi) 1141 { 1142 unsigned long flags; 1143 u32 cr2 = 0; 1144 1145 /* Enable the interrupts relative to the current communication mode */ 1146 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) { 1147 cr2 |= STM32F4_SPI_CR2_TXEIE; 1148 } else if (spi->cur_comm == SPI_FULL_DUPLEX || 1149 spi->cur_comm == SPI_SIMPLEX_RX || 1150 spi->cur_comm == SPI_3WIRE_RX) { 1151 /* In transmit-only mode, the OVR flag is set in the SR register 1152 * since the received data are never read. Therefore set OVR 1153 * interrupt only when rx buffer is available. 1154 */ 1155 cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE; 1156 } else { 1157 return -EINVAL; 1158 } 1159 1160 spin_lock_irqsave(&spi->lock, flags); 1161 1162 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2); 1163 1164 stm32_spi_enable(spi); 1165 1166 /* starting data transfer when buffer is loaded */ 1167 if (spi->tx_buf) 1168 stm32f4_spi_write_tx(spi); 1169 1170 spin_unlock_irqrestore(&spi->lock, flags); 1171 1172 return 1; 1173 } 1174 1175 /** 1176 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using 1177 * interrupts 1178 * @spi: pointer to the spi controller data structure 1179 * 1180 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1181 * in progress. 1182 */ 1183 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi) 1184 { 1185 unsigned long flags; 1186 u32 ier = 0; 1187 1188 /* Enable the interrupts relative to the current communication mode */ 1189 if (spi->tx_buf && spi->rx_buf) /* Full Duplex */ 1190 ier |= STM32H7_SPI_IER_DXPIE; 1191 else if (spi->tx_buf) /* Half-Duplex TX dir or Simplex TX */ 1192 ier |= STM32H7_SPI_IER_TXPIE; 1193 else if (spi->rx_buf) /* Half-Duplex RX dir or Simplex RX */ 1194 ier |= STM32H7_SPI_IER_RXPIE; 1195 1196 /* Enable the interrupts relative to the end of transfer */ 1197 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE | 1198 STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE; 1199 1200 spin_lock_irqsave(&spi->lock, flags); 1201 1202 stm32_spi_enable(spi); 1203 1204 /* Be sure to have data in fifo before starting data transfer */ 1205 if (spi->tx_buf) 1206 stm32h7_spi_write_txfifo(spi); 1207 1208 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART); 1209 1210 writel_relaxed(ier, spi->base + STM32H7_SPI_IER); 1211 1212 spin_unlock_irqrestore(&spi->lock, flags); 1213 1214 return 1; 1215 } 1216 1217 /** 1218 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start 1219 * transfer using DMA 1220 * @spi: pointer to the spi controller data structure 1221 */ 1222 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi) 1223 { 1224 /* In DMA mode end of transfer is handled by DMA TX or RX callback. */ 1225 if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX || 1226 spi->cur_comm == SPI_FULL_DUPLEX) { 1227 /* 1228 * In transmit-only mode, the OVR flag is set in the SR register 1229 * since the received data are never read. Therefore set OVR 1230 * interrupt only when rx buffer is available. 1231 */ 1232 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE); 1233 } 1234 1235 stm32_spi_enable(spi); 1236 } 1237 1238 /** 1239 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start 1240 * transfer using DMA 1241 * @spi: pointer to the spi controller data structure 1242 */ 1243 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi) 1244 { 1245 /* Enable the interrupts relative to the end of transfer */ 1246 stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE | 1247 STM32H7_SPI_IER_TXTFIE | 1248 STM32H7_SPI_IER_OVRIE | 1249 STM32H7_SPI_IER_MODFIE); 1250 1251 stm32_spi_enable(spi); 1252 1253 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART); 1254 } 1255 1256 /** 1257 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA 1258 * @spi: pointer to the spi controller data structure 1259 * @xfer: pointer to the spi_transfer structure 1260 * 1261 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1262 * in progress. 1263 */ 1264 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi, 1265 struct spi_transfer *xfer) 1266 { 1267 struct dma_slave_config tx_dma_conf, rx_dma_conf; 1268 struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc; 1269 unsigned long flags; 1270 1271 spin_lock_irqsave(&spi->lock, flags); 1272 1273 rx_dma_desc = NULL; 1274 if (spi->rx_buf && spi->dma_rx) { 1275 stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM); 1276 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf); 1277 1278 /* Enable Rx DMA request */ 1279 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg, 1280 spi->cfg->regs->dma_rx_en.mask); 1281 1282 rx_dma_desc = dmaengine_prep_slave_sg( 1283 spi->dma_rx, xfer->rx_sg.sgl, 1284 xfer->rx_sg.nents, 1285 rx_dma_conf.direction, 1286 DMA_PREP_INTERRUPT); 1287 } 1288 1289 tx_dma_desc = NULL; 1290 if (spi->tx_buf && spi->dma_tx) { 1291 stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV); 1292 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf); 1293 1294 tx_dma_desc = dmaengine_prep_slave_sg( 1295 spi->dma_tx, xfer->tx_sg.sgl, 1296 xfer->tx_sg.nents, 1297 tx_dma_conf.direction, 1298 DMA_PREP_INTERRUPT); 1299 } 1300 1301 if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) || 1302 (spi->rx_buf && spi->dma_rx && !rx_dma_desc)) 1303 goto dma_desc_error; 1304 1305 if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc)) 1306 goto dma_desc_error; 1307 1308 if (rx_dma_desc) { 1309 rx_dma_desc->callback = spi->cfg->dma_rx_cb; 1310 rx_dma_desc->callback_param = spi; 1311 1312 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) { 1313 dev_err(spi->dev, "Rx DMA submit failed\n"); 1314 goto dma_desc_error; 1315 } 1316 /* Enable Rx DMA channel */ 1317 dma_async_issue_pending(spi->dma_rx); 1318 } 1319 1320 if (tx_dma_desc) { 1321 if (spi->cur_comm == SPI_SIMPLEX_TX || 1322 spi->cur_comm == SPI_3WIRE_TX) { 1323 tx_dma_desc->callback = spi->cfg->dma_tx_cb; 1324 tx_dma_desc->callback_param = spi; 1325 } 1326 1327 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) { 1328 dev_err(spi->dev, "Tx DMA submit failed\n"); 1329 goto dma_submit_error; 1330 } 1331 /* Enable Tx DMA channel */ 1332 dma_async_issue_pending(spi->dma_tx); 1333 1334 /* Enable Tx DMA request */ 1335 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg, 1336 spi->cfg->regs->dma_tx_en.mask); 1337 } 1338 1339 spi->cfg->transfer_one_dma_start(spi); 1340 1341 spin_unlock_irqrestore(&spi->lock, flags); 1342 1343 return 1; 1344 1345 dma_submit_error: 1346 if (spi->dma_rx) 1347 dmaengine_terminate_all(spi->dma_rx); 1348 1349 dma_desc_error: 1350 stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg, 1351 spi->cfg->regs->dma_rx_en.mask); 1352 1353 spin_unlock_irqrestore(&spi->lock, flags); 1354 1355 dev_info(spi->dev, "DMA issue: fall back to irq transfer\n"); 1356 1357 spi->cur_usedma = false; 1358 return spi->cfg->transfer_one_irq(spi); 1359 } 1360 1361 /** 1362 * stm32f4_spi_set_bpw - Configure bits per word 1363 * @spi: pointer to the spi controller data structure 1364 */ 1365 static void stm32f4_spi_set_bpw(struct stm32_spi *spi) 1366 { 1367 if (spi->cur_bpw == 16) 1368 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF); 1369 else 1370 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF); 1371 } 1372 1373 /** 1374 * stm32h7_spi_set_bpw - configure bits per word 1375 * @spi: pointer to the spi controller data structure 1376 */ 1377 static void stm32h7_spi_set_bpw(struct stm32_spi *spi) 1378 { 1379 u32 bpw, fthlv; 1380 u32 cfg1_clrb = 0, cfg1_setb = 0; 1381 1382 bpw = spi->cur_bpw - 1; 1383 1384 cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE; 1385 cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw); 1386 1387 spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen); 1388 fthlv = spi->cur_fthlv - 1; 1389 1390 cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV; 1391 cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv); 1392 1393 writel_relaxed( 1394 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) & 1395 ~cfg1_clrb) | cfg1_setb, 1396 spi->base + STM32H7_SPI_CFG1); 1397 } 1398 1399 /** 1400 * stm32_spi_set_mbr - Configure baud rate divisor in master mode 1401 * @spi: pointer to the spi controller data structure 1402 * @mbrdiv: baud rate divisor value 1403 */ 1404 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv) 1405 { 1406 u32 clrb = 0, setb = 0; 1407 1408 clrb |= spi->cfg->regs->br.mask; 1409 setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask; 1410 1411 writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) & 1412 ~clrb) | setb, 1413 spi->base + spi->cfg->regs->br.reg); 1414 } 1415 1416 /** 1417 * stm32_spi_communication_type - return transfer communication type 1418 * @spi_dev: pointer to the spi device 1419 * @transfer: pointer to spi transfer 1420 */ 1421 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev, 1422 struct spi_transfer *transfer) 1423 { 1424 unsigned int type = SPI_FULL_DUPLEX; 1425 1426 if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */ 1427 /* 1428 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL 1429 * is forbidden and unvalidated by SPI subsystem so depending 1430 * on the valid buffer, we can determine the direction of the 1431 * transfer. 1432 */ 1433 if (!transfer->tx_buf) 1434 type = SPI_3WIRE_RX; 1435 else 1436 type = SPI_3WIRE_TX; 1437 } else { 1438 if (!transfer->tx_buf) 1439 type = SPI_SIMPLEX_RX; 1440 else if (!transfer->rx_buf) 1441 type = SPI_SIMPLEX_TX; 1442 } 1443 1444 return type; 1445 } 1446 1447 /** 1448 * stm32f4_spi_set_mode - configure communication mode 1449 * @spi: pointer to the spi controller data structure 1450 * @comm_type: type of communication to configure 1451 */ 1452 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type) 1453 { 1454 if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) { 1455 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, 1456 STM32F4_SPI_CR1_BIDIMODE | 1457 STM32F4_SPI_CR1_BIDIOE); 1458 } else if (comm_type == SPI_FULL_DUPLEX || 1459 comm_type == SPI_SIMPLEX_RX) { 1460 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, 1461 STM32F4_SPI_CR1_BIDIMODE | 1462 STM32F4_SPI_CR1_BIDIOE); 1463 } else if (comm_type == SPI_3WIRE_RX) { 1464 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, 1465 STM32F4_SPI_CR1_BIDIMODE); 1466 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, 1467 STM32F4_SPI_CR1_BIDIOE); 1468 } else { 1469 return -EINVAL; 1470 } 1471 1472 return 0; 1473 } 1474 1475 /** 1476 * stm32h7_spi_set_mode - configure communication mode 1477 * @spi: pointer to the spi controller data structure 1478 * @comm_type: type of communication to configure 1479 */ 1480 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type) 1481 { 1482 u32 mode; 1483 u32 cfg2_clrb = 0, cfg2_setb = 0; 1484 1485 if (comm_type == SPI_3WIRE_RX) { 1486 mode = STM32H7_SPI_HALF_DUPLEX; 1487 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR); 1488 } else if (comm_type == SPI_3WIRE_TX) { 1489 mode = STM32H7_SPI_HALF_DUPLEX; 1490 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR); 1491 } else if (comm_type == SPI_SIMPLEX_RX) { 1492 mode = STM32H7_SPI_SIMPLEX_RX; 1493 } else if (comm_type == SPI_SIMPLEX_TX) { 1494 mode = STM32H7_SPI_SIMPLEX_TX; 1495 } else { 1496 mode = STM32H7_SPI_FULL_DUPLEX; 1497 } 1498 1499 cfg2_clrb |= STM32H7_SPI_CFG2_COMM; 1500 cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode); 1501 1502 writel_relaxed( 1503 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) & 1504 ~cfg2_clrb) | cfg2_setb, 1505 spi->base + STM32H7_SPI_CFG2); 1506 1507 return 0; 1508 } 1509 1510 /** 1511 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two 1512 * consecutive data frames in master mode 1513 * @spi: pointer to the spi controller data structure 1514 * @len: transfer len 1515 */ 1516 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len) 1517 { 1518 u32 cfg2_clrb = 0, cfg2_setb = 0; 1519 1520 cfg2_clrb |= STM32H7_SPI_CFG2_MIDI; 1521 if ((len > 1) && (spi->cur_midi > 0)) { 1522 u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed); 1523 u32 midi = min_t(u32, 1524 DIV_ROUND_UP(spi->cur_midi, sck_period_ns), 1525 FIELD_GET(STM32H7_SPI_CFG2_MIDI, 1526 STM32H7_SPI_CFG2_MIDI)); 1527 1528 1529 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n", 1530 sck_period_ns, midi, midi * sck_period_ns); 1531 cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi); 1532 } 1533 1534 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) & 1535 ~cfg2_clrb) | cfg2_setb, 1536 spi->base + STM32H7_SPI_CFG2); 1537 } 1538 1539 /** 1540 * stm32h7_spi_number_of_data - configure number of data at current transfer 1541 * @spi: pointer to the spi controller data structure 1542 * @nb_words: transfer length (in words) 1543 */ 1544 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words) 1545 { 1546 if (nb_words <= STM32H7_SPI_TSIZE_MAX) { 1547 writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words), 1548 spi->base + STM32H7_SPI_CR2); 1549 } else { 1550 return -EMSGSIZE; 1551 } 1552 1553 return 0; 1554 } 1555 1556 /** 1557 * stm32_spi_transfer_one_setup - common setup to transfer a single 1558 * spi_transfer either using DMA or 1559 * interrupts. 1560 * @spi: pointer to the spi controller data structure 1561 * @spi_dev: pointer to the spi device 1562 * @transfer: pointer to spi transfer 1563 */ 1564 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi, 1565 struct spi_device *spi_dev, 1566 struct spi_transfer *transfer) 1567 { 1568 unsigned long flags; 1569 unsigned int comm_type; 1570 int nb_words, ret = 0; 1571 int mbr; 1572 1573 spin_lock_irqsave(&spi->lock, flags); 1574 1575 spi->cur_xferlen = transfer->len; 1576 1577 spi->cur_bpw = transfer->bits_per_word; 1578 spi->cfg->set_bpw(spi); 1579 1580 /* Update spi->cur_speed with real clock speed */ 1581 mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz, 1582 spi->cfg->baud_rate_div_min, 1583 spi->cfg->baud_rate_div_max); 1584 if (mbr < 0) { 1585 ret = mbr; 1586 goto out; 1587 } 1588 1589 transfer->speed_hz = spi->cur_speed; 1590 stm32_spi_set_mbr(spi, mbr); 1591 1592 comm_type = stm32_spi_communication_type(spi_dev, transfer); 1593 ret = spi->cfg->set_mode(spi, comm_type); 1594 if (ret < 0) 1595 goto out; 1596 1597 spi->cur_comm = comm_type; 1598 1599 if (spi->cfg->set_data_idleness) 1600 spi->cfg->set_data_idleness(spi, transfer->len); 1601 1602 if (spi->cur_bpw <= 8) 1603 nb_words = transfer->len; 1604 else if (spi->cur_bpw <= 16) 1605 nb_words = DIV_ROUND_UP(transfer->len * 8, 16); 1606 else 1607 nb_words = DIV_ROUND_UP(transfer->len * 8, 32); 1608 1609 if (spi->cfg->set_number_of_data) { 1610 ret = spi->cfg->set_number_of_data(spi, nb_words); 1611 if (ret < 0) 1612 goto out; 1613 } 1614 1615 dev_dbg(spi->dev, "transfer communication mode set to %d\n", 1616 spi->cur_comm); 1617 dev_dbg(spi->dev, 1618 "data frame of %d-bit, data packet of %d data frames\n", 1619 spi->cur_bpw, spi->cur_fthlv); 1620 dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed); 1621 dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n", 1622 spi->cur_xferlen, nb_words); 1623 dev_dbg(spi->dev, "dma %s\n", 1624 (spi->cur_usedma) ? "enabled" : "disabled"); 1625 1626 out: 1627 spin_unlock_irqrestore(&spi->lock, flags); 1628 1629 return ret; 1630 } 1631 1632 /** 1633 * stm32_spi_transfer_one - transfer a single spi_transfer 1634 * @master: controller master interface 1635 * @spi_dev: pointer to the spi device 1636 * @transfer: pointer to spi transfer 1637 * 1638 * It must return 0 if the transfer is finished or 1 if the transfer is still 1639 * in progress. 1640 */ 1641 static int stm32_spi_transfer_one(struct spi_master *master, 1642 struct spi_device *spi_dev, 1643 struct spi_transfer *transfer) 1644 { 1645 struct stm32_spi *spi = spi_master_get_devdata(master); 1646 int ret; 1647 1648 /* Don't do anything on 0 bytes transfers */ 1649 if (transfer->len == 0) 1650 return 0; 1651 1652 spi->tx_buf = transfer->tx_buf; 1653 spi->rx_buf = transfer->rx_buf; 1654 spi->tx_len = spi->tx_buf ? transfer->len : 0; 1655 spi->rx_len = spi->rx_buf ? transfer->len : 0; 1656 1657 spi->cur_usedma = (master->can_dma && 1658 master->can_dma(master, spi_dev, transfer)); 1659 1660 ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer); 1661 if (ret) { 1662 dev_err(spi->dev, "SPI transfer setup failed\n"); 1663 return ret; 1664 } 1665 1666 if (spi->cur_usedma) 1667 return stm32_spi_transfer_one_dma(spi, transfer); 1668 else 1669 return spi->cfg->transfer_one_irq(spi); 1670 } 1671 1672 /** 1673 * stm32_spi_unprepare_msg - relax the hardware 1674 * @master: controller master interface 1675 * @msg: pointer to the spi message 1676 */ 1677 static int stm32_spi_unprepare_msg(struct spi_master *master, 1678 struct spi_message *msg) 1679 { 1680 struct stm32_spi *spi = spi_master_get_devdata(master); 1681 1682 spi->cfg->disable(spi); 1683 1684 return 0; 1685 } 1686 1687 /** 1688 * stm32f4_spi_config - Configure SPI controller as SPI master 1689 * @spi: pointer to the spi controller data structure 1690 */ 1691 static int stm32f4_spi_config(struct stm32_spi *spi) 1692 { 1693 unsigned long flags; 1694 1695 spin_lock_irqsave(&spi->lock, flags); 1696 1697 /* Ensure I2SMOD bit is kept cleared */ 1698 stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR, 1699 STM32F4_SPI_I2SCFGR_I2SMOD); 1700 1701 /* 1702 * - SS input value high 1703 * - transmitter half duplex direction 1704 * - Set the master mode (default Motorola mode) 1705 * - Consider 1 master/n slaves configuration and 1706 * SS input value is determined by the SSI bit 1707 */ 1708 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI | 1709 STM32F4_SPI_CR1_BIDIOE | 1710 STM32F4_SPI_CR1_MSTR | 1711 STM32F4_SPI_CR1_SSM); 1712 1713 spin_unlock_irqrestore(&spi->lock, flags); 1714 1715 return 0; 1716 } 1717 1718 /** 1719 * stm32h7_spi_config - Configure SPI controller as SPI master 1720 * @spi: pointer to the spi controller data structure 1721 */ 1722 static int stm32h7_spi_config(struct stm32_spi *spi) 1723 { 1724 unsigned long flags; 1725 1726 spin_lock_irqsave(&spi->lock, flags); 1727 1728 /* Ensure I2SMOD bit is kept cleared */ 1729 stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR, 1730 STM32H7_SPI_I2SCFGR_I2SMOD); 1731 1732 /* 1733 * - SS input value high 1734 * - transmitter half duplex direction 1735 * - automatic communication suspend when RX-Fifo is full 1736 */ 1737 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI | 1738 STM32H7_SPI_CR1_HDDIR | 1739 STM32H7_SPI_CR1_MASRX); 1740 1741 /* 1742 * - Set the master mode (default Motorola mode) 1743 * - Consider 1 master/n slaves configuration and 1744 * SS input value is determined by the SSI bit 1745 * - keep control of all associated GPIOs 1746 */ 1747 stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER | 1748 STM32H7_SPI_CFG2_SSM | 1749 STM32H7_SPI_CFG2_AFCNTR); 1750 1751 spin_unlock_irqrestore(&spi->lock, flags); 1752 1753 return 0; 1754 } 1755 1756 static const struct stm32_spi_cfg stm32f4_spi_cfg = { 1757 .regs = &stm32f4_spi_regspec, 1758 .get_bpw_mask = stm32f4_spi_get_bpw_mask, 1759 .disable = stm32f4_spi_disable, 1760 .config = stm32f4_spi_config, 1761 .set_bpw = stm32f4_spi_set_bpw, 1762 .set_mode = stm32f4_spi_set_mode, 1763 .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start, 1764 .dma_tx_cb = stm32f4_spi_dma_tx_cb, 1765 .dma_rx_cb = stm32f4_spi_dma_rx_cb, 1766 .transfer_one_irq = stm32f4_spi_transfer_one_irq, 1767 .irq_handler_event = stm32f4_spi_irq_event, 1768 .irq_handler_thread = stm32f4_spi_irq_thread, 1769 .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN, 1770 .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX, 1771 .has_fifo = false, 1772 }; 1773 1774 static const struct stm32_spi_cfg stm32h7_spi_cfg = { 1775 .regs = &stm32h7_spi_regspec, 1776 .get_fifo_size = stm32h7_spi_get_fifo_size, 1777 .get_bpw_mask = stm32h7_spi_get_bpw_mask, 1778 .disable = stm32h7_spi_disable, 1779 .config = stm32h7_spi_config, 1780 .set_bpw = stm32h7_spi_set_bpw, 1781 .set_mode = stm32h7_spi_set_mode, 1782 .set_data_idleness = stm32h7_spi_data_idleness, 1783 .set_number_of_data = stm32h7_spi_number_of_data, 1784 .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start, 1785 .dma_rx_cb = stm32h7_spi_dma_cb, 1786 .dma_tx_cb = stm32h7_spi_dma_cb, 1787 .transfer_one_irq = stm32h7_spi_transfer_one_irq, 1788 .irq_handler_thread = stm32h7_spi_irq_thread, 1789 .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN, 1790 .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX, 1791 .has_fifo = true, 1792 }; 1793 1794 static const struct of_device_id stm32_spi_of_match[] = { 1795 { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg }, 1796 { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg }, 1797 {}, 1798 }; 1799 MODULE_DEVICE_TABLE(of, stm32_spi_of_match); 1800 1801 static int stm32_spi_probe(struct platform_device *pdev) 1802 { 1803 struct spi_master *master; 1804 struct stm32_spi *spi; 1805 struct resource *res; 1806 struct reset_control *rst; 1807 int ret; 1808 1809 master = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi)); 1810 if (!master) { 1811 dev_err(&pdev->dev, "spi master allocation failed\n"); 1812 return -ENOMEM; 1813 } 1814 platform_set_drvdata(pdev, master); 1815 1816 spi = spi_master_get_devdata(master); 1817 spi->dev = &pdev->dev; 1818 spi->master = master; 1819 spin_lock_init(&spi->lock); 1820 1821 spi->cfg = (const struct stm32_spi_cfg *) 1822 of_match_device(pdev->dev.driver->of_match_table, 1823 &pdev->dev)->data; 1824 1825 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1826 spi->base = devm_ioremap_resource(&pdev->dev, res); 1827 if (IS_ERR(spi->base)) 1828 return PTR_ERR(spi->base); 1829 1830 spi->phys_addr = (dma_addr_t)res->start; 1831 1832 spi->irq = platform_get_irq(pdev, 0); 1833 if (spi->irq <= 0) 1834 return dev_err_probe(&pdev->dev, spi->irq, 1835 "failed to get irq\n"); 1836 1837 ret = devm_request_threaded_irq(&pdev->dev, spi->irq, 1838 spi->cfg->irq_handler_event, 1839 spi->cfg->irq_handler_thread, 1840 IRQF_ONESHOT, pdev->name, master); 1841 if (ret) { 1842 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq, 1843 ret); 1844 return ret; 1845 } 1846 1847 spi->clk = devm_clk_get(&pdev->dev, NULL); 1848 if (IS_ERR(spi->clk)) { 1849 ret = PTR_ERR(spi->clk); 1850 dev_err(&pdev->dev, "clk get failed: %d\n", ret); 1851 return ret; 1852 } 1853 1854 ret = clk_prepare_enable(spi->clk); 1855 if (ret) { 1856 dev_err(&pdev->dev, "clk enable failed: %d\n", ret); 1857 return ret; 1858 } 1859 spi->clk_rate = clk_get_rate(spi->clk); 1860 if (!spi->clk_rate) { 1861 dev_err(&pdev->dev, "clk rate = 0\n"); 1862 ret = -EINVAL; 1863 goto err_clk_disable; 1864 } 1865 1866 rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL); 1867 if (rst) { 1868 if (IS_ERR(rst)) { 1869 ret = dev_err_probe(&pdev->dev, PTR_ERR(rst), 1870 "failed to get reset\n"); 1871 goto err_clk_disable; 1872 } 1873 1874 reset_control_assert(rst); 1875 udelay(2); 1876 reset_control_deassert(rst); 1877 } 1878 1879 if (spi->cfg->has_fifo) 1880 spi->fifo_size = spi->cfg->get_fifo_size(spi); 1881 1882 ret = spi->cfg->config(spi); 1883 if (ret) { 1884 dev_err(&pdev->dev, "controller configuration failed: %d\n", 1885 ret); 1886 goto err_clk_disable; 1887 } 1888 1889 master->dev.of_node = pdev->dev.of_node; 1890 master->auto_runtime_pm = true; 1891 master->bus_num = pdev->id; 1892 master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST | 1893 SPI_3WIRE; 1894 master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi); 1895 master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min; 1896 master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max; 1897 master->use_gpio_descriptors = true; 1898 master->prepare_message = stm32_spi_prepare_msg; 1899 master->transfer_one = stm32_spi_transfer_one; 1900 master->unprepare_message = stm32_spi_unprepare_msg; 1901 master->flags = SPI_MASTER_MUST_TX; 1902 1903 spi->dma_tx = dma_request_chan(spi->dev, "tx"); 1904 if (IS_ERR(spi->dma_tx)) { 1905 ret = PTR_ERR(spi->dma_tx); 1906 spi->dma_tx = NULL; 1907 if (ret == -EPROBE_DEFER) 1908 goto err_clk_disable; 1909 1910 dev_warn(&pdev->dev, "failed to request tx dma channel\n"); 1911 } else { 1912 master->dma_tx = spi->dma_tx; 1913 } 1914 1915 spi->dma_rx = dma_request_chan(spi->dev, "rx"); 1916 if (IS_ERR(spi->dma_rx)) { 1917 ret = PTR_ERR(spi->dma_rx); 1918 spi->dma_rx = NULL; 1919 if (ret == -EPROBE_DEFER) 1920 goto err_dma_release; 1921 1922 dev_warn(&pdev->dev, "failed to request rx dma channel\n"); 1923 } else { 1924 master->dma_rx = spi->dma_rx; 1925 } 1926 1927 if (spi->dma_tx || spi->dma_rx) 1928 master->can_dma = stm32_spi_can_dma; 1929 1930 pm_runtime_set_active(&pdev->dev); 1931 pm_runtime_get_noresume(&pdev->dev); 1932 pm_runtime_enable(&pdev->dev); 1933 1934 ret = spi_register_master(master); 1935 if (ret) { 1936 dev_err(&pdev->dev, "spi master registration failed: %d\n", 1937 ret); 1938 goto err_pm_disable; 1939 } 1940 1941 dev_info(&pdev->dev, "driver initialized\n"); 1942 1943 return 0; 1944 1945 err_pm_disable: 1946 pm_runtime_disable(&pdev->dev); 1947 pm_runtime_put_noidle(&pdev->dev); 1948 pm_runtime_set_suspended(&pdev->dev); 1949 err_dma_release: 1950 if (spi->dma_tx) 1951 dma_release_channel(spi->dma_tx); 1952 if (spi->dma_rx) 1953 dma_release_channel(spi->dma_rx); 1954 err_clk_disable: 1955 clk_disable_unprepare(spi->clk); 1956 1957 return ret; 1958 } 1959 1960 static int stm32_spi_remove(struct platform_device *pdev) 1961 { 1962 struct spi_master *master = platform_get_drvdata(pdev); 1963 struct stm32_spi *spi = spi_master_get_devdata(master); 1964 1965 pm_runtime_get_sync(&pdev->dev); 1966 1967 spi_unregister_master(master); 1968 spi->cfg->disable(spi); 1969 1970 pm_runtime_disable(&pdev->dev); 1971 pm_runtime_put_noidle(&pdev->dev); 1972 pm_runtime_set_suspended(&pdev->dev); 1973 if (master->dma_tx) 1974 dma_release_channel(master->dma_tx); 1975 if (master->dma_rx) 1976 dma_release_channel(master->dma_rx); 1977 1978 clk_disable_unprepare(spi->clk); 1979 1980 1981 pinctrl_pm_select_sleep_state(&pdev->dev); 1982 1983 return 0; 1984 } 1985 1986 static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev) 1987 { 1988 struct spi_master *master = dev_get_drvdata(dev); 1989 struct stm32_spi *spi = spi_master_get_devdata(master); 1990 1991 clk_disable_unprepare(spi->clk); 1992 1993 return pinctrl_pm_select_sleep_state(dev); 1994 } 1995 1996 static int __maybe_unused stm32_spi_runtime_resume(struct device *dev) 1997 { 1998 struct spi_master *master = dev_get_drvdata(dev); 1999 struct stm32_spi *spi = spi_master_get_devdata(master); 2000 int ret; 2001 2002 ret = pinctrl_pm_select_default_state(dev); 2003 if (ret) 2004 return ret; 2005 2006 return clk_prepare_enable(spi->clk); 2007 } 2008 2009 static int __maybe_unused stm32_spi_suspend(struct device *dev) 2010 { 2011 struct spi_master *master = dev_get_drvdata(dev); 2012 int ret; 2013 2014 ret = spi_master_suspend(master); 2015 if (ret) 2016 return ret; 2017 2018 return pm_runtime_force_suspend(dev); 2019 } 2020 2021 static int __maybe_unused stm32_spi_resume(struct device *dev) 2022 { 2023 struct spi_master *master = dev_get_drvdata(dev); 2024 struct stm32_spi *spi = spi_master_get_devdata(master); 2025 int ret; 2026 2027 ret = pm_runtime_force_resume(dev); 2028 if (ret) 2029 return ret; 2030 2031 ret = spi_master_resume(master); 2032 if (ret) { 2033 clk_disable_unprepare(spi->clk); 2034 return ret; 2035 } 2036 2037 ret = pm_runtime_get_sync(dev); 2038 if (ret < 0) { 2039 pm_runtime_put_noidle(dev); 2040 dev_err(dev, "Unable to power device:%d\n", ret); 2041 return ret; 2042 } 2043 2044 spi->cfg->config(spi); 2045 2046 pm_runtime_mark_last_busy(dev); 2047 pm_runtime_put_autosuspend(dev); 2048 2049 return 0; 2050 } 2051 2052 static const struct dev_pm_ops stm32_spi_pm_ops = { 2053 SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume) 2054 SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend, 2055 stm32_spi_runtime_resume, NULL) 2056 }; 2057 2058 static struct platform_driver stm32_spi_driver = { 2059 .probe = stm32_spi_probe, 2060 .remove = stm32_spi_remove, 2061 .driver = { 2062 .name = DRIVER_NAME, 2063 .pm = &stm32_spi_pm_ops, 2064 .of_match_table = stm32_spi_of_match, 2065 }, 2066 }; 2067 2068 module_platform_driver(stm32_spi_driver); 2069 2070 MODULE_ALIAS("platform:" DRIVER_NAME); 2071 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver"); 2072 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>"); 2073 MODULE_LICENSE("GPL v2"); 2074