1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // STMicroelectronics STM32 SPI Controller driver (master mode only) 4 // 5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved 6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics. 7 8 #include <linux/debugfs.h> 9 #include <linux/clk.h> 10 #include <linux/delay.h> 11 #include <linux/dmaengine.h> 12 #include <linux/interrupt.h> 13 #include <linux/iopoll.h> 14 #include <linux/module.h> 15 #include <linux/of_platform.h> 16 #include <linux/pinctrl/consumer.h> 17 #include <linux/pm_runtime.h> 18 #include <linux/reset.h> 19 #include <linux/spi/spi.h> 20 21 #define DRIVER_NAME "spi_stm32" 22 23 /* STM32F4 SPI registers */ 24 #define STM32F4_SPI_CR1 0x00 25 #define STM32F4_SPI_CR2 0x04 26 #define STM32F4_SPI_SR 0x08 27 #define STM32F4_SPI_DR 0x0C 28 #define STM32F4_SPI_I2SCFGR 0x1C 29 30 /* STM32F4_SPI_CR1 bit fields */ 31 #define STM32F4_SPI_CR1_CPHA BIT(0) 32 #define STM32F4_SPI_CR1_CPOL BIT(1) 33 #define STM32F4_SPI_CR1_MSTR BIT(2) 34 #define STM32F4_SPI_CR1_BR_SHIFT 3 35 #define STM32F4_SPI_CR1_BR GENMASK(5, 3) 36 #define STM32F4_SPI_CR1_SPE BIT(6) 37 #define STM32F4_SPI_CR1_LSBFRST BIT(7) 38 #define STM32F4_SPI_CR1_SSI BIT(8) 39 #define STM32F4_SPI_CR1_SSM BIT(9) 40 #define STM32F4_SPI_CR1_RXONLY BIT(10) 41 #define STM32F4_SPI_CR1_DFF BIT(11) 42 #define STM32F4_SPI_CR1_CRCNEXT BIT(12) 43 #define STM32F4_SPI_CR1_CRCEN BIT(13) 44 #define STM32F4_SPI_CR1_BIDIOE BIT(14) 45 #define STM32F4_SPI_CR1_BIDIMODE BIT(15) 46 #define STM32F4_SPI_CR1_BR_MIN 0 47 #define STM32F4_SPI_CR1_BR_MAX (GENMASK(5, 3) >> 3) 48 49 /* STM32F4_SPI_CR2 bit fields */ 50 #define STM32F4_SPI_CR2_RXDMAEN BIT(0) 51 #define STM32F4_SPI_CR2_TXDMAEN BIT(1) 52 #define STM32F4_SPI_CR2_SSOE BIT(2) 53 #define STM32F4_SPI_CR2_FRF BIT(4) 54 #define STM32F4_SPI_CR2_ERRIE BIT(5) 55 #define STM32F4_SPI_CR2_RXNEIE BIT(6) 56 #define STM32F4_SPI_CR2_TXEIE BIT(7) 57 58 /* STM32F4_SPI_SR bit fields */ 59 #define STM32F4_SPI_SR_RXNE BIT(0) 60 #define STM32F4_SPI_SR_TXE BIT(1) 61 #define STM32F4_SPI_SR_CHSIDE BIT(2) 62 #define STM32F4_SPI_SR_UDR BIT(3) 63 #define STM32F4_SPI_SR_CRCERR BIT(4) 64 #define STM32F4_SPI_SR_MODF BIT(5) 65 #define STM32F4_SPI_SR_OVR BIT(6) 66 #define STM32F4_SPI_SR_BSY BIT(7) 67 #define STM32F4_SPI_SR_FRE BIT(8) 68 69 /* STM32F4_SPI_I2SCFGR bit fields */ 70 #define STM32F4_SPI_I2SCFGR_I2SMOD BIT(11) 71 72 /* STM32F4 SPI Baud Rate min/max divisor */ 73 #define STM32F4_SPI_BR_DIV_MIN (2 << STM32F4_SPI_CR1_BR_MIN) 74 #define STM32F4_SPI_BR_DIV_MAX (2 << STM32F4_SPI_CR1_BR_MAX) 75 76 /* STM32H7 SPI registers */ 77 #define STM32H7_SPI_CR1 0x00 78 #define STM32H7_SPI_CR2 0x04 79 #define STM32H7_SPI_CFG1 0x08 80 #define STM32H7_SPI_CFG2 0x0C 81 #define STM32H7_SPI_IER 0x10 82 #define STM32H7_SPI_SR 0x14 83 #define STM32H7_SPI_IFCR 0x18 84 #define STM32H7_SPI_TXDR 0x20 85 #define STM32H7_SPI_RXDR 0x30 86 #define STM32H7_SPI_I2SCFGR 0x50 87 88 /* STM32H7_SPI_CR1 bit fields */ 89 #define STM32H7_SPI_CR1_SPE BIT(0) 90 #define STM32H7_SPI_CR1_MASRX BIT(8) 91 #define STM32H7_SPI_CR1_CSTART BIT(9) 92 #define STM32H7_SPI_CR1_CSUSP BIT(10) 93 #define STM32H7_SPI_CR1_HDDIR BIT(11) 94 #define STM32H7_SPI_CR1_SSI BIT(12) 95 96 /* STM32H7_SPI_CR2 bit fields */ 97 #define STM32H7_SPI_CR2_TSIZE_SHIFT 0 98 #define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0) 99 100 /* STM32H7_SPI_CFG1 bit fields */ 101 #define STM32H7_SPI_CFG1_DSIZE_SHIFT 0 102 #define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0) 103 #define STM32H7_SPI_CFG1_FTHLV_SHIFT 5 104 #define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5) 105 #define STM32H7_SPI_CFG1_RXDMAEN BIT(14) 106 #define STM32H7_SPI_CFG1_TXDMAEN BIT(15) 107 #define STM32H7_SPI_CFG1_MBR_SHIFT 28 108 #define STM32H7_SPI_CFG1_MBR GENMASK(30, 28) 109 #define STM32H7_SPI_CFG1_MBR_MIN 0 110 #define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28) 111 112 /* STM32H7_SPI_CFG2 bit fields */ 113 #define STM32H7_SPI_CFG2_MIDI_SHIFT 4 114 #define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4) 115 #define STM32H7_SPI_CFG2_COMM_SHIFT 17 116 #define STM32H7_SPI_CFG2_COMM GENMASK(18, 17) 117 #define STM32H7_SPI_CFG2_SP_SHIFT 19 118 #define STM32H7_SPI_CFG2_SP GENMASK(21, 19) 119 #define STM32H7_SPI_CFG2_MASTER BIT(22) 120 #define STM32H7_SPI_CFG2_LSBFRST BIT(23) 121 #define STM32H7_SPI_CFG2_CPHA BIT(24) 122 #define STM32H7_SPI_CFG2_CPOL BIT(25) 123 #define STM32H7_SPI_CFG2_SSM BIT(26) 124 #define STM32H7_SPI_CFG2_AFCNTR BIT(31) 125 126 /* STM32H7_SPI_IER bit fields */ 127 #define STM32H7_SPI_IER_RXPIE BIT(0) 128 #define STM32H7_SPI_IER_TXPIE BIT(1) 129 #define STM32H7_SPI_IER_DXPIE BIT(2) 130 #define STM32H7_SPI_IER_EOTIE BIT(3) 131 #define STM32H7_SPI_IER_TXTFIE BIT(4) 132 #define STM32H7_SPI_IER_OVRIE BIT(6) 133 #define STM32H7_SPI_IER_MODFIE BIT(9) 134 #define STM32H7_SPI_IER_ALL GENMASK(10, 0) 135 136 /* STM32H7_SPI_SR bit fields */ 137 #define STM32H7_SPI_SR_RXP BIT(0) 138 #define STM32H7_SPI_SR_TXP BIT(1) 139 #define STM32H7_SPI_SR_EOT BIT(3) 140 #define STM32H7_SPI_SR_OVR BIT(6) 141 #define STM32H7_SPI_SR_MODF BIT(9) 142 #define STM32H7_SPI_SR_SUSP BIT(11) 143 #define STM32H7_SPI_SR_RXPLVL_SHIFT 13 144 #define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13) 145 #define STM32H7_SPI_SR_RXWNE BIT(15) 146 147 /* STM32H7_SPI_IFCR bit fields */ 148 #define STM32H7_SPI_IFCR_ALL GENMASK(11, 3) 149 150 /* STM32H7_SPI_I2SCFGR bit fields */ 151 #define STM32H7_SPI_I2SCFGR_I2SMOD BIT(0) 152 153 /* STM32H7 SPI Master Baud Rate min/max divisor */ 154 #define STM32H7_SPI_MBR_DIV_MIN (2 << STM32H7_SPI_CFG1_MBR_MIN) 155 #define STM32H7_SPI_MBR_DIV_MAX (2 << STM32H7_SPI_CFG1_MBR_MAX) 156 157 /* STM32H7 SPI Communication mode */ 158 #define STM32H7_SPI_FULL_DUPLEX 0 159 #define STM32H7_SPI_SIMPLEX_TX 1 160 #define STM32H7_SPI_SIMPLEX_RX 2 161 #define STM32H7_SPI_HALF_DUPLEX 3 162 163 /* SPI Communication type */ 164 #define SPI_FULL_DUPLEX 0 165 #define SPI_SIMPLEX_TX 1 166 #define SPI_SIMPLEX_RX 2 167 #define SPI_3WIRE_TX 3 168 #define SPI_3WIRE_RX 4 169 170 #define SPI_1HZ_NS 1000000000 171 172 /* 173 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers 174 * without fifo buffers. 175 */ 176 #define SPI_DMA_MIN_BYTES 16 177 178 /** 179 * struct stm32_spi_reg - stm32 SPI register & bitfield desc 180 * @reg: register offset 181 * @mask: bitfield mask 182 * @shift: left shift 183 */ 184 struct stm32_spi_reg { 185 int reg; 186 int mask; 187 int shift; 188 }; 189 190 /** 191 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data 192 * @en: enable register and SPI enable bit 193 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit 194 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit 195 * @cpol: clock polarity register and polarity bit 196 * @cpha: clock phase register and phase bit 197 * @lsb_first: LSB transmitted first register and bit 198 * @br: baud rate register and bitfields 199 * @rx: SPI RX data register 200 * @tx: SPI TX data register 201 */ 202 struct stm32_spi_regspec { 203 const struct stm32_spi_reg en; 204 const struct stm32_spi_reg dma_rx_en; 205 const struct stm32_spi_reg dma_tx_en; 206 const struct stm32_spi_reg cpol; 207 const struct stm32_spi_reg cpha; 208 const struct stm32_spi_reg lsb_first; 209 const struct stm32_spi_reg br; 210 const struct stm32_spi_reg rx; 211 const struct stm32_spi_reg tx; 212 }; 213 214 struct stm32_spi; 215 216 /** 217 * struct stm32_spi_cfg - stm32 compatible configuration data 218 * @regs: registers descriptions 219 * @get_fifo_size: routine to get fifo size 220 * @get_bpw_mask: routine to get bits per word mask 221 * @disable: routine to disable controller 222 * @config: routine to configure controller as SPI Master 223 * @set_bpw: routine to configure registers to for bits per word 224 * @set_mode: routine to configure registers to desired mode 225 * @set_data_idleness: optional routine to configure registers to desired idle 226 * time between frames (if driver has this functionality) 227 * @set_number_of_data: optional routine to configure registers to desired 228 * number of data (if driver has this functionality) 229 * @can_dma: routine to determine if the transfer is eligible for DMA use 230 * @transfer_one_dma_start: routine to start transfer a single spi_transfer 231 * using DMA 232 * @dma_rx_cb: routine to call after DMA RX channel operation is complete 233 * @dma_tx_cb: routine to call after DMA TX channel operation is complete 234 * @transfer_one_irq: routine to configure interrupts for driver 235 * @irq_handler_event: Interrupt handler for SPI controller events 236 * @irq_handler_thread: thread of interrupt handler for SPI controller 237 * @baud_rate_div_min: minimum baud rate divisor 238 * @baud_rate_div_max: maximum baud rate divisor 239 * @has_fifo: boolean to know if fifo is used for driver 240 * @has_startbit: boolean to know if start bit is used to start transfer 241 */ 242 struct stm32_spi_cfg { 243 const struct stm32_spi_regspec *regs; 244 int (*get_fifo_size)(struct stm32_spi *spi); 245 int (*get_bpw_mask)(struct stm32_spi *spi); 246 void (*disable)(struct stm32_spi *spi); 247 int (*config)(struct stm32_spi *spi); 248 void (*set_bpw)(struct stm32_spi *spi); 249 int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type); 250 void (*set_data_idleness)(struct stm32_spi *spi, u32 length); 251 int (*set_number_of_data)(struct stm32_spi *spi, u32 length); 252 void (*transfer_one_dma_start)(struct stm32_spi *spi); 253 void (*dma_rx_cb)(void *data); 254 void (*dma_tx_cb)(void *data); 255 int (*transfer_one_irq)(struct stm32_spi *spi); 256 irqreturn_t (*irq_handler_event)(int irq, void *dev_id); 257 irqreturn_t (*irq_handler_thread)(int irq, void *dev_id); 258 unsigned int baud_rate_div_min; 259 unsigned int baud_rate_div_max; 260 bool has_fifo; 261 }; 262 263 /** 264 * struct stm32_spi - private data of the SPI controller 265 * @dev: driver model representation of the controller 266 * @master: controller master interface 267 * @cfg: compatible configuration data 268 * @base: virtual memory area 269 * @clk: hw kernel clock feeding the SPI clock generator 270 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator 271 * @rst: SPI controller reset line 272 * @lock: prevent I/O concurrent access 273 * @irq: SPI controller interrupt line 274 * @fifo_size: size of the embedded fifo in bytes 275 * @cur_midi: master inter-data idleness in ns 276 * @cur_speed: speed configured in Hz 277 * @cur_bpw: number of bits in a single SPI data frame 278 * @cur_fthlv: fifo threshold level (data frames in a single data packet) 279 * @cur_comm: SPI communication mode 280 * @cur_xferlen: current transfer length in bytes 281 * @cur_usedma: boolean to know if dma is used in current transfer 282 * @tx_buf: data to be written, or NULL 283 * @rx_buf: data to be read, or NULL 284 * @tx_len: number of data to be written in bytes 285 * @rx_len: number of data to be read in bytes 286 * @dma_tx: dma channel for TX transfer 287 * @dma_rx: dma channel for RX transfer 288 * @phys_addr: SPI registers physical base address 289 */ 290 struct stm32_spi { 291 struct device *dev; 292 struct spi_master *master; 293 const struct stm32_spi_cfg *cfg; 294 void __iomem *base; 295 struct clk *clk; 296 u32 clk_rate; 297 struct reset_control *rst; 298 spinlock_t lock; /* prevent I/O concurrent access */ 299 int irq; 300 unsigned int fifo_size; 301 302 unsigned int cur_midi; 303 unsigned int cur_speed; 304 unsigned int cur_bpw; 305 unsigned int cur_fthlv; 306 unsigned int cur_comm; 307 unsigned int cur_xferlen; 308 bool cur_usedma; 309 310 const void *tx_buf; 311 void *rx_buf; 312 int tx_len; 313 int rx_len; 314 struct dma_chan *dma_tx; 315 struct dma_chan *dma_rx; 316 dma_addr_t phys_addr; 317 }; 318 319 static const struct stm32_spi_regspec stm32f4_spi_regspec = { 320 .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE }, 321 322 .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN }, 323 .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN }, 324 325 .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL }, 326 .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA }, 327 .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST }, 328 .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT }, 329 330 .rx = { STM32F4_SPI_DR }, 331 .tx = { STM32F4_SPI_DR }, 332 }; 333 334 static const struct stm32_spi_regspec stm32h7_spi_regspec = { 335 /* SPI data transfer is enabled but spi_ker_ck is idle. 336 * CFG1 and CFG2 registers are write protected when SPE is enabled. 337 */ 338 .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE }, 339 340 .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN }, 341 .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN }, 342 343 .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL }, 344 .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA }, 345 .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST }, 346 .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR, 347 STM32H7_SPI_CFG1_MBR_SHIFT }, 348 349 .rx = { STM32H7_SPI_RXDR }, 350 .tx = { STM32H7_SPI_TXDR }, 351 }; 352 353 static inline void stm32_spi_set_bits(struct stm32_spi *spi, 354 u32 offset, u32 bits) 355 { 356 writel_relaxed(readl_relaxed(spi->base + offset) | bits, 357 spi->base + offset); 358 } 359 360 static inline void stm32_spi_clr_bits(struct stm32_spi *spi, 361 u32 offset, u32 bits) 362 { 363 writel_relaxed(readl_relaxed(spi->base + offset) & ~bits, 364 spi->base + offset); 365 } 366 367 /** 368 * stm32h7_spi_get_fifo_size - Return fifo size 369 * @spi: pointer to the spi controller data structure 370 */ 371 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi) 372 { 373 unsigned long flags; 374 u32 count = 0; 375 376 spin_lock_irqsave(&spi->lock, flags); 377 378 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 379 380 while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP) 381 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR); 382 383 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 384 385 spin_unlock_irqrestore(&spi->lock, flags); 386 387 dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count); 388 389 return count; 390 } 391 392 /** 393 * stm32f4_spi_get_bpw_mask - Return bits per word mask 394 * @spi: pointer to the spi controller data structure 395 */ 396 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi) 397 { 398 dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n"); 399 return SPI_BPW_MASK(8) | SPI_BPW_MASK(16); 400 } 401 402 /** 403 * stm32h7_spi_get_bpw_mask - Return bits per word mask 404 * @spi: pointer to the spi controller data structure 405 */ 406 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi) 407 { 408 unsigned long flags; 409 u32 cfg1, max_bpw; 410 411 spin_lock_irqsave(&spi->lock, flags); 412 413 /* 414 * The most significant bit at DSIZE bit field is reserved when the 415 * maximum data size of periperal instances is limited to 16-bit 416 */ 417 stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE); 418 419 cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1); 420 max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >> 421 STM32H7_SPI_CFG1_DSIZE_SHIFT; 422 max_bpw += 1; 423 424 spin_unlock_irqrestore(&spi->lock, flags); 425 426 dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw); 427 428 return SPI_BPW_RANGE_MASK(4, max_bpw); 429 } 430 431 /** 432 * stm32_spi_prepare_mbr - Determine baud rate divisor value 433 * @spi: pointer to the spi controller data structure 434 * @speed_hz: requested speed 435 * @min_div: minimum baud rate divisor 436 * @max_div: maximum baud rate divisor 437 * 438 * Return baud rate divisor value in case of success or -EINVAL 439 */ 440 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz, 441 u32 min_div, u32 max_div) 442 { 443 u32 div, mbrdiv; 444 445 /* Ensure spi->clk_rate is even */ 446 div = DIV_ROUND_UP(spi->clk_rate & ~0x1, speed_hz); 447 448 /* 449 * SPI framework set xfer->speed_hz to master->max_speed_hz if 450 * xfer->speed_hz is greater than master->max_speed_hz, and it returns 451 * an error when xfer->speed_hz is lower than master->min_speed_hz, so 452 * no need to check it there. 453 * However, we need to ensure the following calculations. 454 */ 455 if ((div < min_div) || (div > max_div)) 456 return -EINVAL; 457 458 /* Determine the first power of 2 greater than or equal to div */ 459 if (div & (div - 1)) 460 mbrdiv = fls(div); 461 else 462 mbrdiv = fls(div) - 1; 463 464 spi->cur_speed = spi->clk_rate / (1 << mbrdiv); 465 466 return mbrdiv - 1; 467 } 468 469 /** 470 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level 471 * @spi: pointer to the spi controller data structure 472 * @xfer_len: length of the message to be transferred 473 */ 474 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len) 475 { 476 u32 fthlv, half_fifo, packet; 477 478 /* data packet should not exceed 1/2 of fifo space */ 479 half_fifo = (spi->fifo_size / 2); 480 481 /* data_packet should not exceed transfer length */ 482 if (half_fifo > xfer_len) 483 packet = xfer_len; 484 else 485 packet = half_fifo; 486 487 if (spi->cur_bpw <= 8) 488 fthlv = packet; 489 else if (spi->cur_bpw <= 16) 490 fthlv = packet / 2; 491 else 492 fthlv = packet / 4; 493 494 /* align packet size with data registers access */ 495 if (spi->cur_bpw > 8) 496 fthlv += (fthlv % 2) ? 1 : 0; 497 else 498 fthlv += (fthlv % 4) ? (4 - (fthlv % 4)) : 0; 499 500 if (!fthlv) 501 fthlv = 1; 502 503 return fthlv; 504 } 505 506 /** 507 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register 508 * @spi: pointer to the spi controller data structure 509 * 510 * Read from tx_buf depends on remaining bytes to avoid to read beyond 511 * tx_buf end. 512 */ 513 static void stm32f4_spi_write_tx(struct stm32_spi *spi) 514 { 515 if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) & 516 STM32F4_SPI_SR_TXE)) { 517 u32 offs = spi->cur_xferlen - spi->tx_len; 518 519 if (spi->cur_bpw == 16) { 520 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs); 521 522 writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR); 523 spi->tx_len -= sizeof(u16); 524 } else { 525 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs); 526 527 writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR); 528 spi->tx_len -= sizeof(u8); 529 } 530 } 531 532 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len); 533 } 534 535 /** 536 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register 537 * @spi: pointer to the spi controller data structure 538 * 539 * Read from tx_buf depends on remaining bytes to avoid to read beyond 540 * tx_buf end. 541 */ 542 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi) 543 { 544 while ((spi->tx_len > 0) && 545 (readl_relaxed(spi->base + STM32H7_SPI_SR) & 546 STM32H7_SPI_SR_TXP)) { 547 u32 offs = spi->cur_xferlen - spi->tx_len; 548 549 if (spi->tx_len >= sizeof(u32)) { 550 const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs); 551 552 writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR); 553 spi->tx_len -= sizeof(u32); 554 } else if (spi->tx_len >= sizeof(u16)) { 555 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs); 556 557 writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR); 558 spi->tx_len -= sizeof(u16); 559 } else { 560 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs); 561 562 writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR); 563 spi->tx_len -= sizeof(u8); 564 } 565 } 566 567 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len); 568 } 569 570 /** 571 * stm32f4_spi_read_rx - Read bytes from Receive Data Register 572 * @spi: pointer to the spi controller data structure 573 * 574 * Write in rx_buf depends on remaining bytes to avoid to write beyond 575 * rx_buf end. 576 */ 577 static void stm32f4_spi_read_rx(struct stm32_spi *spi) 578 { 579 if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) & 580 STM32F4_SPI_SR_RXNE)) { 581 u32 offs = spi->cur_xferlen - spi->rx_len; 582 583 if (spi->cur_bpw == 16) { 584 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs); 585 586 *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR); 587 spi->rx_len -= sizeof(u16); 588 } else { 589 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs); 590 591 *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR); 592 spi->rx_len -= sizeof(u8); 593 } 594 } 595 596 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len); 597 } 598 599 /** 600 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register 601 * @spi: pointer to the spi controller data structure 602 * @flush: boolean indicating that FIFO should be flushed 603 * 604 * Write in rx_buf depends on remaining bytes to avoid to write beyond 605 * rx_buf end. 606 */ 607 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush) 608 { 609 u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 610 u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >> 611 STM32H7_SPI_SR_RXPLVL_SHIFT; 612 613 while ((spi->rx_len > 0) && 614 ((sr & STM32H7_SPI_SR_RXP) || 615 (flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) { 616 u32 offs = spi->cur_xferlen - spi->rx_len; 617 618 if ((spi->rx_len >= sizeof(u32)) || 619 (flush && (sr & STM32H7_SPI_SR_RXWNE))) { 620 u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs); 621 622 *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR); 623 spi->rx_len -= sizeof(u32); 624 } else if ((spi->rx_len >= sizeof(u16)) || 625 (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) { 626 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs); 627 628 *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR); 629 spi->rx_len -= sizeof(u16); 630 } else { 631 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs); 632 633 *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR); 634 spi->rx_len -= sizeof(u8); 635 } 636 637 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 638 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >> 639 STM32H7_SPI_SR_RXPLVL_SHIFT; 640 } 641 642 dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__, 643 flush ? "(flush)" : "", spi->rx_len); 644 } 645 646 /** 647 * stm32_spi_enable - Enable SPI controller 648 * @spi: pointer to the spi controller data structure 649 */ 650 static void stm32_spi_enable(struct stm32_spi *spi) 651 { 652 dev_dbg(spi->dev, "enable controller\n"); 653 654 stm32_spi_set_bits(spi, spi->cfg->regs->en.reg, 655 spi->cfg->regs->en.mask); 656 } 657 658 /** 659 * stm32f4_spi_disable - Disable SPI controller 660 * @spi: pointer to the spi controller data structure 661 */ 662 static void stm32f4_spi_disable(struct stm32_spi *spi) 663 { 664 unsigned long flags; 665 u32 sr; 666 667 dev_dbg(spi->dev, "disable controller\n"); 668 669 spin_lock_irqsave(&spi->lock, flags); 670 671 if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) & 672 STM32F4_SPI_CR1_SPE)) { 673 spin_unlock_irqrestore(&spi->lock, flags); 674 return; 675 } 676 677 /* Disable interrupts */ 678 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE | 679 STM32F4_SPI_CR2_RXNEIE | 680 STM32F4_SPI_CR2_ERRIE); 681 682 /* Wait until BSY = 0 */ 683 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR, 684 sr, !(sr & STM32F4_SPI_SR_BSY), 685 10, 100000) < 0) { 686 dev_warn(spi->dev, "disabling condition timeout\n"); 687 } 688 689 if (spi->cur_usedma && spi->dma_tx) 690 dmaengine_terminate_all(spi->dma_tx); 691 if (spi->cur_usedma && spi->dma_rx) 692 dmaengine_terminate_all(spi->dma_rx); 693 694 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE); 695 696 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN | 697 STM32F4_SPI_CR2_RXDMAEN); 698 699 /* Sequence to clear OVR flag */ 700 readl_relaxed(spi->base + STM32F4_SPI_DR); 701 readl_relaxed(spi->base + STM32F4_SPI_SR); 702 703 spin_unlock_irqrestore(&spi->lock, flags); 704 } 705 706 /** 707 * stm32h7_spi_disable - Disable SPI controller 708 * @spi: pointer to the spi controller data structure 709 * 710 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data 711 * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in 712 * RX-Fifo. 713 * Normally, if TSIZE has been configured, we should relax the hardware at the 714 * reception of the EOT interrupt. But in case of error, EOT will not be 715 * raised. So the subsystem unprepare_message call allows us to properly 716 * complete the transfer from an hardware point of view. 717 */ 718 static void stm32h7_spi_disable(struct stm32_spi *spi) 719 { 720 unsigned long flags; 721 u32 cr1, sr; 722 723 dev_dbg(spi->dev, "disable controller\n"); 724 725 spin_lock_irqsave(&spi->lock, flags); 726 727 cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1); 728 729 if (!(cr1 & STM32H7_SPI_CR1_SPE)) { 730 spin_unlock_irqrestore(&spi->lock, flags); 731 return; 732 } 733 734 /* Wait on EOT or suspend the flow */ 735 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR, 736 sr, !(sr & STM32H7_SPI_SR_EOT), 737 10, 100000) < 0) { 738 if (cr1 & STM32H7_SPI_CR1_CSTART) { 739 writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP, 740 spi->base + STM32H7_SPI_CR1); 741 if (readl_relaxed_poll_timeout_atomic( 742 spi->base + STM32H7_SPI_SR, 743 sr, !(sr & STM32H7_SPI_SR_SUSP), 744 10, 100000) < 0) 745 dev_warn(spi->dev, 746 "Suspend request timeout\n"); 747 } 748 } 749 750 if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0)) 751 stm32h7_spi_read_rxfifo(spi, true); 752 753 if (spi->cur_usedma && spi->dma_tx) 754 dmaengine_terminate_all(spi->dma_tx); 755 if (spi->cur_usedma && spi->dma_rx) 756 dmaengine_terminate_all(spi->dma_rx); 757 758 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 759 760 stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN | 761 STM32H7_SPI_CFG1_RXDMAEN); 762 763 /* Disable interrupts and clear status flags */ 764 writel_relaxed(0, spi->base + STM32H7_SPI_IER); 765 writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR); 766 767 spin_unlock_irqrestore(&spi->lock, flags); 768 } 769 770 /** 771 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use 772 * @master: controller master interface 773 * @spi_dev: pointer to the spi device 774 * @transfer: pointer to spi transfer 775 * 776 * If driver has fifo and the current transfer size is greater than fifo size, 777 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes. 778 */ 779 static bool stm32_spi_can_dma(struct spi_master *master, 780 struct spi_device *spi_dev, 781 struct spi_transfer *transfer) 782 { 783 unsigned int dma_size; 784 struct stm32_spi *spi = spi_master_get_devdata(master); 785 786 if (spi->cfg->has_fifo) 787 dma_size = spi->fifo_size; 788 else 789 dma_size = SPI_DMA_MIN_BYTES; 790 791 dev_dbg(spi->dev, "%s: %s\n", __func__, 792 (transfer->len > dma_size) ? "true" : "false"); 793 794 return (transfer->len > dma_size); 795 } 796 797 /** 798 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events 799 * @irq: interrupt line 800 * @dev_id: SPI controller master interface 801 */ 802 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id) 803 { 804 struct spi_master *master = dev_id; 805 struct stm32_spi *spi = spi_master_get_devdata(master); 806 u32 sr, mask = 0; 807 bool end = false; 808 809 spin_lock(&spi->lock); 810 811 sr = readl_relaxed(spi->base + STM32F4_SPI_SR); 812 /* 813 * BSY flag is not handled in interrupt but it is normal behavior when 814 * this flag is set. 815 */ 816 sr &= ~STM32F4_SPI_SR_BSY; 817 818 if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX || 819 spi->cur_comm == SPI_3WIRE_TX)) { 820 /* OVR flag shouldn't be handled for TX only mode */ 821 sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE; 822 mask |= STM32F4_SPI_SR_TXE; 823 } 824 825 if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX || 826 spi->cur_comm == SPI_SIMPLEX_RX || 827 spi->cur_comm == SPI_3WIRE_RX)) { 828 /* TXE flag is set and is handled when RXNE flag occurs */ 829 sr &= ~STM32F4_SPI_SR_TXE; 830 mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR; 831 } 832 833 if (!(sr & mask)) { 834 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr); 835 spin_unlock(&spi->lock); 836 return IRQ_NONE; 837 } 838 839 if (sr & STM32F4_SPI_SR_OVR) { 840 dev_warn(spi->dev, "Overrun: received value discarded\n"); 841 842 /* Sequence to clear OVR flag */ 843 readl_relaxed(spi->base + STM32F4_SPI_DR); 844 readl_relaxed(spi->base + STM32F4_SPI_SR); 845 846 /* 847 * If overrun is detected, it means that something went wrong, 848 * so stop the current transfer. Transfer can wait for next 849 * RXNE but DR is already read and end never happens. 850 */ 851 end = true; 852 goto end_irq; 853 } 854 855 if (sr & STM32F4_SPI_SR_TXE) { 856 if (spi->tx_buf) 857 stm32f4_spi_write_tx(spi); 858 if (spi->tx_len == 0) 859 end = true; 860 } 861 862 if (sr & STM32F4_SPI_SR_RXNE) { 863 stm32f4_spi_read_rx(spi); 864 if (spi->rx_len == 0) 865 end = true; 866 else if (spi->tx_buf)/* Load data for discontinuous mode */ 867 stm32f4_spi_write_tx(spi); 868 } 869 870 end_irq: 871 if (end) { 872 /* Immediately disable interrupts to do not generate new one */ 873 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, 874 STM32F4_SPI_CR2_TXEIE | 875 STM32F4_SPI_CR2_RXNEIE | 876 STM32F4_SPI_CR2_ERRIE); 877 spin_unlock(&spi->lock); 878 return IRQ_WAKE_THREAD; 879 } 880 881 spin_unlock(&spi->lock); 882 return IRQ_HANDLED; 883 } 884 885 /** 886 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller 887 * @irq: interrupt line 888 * @dev_id: SPI controller master interface 889 */ 890 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id) 891 { 892 struct spi_master *master = dev_id; 893 struct stm32_spi *spi = spi_master_get_devdata(master); 894 895 spi_finalize_current_transfer(master); 896 stm32f4_spi_disable(spi); 897 898 return IRQ_HANDLED; 899 } 900 901 /** 902 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller 903 * @irq: interrupt line 904 * @dev_id: SPI controller master interface 905 */ 906 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id) 907 { 908 struct spi_master *master = dev_id; 909 struct stm32_spi *spi = spi_master_get_devdata(master); 910 u32 sr, ier, mask; 911 unsigned long flags; 912 bool end = false; 913 914 spin_lock_irqsave(&spi->lock, flags); 915 916 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 917 ier = readl_relaxed(spi->base + STM32H7_SPI_IER); 918 919 mask = ier; 920 /* EOTIE is triggered on EOT, SUSP and TXC events. */ 921 mask |= STM32H7_SPI_SR_SUSP; 922 /* 923 * When TXTF is set, DXPIE and TXPIE are cleared. So in case of 924 * Full-Duplex, need to poll RXP event to know if there are remaining 925 * data, before disabling SPI. 926 */ 927 if (spi->rx_buf && !spi->cur_usedma) 928 mask |= STM32H7_SPI_SR_RXP; 929 930 if (!(sr & mask)) { 931 dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n", 932 sr, ier); 933 spin_unlock_irqrestore(&spi->lock, flags); 934 return IRQ_NONE; 935 } 936 937 if (sr & STM32H7_SPI_SR_SUSP) { 938 static DEFINE_RATELIMIT_STATE(rs, 939 DEFAULT_RATELIMIT_INTERVAL * 10, 940 1); 941 if (__ratelimit(&rs)) 942 dev_dbg_ratelimited(spi->dev, "Communication suspended\n"); 943 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 944 stm32h7_spi_read_rxfifo(spi, false); 945 /* 946 * If communication is suspended while using DMA, it means 947 * that something went wrong, so stop the current transfer 948 */ 949 if (spi->cur_usedma) 950 end = true; 951 } 952 953 if (sr & STM32H7_SPI_SR_MODF) { 954 dev_warn(spi->dev, "Mode fault: transfer aborted\n"); 955 end = true; 956 } 957 958 if (sr & STM32H7_SPI_SR_OVR) { 959 dev_warn(spi->dev, "Overrun: received value discarded\n"); 960 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 961 stm32h7_spi_read_rxfifo(spi, false); 962 /* 963 * If overrun is detected while using DMA, it means that 964 * something went wrong, so stop the current transfer 965 */ 966 if (spi->cur_usedma) 967 end = true; 968 } 969 970 if (sr & STM32H7_SPI_SR_EOT) { 971 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 972 stm32h7_spi_read_rxfifo(spi, true); 973 end = true; 974 } 975 976 if (sr & STM32H7_SPI_SR_TXP) 977 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0))) 978 stm32h7_spi_write_txfifo(spi); 979 980 if (sr & STM32H7_SPI_SR_RXP) 981 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 982 stm32h7_spi_read_rxfifo(spi, false); 983 984 writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR); 985 986 spin_unlock_irqrestore(&spi->lock, flags); 987 988 if (end) { 989 stm32h7_spi_disable(spi); 990 spi_finalize_current_transfer(master); 991 } 992 993 return IRQ_HANDLED; 994 } 995 996 /** 997 * stm32_spi_prepare_msg - set up the controller to transfer a single message 998 * @master: controller master interface 999 * @msg: pointer to spi message 1000 */ 1001 static int stm32_spi_prepare_msg(struct spi_master *master, 1002 struct spi_message *msg) 1003 { 1004 struct stm32_spi *spi = spi_master_get_devdata(master); 1005 struct spi_device *spi_dev = msg->spi; 1006 struct device_node *np = spi_dev->dev.of_node; 1007 unsigned long flags; 1008 u32 clrb = 0, setb = 0; 1009 1010 /* SPI slave device may need time between data frames */ 1011 spi->cur_midi = 0; 1012 if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi)) 1013 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi); 1014 1015 if (spi_dev->mode & SPI_CPOL) 1016 setb |= spi->cfg->regs->cpol.mask; 1017 else 1018 clrb |= spi->cfg->regs->cpol.mask; 1019 1020 if (spi_dev->mode & SPI_CPHA) 1021 setb |= spi->cfg->regs->cpha.mask; 1022 else 1023 clrb |= spi->cfg->regs->cpha.mask; 1024 1025 if (spi_dev->mode & SPI_LSB_FIRST) 1026 setb |= spi->cfg->regs->lsb_first.mask; 1027 else 1028 clrb |= spi->cfg->regs->lsb_first.mask; 1029 1030 dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n", 1031 spi_dev->mode & SPI_CPOL, 1032 spi_dev->mode & SPI_CPHA, 1033 spi_dev->mode & SPI_LSB_FIRST, 1034 spi_dev->mode & SPI_CS_HIGH); 1035 1036 spin_lock_irqsave(&spi->lock, flags); 1037 1038 /* CPOL, CPHA and LSB FIRST bits have common register */ 1039 if (clrb || setb) 1040 writel_relaxed( 1041 (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) & 1042 ~clrb) | setb, 1043 spi->base + spi->cfg->regs->cpol.reg); 1044 1045 spin_unlock_irqrestore(&spi->lock, flags); 1046 1047 return 0; 1048 } 1049 1050 /** 1051 * stm32f4_spi_dma_tx_cb - dma callback 1052 * @data: pointer to the spi controller data structure 1053 * 1054 * DMA callback is called when the transfer is complete for DMA TX channel. 1055 */ 1056 static void stm32f4_spi_dma_tx_cb(void *data) 1057 { 1058 struct stm32_spi *spi = data; 1059 1060 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) { 1061 spi_finalize_current_transfer(spi->master); 1062 stm32f4_spi_disable(spi); 1063 } 1064 } 1065 1066 /** 1067 * stm32f4_spi_dma_rx_cb - dma callback 1068 * @data: pointer to the spi controller data structure 1069 * 1070 * DMA callback is called when the transfer is complete for DMA RX channel. 1071 */ 1072 static void stm32f4_spi_dma_rx_cb(void *data) 1073 { 1074 struct stm32_spi *spi = data; 1075 1076 spi_finalize_current_transfer(spi->master); 1077 stm32f4_spi_disable(spi); 1078 } 1079 1080 /** 1081 * stm32h7_spi_dma_cb - dma callback 1082 * @data: pointer to the spi controller data structure 1083 * 1084 * DMA callback is called when the transfer is complete or when an error 1085 * occurs. If the transfer is complete, EOT flag is raised. 1086 */ 1087 static void stm32h7_spi_dma_cb(void *data) 1088 { 1089 struct stm32_spi *spi = data; 1090 unsigned long flags; 1091 u32 sr; 1092 1093 spin_lock_irqsave(&spi->lock, flags); 1094 1095 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 1096 1097 spin_unlock_irqrestore(&spi->lock, flags); 1098 1099 if (!(sr & STM32H7_SPI_SR_EOT)) 1100 dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr); 1101 1102 /* Now wait for EOT, or SUSP or OVR in case of error */ 1103 } 1104 1105 /** 1106 * stm32_spi_dma_config - configure dma slave channel depending on current 1107 * transfer bits_per_word. 1108 * @spi: pointer to the spi controller data structure 1109 * @dma_conf: pointer to the dma_slave_config structure 1110 * @dir: direction of the dma transfer 1111 */ 1112 static void stm32_spi_dma_config(struct stm32_spi *spi, 1113 struct dma_slave_config *dma_conf, 1114 enum dma_transfer_direction dir) 1115 { 1116 enum dma_slave_buswidth buswidth; 1117 u32 maxburst; 1118 1119 if (spi->cur_bpw <= 8) 1120 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; 1121 else if (spi->cur_bpw <= 16) 1122 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; 1123 else 1124 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES; 1125 1126 if (spi->cfg->has_fifo) { 1127 /* Valid for DMA Half or Full Fifo threshold */ 1128 if (spi->cur_fthlv == 2) 1129 maxburst = 1; 1130 else 1131 maxburst = spi->cur_fthlv; 1132 } else { 1133 maxburst = 1; 1134 } 1135 1136 memset(dma_conf, 0, sizeof(struct dma_slave_config)); 1137 dma_conf->direction = dir; 1138 if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */ 1139 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg; 1140 dma_conf->src_addr_width = buswidth; 1141 dma_conf->src_maxburst = maxburst; 1142 1143 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n", 1144 buswidth, maxburst); 1145 } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */ 1146 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg; 1147 dma_conf->dst_addr_width = buswidth; 1148 dma_conf->dst_maxburst = maxburst; 1149 1150 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n", 1151 buswidth, maxburst); 1152 } 1153 } 1154 1155 /** 1156 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using 1157 * interrupts 1158 * @spi: pointer to the spi controller data structure 1159 * 1160 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1161 * in progress. 1162 */ 1163 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi) 1164 { 1165 unsigned long flags; 1166 u32 cr2 = 0; 1167 1168 /* Enable the interrupts relative to the current communication mode */ 1169 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) { 1170 cr2 |= STM32F4_SPI_CR2_TXEIE; 1171 } else if (spi->cur_comm == SPI_FULL_DUPLEX || 1172 spi->cur_comm == SPI_SIMPLEX_RX || 1173 spi->cur_comm == SPI_3WIRE_RX) { 1174 /* In transmit-only mode, the OVR flag is set in the SR register 1175 * since the received data are never read. Therefore set OVR 1176 * interrupt only when rx buffer is available. 1177 */ 1178 cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE; 1179 } else { 1180 return -EINVAL; 1181 } 1182 1183 spin_lock_irqsave(&spi->lock, flags); 1184 1185 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2); 1186 1187 stm32_spi_enable(spi); 1188 1189 /* starting data transfer when buffer is loaded */ 1190 if (spi->tx_buf) 1191 stm32f4_spi_write_tx(spi); 1192 1193 spin_unlock_irqrestore(&spi->lock, flags); 1194 1195 return 1; 1196 } 1197 1198 /** 1199 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using 1200 * interrupts 1201 * @spi: pointer to the spi controller data structure 1202 * 1203 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1204 * in progress. 1205 */ 1206 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi) 1207 { 1208 unsigned long flags; 1209 u32 ier = 0; 1210 1211 /* Enable the interrupts relative to the current communication mode */ 1212 if (spi->tx_buf && spi->rx_buf) /* Full Duplex */ 1213 ier |= STM32H7_SPI_IER_DXPIE; 1214 else if (spi->tx_buf) /* Half-Duplex TX dir or Simplex TX */ 1215 ier |= STM32H7_SPI_IER_TXPIE; 1216 else if (spi->rx_buf) /* Half-Duplex RX dir or Simplex RX */ 1217 ier |= STM32H7_SPI_IER_RXPIE; 1218 1219 /* Enable the interrupts relative to the end of transfer */ 1220 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE | 1221 STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE; 1222 1223 spin_lock_irqsave(&spi->lock, flags); 1224 1225 stm32_spi_enable(spi); 1226 1227 /* Be sure to have data in fifo before starting data transfer */ 1228 if (spi->tx_buf) 1229 stm32h7_spi_write_txfifo(spi); 1230 1231 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART); 1232 1233 writel_relaxed(ier, spi->base + STM32H7_SPI_IER); 1234 1235 spin_unlock_irqrestore(&spi->lock, flags); 1236 1237 return 1; 1238 } 1239 1240 /** 1241 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start 1242 * transfer using DMA 1243 * @spi: pointer to the spi controller data structure 1244 */ 1245 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi) 1246 { 1247 /* In DMA mode end of transfer is handled by DMA TX or RX callback. */ 1248 if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX || 1249 spi->cur_comm == SPI_FULL_DUPLEX) { 1250 /* 1251 * In transmit-only mode, the OVR flag is set in the SR register 1252 * since the received data are never read. Therefore set OVR 1253 * interrupt only when rx buffer is available. 1254 */ 1255 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE); 1256 } 1257 1258 stm32_spi_enable(spi); 1259 } 1260 1261 /** 1262 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start 1263 * transfer using DMA 1264 * @spi: pointer to the spi controller data structure 1265 */ 1266 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi) 1267 { 1268 /* Enable the interrupts relative to the end of transfer */ 1269 stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE | 1270 STM32H7_SPI_IER_TXTFIE | 1271 STM32H7_SPI_IER_OVRIE | 1272 STM32H7_SPI_IER_MODFIE); 1273 1274 stm32_spi_enable(spi); 1275 1276 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART); 1277 } 1278 1279 /** 1280 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA 1281 * @spi: pointer to the spi controller data structure 1282 * @xfer: pointer to the spi_transfer structure 1283 * 1284 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1285 * in progress. 1286 */ 1287 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi, 1288 struct spi_transfer *xfer) 1289 { 1290 struct dma_slave_config tx_dma_conf, rx_dma_conf; 1291 struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc; 1292 unsigned long flags; 1293 1294 spin_lock_irqsave(&spi->lock, flags); 1295 1296 rx_dma_desc = NULL; 1297 if (spi->rx_buf && spi->dma_rx) { 1298 stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM); 1299 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf); 1300 1301 /* Enable Rx DMA request */ 1302 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg, 1303 spi->cfg->regs->dma_rx_en.mask); 1304 1305 rx_dma_desc = dmaengine_prep_slave_sg( 1306 spi->dma_rx, xfer->rx_sg.sgl, 1307 xfer->rx_sg.nents, 1308 rx_dma_conf.direction, 1309 DMA_PREP_INTERRUPT); 1310 } 1311 1312 tx_dma_desc = NULL; 1313 if (spi->tx_buf && spi->dma_tx) { 1314 stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV); 1315 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf); 1316 1317 tx_dma_desc = dmaengine_prep_slave_sg( 1318 spi->dma_tx, xfer->tx_sg.sgl, 1319 xfer->tx_sg.nents, 1320 tx_dma_conf.direction, 1321 DMA_PREP_INTERRUPT); 1322 } 1323 1324 if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) || 1325 (spi->rx_buf && spi->dma_rx && !rx_dma_desc)) 1326 goto dma_desc_error; 1327 1328 if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc)) 1329 goto dma_desc_error; 1330 1331 if (rx_dma_desc) { 1332 rx_dma_desc->callback = spi->cfg->dma_rx_cb; 1333 rx_dma_desc->callback_param = spi; 1334 1335 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) { 1336 dev_err(spi->dev, "Rx DMA submit failed\n"); 1337 goto dma_desc_error; 1338 } 1339 /* Enable Rx DMA channel */ 1340 dma_async_issue_pending(spi->dma_rx); 1341 } 1342 1343 if (tx_dma_desc) { 1344 if (spi->cur_comm == SPI_SIMPLEX_TX || 1345 spi->cur_comm == SPI_3WIRE_TX) { 1346 tx_dma_desc->callback = spi->cfg->dma_tx_cb; 1347 tx_dma_desc->callback_param = spi; 1348 } 1349 1350 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) { 1351 dev_err(spi->dev, "Tx DMA submit failed\n"); 1352 goto dma_submit_error; 1353 } 1354 /* Enable Tx DMA channel */ 1355 dma_async_issue_pending(spi->dma_tx); 1356 1357 /* Enable Tx DMA request */ 1358 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg, 1359 spi->cfg->regs->dma_tx_en.mask); 1360 } 1361 1362 spi->cfg->transfer_one_dma_start(spi); 1363 1364 spin_unlock_irqrestore(&spi->lock, flags); 1365 1366 return 1; 1367 1368 dma_submit_error: 1369 if (spi->dma_rx) 1370 dmaengine_terminate_all(spi->dma_rx); 1371 1372 dma_desc_error: 1373 stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg, 1374 spi->cfg->regs->dma_rx_en.mask); 1375 1376 spin_unlock_irqrestore(&spi->lock, flags); 1377 1378 dev_info(spi->dev, "DMA issue: fall back to irq transfer\n"); 1379 1380 spi->cur_usedma = false; 1381 return spi->cfg->transfer_one_irq(spi); 1382 } 1383 1384 /** 1385 * stm32f4_spi_set_bpw - Configure bits per word 1386 * @spi: pointer to the spi controller data structure 1387 */ 1388 static void stm32f4_spi_set_bpw(struct stm32_spi *spi) 1389 { 1390 if (spi->cur_bpw == 16) 1391 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF); 1392 else 1393 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF); 1394 } 1395 1396 /** 1397 * stm32h7_spi_set_bpw - configure bits per word 1398 * @spi: pointer to the spi controller data structure 1399 */ 1400 static void stm32h7_spi_set_bpw(struct stm32_spi *spi) 1401 { 1402 u32 bpw, fthlv; 1403 u32 cfg1_clrb = 0, cfg1_setb = 0; 1404 1405 bpw = spi->cur_bpw - 1; 1406 1407 cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE; 1408 cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) & 1409 STM32H7_SPI_CFG1_DSIZE; 1410 1411 spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen); 1412 fthlv = spi->cur_fthlv - 1; 1413 1414 cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV; 1415 cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) & 1416 STM32H7_SPI_CFG1_FTHLV; 1417 1418 writel_relaxed( 1419 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) & 1420 ~cfg1_clrb) | cfg1_setb, 1421 spi->base + STM32H7_SPI_CFG1); 1422 } 1423 1424 /** 1425 * stm32_spi_set_mbr - Configure baud rate divisor in master mode 1426 * @spi: pointer to the spi controller data structure 1427 * @mbrdiv: baud rate divisor value 1428 */ 1429 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv) 1430 { 1431 u32 clrb = 0, setb = 0; 1432 1433 clrb |= spi->cfg->regs->br.mask; 1434 setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) & 1435 spi->cfg->regs->br.mask; 1436 1437 writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) & 1438 ~clrb) | setb, 1439 spi->base + spi->cfg->regs->br.reg); 1440 } 1441 1442 /** 1443 * stm32_spi_communication_type - return transfer communication type 1444 * @spi_dev: pointer to the spi device 1445 * @transfer: pointer to spi transfer 1446 */ 1447 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev, 1448 struct spi_transfer *transfer) 1449 { 1450 unsigned int type = SPI_FULL_DUPLEX; 1451 1452 if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */ 1453 /* 1454 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL 1455 * is forbidden and unvalidated by SPI subsystem so depending 1456 * on the valid buffer, we can determine the direction of the 1457 * transfer. 1458 */ 1459 if (!transfer->tx_buf) 1460 type = SPI_3WIRE_RX; 1461 else 1462 type = SPI_3WIRE_TX; 1463 } else { 1464 if (!transfer->tx_buf) 1465 type = SPI_SIMPLEX_RX; 1466 else if (!transfer->rx_buf) 1467 type = SPI_SIMPLEX_TX; 1468 } 1469 1470 return type; 1471 } 1472 1473 /** 1474 * stm32f4_spi_set_mode - configure communication mode 1475 * @spi: pointer to the spi controller data structure 1476 * @comm_type: type of communication to configure 1477 */ 1478 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type) 1479 { 1480 if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) { 1481 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, 1482 STM32F4_SPI_CR1_BIDIMODE | 1483 STM32F4_SPI_CR1_BIDIOE); 1484 } else if (comm_type == SPI_FULL_DUPLEX || 1485 comm_type == SPI_SIMPLEX_RX) { 1486 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, 1487 STM32F4_SPI_CR1_BIDIMODE | 1488 STM32F4_SPI_CR1_BIDIOE); 1489 } else if (comm_type == SPI_3WIRE_RX) { 1490 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, 1491 STM32F4_SPI_CR1_BIDIMODE); 1492 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, 1493 STM32F4_SPI_CR1_BIDIOE); 1494 } else { 1495 return -EINVAL; 1496 } 1497 1498 return 0; 1499 } 1500 1501 /** 1502 * stm32h7_spi_set_mode - configure communication mode 1503 * @spi: pointer to the spi controller data structure 1504 * @comm_type: type of communication to configure 1505 */ 1506 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type) 1507 { 1508 u32 mode; 1509 u32 cfg2_clrb = 0, cfg2_setb = 0; 1510 1511 if (comm_type == SPI_3WIRE_RX) { 1512 mode = STM32H7_SPI_HALF_DUPLEX; 1513 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR); 1514 } else if (comm_type == SPI_3WIRE_TX) { 1515 mode = STM32H7_SPI_HALF_DUPLEX; 1516 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR); 1517 } else if (comm_type == SPI_SIMPLEX_RX) { 1518 mode = STM32H7_SPI_SIMPLEX_RX; 1519 } else if (comm_type == SPI_SIMPLEX_TX) { 1520 mode = STM32H7_SPI_SIMPLEX_TX; 1521 } else { 1522 mode = STM32H7_SPI_FULL_DUPLEX; 1523 } 1524 1525 cfg2_clrb |= STM32H7_SPI_CFG2_COMM; 1526 cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) & 1527 STM32H7_SPI_CFG2_COMM; 1528 1529 writel_relaxed( 1530 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) & 1531 ~cfg2_clrb) | cfg2_setb, 1532 spi->base + STM32H7_SPI_CFG2); 1533 1534 return 0; 1535 } 1536 1537 /** 1538 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two 1539 * consecutive data frames in master mode 1540 * @spi: pointer to the spi controller data structure 1541 * @len: transfer len 1542 */ 1543 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len) 1544 { 1545 u32 cfg2_clrb = 0, cfg2_setb = 0; 1546 1547 cfg2_clrb |= STM32H7_SPI_CFG2_MIDI; 1548 if ((len > 1) && (spi->cur_midi > 0)) { 1549 u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed); 1550 u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns), 1551 (u32)STM32H7_SPI_CFG2_MIDI >> 1552 STM32H7_SPI_CFG2_MIDI_SHIFT); 1553 1554 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n", 1555 sck_period_ns, midi, midi * sck_period_ns); 1556 cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) & 1557 STM32H7_SPI_CFG2_MIDI; 1558 } 1559 1560 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) & 1561 ~cfg2_clrb) | cfg2_setb, 1562 spi->base + STM32H7_SPI_CFG2); 1563 } 1564 1565 /** 1566 * stm32h7_spi_number_of_data - configure number of data at current transfer 1567 * @spi: pointer to the spi controller data structure 1568 * @nb_words: transfer length (in words) 1569 */ 1570 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words) 1571 { 1572 u32 cr2_clrb = 0, cr2_setb = 0; 1573 1574 if (nb_words <= (STM32H7_SPI_CR2_TSIZE >> 1575 STM32H7_SPI_CR2_TSIZE_SHIFT)) { 1576 cr2_clrb |= STM32H7_SPI_CR2_TSIZE; 1577 cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT; 1578 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) & 1579 ~cr2_clrb) | cr2_setb, 1580 spi->base + STM32H7_SPI_CR2); 1581 } else { 1582 return -EMSGSIZE; 1583 } 1584 1585 return 0; 1586 } 1587 1588 /** 1589 * stm32_spi_transfer_one_setup - common setup to transfer a single 1590 * spi_transfer either using DMA or 1591 * interrupts. 1592 * @spi: pointer to the spi controller data structure 1593 * @spi_dev: pointer to the spi device 1594 * @transfer: pointer to spi transfer 1595 */ 1596 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi, 1597 struct spi_device *spi_dev, 1598 struct spi_transfer *transfer) 1599 { 1600 unsigned long flags; 1601 unsigned int comm_type; 1602 int nb_words, ret = 0; 1603 int mbr; 1604 1605 spin_lock_irqsave(&spi->lock, flags); 1606 1607 spi->cur_xferlen = transfer->len; 1608 1609 spi->cur_bpw = transfer->bits_per_word; 1610 spi->cfg->set_bpw(spi); 1611 1612 /* Update spi->cur_speed with real clock speed */ 1613 mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz, 1614 spi->cfg->baud_rate_div_min, 1615 spi->cfg->baud_rate_div_max); 1616 if (mbr < 0) { 1617 ret = mbr; 1618 goto out; 1619 } 1620 1621 transfer->speed_hz = spi->cur_speed; 1622 stm32_spi_set_mbr(spi, mbr); 1623 1624 comm_type = stm32_spi_communication_type(spi_dev, transfer); 1625 ret = spi->cfg->set_mode(spi, comm_type); 1626 if (ret < 0) 1627 goto out; 1628 1629 spi->cur_comm = comm_type; 1630 1631 if (spi->cfg->set_data_idleness) 1632 spi->cfg->set_data_idleness(spi, transfer->len); 1633 1634 if (spi->cur_bpw <= 8) 1635 nb_words = transfer->len; 1636 else if (spi->cur_bpw <= 16) 1637 nb_words = DIV_ROUND_UP(transfer->len * 8, 16); 1638 else 1639 nb_words = DIV_ROUND_UP(transfer->len * 8, 32); 1640 1641 if (spi->cfg->set_number_of_data) { 1642 ret = spi->cfg->set_number_of_data(spi, nb_words); 1643 if (ret < 0) 1644 goto out; 1645 } 1646 1647 dev_dbg(spi->dev, "transfer communication mode set to %d\n", 1648 spi->cur_comm); 1649 dev_dbg(spi->dev, 1650 "data frame of %d-bit, data packet of %d data frames\n", 1651 spi->cur_bpw, spi->cur_fthlv); 1652 dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed); 1653 dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n", 1654 spi->cur_xferlen, nb_words); 1655 dev_dbg(spi->dev, "dma %s\n", 1656 (spi->cur_usedma) ? "enabled" : "disabled"); 1657 1658 out: 1659 spin_unlock_irqrestore(&spi->lock, flags); 1660 1661 return ret; 1662 } 1663 1664 /** 1665 * stm32_spi_transfer_one - transfer a single spi_transfer 1666 * @master: controller master interface 1667 * @spi_dev: pointer to the spi device 1668 * @transfer: pointer to spi transfer 1669 * 1670 * It must return 0 if the transfer is finished or 1 if the transfer is still 1671 * in progress. 1672 */ 1673 static int stm32_spi_transfer_one(struct spi_master *master, 1674 struct spi_device *spi_dev, 1675 struct spi_transfer *transfer) 1676 { 1677 struct stm32_spi *spi = spi_master_get_devdata(master); 1678 int ret; 1679 1680 spi->tx_buf = transfer->tx_buf; 1681 spi->rx_buf = transfer->rx_buf; 1682 spi->tx_len = spi->tx_buf ? transfer->len : 0; 1683 spi->rx_len = spi->rx_buf ? transfer->len : 0; 1684 1685 spi->cur_usedma = (master->can_dma && 1686 master->can_dma(master, spi_dev, transfer)); 1687 1688 ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer); 1689 if (ret) { 1690 dev_err(spi->dev, "SPI transfer setup failed\n"); 1691 return ret; 1692 } 1693 1694 if (spi->cur_usedma) 1695 return stm32_spi_transfer_one_dma(spi, transfer); 1696 else 1697 return spi->cfg->transfer_one_irq(spi); 1698 } 1699 1700 /** 1701 * stm32_spi_unprepare_msg - relax the hardware 1702 * @master: controller master interface 1703 * @msg: pointer to the spi message 1704 */ 1705 static int stm32_spi_unprepare_msg(struct spi_master *master, 1706 struct spi_message *msg) 1707 { 1708 struct stm32_spi *spi = spi_master_get_devdata(master); 1709 1710 spi->cfg->disable(spi); 1711 1712 return 0; 1713 } 1714 1715 /** 1716 * stm32f4_spi_config - Configure SPI controller as SPI master 1717 * @spi: pointer to the spi controller data structure 1718 */ 1719 static int stm32f4_spi_config(struct stm32_spi *spi) 1720 { 1721 unsigned long flags; 1722 1723 spin_lock_irqsave(&spi->lock, flags); 1724 1725 /* Ensure I2SMOD bit is kept cleared */ 1726 stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR, 1727 STM32F4_SPI_I2SCFGR_I2SMOD); 1728 1729 /* 1730 * - SS input value high 1731 * - transmitter half duplex direction 1732 * - Set the master mode (default Motorola mode) 1733 * - Consider 1 master/n slaves configuration and 1734 * SS input value is determined by the SSI bit 1735 */ 1736 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI | 1737 STM32F4_SPI_CR1_BIDIOE | 1738 STM32F4_SPI_CR1_MSTR | 1739 STM32F4_SPI_CR1_SSM); 1740 1741 spin_unlock_irqrestore(&spi->lock, flags); 1742 1743 return 0; 1744 } 1745 1746 /** 1747 * stm32h7_spi_config - Configure SPI controller as SPI master 1748 * @spi: pointer to the spi controller data structure 1749 */ 1750 static int stm32h7_spi_config(struct stm32_spi *spi) 1751 { 1752 unsigned long flags; 1753 1754 spin_lock_irqsave(&spi->lock, flags); 1755 1756 /* Ensure I2SMOD bit is kept cleared */ 1757 stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR, 1758 STM32H7_SPI_I2SCFGR_I2SMOD); 1759 1760 /* 1761 * - SS input value high 1762 * - transmitter half duplex direction 1763 * - automatic communication suspend when RX-Fifo is full 1764 */ 1765 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI | 1766 STM32H7_SPI_CR1_HDDIR | 1767 STM32H7_SPI_CR1_MASRX); 1768 1769 /* 1770 * - Set the master mode (default Motorola mode) 1771 * - Consider 1 master/n slaves configuration and 1772 * SS input value is determined by the SSI bit 1773 * - keep control of all associated GPIOs 1774 */ 1775 stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER | 1776 STM32H7_SPI_CFG2_SSM | 1777 STM32H7_SPI_CFG2_AFCNTR); 1778 1779 spin_unlock_irqrestore(&spi->lock, flags); 1780 1781 return 0; 1782 } 1783 1784 static const struct stm32_spi_cfg stm32f4_spi_cfg = { 1785 .regs = &stm32f4_spi_regspec, 1786 .get_bpw_mask = stm32f4_spi_get_bpw_mask, 1787 .disable = stm32f4_spi_disable, 1788 .config = stm32f4_spi_config, 1789 .set_bpw = stm32f4_spi_set_bpw, 1790 .set_mode = stm32f4_spi_set_mode, 1791 .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start, 1792 .dma_tx_cb = stm32f4_spi_dma_tx_cb, 1793 .dma_rx_cb = stm32f4_spi_dma_rx_cb, 1794 .transfer_one_irq = stm32f4_spi_transfer_one_irq, 1795 .irq_handler_event = stm32f4_spi_irq_event, 1796 .irq_handler_thread = stm32f4_spi_irq_thread, 1797 .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN, 1798 .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX, 1799 .has_fifo = false, 1800 }; 1801 1802 static const struct stm32_spi_cfg stm32h7_spi_cfg = { 1803 .regs = &stm32h7_spi_regspec, 1804 .get_fifo_size = stm32h7_spi_get_fifo_size, 1805 .get_bpw_mask = stm32h7_spi_get_bpw_mask, 1806 .disable = stm32h7_spi_disable, 1807 .config = stm32h7_spi_config, 1808 .set_bpw = stm32h7_spi_set_bpw, 1809 .set_mode = stm32h7_spi_set_mode, 1810 .set_data_idleness = stm32h7_spi_data_idleness, 1811 .set_number_of_data = stm32h7_spi_number_of_data, 1812 .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start, 1813 .dma_rx_cb = stm32h7_spi_dma_cb, 1814 .dma_tx_cb = stm32h7_spi_dma_cb, 1815 .transfer_one_irq = stm32h7_spi_transfer_one_irq, 1816 .irq_handler_thread = stm32h7_spi_irq_thread, 1817 .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN, 1818 .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX, 1819 .has_fifo = true, 1820 }; 1821 1822 static const struct of_device_id stm32_spi_of_match[] = { 1823 { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg }, 1824 { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg }, 1825 {}, 1826 }; 1827 MODULE_DEVICE_TABLE(of, stm32_spi_of_match); 1828 1829 static int stm32_spi_probe(struct platform_device *pdev) 1830 { 1831 struct spi_master *master; 1832 struct stm32_spi *spi; 1833 struct resource *res; 1834 int ret; 1835 1836 master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi)); 1837 if (!master) { 1838 dev_err(&pdev->dev, "spi master allocation failed\n"); 1839 return -ENOMEM; 1840 } 1841 platform_set_drvdata(pdev, master); 1842 1843 spi = spi_master_get_devdata(master); 1844 spi->dev = &pdev->dev; 1845 spi->master = master; 1846 spin_lock_init(&spi->lock); 1847 1848 spi->cfg = (const struct stm32_spi_cfg *) 1849 of_match_device(pdev->dev.driver->of_match_table, 1850 &pdev->dev)->data; 1851 1852 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1853 spi->base = devm_ioremap_resource(&pdev->dev, res); 1854 if (IS_ERR(spi->base)) { 1855 ret = PTR_ERR(spi->base); 1856 goto err_master_put; 1857 } 1858 1859 spi->phys_addr = (dma_addr_t)res->start; 1860 1861 spi->irq = platform_get_irq(pdev, 0); 1862 if (spi->irq <= 0) { 1863 ret = dev_err_probe(&pdev->dev, spi->irq, "failed to get irq\n"); 1864 goto err_master_put; 1865 } 1866 ret = devm_request_threaded_irq(&pdev->dev, spi->irq, 1867 spi->cfg->irq_handler_event, 1868 spi->cfg->irq_handler_thread, 1869 IRQF_ONESHOT, pdev->name, master); 1870 if (ret) { 1871 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq, 1872 ret); 1873 goto err_master_put; 1874 } 1875 1876 spi->clk = devm_clk_get(&pdev->dev, NULL); 1877 if (IS_ERR(spi->clk)) { 1878 ret = PTR_ERR(spi->clk); 1879 dev_err(&pdev->dev, "clk get failed: %d\n", ret); 1880 goto err_master_put; 1881 } 1882 1883 ret = clk_prepare_enable(spi->clk); 1884 if (ret) { 1885 dev_err(&pdev->dev, "clk enable failed: %d\n", ret); 1886 goto err_master_put; 1887 } 1888 spi->clk_rate = clk_get_rate(spi->clk); 1889 if (!spi->clk_rate) { 1890 dev_err(&pdev->dev, "clk rate = 0\n"); 1891 ret = -EINVAL; 1892 goto err_clk_disable; 1893 } 1894 1895 spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL); 1896 if (!IS_ERR(spi->rst)) { 1897 reset_control_assert(spi->rst); 1898 udelay(2); 1899 reset_control_deassert(spi->rst); 1900 } 1901 1902 if (spi->cfg->has_fifo) 1903 spi->fifo_size = spi->cfg->get_fifo_size(spi); 1904 1905 ret = spi->cfg->config(spi); 1906 if (ret) { 1907 dev_err(&pdev->dev, "controller configuration failed: %d\n", 1908 ret); 1909 goto err_clk_disable; 1910 } 1911 1912 master->dev.of_node = pdev->dev.of_node; 1913 master->auto_runtime_pm = true; 1914 master->bus_num = pdev->id; 1915 master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST | 1916 SPI_3WIRE; 1917 master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi); 1918 master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min; 1919 master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max; 1920 master->use_gpio_descriptors = true; 1921 master->prepare_message = stm32_spi_prepare_msg; 1922 master->transfer_one = stm32_spi_transfer_one; 1923 master->unprepare_message = stm32_spi_unprepare_msg; 1924 master->flags = SPI_MASTER_MUST_TX; 1925 1926 spi->dma_tx = dma_request_chan(spi->dev, "tx"); 1927 if (IS_ERR(spi->dma_tx)) { 1928 ret = PTR_ERR(spi->dma_tx); 1929 spi->dma_tx = NULL; 1930 if (ret == -EPROBE_DEFER) 1931 goto err_clk_disable; 1932 1933 dev_warn(&pdev->dev, "failed to request tx dma channel\n"); 1934 } else { 1935 master->dma_tx = spi->dma_tx; 1936 } 1937 1938 spi->dma_rx = dma_request_chan(spi->dev, "rx"); 1939 if (IS_ERR(spi->dma_rx)) { 1940 ret = PTR_ERR(spi->dma_rx); 1941 spi->dma_rx = NULL; 1942 if (ret == -EPROBE_DEFER) 1943 goto err_dma_release; 1944 1945 dev_warn(&pdev->dev, "failed to request rx dma channel\n"); 1946 } else { 1947 master->dma_rx = spi->dma_rx; 1948 } 1949 1950 if (spi->dma_tx || spi->dma_rx) 1951 master->can_dma = stm32_spi_can_dma; 1952 1953 pm_runtime_set_active(&pdev->dev); 1954 pm_runtime_enable(&pdev->dev); 1955 1956 ret = devm_spi_register_master(&pdev->dev, master); 1957 if (ret) { 1958 dev_err(&pdev->dev, "spi master registration failed: %d\n", 1959 ret); 1960 goto err_pm_disable; 1961 } 1962 1963 if (!master->cs_gpiods) { 1964 dev_err(&pdev->dev, "no CS gpios available\n"); 1965 ret = -EINVAL; 1966 goto err_pm_disable; 1967 } 1968 1969 dev_info(&pdev->dev, "driver initialized\n"); 1970 1971 return 0; 1972 1973 err_pm_disable: 1974 pm_runtime_disable(&pdev->dev); 1975 err_dma_release: 1976 if (spi->dma_tx) 1977 dma_release_channel(spi->dma_tx); 1978 if (spi->dma_rx) 1979 dma_release_channel(spi->dma_rx); 1980 err_clk_disable: 1981 clk_disable_unprepare(spi->clk); 1982 err_master_put: 1983 spi_master_put(master); 1984 1985 return ret; 1986 } 1987 1988 static int stm32_spi_remove(struct platform_device *pdev) 1989 { 1990 struct spi_master *master = platform_get_drvdata(pdev); 1991 struct stm32_spi *spi = spi_master_get_devdata(master); 1992 1993 spi->cfg->disable(spi); 1994 1995 if (master->dma_tx) 1996 dma_release_channel(master->dma_tx); 1997 if (master->dma_rx) 1998 dma_release_channel(master->dma_rx); 1999 2000 clk_disable_unprepare(spi->clk); 2001 2002 pm_runtime_disable(&pdev->dev); 2003 2004 pinctrl_pm_select_sleep_state(&pdev->dev); 2005 2006 return 0; 2007 } 2008 2009 #ifdef CONFIG_PM 2010 static int stm32_spi_runtime_suspend(struct device *dev) 2011 { 2012 struct spi_master *master = dev_get_drvdata(dev); 2013 struct stm32_spi *spi = spi_master_get_devdata(master); 2014 2015 clk_disable_unprepare(spi->clk); 2016 2017 return pinctrl_pm_select_sleep_state(dev); 2018 } 2019 2020 static int stm32_spi_runtime_resume(struct device *dev) 2021 { 2022 struct spi_master *master = dev_get_drvdata(dev); 2023 struct stm32_spi *spi = spi_master_get_devdata(master); 2024 int ret; 2025 2026 ret = pinctrl_pm_select_default_state(dev); 2027 if (ret) 2028 return ret; 2029 2030 return clk_prepare_enable(spi->clk); 2031 } 2032 #endif 2033 2034 #ifdef CONFIG_PM_SLEEP 2035 static int stm32_spi_suspend(struct device *dev) 2036 { 2037 struct spi_master *master = dev_get_drvdata(dev); 2038 int ret; 2039 2040 ret = spi_master_suspend(master); 2041 if (ret) 2042 return ret; 2043 2044 return pm_runtime_force_suspend(dev); 2045 } 2046 2047 static int stm32_spi_resume(struct device *dev) 2048 { 2049 struct spi_master *master = dev_get_drvdata(dev); 2050 struct stm32_spi *spi = spi_master_get_devdata(master); 2051 int ret; 2052 2053 ret = pm_runtime_force_resume(dev); 2054 if (ret) 2055 return ret; 2056 2057 ret = spi_master_resume(master); 2058 if (ret) { 2059 clk_disable_unprepare(spi->clk); 2060 return ret; 2061 } 2062 2063 ret = pm_runtime_get_sync(dev); 2064 if (ret < 0) { 2065 pm_runtime_put_noidle(dev); 2066 dev_err(dev, "Unable to power device:%d\n", ret); 2067 return ret; 2068 } 2069 2070 spi->cfg->config(spi); 2071 2072 pm_runtime_mark_last_busy(dev); 2073 pm_runtime_put_autosuspend(dev); 2074 2075 return 0; 2076 } 2077 #endif 2078 2079 static const struct dev_pm_ops stm32_spi_pm_ops = { 2080 SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume) 2081 SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend, 2082 stm32_spi_runtime_resume, NULL) 2083 }; 2084 2085 static struct platform_driver stm32_spi_driver = { 2086 .probe = stm32_spi_probe, 2087 .remove = stm32_spi_remove, 2088 .driver = { 2089 .name = DRIVER_NAME, 2090 .pm = &stm32_spi_pm_ops, 2091 .of_match_table = stm32_spi_of_match, 2092 }, 2093 }; 2094 2095 module_platform_driver(stm32_spi_driver); 2096 2097 MODULE_ALIAS("platform:" DRIVER_NAME); 2098 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver"); 2099 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>"); 2100 MODULE_LICENSE("GPL v2"); 2101