xref: /linux/drivers/spi/spi-stm32.c (revision 3d0fe49454652117522f60bfbefb978ba0e5300b)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // STMicroelectronics STM32 SPI Controller driver
4 //
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7 
8 #include <linux/bitfield.h>
9 #include <linux/debugfs.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dmaengine.h>
13 #include <linux/interrupt.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/platform_device.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/reset.h>
21 #include <linux/spi/spi.h>
22 
23 #define DRIVER_NAME "spi_stm32"
24 
25 /* STM32F4 SPI registers */
26 #define STM32F4_SPI_CR1			0x00
27 #define STM32F4_SPI_CR2			0x04
28 #define STM32F4_SPI_SR			0x08
29 #define STM32F4_SPI_DR			0x0C
30 #define STM32F4_SPI_I2SCFGR		0x1C
31 
32 /* STM32F4_SPI_CR1 bit fields */
33 #define STM32F4_SPI_CR1_CPHA		BIT(0)
34 #define STM32F4_SPI_CR1_CPOL		BIT(1)
35 #define STM32F4_SPI_CR1_MSTR		BIT(2)
36 #define STM32F4_SPI_CR1_BR_SHIFT	3
37 #define STM32F4_SPI_CR1_BR		GENMASK(5, 3)
38 #define STM32F4_SPI_CR1_SPE		BIT(6)
39 #define STM32F4_SPI_CR1_LSBFRST		BIT(7)
40 #define STM32F4_SPI_CR1_SSI		BIT(8)
41 #define STM32F4_SPI_CR1_SSM		BIT(9)
42 #define STM32F4_SPI_CR1_RXONLY		BIT(10)
43 #define STM32F4_SPI_CR1_DFF		BIT(11)
44 #define STM32F4_SPI_CR1_CRCNEXT		BIT(12)
45 #define STM32F4_SPI_CR1_CRCEN		BIT(13)
46 #define STM32F4_SPI_CR1_BIDIOE		BIT(14)
47 #define STM32F4_SPI_CR1_BIDIMODE	BIT(15)
48 #define STM32F4_SPI_CR1_BR_MIN		0
49 #define STM32F4_SPI_CR1_BR_MAX		(GENMASK(5, 3) >> 3)
50 
51 /* STM32F4_SPI_CR2 bit fields */
52 #define STM32F4_SPI_CR2_RXDMAEN		BIT(0)
53 #define STM32F4_SPI_CR2_TXDMAEN		BIT(1)
54 #define STM32F4_SPI_CR2_SSOE		BIT(2)
55 #define STM32F4_SPI_CR2_FRF		BIT(4)
56 #define STM32F4_SPI_CR2_ERRIE		BIT(5)
57 #define STM32F4_SPI_CR2_RXNEIE		BIT(6)
58 #define STM32F4_SPI_CR2_TXEIE		BIT(7)
59 
60 /* STM32F4_SPI_SR bit fields */
61 #define STM32F4_SPI_SR_RXNE		BIT(0)
62 #define STM32F4_SPI_SR_TXE		BIT(1)
63 #define STM32F4_SPI_SR_CHSIDE		BIT(2)
64 #define STM32F4_SPI_SR_UDR		BIT(3)
65 #define STM32F4_SPI_SR_CRCERR		BIT(4)
66 #define STM32F4_SPI_SR_MODF		BIT(5)
67 #define STM32F4_SPI_SR_OVR		BIT(6)
68 #define STM32F4_SPI_SR_BSY		BIT(7)
69 #define STM32F4_SPI_SR_FRE		BIT(8)
70 
71 /* STM32F4_SPI_I2SCFGR bit fields */
72 #define STM32F4_SPI_I2SCFGR_I2SMOD	BIT(11)
73 
74 /* STM32F4 SPI Baud Rate min/max divisor */
75 #define STM32F4_SPI_BR_DIV_MIN		(2 << STM32F4_SPI_CR1_BR_MIN)
76 #define STM32F4_SPI_BR_DIV_MAX		(2 << STM32F4_SPI_CR1_BR_MAX)
77 
78 /* STM32H7 SPI registers */
79 #define STM32H7_SPI_CR1			0x00
80 #define STM32H7_SPI_CR2			0x04
81 #define STM32H7_SPI_CFG1		0x08
82 #define STM32H7_SPI_CFG2		0x0C
83 #define STM32H7_SPI_IER			0x10
84 #define STM32H7_SPI_SR			0x14
85 #define STM32H7_SPI_IFCR		0x18
86 #define STM32H7_SPI_TXDR		0x20
87 #define STM32H7_SPI_RXDR		0x30
88 #define STM32H7_SPI_I2SCFGR		0x50
89 
90 /* STM32H7_SPI_CR1 bit fields */
91 #define STM32H7_SPI_CR1_SPE		BIT(0)
92 #define STM32H7_SPI_CR1_MASRX		BIT(8)
93 #define STM32H7_SPI_CR1_CSTART		BIT(9)
94 #define STM32H7_SPI_CR1_CSUSP		BIT(10)
95 #define STM32H7_SPI_CR1_HDDIR		BIT(11)
96 #define STM32H7_SPI_CR1_SSI		BIT(12)
97 
98 /* STM32H7_SPI_CR2 bit fields */
99 #define STM32H7_SPI_CR2_TSIZE		GENMASK(15, 0)
100 #define STM32H7_SPI_TSIZE_MAX		GENMASK(15, 0)
101 
102 /* STM32H7_SPI_CFG1 bit fields */
103 #define STM32H7_SPI_CFG1_DSIZE		GENMASK(4, 0)
104 #define STM32H7_SPI_CFG1_FTHLV		GENMASK(8, 5)
105 #define STM32H7_SPI_CFG1_RXDMAEN	BIT(14)
106 #define STM32H7_SPI_CFG1_TXDMAEN	BIT(15)
107 #define STM32H7_SPI_CFG1_MBR		GENMASK(30, 28)
108 #define STM32H7_SPI_CFG1_MBR_SHIFT	28
109 #define STM32H7_SPI_CFG1_MBR_MIN	0
110 #define STM32H7_SPI_CFG1_MBR_MAX	(GENMASK(30, 28) >> 28)
111 
112 /* STM32H7_SPI_CFG2 bit fields */
113 #define STM32H7_SPI_CFG2_MIDI		GENMASK(7, 4)
114 #define STM32H7_SPI_CFG2_COMM		GENMASK(18, 17)
115 #define STM32H7_SPI_CFG2_SP		GENMASK(21, 19)
116 #define STM32H7_SPI_CFG2_MASTER		BIT(22)
117 #define STM32H7_SPI_CFG2_LSBFRST	BIT(23)
118 #define STM32H7_SPI_CFG2_CPHA		BIT(24)
119 #define STM32H7_SPI_CFG2_CPOL		BIT(25)
120 #define STM32H7_SPI_CFG2_SSM		BIT(26)
121 #define STM32H7_SPI_CFG2_SSIOP		BIT(28)
122 #define STM32H7_SPI_CFG2_AFCNTR		BIT(31)
123 
124 /* STM32H7_SPI_IER bit fields */
125 #define STM32H7_SPI_IER_RXPIE		BIT(0)
126 #define STM32H7_SPI_IER_TXPIE		BIT(1)
127 #define STM32H7_SPI_IER_DXPIE		BIT(2)
128 #define STM32H7_SPI_IER_EOTIE		BIT(3)
129 #define STM32H7_SPI_IER_TXTFIE		BIT(4)
130 #define STM32H7_SPI_IER_OVRIE		BIT(6)
131 #define STM32H7_SPI_IER_MODFIE		BIT(9)
132 #define STM32H7_SPI_IER_ALL		GENMASK(10, 0)
133 
134 /* STM32H7_SPI_SR bit fields */
135 #define STM32H7_SPI_SR_RXP		BIT(0)
136 #define STM32H7_SPI_SR_TXP		BIT(1)
137 #define STM32H7_SPI_SR_EOT		BIT(3)
138 #define STM32H7_SPI_SR_OVR		BIT(6)
139 #define STM32H7_SPI_SR_MODF		BIT(9)
140 #define STM32H7_SPI_SR_SUSP		BIT(11)
141 #define STM32H7_SPI_SR_RXPLVL		GENMASK(14, 13)
142 #define STM32H7_SPI_SR_RXWNE		BIT(15)
143 
144 /* STM32H7_SPI_IFCR bit fields */
145 #define STM32H7_SPI_IFCR_ALL		GENMASK(11, 3)
146 
147 /* STM32H7_SPI_I2SCFGR bit fields */
148 #define STM32H7_SPI_I2SCFGR_I2SMOD	BIT(0)
149 
150 /* STM32H7 SPI Master Baud Rate min/max divisor */
151 #define STM32H7_SPI_MBR_DIV_MIN		(2 << STM32H7_SPI_CFG1_MBR_MIN)
152 #define STM32H7_SPI_MBR_DIV_MAX		(2 << STM32H7_SPI_CFG1_MBR_MAX)
153 
154 /* STM32H7 SPI Communication mode */
155 #define STM32H7_SPI_FULL_DUPLEX		0
156 #define STM32H7_SPI_SIMPLEX_TX		1
157 #define STM32H7_SPI_SIMPLEX_RX		2
158 #define STM32H7_SPI_HALF_DUPLEX		3
159 
160 /* SPI Communication type */
161 #define SPI_FULL_DUPLEX		0
162 #define SPI_SIMPLEX_TX		1
163 #define SPI_SIMPLEX_RX		2
164 #define SPI_3WIRE_TX		3
165 #define SPI_3WIRE_RX		4
166 
167 #define STM32_SPI_AUTOSUSPEND_DELAY		1	/* 1 ms */
168 
169 /*
170  * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
171  * without fifo buffers.
172  */
173 #define SPI_DMA_MIN_BYTES	16
174 
175 /* STM32 SPI driver helpers */
176 #define STM32_SPI_MASTER_MODE(stm32_spi) (!(stm32_spi)->device_mode)
177 #define STM32_SPI_DEVICE_MODE(stm32_spi) ((stm32_spi)->device_mode)
178 
179 /**
180  * struct stm32_spi_reg - stm32 SPI register & bitfield desc
181  * @reg:		register offset
182  * @mask:		bitfield mask
183  * @shift:		left shift
184  */
185 struct stm32_spi_reg {
186 	int reg;
187 	int mask;
188 	int shift;
189 };
190 
191 /**
192  * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
193  * @en: enable register and SPI enable bit
194  * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
195  * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
196  * @cpol: clock polarity register and polarity bit
197  * @cpha: clock phase register and phase bit
198  * @lsb_first: LSB transmitted first register and bit
199  * @cs_high: chips select active value
200  * @br: baud rate register and bitfields
201  * @rx: SPI RX data register
202  * @tx: SPI TX data register
203  */
204 struct stm32_spi_regspec {
205 	const struct stm32_spi_reg en;
206 	const struct stm32_spi_reg dma_rx_en;
207 	const struct stm32_spi_reg dma_tx_en;
208 	const struct stm32_spi_reg cpol;
209 	const struct stm32_spi_reg cpha;
210 	const struct stm32_spi_reg lsb_first;
211 	const struct stm32_spi_reg cs_high;
212 	const struct stm32_spi_reg br;
213 	const struct stm32_spi_reg rx;
214 	const struct stm32_spi_reg tx;
215 };
216 
217 struct stm32_spi;
218 
219 /**
220  * struct stm32_spi_cfg - stm32 compatible configuration data
221  * @regs: registers descriptions
222  * @get_fifo_size: routine to get fifo size
223  * @get_bpw_mask: routine to get bits per word mask
224  * @disable: routine to disable controller
225  * @config: routine to configure controller as SPI Master
226  * @set_bpw: routine to configure registers to for bits per word
227  * @set_mode: routine to configure registers to desired mode
228  * @set_data_idleness: optional routine to configure registers to desired idle
229  * time between frames (if driver has this functionality)
230  * @set_number_of_data: optional routine to configure registers to desired
231  * number of data (if driver has this functionality)
232  * @transfer_one_dma_start: routine to start transfer a single spi_transfer
233  * using DMA
234  * @dma_rx_cb: routine to call after DMA RX channel operation is complete
235  * @dma_tx_cb: routine to call after DMA TX channel operation is complete
236  * @transfer_one_irq: routine to configure interrupts for driver
237  * @irq_handler_event: Interrupt handler for SPI controller events
238  * @irq_handler_thread: thread of interrupt handler for SPI controller
239  * @baud_rate_div_min: minimum baud rate divisor
240  * @baud_rate_div_max: maximum baud rate divisor
241  * @has_fifo: boolean to know if fifo is used for driver
242  * @has_device_mode: is this compatible capable to switch on device mode
243  * @flags: compatible specific SPI controller flags used at registration time
244  */
245 struct stm32_spi_cfg {
246 	const struct stm32_spi_regspec *regs;
247 	int (*get_fifo_size)(struct stm32_spi *spi);
248 	int (*get_bpw_mask)(struct stm32_spi *spi);
249 	void (*disable)(struct stm32_spi *spi);
250 	int (*config)(struct stm32_spi *spi);
251 	void (*set_bpw)(struct stm32_spi *spi);
252 	int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
253 	void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
254 	int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
255 	void (*transfer_one_dma_start)(struct stm32_spi *spi);
256 	void (*dma_rx_cb)(void *data);
257 	void (*dma_tx_cb)(void *data);
258 	int (*transfer_one_irq)(struct stm32_spi *spi);
259 	irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
260 	irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
261 	unsigned int baud_rate_div_min;
262 	unsigned int baud_rate_div_max;
263 	bool has_fifo;
264 	bool has_device_mode;
265 	u16 flags;
266 };
267 
268 /**
269  * struct stm32_spi - private data of the SPI controller
270  * @dev: driver model representation of the controller
271  * @ctrl: controller interface
272  * @cfg: compatible configuration data
273  * @base: virtual memory area
274  * @clk: hw kernel clock feeding the SPI clock generator
275  * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
276  * @lock: prevent I/O concurrent access
277  * @irq: SPI controller interrupt line
278  * @fifo_size: size of the embedded fifo in bytes
279  * @cur_midi: master inter-data idleness in ns
280  * @cur_speed: speed configured in Hz
281  * @cur_half_period: time of a half bit in us
282  * @cur_bpw: number of bits in a single SPI data frame
283  * @cur_fthlv: fifo threshold level (data frames in a single data packet)
284  * @cur_comm: SPI communication mode
285  * @cur_xferlen: current transfer length in bytes
286  * @cur_usedma: boolean to know if dma is used in current transfer
287  * @tx_buf: data to be written, or NULL
288  * @rx_buf: data to be read, or NULL
289  * @tx_len: number of data to be written in bytes
290  * @rx_len: number of data to be read in bytes
291  * @dma_tx: dma channel for TX transfer
292  * @dma_rx: dma channel for RX transfer
293  * @phys_addr: SPI registers physical base address
294  * @device_mode: the controller is configured as SPI device
295  */
296 struct stm32_spi {
297 	struct device *dev;
298 	struct spi_controller *ctrl;
299 	const struct stm32_spi_cfg *cfg;
300 	void __iomem *base;
301 	struct clk *clk;
302 	u32 clk_rate;
303 	spinlock_t lock; /* prevent I/O concurrent access */
304 	int irq;
305 	unsigned int fifo_size;
306 
307 	unsigned int cur_midi;
308 	unsigned int cur_speed;
309 	unsigned int cur_half_period;
310 	unsigned int cur_bpw;
311 	unsigned int cur_fthlv;
312 	unsigned int cur_comm;
313 	unsigned int cur_xferlen;
314 	bool cur_usedma;
315 
316 	const void *tx_buf;
317 	void *rx_buf;
318 	int tx_len;
319 	int rx_len;
320 	struct dma_chan *dma_tx;
321 	struct dma_chan *dma_rx;
322 	dma_addr_t phys_addr;
323 
324 	bool device_mode;
325 };
326 
327 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
328 	.en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
329 
330 	.dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
331 	.dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
332 
333 	.cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
334 	.cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
335 	.lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
336 	.cs_high = {},
337 	.br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
338 
339 	.rx = { STM32F4_SPI_DR },
340 	.tx = { STM32F4_SPI_DR },
341 };
342 
343 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
344 	/* SPI data transfer is enabled but spi_ker_ck is idle.
345 	 * CFG1 and CFG2 registers are write protected when SPE is enabled.
346 	 */
347 	.en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
348 
349 	.dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
350 	.dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
351 
352 	.cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
353 	.cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
354 	.lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
355 	.cs_high = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_SSIOP },
356 	.br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
357 		STM32H7_SPI_CFG1_MBR_SHIFT },
358 
359 	.rx = { STM32H7_SPI_RXDR },
360 	.tx = { STM32H7_SPI_TXDR },
361 };
362 
363 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
364 				      u32 offset, u32 bits)
365 {
366 	writel_relaxed(readl_relaxed(spi->base + offset) | bits,
367 		       spi->base + offset);
368 }
369 
370 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
371 				      u32 offset, u32 bits)
372 {
373 	writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
374 		       spi->base + offset);
375 }
376 
377 /**
378  * stm32h7_spi_get_fifo_size - Return fifo size
379  * @spi: pointer to the spi controller data structure
380  */
381 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
382 {
383 	unsigned long flags;
384 	u32 count = 0;
385 
386 	spin_lock_irqsave(&spi->lock, flags);
387 
388 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
389 
390 	while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
391 		writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
392 
393 	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
394 
395 	spin_unlock_irqrestore(&spi->lock, flags);
396 
397 	dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
398 
399 	return count;
400 }
401 
402 /**
403  * stm32f4_spi_get_bpw_mask - Return bits per word mask
404  * @spi: pointer to the spi controller data structure
405  */
406 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
407 {
408 	dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
409 	return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
410 }
411 
412 /**
413  * stm32h7_spi_get_bpw_mask - Return bits per word mask
414  * @spi: pointer to the spi controller data structure
415  */
416 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
417 {
418 	unsigned long flags;
419 	u32 cfg1, max_bpw;
420 
421 	spin_lock_irqsave(&spi->lock, flags);
422 
423 	/*
424 	 * The most significant bit at DSIZE bit field is reserved when the
425 	 * maximum data size of periperal instances is limited to 16-bit
426 	 */
427 	stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
428 
429 	cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
430 	max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1;
431 
432 	spin_unlock_irqrestore(&spi->lock, flags);
433 
434 	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
435 
436 	return SPI_BPW_RANGE_MASK(4, max_bpw);
437 }
438 
439 /**
440  * stm32_spi_prepare_mbr - Determine baud rate divisor value
441  * @spi: pointer to the spi controller data structure
442  * @speed_hz: requested speed
443  * @min_div: minimum baud rate divisor
444  * @max_div: maximum baud rate divisor
445  *
446  * Return baud rate divisor value in case of success or -EINVAL
447  */
448 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
449 				 u32 min_div, u32 max_div)
450 {
451 	u32 div, mbrdiv;
452 
453 	/* Ensure spi->clk_rate is even */
454 	div = DIV_ROUND_CLOSEST(spi->clk_rate & ~0x1, speed_hz);
455 
456 	/*
457 	 * SPI framework set xfer->speed_hz to ctrl->max_speed_hz if
458 	 * xfer->speed_hz is greater than ctrl->max_speed_hz, and it returns
459 	 * an error when xfer->speed_hz is lower than ctrl->min_speed_hz, so
460 	 * no need to check it there.
461 	 * However, we need to ensure the following calculations.
462 	 */
463 	if ((div < min_div) || (div > max_div))
464 		return -EINVAL;
465 
466 	/* Determine the first power of 2 greater than or equal to div */
467 	if (div & (div - 1))
468 		mbrdiv = fls(div);
469 	else
470 		mbrdiv = fls(div) - 1;
471 
472 	spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
473 
474 	spi->cur_half_period = DIV_ROUND_CLOSEST(USEC_PER_SEC, 2 * spi->cur_speed);
475 
476 	return mbrdiv - 1;
477 }
478 
479 /**
480  * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
481  * @spi: pointer to the spi controller data structure
482  * @xfer_len: length of the message to be transferred
483  */
484 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
485 {
486 	u32 packet, bpw;
487 
488 	/* data packet should not exceed 1/2 of fifo space */
489 	packet = clamp(xfer_len, 1U, spi->fifo_size / 2);
490 
491 	/* align packet size with data registers access */
492 	bpw = DIV_ROUND_UP(spi->cur_bpw, 8);
493 	return DIV_ROUND_UP(packet, bpw);
494 }
495 
496 /**
497  * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
498  * @spi: pointer to the spi controller data structure
499  *
500  * Read from tx_buf depends on remaining bytes to avoid to read beyond
501  * tx_buf end.
502  */
503 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
504 {
505 	if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
506 				  STM32F4_SPI_SR_TXE)) {
507 		u32 offs = spi->cur_xferlen - spi->tx_len;
508 
509 		if (spi->cur_bpw == 16) {
510 			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
511 
512 			writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
513 			spi->tx_len -= sizeof(u16);
514 		} else {
515 			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
516 
517 			writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
518 			spi->tx_len -= sizeof(u8);
519 		}
520 	}
521 
522 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
523 }
524 
525 /**
526  * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
527  * @spi: pointer to the spi controller data structure
528  *
529  * Read from tx_buf depends on remaining bytes to avoid to read beyond
530  * tx_buf end.
531  */
532 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
533 {
534 	while ((spi->tx_len > 0) &&
535 		       (readl_relaxed(spi->base + STM32H7_SPI_SR) &
536 			STM32H7_SPI_SR_TXP)) {
537 		u32 offs = spi->cur_xferlen - spi->tx_len;
538 
539 		if (spi->tx_len >= sizeof(u32)) {
540 			const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
541 
542 			writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
543 			spi->tx_len -= sizeof(u32);
544 		} else if (spi->tx_len >= sizeof(u16)) {
545 			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
546 
547 			writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
548 			spi->tx_len -= sizeof(u16);
549 		} else {
550 			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
551 
552 			writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
553 			spi->tx_len -= sizeof(u8);
554 		}
555 	}
556 
557 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
558 }
559 
560 /**
561  * stm32f4_spi_read_rx - Read bytes from Receive Data Register
562  * @spi: pointer to the spi controller data structure
563  *
564  * Write in rx_buf depends on remaining bytes to avoid to write beyond
565  * rx_buf end.
566  */
567 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
568 {
569 	if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
570 				  STM32F4_SPI_SR_RXNE)) {
571 		u32 offs = spi->cur_xferlen - spi->rx_len;
572 
573 		if (spi->cur_bpw == 16) {
574 			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
575 
576 			*rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
577 			spi->rx_len -= sizeof(u16);
578 		} else {
579 			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
580 
581 			*rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
582 			spi->rx_len -= sizeof(u8);
583 		}
584 	}
585 
586 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
587 }
588 
589 /**
590  * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
591  * @spi: pointer to the spi controller data structure
592  *
593  * Write in rx_buf depends on remaining bytes to avoid to write beyond
594  * rx_buf end.
595  */
596 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi)
597 {
598 	u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
599 	u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
600 
601 	while ((spi->rx_len > 0) &&
602 	       ((sr & STM32H7_SPI_SR_RXP) ||
603 		((sr & STM32H7_SPI_SR_EOT) &&
604 		 ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
605 		u32 offs = spi->cur_xferlen - spi->rx_len;
606 
607 		if ((spi->rx_len >= sizeof(u32)) ||
608 		    (sr & STM32H7_SPI_SR_RXWNE)) {
609 			u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
610 
611 			*rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
612 			spi->rx_len -= sizeof(u32);
613 		} else if ((spi->rx_len >= sizeof(u16)) ||
614 			   (!(sr & STM32H7_SPI_SR_RXWNE) &&
615 			    (rxplvl >= 2 || spi->cur_bpw > 8))) {
616 			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
617 
618 			*rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
619 			spi->rx_len -= sizeof(u16);
620 		} else {
621 			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
622 
623 			*rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
624 			spi->rx_len -= sizeof(u8);
625 		}
626 
627 		sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
628 		rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
629 	}
630 
631 	dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n",
632 		__func__, spi->rx_len, sr);
633 }
634 
635 /**
636  * stm32_spi_enable - Enable SPI controller
637  * @spi: pointer to the spi controller data structure
638  */
639 static void stm32_spi_enable(struct stm32_spi *spi)
640 {
641 	dev_dbg(spi->dev, "enable controller\n");
642 
643 	stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
644 			   spi->cfg->regs->en.mask);
645 }
646 
647 /**
648  * stm32f4_spi_disable - Disable SPI controller
649  * @spi: pointer to the spi controller data structure
650  */
651 static void stm32f4_spi_disable(struct stm32_spi *spi)
652 {
653 	unsigned long flags;
654 	u32 sr;
655 
656 	dev_dbg(spi->dev, "disable controller\n");
657 
658 	spin_lock_irqsave(&spi->lock, flags);
659 
660 	if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
661 	      STM32F4_SPI_CR1_SPE)) {
662 		spin_unlock_irqrestore(&spi->lock, flags);
663 		return;
664 	}
665 
666 	/* Disable interrupts */
667 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
668 						 STM32F4_SPI_CR2_RXNEIE |
669 						 STM32F4_SPI_CR2_ERRIE);
670 
671 	/* Wait until BSY = 0 */
672 	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
673 					      sr, !(sr & STM32F4_SPI_SR_BSY),
674 					      10, 100000) < 0) {
675 		dev_warn(spi->dev, "disabling condition timeout\n");
676 	}
677 
678 	if (spi->cur_usedma && spi->dma_tx)
679 		dmaengine_terminate_async(spi->dma_tx);
680 	if (spi->cur_usedma && spi->dma_rx)
681 		dmaengine_terminate_async(spi->dma_rx);
682 
683 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
684 
685 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
686 						 STM32F4_SPI_CR2_RXDMAEN);
687 
688 	/* Sequence to clear OVR flag */
689 	readl_relaxed(spi->base + STM32F4_SPI_DR);
690 	readl_relaxed(spi->base + STM32F4_SPI_SR);
691 
692 	spin_unlock_irqrestore(&spi->lock, flags);
693 }
694 
695 /**
696  * stm32h7_spi_disable - Disable SPI controller
697  * @spi: pointer to the spi controller data structure
698  *
699  * RX-Fifo is flushed when SPI controller is disabled.
700  */
701 static void stm32h7_spi_disable(struct stm32_spi *spi)
702 {
703 	unsigned long flags;
704 	u32 cr1;
705 
706 	dev_dbg(spi->dev, "disable controller\n");
707 
708 	spin_lock_irqsave(&spi->lock, flags);
709 
710 	cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
711 
712 	if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
713 		spin_unlock_irqrestore(&spi->lock, flags);
714 		return;
715 	}
716 
717 	/* Add a delay to make sure that transmission is ended. */
718 	if (spi->cur_half_period)
719 		udelay(spi->cur_half_period);
720 
721 	if (spi->cur_usedma && spi->dma_tx)
722 		dmaengine_terminate_async(spi->dma_tx);
723 	if (spi->cur_usedma && spi->dma_rx)
724 		dmaengine_terminate_async(spi->dma_rx);
725 
726 	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
727 
728 	stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
729 						STM32H7_SPI_CFG1_RXDMAEN);
730 
731 	/* Disable interrupts and clear status flags */
732 	writel_relaxed(0, spi->base + STM32H7_SPI_IER);
733 	writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
734 
735 	spin_unlock_irqrestore(&spi->lock, flags);
736 }
737 
738 /**
739  * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
740  * @ctrl: controller interface
741  * @spi_dev: pointer to the spi device
742  * @transfer: pointer to spi transfer
743  *
744  * If driver has fifo and the current transfer size is greater than fifo size,
745  * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
746  */
747 static bool stm32_spi_can_dma(struct spi_controller *ctrl,
748 			      struct spi_device *spi_dev,
749 			      struct spi_transfer *transfer)
750 {
751 	unsigned int dma_size;
752 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
753 
754 	if (spi->cfg->has_fifo)
755 		dma_size = spi->fifo_size;
756 	else
757 		dma_size = SPI_DMA_MIN_BYTES;
758 
759 	dev_dbg(spi->dev, "%s: %s\n", __func__,
760 		(transfer->len > dma_size) ? "true" : "false");
761 
762 	return (transfer->len > dma_size);
763 }
764 
765 /**
766  * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
767  * @irq: interrupt line
768  * @dev_id: SPI controller ctrl interface
769  */
770 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
771 {
772 	struct spi_controller *ctrl = dev_id;
773 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
774 	u32 sr, mask = 0;
775 	bool end = false;
776 
777 	spin_lock(&spi->lock);
778 
779 	sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
780 	/*
781 	 * BSY flag is not handled in interrupt but it is normal behavior when
782 	 * this flag is set.
783 	 */
784 	sr &= ~STM32F4_SPI_SR_BSY;
785 
786 	if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
787 				 spi->cur_comm == SPI_3WIRE_TX)) {
788 		/* OVR flag shouldn't be handled for TX only mode */
789 		sr &= ~(STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE);
790 		mask |= STM32F4_SPI_SR_TXE;
791 	}
792 
793 	if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
794 				spi->cur_comm == SPI_SIMPLEX_RX ||
795 				spi->cur_comm == SPI_3WIRE_RX)) {
796 		/* TXE flag is set and is handled when RXNE flag occurs */
797 		sr &= ~STM32F4_SPI_SR_TXE;
798 		mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
799 	}
800 
801 	if (!(sr & mask)) {
802 		dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
803 		spin_unlock(&spi->lock);
804 		return IRQ_NONE;
805 	}
806 
807 	if (sr & STM32F4_SPI_SR_OVR) {
808 		dev_warn(spi->dev, "Overrun: received value discarded\n");
809 
810 		/* Sequence to clear OVR flag */
811 		readl_relaxed(spi->base + STM32F4_SPI_DR);
812 		readl_relaxed(spi->base + STM32F4_SPI_SR);
813 
814 		/*
815 		 * If overrun is detected, it means that something went wrong,
816 		 * so stop the current transfer. Transfer can wait for next
817 		 * RXNE but DR is already read and end never happens.
818 		 */
819 		end = true;
820 		goto end_irq;
821 	}
822 
823 	if (sr & STM32F4_SPI_SR_TXE) {
824 		if (spi->tx_buf)
825 			stm32f4_spi_write_tx(spi);
826 		if (spi->tx_len == 0)
827 			end = true;
828 	}
829 
830 	if (sr & STM32F4_SPI_SR_RXNE) {
831 		stm32f4_spi_read_rx(spi);
832 		if (spi->rx_len == 0)
833 			end = true;
834 		else if (spi->tx_buf)/* Load data for discontinuous mode */
835 			stm32f4_spi_write_tx(spi);
836 	}
837 
838 end_irq:
839 	if (end) {
840 		/* Immediately disable interrupts to do not generate new one */
841 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
842 					STM32F4_SPI_CR2_TXEIE |
843 					STM32F4_SPI_CR2_RXNEIE |
844 					STM32F4_SPI_CR2_ERRIE);
845 		spin_unlock(&spi->lock);
846 		return IRQ_WAKE_THREAD;
847 	}
848 
849 	spin_unlock(&spi->lock);
850 	return IRQ_HANDLED;
851 }
852 
853 /**
854  * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
855  * @irq: interrupt line
856  * @dev_id: SPI controller interface
857  */
858 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
859 {
860 	struct spi_controller *ctrl = dev_id;
861 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
862 
863 	spi_finalize_current_transfer(ctrl);
864 	stm32f4_spi_disable(spi);
865 
866 	return IRQ_HANDLED;
867 }
868 
869 /**
870  * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
871  * @irq: interrupt line
872  * @dev_id: SPI controller interface
873  */
874 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
875 {
876 	struct spi_controller *ctrl = dev_id;
877 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
878 	u32 sr, ier, mask;
879 	unsigned long flags;
880 	bool end = false;
881 
882 	spin_lock_irqsave(&spi->lock, flags);
883 
884 	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
885 	ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
886 
887 	mask = ier;
888 	/*
889 	 * EOTIE enables irq from EOT, SUSP and TXC events. We need to set
890 	 * SUSP to acknowledge it later. TXC is automatically cleared
891 	 */
892 
893 	mask |= STM32H7_SPI_SR_SUSP;
894 	/*
895 	 * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP
896 	 * are set. So in case of Full-Duplex, need to poll TXP and RXP event.
897 	 */
898 	if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma)
899 		mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP;
900 
901 	if (!(sr & mask)) {
902 		dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
903 			 sr, ier);
904 		spin_unlock_irqrestore(&spi->lock, flags);
905 		return IRQ_NONE;
906 	}
907 
908 	if (sr & STM32H7_SPI_SR_SUSP) {
909 		static DEFINE_RATELIMIT_STATE(rs,
910 					      DEFAULT_RATELIMIT_INTERVAL * 10,
911 					      1);
912 		ratelimit_set_flags(&rs, RATELIMIT_MSG_ON_RELEASE);
913 		if (__ratelimit(&rs))
914 			dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
915 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
916 			stm32h7_spi_read_rxfifo(spi);
917 		/*
918 		 * If communication is suspended while using DMA, it means
919 		 * that something went wrong, so stop the current transfer
920 		 */
921 		if (spi->cur_usedma)
922 			end = true;
923 	}
924 
925 	if (sr & STM32H7_SPI_SR_MODF) {
926 		dev_warn(spi->dev, "Mode fault: transfer aborted\n");
927 		end = true;
928 	}
929 
930 	if (sr & STM32H7_SPI_SR_OVR) {
931 		dev_err(spi->dev, "Overrun: RX data lost\n");
932 		end = true;
933 	}
934 
935 	if (sr & STM32H7_SPI_SR_EOT) {
936 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
937 			stm32h7_spi_read_rxfifo(spi);
938 		if (!spi->cur_usedma ||
939 		    (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX))
940 			end = true;
941 	}
942 
943 	if (sr & STM32H7_SPI_SR_TXP)
944 		if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
945 			stm32h7_spi_write_txfifo(spi);
946 
947 	if (sr & STM32H7_SPI_SR_RXP)
948 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
949 			stm32h7_spi_read_rxfifo(spi);
950 
951 	writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
952 
953 	spin_unlock_irqrestore(&spi->lock, flags);
954 
955 	if (end) {
956 		stm32h7_spi_disable(spi);
957 		spi_finalize_current_transfer(ctrl);
958 	}
959 
960 	return IRQ_HANDLED;
961 }
962 
963 /**
964  * stm32_spi_prepare_msg - set up the controller to transfer a single message
965  * @ctrl: controller interface
966  * @msg: pointer to spi message
967  */
968 static int stm32_spi_prepare_msg(struct spi_controller *ctrl,
969 				 struct spi_message *msg)
970 {
971 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
972 	struct spi_device *spi_dev = msg->spi;
973 	struct device_node *np = spi_dev->dev.of_node;
974 	unsigned long flags;
975 	u32 clrb = 0, setb = 0;
976 
977 	/* SPI slave device may need time between data frames */
978 	spi->cur_midi = 0;
979 	if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
980 		dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
981 
982 	if (spi_dev->mode & SPI_CPOL)
983 		setb |= spi->cfg->regs->cpol.mask;
984 	else
985 		clrb |= spi->cfg->regs->cpol.mask;
986 
987 	if (spi_dev->mode & SPI_CPHA)
988 		setb |= spi->cfg->regs->cpha.mask;
989 	else
990 		clrb |= spi->cfg->regs->cpha.mask;
991 
992 	if (spi_dev->mode & SPI_LSB_FIRST)
993 		setb |= spi->cfg->regs->lsb_first.mask;
994 	else
995 		clrb |= spi->cfg->regs->lsb_first.mask;
996 
997 	if (STM32_SPI_DEVICE_MODE(spi) && spi_dev->mode & SPI_CS_HIGH)
998 		setb |= spi->cfg->regs->cs_high.mask;
999 	else
1000 		clrb |= spi->cfg->regs->cs_high.mask;
1001 
1002 	dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1003 		!!(spi_dev->mode & SPI_CPOL),
1004 		!!(spi_dev->mode & SPI_CPHA),
1005 		!!(spi_dev->mode & SPI_LSB_FIRST),
1006 		!!(spi_dev->mode & SPI_CS_HIGH));
1007 
1008 	/* On STM32H7, messages should not exceed a maximum size setted
1009 	 * afterward via the set_number_of_data function. In order to
1010 	 * ensure that, split large messages into several messages
1011 	 */
1012 	if (spi->cfg->set_number_of_data) {
1013 		int ret;
1014 
1015 		ret = spi_split_transfers_maxwords(ctrl, msg,
1016 						   STM32H7_SPI_TSIZE_MAX,
1017 						   GFP_KERNEL | GFP_DMA);
1018 		if (ret)
1019 			return ret;
1020 	}
1021 
1022 	spin_lock_irqsave(&spi->lock, flags);
1023 
1024 	/* CPOL, CPHA and LSB FIRST bits have common register */
1025 	if (clrb || setb)
1026 		writel_relaxed(
1027 			(readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1028 			 ~clrb) | setb,
1029 			spi->base + spi->cfg->regs->cpol.reg);
1030 
1031 	spin_unlock_irqrestore(&spi->lock, flags);
1032 
1033 	return 0;
1034 }
1035 
1036 /**
1037  * stm32f4_spi_dma_tx_cb - dma callback
1038  * @data: pointer to the spi controller data structure
1039  *
1040  * DMA callback is called when the transfer is complete for DMA TX channel.
1041  */
1042 static void stm32f4_spi_dma_tx_cb(void *data)
1043 {
1044 	struct stm32_spi *spi = data;
1045 
1046 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1047 		spi_finalize_current_transfer(spi->ctrl);
1048 		stm32f4_spi_disable(spi);
1049 	}
1050 }
1051 
1052 /**
1053  * stm32_spi_dma_rx_cb - dma callback
1054  * @data: pointer to the spi controller data structure
1055  *
1056  * DMA callback is called when the transfer is complete for DMA RX channel.
1057  */
1058 static void stm32_spi_dma_rx_cb(void *data)
1059 {
1060 	struct stm32_spi *spi = data;
1061 
1062 	spi_finalize_current_transfer(spi->ctrl);
1063 	spi->cfg->disable(spi);
1064 }
1065 
1066 /**
1067  * stm32_spi_dma_config - configure dma slave channel depending on current
1068  *			  transfer bits_per_word.
1069  * @spi: pointer to the spi controller data structure
1070  * @dma_conf: pointer to the dma_slave_config structure
1071  * @dir: direction of the dma transfer
1072  */
1073 static void stm32_spi_dma_config(struct stm32_spi *spi,
1074 				 struct dma_slave_config *dma_conf,
1075 				 enum dma_transfer_direction dir)
1076 {
1077 	enum dma_slave_buswidth buswidth;
1078 	u32 maxburst;
1079 
1080 	if (spi->cur_bpw <= 8)
1081 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1082 	else if (spi->cur_bpw <= 16)
1083 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1084 	else
1085 		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1086 
1087 	if (spi->cfg->has_fifo) {
1088 		/* Valid for DMA Half or Full Fifo threshold */
1089 		if (spi->cur_fthlv == 2)
1090 			maxburst = 1;
1091 		else
1092 			maxburst = spi->cur_fthlv;
1093 	} else {
1094 		maxburst = 1;
1095 	}
1096 
1097 	memset(dma_conf, 0, sizeof(struct dma_slave_config));
1098 	dma_conf->direction = dir;
1099 	if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1100 		dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1101 		dma_conf->src_addr_width = buswidth;
1102 		dma_conf->src_maxburst = maxburst;
1103 
1104 		dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1105 			buswidth, maxburst);
1106 	} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1107 		dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1108 		dma_conf->dst_addr_width = buswidth;
1109 		dma_conf->dst_maxburst = maxburst;
1110 
1111 		dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1112 			buswidth, maxburst);
1113 	}
1114 }
1115 
1116 /**
1117  * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1118  *				  interrupts
1119  * @spi: pointer to the spi controller data structure
1120  *
1121  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1122  * in progress.
1123  */
1124 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1125 {
1126 	unsigned long flags;
1127 	u32 cr2 = 0;
1128 
1129 	/* Enable the interrupts relative to the current communication mode */
1130 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1131 		cr2 |= STM32F4_SPI_CR2_TXEIE;
1132 	} else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1133 				spi->cur_comm == SPI_SIMPLEX_RX ||
1134 				spi->cur_comm == SPI_3WIRE_RX) {
1135 		/* In transmit-only mode, the OVR flag is set in the SR register
1136 		 * since the received data are never read. Therefore set OVR
1137 		 * interrupt only when rx buffer is available.
1138 		 */
1139 		cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1140 	} else {
1141 		return -EINVAL;
1142 	}
1143 
1144 	spin_lock_irqsave(&spi->lock, flags);
1145 
1146 	stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1147 
1148 	stm32_spi_enable(spi);
1149 
1150 	/* starting data transfer when buffer is loaded */
1151 	if (spi->tx_buf)
1152 		stm32f4_spi_write_tx(spi);
1153 
1154 	spin_unlock_irqrestore(&spi->lock, flags);
1155 
1156 	return 1;
1157 }
1158 
1159 /**
1160  * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1161  *				  interrupts
1162  * @spi: pointer to the spi controller data structure
1163  *
1164  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1165  * in progress.
1166  */
1167 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1168 {
1169 	unsigned long flags;
1170 	u32 ier = 0;
1171 
1172 	/* Enable the interrupts relative to the current communication mode */
1173 	if (spi->tx_buf && spi->rx_buf)	/* Full Duplex */
1174 		ier |= STM32H7_SPI_IER_DXPIE;
1175 	else if (spi->tx_buf)		/* Half-Duplex TX dir or Simplex TX */
1176 		ier |= STM32H7_SPI_IER_TXPIE;
1177 	else if (spi->rx_buf)		/* Half-Duplex RX dir or Simplex RX */
1178 		ier |= STM32H7_SPI_IER_RXPIE;
1179 
1180 	/* Enable the interrupts relative to the end of transfer */
1181 	ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1182 	       STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1183 
1184 	spin_lock_irqsave(&spi->lock, flags);
1185 
1186 	stm32_spi_enable(spi);
1187 
1188 	/* Be sure to have data in fifo before starting data transfer */
1189 	if (spi->tx_buf)
1190 		stm32h7_spi_write_txfifo(spi);
1191 
1192 	if (STM32_SPI_MASTER_MODE(spi))
1193 		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1194 
1195 	writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1196 
1197 	spin_unlock_irqrestore(&spi->lock, flags);
1198 
1199 	return 1;
1200 }
1201 
1202 /**
1203  * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1204  *					transfer using DMA
1205  * @spi: pointer to the spi controller data structure
1206  */
1207 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1208 {
1209 	/* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1210 	if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1211 	    spi->cur_comm == SPI_FULL_DUPLEX) {
1212 		/*
1213 		 * In transmit-only mode, the OVR flag is set in the SR register
1214 		 * since the received data are never read. Therefore set OVR
1215 		 * interrupt only when rx buffer is available.
1216 		 */
1217 		stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1218 	}
1219 
1220 	stm32_spi_enable(spi);
1221 }
1222 
1223 /**
1224  * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1225  *					transfer using DMA
1226  * @spi: pointer to the spi controller data structure
1227  */
1228 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1229 {
1230 	uint32_t ier = STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1231 
1232 	/* Enable the interrupts */
1233 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX)
1234 		ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE;
1235 
1236 	stm32_spi_set_bits(spi, STM32H7_SPI_IER, ier);
1237 
1238 	stm32_spi_enable(spi);
1239 
1240 	if (STM32_SPI_MASTER_MODE(spi))
1241 		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1242 }
1243 
1244 /**
1245  * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1246  * @spi: pointer to the spi controller data structure
1247  * @xfer: pointer to the spi_transfer structure
1248  *
1249  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1250  * in progress.
1251  */
1252 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1253 				      struct spi_transfer *xfer)
1254 {
1255 	struct dma_slave_config tx_dma_conf, rx_dma_conf;
1256 	struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1257 	unsigned long flags;
1258 
1259 	spin_lock_irqsave(&spi->lock, flags);
1260 
1261 	rx_dma_desc = NULL;
1262 	if (spi->rx_buf && spi->dma_rx) {
1263 		stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1264 		dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1265 
1266 		/* Enable Rx DMA request */
1267 		stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1268 				   spi->cfg->regs->dma_rx_en.mask);
1269 
1270 		rx_dma_desc = dmaengine_prep_slave_sg(
1271 					spi->dma_rx, xfer->rx_sg.sgl,
1272 					xfer->rx_sg.nents,
1273 					rx_dma_conf.direction,
1274 					DMA_PREP_INTERRUPT);
1275 	}
1276 
1277 	tx_dma_desc = NULL;
1278 	if (spi->tx_buf && spi->dma_tx) {
1279 		stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1280 		dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1281 
1282 		tx_dma_desc = dmaengine_prep_slave_sg(
1283 					spi->dma_tx, xfer->tx_sg.sgl,
1284 					xfer->tx_sg.nents,
1285 					tx_dma_conf.direction,
1286 					DMA_PREP_INTERRUPT);
1287 	}
1288 
1289 	if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1290 	    (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1291 		goto dma_desc_error;
1292 
1293 	if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1294 		goto dma_desc_error;
1295 
1296 	if (rx_dma_desc) {
1297 		rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1298 		rx_dma_desc->callback_param = spi;
1299 
1300 		if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1301 			dev_err(spi->dev, "Rx DMA submit failed\n");
1302 			goto dma_desc_error;
1303 		}
1304 		/* Enable Rx DMA channel */
1305 		dma_async_issue_pending(spi->dma_rx);
1306 	}
1307 
1308 	if (tx_dma_desc) {
1309 		if (spi->cur_comm == SPI_SIMPLEX_TX ||
1310 		    spi->cur_comm == SPI_3WIRE_TX) {
1311 			tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1312 			tx_dma_desc->callback_param = spi;
1313 		}
1314 
1315 		if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1316 			dev_err(spi->dev, "Tx DMA submit failed\n");
1317 			goto dma_submit_error;
1318 		}
1319 		/* Enable Tx DMA channel */
1320 		dma_async_issue_pending(spi->dma_tx);
1321 
1322 		/* Enable Tx DMA request */
1323 		stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1324 				   spi->cfg->regs->dma_tx_en.mask);
1325 	}
1326 
1327 	spi->cfg->transfer_one_dma_start(spi);
1328 
1329 	spin_unlock_irqrestore(&spi->lock, flags);
1330 
1331 	return 1;
1332 
1333 dma_submit_error:
1334 	if (spi->dma_rx)
1335 		dmaengine_terminate_sync(spi->dma_rx);
1336 
1337 dma_desc_error:
1338 	stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1339 			   spi->cfg->regs->dma_rx_en.mask);
1340 
1341 	spin_unlock_irqrestore(&spi->lock, flags);
1342 
1343 	dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1344 
1345 	spi->cur_usedma = false;
1346 	return spi->cfg->transfer_one_irq(spi);
1347 }
1348 
1349 /**
1350  * stm32f4_spi_set_bpw - Configure bits per word
1351  * @spi: pointer to the spi controller data structure
1352  */
1353 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1354 {
1355 	if (spi->cur_bpw == 16)
1356 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1357 	else
1358 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1359 }
1360 
1361 /**
1362  * stm32h7_spi_set_bpw - configure bits per word
1363  * @spi: pointer to the spi controller data structure
1364  */
1365 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1366 {
1367 	u32 bpw, fthlv;
1368 	u32 cfg1_clrb = 0, cfg1_setb = 0;
1369 
1370 	bpw = spi->cur_bpw - 1;
1371 
1372 	cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1373 	cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw);
1374 
1375 	spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1376 	fthlv = spi->cur_fthlv - 1;
1377 
1378 	cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1379 	cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv);
1380 
1381 	writel_relaxed(
1382 		(readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1383 		 ~cfg1_clrb) | cfg1_setb,
1384 		spi->base + STM32H7_SPI_CFG1);
1385 }
1386 
1387 /**
1388  * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1389  * @spi: pointer to the spi controller data structure
1390  * @mbrdiv: baud rate divisor value
1391  */
1392 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1393 {
1394 	u32 clrb = 0, setb = 0;
1395 
1396 	clrb |= spi->cfg->regs->br.mask;
1397 	setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask;
1398 
1399 	writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1400 			~clrb) | setb,
1401 		       spi->base + spi->cfg->regs->br.reg);
1402 }
1403 
1404 /**
1405  * stm32_spi_communication_type - return transfer communication type
1406  * @spi_dev: pointer to the spi device
1407  * @transfer: pointer to spi transfer
1408  */
1409 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1410 						 struct spi_transfer *transfer)
1411 {
1412 	unsigned int type = SPI_FULL_DUPLEX;
1413 
1414 	if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1415 		/*
1416 		 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1417 		 * is forbidden and unvalidated by SPI subsystem so depending
1418 		 * on the valid buffer, we can determine the direction of the
1419 		 * transfer.
1420 		 */
1421 		if (!transfer->tx_buf)
1422 			type = SPI_3WIRE_RX;
1423 		else
1424 			type = SPI_3WIRE_TX;
1425 	} else {
1426 		if (!transfer->tx_buf)
1427 			type = SPI_SIMPLEX_RX;
1428 		else if (!transfer->rx_buf)
1429 			type = SPI_SIMPLEX_TX;
1430 	}
1431 
1432 	return type;
1433 }
1434 
1435 /**
1436  * stm32f4_spi_set_mode - configure communication mode
1437  * @spi: pointer to the spi controller data structure
1438  * @comm_type: type of communication to configure
1439  */
1440 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1441 {
1442 	if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1443 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1444 					STM32F4_SPI_CR1_BIDIMODE |
1445 					STM32F4_SPI_CR1_BIDIOE);
1446 	} else if (comm_type == SPI_FULL_DUPLEX ||
1447 				comm_type == SPI_SIMPLEX_RX) {
1448 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1449 					STM32F4_SPI_CR1_BIDIMODE |
1450 					STM32F4_SPI_CR1_BIDIOE);
1451 	} else if (comm_type == SPI_3WIRE_RX) {
1452 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1453 					STM32F4_SPI_CR1_BIDIMODE);
1454 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1455 					STM32F4_SPI_CR1_BIDIOE);
1456 	} else {
1457 		return -EINVAL;
1458 	}
1459 
1460 	return 0;
1461 }
1462 
1463 /**
1464  * stm32h7_spi_set_mode - configure communication mode
1465  * @spi: pointer to the spi controller data structure
1466  * @comm_type: type of communication to configure
1467  */
1468 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1469 {
1470 	u32 mode;
1471 	u32 cfg2_clrb = 0, cfg2_setb = 0;
1472 
1473 	if (comm_type == SPI_3WIRE_RX) {
1474 		mode = STM32H7_SPI_HALF_DUPLEX;
1475 		stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1476 	} else if (comm_type == SPI_3WIRE_TX) {
1477 		mode = STM32H7_SPI_HALF_DUPLEX;
1478 		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1479 	} else if (comm_type == SPI_SIMPLEX_RX) {
1480 		mode = STM32H7_SPI_SIMPLEX_RX;
1481 	} else if (comm_type == SPI_SIMPLEX_TX) {
1482 		mode = STM32H7_SPI_SIMPLEX_TX;
1483 	} else {
1484 		mode = STM32H7_SPI_FULL_DUPLEX;
1485 	}
1486 
1487 	cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1488 	cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode);
1489 
1490 	writel_relaxed(
1491 		(readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1492 		 ~cfg2_clrb) | cfg2_setb,
1493 		spi->base + STM32H7_SPI_CFG2);
1494 
1495 	return 0;
1496 }
1497 
1498 /**
1499  * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1500  *			       consecutive data frames in master mode
1501  * @spi: pointer to the spi controller data structure
1502  * @len: transfer len
1503  */
1504 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1505 {
1506 	u32 cfg2_clrb = 0, cfg2_setb = 0;
1507 
1508 	cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1509 	if ((len > 1) && (spi->cur_midi > 0)) {
1510 		u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed);
1511 		u32 midi = min_t(u32,
1512 				 DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1513 				 FIELD_GET(STM32H7_SPI_CFG2_MIDI,
1514 				 STM32H7_SPI_CFG2_MIDI));
1515 
1516 
1517 		dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1518 			sck_period_ns, midi, midi * sck_period_ns);
1519 		cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi);
1520 	}
1521 
1522 	writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1523 			~cfg2_clrb) | cfg2_setb,
1524 		       spi->base + STM32H7_SPI_CFG2);
1525 }
1526 
1527 /**
1528  * stm32h7_spi_number_of_data - configure number of data at current transfer
1529  * @spi: pointer to the spi controller data structure
1530  * @nb_words: transfer length (in words)
1531  */
1532 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1533 {
1534 	if (nb_words <= STM32H7_SPI_TSIZE_MAX) {
1535 		writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words),
1536 			       spi->base + STM32H7_SPI_CR2);
1537 	} else {
1538 		return -EMSGSIZE;
1539 	}
1540 
1541 	return 0;
1542 }
1543 
1544 /**
1545  * stm32_spi_transfer_one_setup - common setup to transfer a single
1546  *				  spi_transfer either using DMA or
1547  *				  interrupts.
1548  * @spi: pointer to the spi controller data structure
1549  * @spi_dev: pointer to the spi device
1550  * @transfer: pointer to spi transfer
1551  */
1552 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1553 					struct spi_device *spi_dev,
1554 					struct spi_transfer *transfer)
1555 {
1556 	unsigned long flags;
1557 	unsigned int comm_type;
1558 	int nb_words, ret = 0;
1559 	int mbr;
1560 
1561 	spin_lock_irqsave(&spi->lock, flags);
1562 
1563 	spi->cur_xferlen = transfer->len;
1564 
1565 	spi->cur_bpw = transfer->bits_per_word;
1566 	spi->cfg->set_bpw(spi);
1567 
1568 	/* Update spi->cur_speed with real clock speed */
1569 	if (STM32_SPI_MASTER_MODE(spi)) {
1570 		mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1571 					    spi->cfg->baud_rate_div_min,
1572 					    spi->cfg->baud_rate_div_max);
1573 		if (mbr < 0) {
1574 			ret = mbr;
1575 			goto out;
1576 		}
1577 
1578 		transfer->speed_hz = spi->cur_speed;
1579 		stm32_spi_set_mbr(spi, mbr);
1580 	}
1581 
1582 	comm_type = stm32_spi_communication_type(spi_dev, transfer);
1583 	ret = spi->cfg->set_mode(spi, comm_type);
1584 	if (ret < 0)
1585 		goto out;
1586 
1587 	spi->cur_comm = comm_type;
1588 
1589 	if (STM32_SPI_MASTER_MODE(spi) && spi->cfg->set_data_idleness)
1590 		spi->cfg->set_data_idleness(spi, transfer->len);
1591 
1592 	if (spi->cur_bpw <= 8)
1593 		nb_words = transfer->len;
1594 	else if (spi->cur_bpw <= 16)
1595 		nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1596 	else
1597 		nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1598 
1599 	if (spi->cfg->set_number_of_data) {
1600 		ret = spi->cfg->set_number_of_data(spi, nb_words);
1601 		if (ret < 0)
1602 			goto out;
1603 	}
1604 
1605 	dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1606 		spi->cur_comm);
1607 	dev_dbg(spi->dev,
1608 		"data frame of %d-bit, data packet of %d data frames\n",
1609 		spi->cur_bpw, spi->cur_fthlv);
1610 	if (STM32_SPI_MASTER_MODE(spi))
1611 		dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1612 	dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1613 		spi->cur_xferlen, nb_words);
1614 	dev_dbg(spi->dev, "dma %s\n",
1615 		(spi->cur_usedma) ? "enabled" : "disabled");
1616 
1617 out:
1618 	spin_unlock_irqrestore(&spi->lock, flags);
1619 
1620 	return ret;
1621 }
1622 
1623 /**
1624  * stm32_spi_transfer_one - transfer a single spi_transfer
1625  * @ctrl: controller interface
1626  * @spi_dev: pointer to the spi device
1627  * @transfer: pointer to spi transfer
1628  *
1629  * It must return 0 if the transfer is finished or 1 if the transfer is still
1630  * in progress.
1631  */
1632 static int stm32_spi_transfer_one(struct spi_controller *ctrl,
1633 				  struct spi_device *spi_dev,
1634 				  struct spi_transfer *transfer)
1635 {
1636 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1637 	int ret;
1638 
1639 	spi->tx_buf = transfer->tx_buf;
1640 	spi->rx_buf = transfer->rx_buf;
1641 	spi->tx_len = spi->tx_buf ? transfer->len : 0;
1642 	spi->rx_len = spi->rx_buf ? transfer->len : 0;
1643 
1644 	spi->cur_usedma = (ctrl->can_dma &&
1645 			   ctrl->can_dma(ctrl, spi_dev, transfer));
1646 
1647 	ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1648 	if (ret) {
1649 		dev_err(spi->dev, "SPI transfer setup failed\n");
1650 		return ret;
1651 	}
1652 
1653 	if (spi->cur_usedma)
1654 		return stm32_spi_transfer_one_dma(spi, transfer);
1655 	else
1656 		return spi->cfg->transfer_one_irq(spi);
1657 }
1658 
1659 /**
1660  * stm32_spi_unprepare_msg - relax the hardware
1661  * @ctrl: controller interface
1662  * @msg: pointer to the spi message
1663  */
1664 static int stm32_spi_unprepare_msg(struct spi_controller *ctrl,
1665 				   struct spi_message *msg)
1666 {
1667 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1668 
1669 	spi->cfg->disable(spi);
1670 
1671 	return 0;
1672 }
1673 
1674 /**
1675  * stm32f4_spi_config - Configure SPI controller as SPI master
1676  * @spi: pointer to the spi controller data structure
1677  */
1678 static int stm32f4_spi_config(struct stm32_spi *spi)
1679 {
1680 	unsigned long flags;
1681 
1682 	spin_lock_irqsave(&spi->lock, flags);
1683 
1684 	/* Ensure I2SMOD bit is kept cleared */
1685 	stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1686 			   STM32F4_SPI_I2SCFGR_I2SMOD);
1687 
1688 	/*
1689 	 * - SS input value high
1690 	 * - transmitter half duplex direction
1691 	 * - Set the master mode (default Motorola mode)
1692 	 * - Consider 1 master/n slaves configuration and
1693 	 *   SS input value is determined by the SSI bit
1694 	 */
1695 	stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1696 						 STM32F4_SPI_CR1_BIDIOE |
1697 						 STM32F4_SPI_CR1_MSTR |
1698 						 STM32F4_SPI_CR1_SSM);
1699 
1700 	spin_unlock_irqrestore(&spi->lock, flags);
1701 
1702 	return 0;
1703 }
1704 
1705 /**
1706  * stm32h7_spi_config - Configure SPI controller
1707  * @spi: pointer to the spi controller data structure
1708  */
1709 static int stm32h7_spi_config(struct stm32_spi *spi)
1710 {
1711 	unsigned long flags;
1712 	u32 cr1 = 0, cfg2 = 0;
1713 
1714 	spin_lock_irqsave(&spi->lock, flags);
1715 
1716 	/* Ensure I2SMOD bit is kept cleared */
1717 	stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1718 			   STM32H7_SPI_I2SCFGR_I2SMOD);
1719 
1720 	if (STM32_SPI_DEVICE_MODE(spi)) {
1721 		/* Use native device select */
1722 		cfg2 &= ~STM32H7_SPI_CFG2_SSM;
1723 	} else {
1724 		/*
1725 		 * - Transmitter half duplex direction
1726 		 * - Automatic communication suspend when RX-Fifo is full
1727 		 * - SS input value high
1728 		 */
1729 		cr1 |= STM32H7_SPI_CR1_HDDIR | STM32H7_SPI_CR1_MASRX | STM32H7_SPI_CR1_SSI;
1730 
1731 		/*
1732 		 * - Set the master mode (default Motorola mode)
1733 		 * - Consider 1 master/n devices configuration and
1734 		 *   SS input value is determined by the SSI bit
1735 		 * - keep control of all associated GPIOs
1736 		 */
1737 		cfg2 |= STM32H7_SPI_CFG2_MASTER | STM32H7_SPI_CFG2_SSM | STM32H7_SPI_CFG2_AFCNTR;
1738 	}
1739 
1740 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, cr1);
1741 	stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, cfg2);
1742 
1743 	spin_unlock_irqrestore(&spi->lock, flags);
1744 
1745 	return 0;
1746 }
1747 
1748 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1749 	.regs = &stm32f4_spi_regspec,
1750 	.get_bpw_mask = stm32f4_spi_get_bpw_mask,
1751 	.disable = stm32f4_spi_disable,
1752 	.config = stm32f4_spi_config,
1753 	.set_bpw = stm32f4_spi_set_bpw,
1754 	.set_mode = stm32f4_spi_set_mode,
1755 	.transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1756 	.dma_tx_cb = stm32f4_spi_dma_tx_cb,
1757 	.dma_rx_cb = stm32_spi_dma_rx_cb,
1758 	.transfer_one_irq = stm32f4_spi_transfer_one_irq,
1759 	.irq_handler_event = stm32f4_spi_irq_event,
1760 	.irq_handler_thread = stm32f4_spi_irq_thread,
1761 	.baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1762 	.baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1763 	.has_fifo = false,
1764 	.has_device_mode = false,
1765 	.flags = SPI_CONTROLLER_MUST_TX,
1766 };
1767 
1768 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1769 	.regs = &stm32h7_spi_regspec,
1770 	.get_fifo_size = stm32h7_spi_get_fifo_size,
1771 	.get_bpw_mask = stm32h7_spi_get_bpw_mask,
1772 	.disable = stm32h7_spi_disable,
1773 	.config = stm32h7_spi_config,
1774 	.set_bpw = stm32h7_spi_set_bpw,
1775 	.set_mode = stm32h7_spi_set_mode,
1776 	.set_data_idleness = stm32h7_spi_data_idleness,
1777 	.set_number_of_data = stm32h7_spi_number_of_data,
1778 	.transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1779 	.dma_rx_cb = stm32_spi_dma_rx_cb,
1780 	/*
1781 	 * dma_tx_cb is not necessary since in case of TX, dma is followed by
1782 	 * SPI access hence handling is performed within the SPI interrupt
1783 	 */
1784 	.transfer_one_irq = stm32h7_spi_transfer_one_irq,
1785 	.irq_handler_thread = stm32h7_spi_irq_thread,
1786 	.baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1787 	.baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1788 	.has_fifo = true,
1789 	.has_device_mode = true,
1790 };
1791 
1792 static const struct of_device_id stm32_spi_of_match[] = {
1793 	{ .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1794 	{ .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1795 	{},
1796 };
1797 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1798 
1799 static int stm32h7_spi_device_abort(struct spi_controller *ctrl)
1800 {
1801 	spi_finalize_current_transfer(ctrl);
1802 	return 0;
1803 }
1804 
1805 static int stm32_spi_probe(struct platform_device *pdev)
1806 {
1807 	struct spi_controller *ctrl;
1808 	struct stm32_spi *spi;
1809 	struct resource *res;
1810 	struct reset_control *rst;
1811 	struct device_node *np = pdev->dev.of_node;
1812 	bool device_mode;
1813 	int ret;
1814 	const struct stm32_spi_cfg *cfg = of_device_get_match_data(&pdev->dev);
1815 
1816 	device_mode = of_property_read_bool(np, "spi-slave");
1817 	if (!cfg->has_device_mode && device_mode) {
1818 		dev_err(&pdev->dev, "spi-slave not supported\n");
1819 		return -EPERM;
1820 	}
1821 
1822 	if (device_mode)
1823 		ctrl = devm_spi_alloc_slave(&pdev->dev, sizeof(struct stm32_spi));
1824 	else
1825 		ctrl = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1826 	if (!ctrl) {
1827 		dev_err(&pdev->dev, "spi controller allocation failed\n");
1828 		return -ENOMEM;
1829 	}
1830 	platform_set_drvdata(pdev, ctrl);
1831 
1832 	spi = spi_controller_get_devdata(ctrl);
1833 	spi->dev = &pdev->dev;
1834 	spi->ctrl = ctrl;
1835 	spi->device_mode = device_mode;
1836 	spin_lock_init(&spi->lock);
1837 
1838 	spi->cfg = cfg;
1839 
1840 	spi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1841 	if (IS_ERR(spi->base))
1842 		return PTR_ERR(spi->base);
1843 
1844 	spi->phys_addr = (dma_addr_t)res->start;
1845 
1846 	spi->irq = platform_get_irq(pdev, 0);
1847 	if (spi->irq <= 0)
1848 		return spi->irq;
1849 
1850 	ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1851 					spi->cfg->irq_handler_event,
1852 					spi->cfg->irq_handler_thread,
1853 					IRQF_ONESHOT, pdev->name, ctrl);
1854 	if (ret) {
1855 		dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1856 			ret);
1857 		return ret;
1858 	}
1859 
1860 	spi->clk = devm_clk_get(&pdev->dev, NULL);
1861 	if (IS_ERR(spi->clk)) {
1862 		ret = PTR_ERR(spi->clk);
1863 		dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1864 		return ret;
1865 	}
1866 
1867 	ret = clk_prepare_enable(spi->clk);
1868 	if (ret) {
1869 		dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1870 		return ret;
1871 	}
1872 	spi->clk_rate = clk_get_rate(spi->clk);
1873 	if (!spi->clk_rate) {
1874 		dev_err(&pdev->dev, "clk rate = 0\n");
1875 		ret = -EINVAL;
1876 		goto err_clk_disable;
1877 	}
1878 
1879 	rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
1880 	if (rst) {
1881 		if (IS_ERR(rst)) {
1882 			ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
1883 					    "failed to get reset\n");
1884 			goto err_clk_disable;
1885 		}
1886 
1887 		reset_control_assert(rst);
1888 		udelay(2);
1889 		reset_control_deassert(rst);
1890 	}
1891 
1892 	if (spi->cfg->has_fifo)
1893 		spi->fifo_size = spi->cfg->get_fifo_size(spi);
1894 
1895 	ret = spi->cfg->config(spi);
1896 	if (ret) {
1897 		dev_err(&pdev->dev, "controller configuration failed: %d\n",
1898 			ret);
1899 		goto err_clk_disable;
1900 	}
1901 
1902 	ctrl->dev.of_node = pdev->dev.of_node;
1903 	ctrl->auto_runtime_pm = true;
1904 	ctrl->bus_num = pdev->id;
1905 	ctrl->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1906 			  SPI_3WIRE;
1907 	ctrl->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1908 	ctrl->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1909 	ctrl->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1910 	ctrl->use_gpio_descriptors = true;
1911 	ctrl->prepare_message = stm32_spi_prepare_msg;
1912 	ctrl->transfer_one = stm32_spi_transfer_one;
1913 	ctrl->unprepare_message = stm32_spi_unprepare_msg;
1914 	ctrl->flags = spi->cfg->flags;
1915 	if (STM32_SPI_DEVICE_MODE(spi))
1916 		ctrl->slave_abort = stm32h7_spi_device_abort;
1917 
1918 	spi->dma_tx = dma_request_chan(spi->dev, "tx");
1919 	if (IS_ERR(spi->dma_tx)) {
1920 		ret = PTR_ERR(spi->dma_tx);
1921 		spi->dma_tx = NULL;
1922 		if (ret == -EPROBE_DEFER)
1923 			goto err_clk_disable;
1924 
1925 		dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1926 	} else {
1927 		ctrl->dma_tx = spi->dma_tx;
1928 	}
1929 
1930 	spi->dma_rx = dma_request_chan(spi->dev, "rx");
1931 	if (IS_ERR(spi->dma_rx)) {
1932 		ret = PTR_ERR(spi->dma_rx);
1933 		spi->dma_rx = NULL;
1934 		if (ret == -EPROBE_DEFER)
1935 			goto err_dma_release;
1936 
1937 		dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1938 	} else {
1939 		ctrl->dma_rx = spi->dma_rx;
1940 	}
1941 
1942 	if (spi->dma_tx || spi->dma_rx)
1943 		ctrl->can_dma = stm32_spi_can_dma;
1944 
1945 	pm_runtime_set_autosuspend_delay(&pdev->dev,
1946 					 STM32_SPI_AUTOSUSPEND_DELAY);
1947 	pm_runtime_use_autosuspend(&pdev->dev);
1948 	pm_runtime_set_active(&pdev->dev);
1949 	pm_runtime_get_noresume(&pdev->dev);
1950 	pm_runtime_enable(&pdev->dev);
1951 
1952 	ret = spi_register_controller(ctrl);
1953 	if (ret) {
1954 		dev_err(&pdev->dev, "spi controller registration failed: %d\n",
1955 			ret);
1956 		goto err_pm_disable;
1957 	}
1958 
1959 	pm_runtime_mark_last_busy(&pdev->dev);
1960 	pm_runtime_put_autosuspend(&pdev->dev);
1961 
1962 	dev_info(&pdev->dev, "driver initialized (%s mode)\n",
1963 		 STM32_SPI_MASTER_MODE(spi) ? "master" : "device");
1964 
1965 	return 0;
1966 
1967 err_pm_disable:
1968 	pm_runtime_disable(&pdev->dev);
1969 	pm_runtime_put_noidle(&pdev->dev);
1970 	pm_runtime_set_suspended(&pdev->dev);
1971 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1972 err_dma_release:
1973 	if (spi->dma_tx)
1974 		dma_release_channel(spi->dma_tx);
1975 	if (spi->dma_rx)
1976 		dma_release_channel(spi->dma_rx);
1977 err_clk_disable:
1978 	clk_disable_unprepare(spi->clk);
1979 
1980 	return ret;
1981 }
1982 
1983 static void stm32_spi_remove(struct platform_device *pdev)
1984 {
1985 	struct spi_controller *ctrl = platform_get_drvdata(pdev);
1986 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1987 
1988 	pm_runtime_get_sync(&pdev->dev);
1989 
1990 	spi_unregister_controller(ctrl);
1991 	spi->cfg->disable(spi);
1992 
1993 	pm_runtime_disable(&pdev->dev);
1994 	pm_runtime_put_noidle(&pdev->dev);
1995 	pm_runtime_set_suspended(&pdev->dev);
1996 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1997 
1998 	if (ctrl->dma_tx)
1999 		dma_release_channel(ctrl->dma_tx);
2000 	if (ctrl->dma_rx)
2001 		dma_release_channel(ctrl->dma_rx);
2002 
2003 	clk_disable_unprepare(spi->clk);
2004 
2005 
2006 	pinctrl_pm_select_sleep_state(&pdev->dev);
2007 }
2008 
2009 static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev)
2010 {
2011 	struct spi_controller *ctrl = dev_get_drvdata(dev);
2012 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2013 
2014 	clk_disable_unprepare(spi->clk);
2015 
2016 	return pinctrl_pm_select_sleep_state(dev);
2017 }
2018 
2019 static int __maybe_unused stm32_spi_runtime_resume(struct device *dev)
2020 {
2021 	struct spi_controller *ctrl = dev_get_drvdata(dev);
2022 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2023 	int ret;
2024 
2025 	ret = pinctrl_pm_select_default_state(dev);
2026 	if (ret)
2027 		return ret;
2028 
2029 	return clk_prepare_enable(spi->clk);
2030 }
2031 
2032 static int __maybe_unused stm32_spi_suspend(struct device *dev)
2033 {
2034 	struct spi_controller *ctrl = dev_get_drvdata(dev);
2035 	int ret;
2036 
2037 	ret = spi_controller_suspend(ctrl);
2038 	if (ret)
2039 		return ret;
2040 
2041 	return pm_runtime_force_suspend(dev);
2042 }
2043 
2044 static int __maybe_unused stm32_spi_resume(struct device *dev)
2045 {
2046 	struct spi_controller *ctrl = dev_get_drvdata(dev);
2047 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2048 	int ret;
2049 
2050 	ret = pm_runtime_force_resume(dev);
2051 	if (ret)
2052 		return ret;
2053 
2054 	ret = spi_controller_resume(ctrl);
2055 	if (ret) {
2056 		clk_disable_unprepare(spi->clk);
2057 		return ret;
2058 	}
2059 
2060 	ret = pm_runtime_resume_and_get(dev);
2061 	if (ret < 0) {
2062 		dev_err(dev, "Unable to power device:%d\n", ret);
2063 		return ret;
2064 	}
2065 
2066 	spi->cfg->config(spi);
2067 
2068 	pm_runtime_mark_last_busy(dev);
2069 	pm_runtime_put_autosuspend(dev);
2070 
2071 	return 0;
2072 }
2073 
2074 static const struct dev_pm_ops stm32_spi_pm_ops = {
2075 	SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2076 	SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2077 			   stm32_spi_runtime_resume, NULL)
2078 };
2079 
2080 static struct platform_driver stm32_spi_driver = {
2081 	.probe = stm32_spi_probe,
2082 	.remove_new = stm32_spi_remove,
2083 	.driver = {
2084 		.name = DRIVER_NAME,
2085 		.pm = &stm32_spi_pm_ops,
2086 		.of_match_table = stm32_spi_of_match,
2087 	},
2088 };
2089 
2090 module_platform_driver(stm32_spi_driver);
2091 
2092 MODULE_ALIAS("platform:" DRIVER_NAME);
2093 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2094 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2095 MODULE_LICENSE("GPL v2");
2096