1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // STMicroelectronics STM32 SPI Controller driver 4 // 5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved 6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics. 7 8 #include <linux/bitfield.h> 9 #include <linux/debugfs.h> 10 #include <linux/clk.h> 11 #include <linux/delay.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/dmaengine.h> 14 #include <linux/genalloc.h> 15 #include <linux/interrupt.h> 16 #include <linux/iopoll.h> 17 #include <linux/module.h> 18 #include <linux/of.h> 19 #include <linux/platform_device.h> 20 #include <linux/pinctrl/consumer.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/reset.h> 23 #include <linux/spi/spi.h> 24 25 #define DRIVER_NAME "spi_stm32" 26 27 /* STM32F4/7 SPI registers */ 28 #define STM32FX_SPI_CR1 0x00 29 #define STM32FX_SPI_CR2 0x04 30 #define STM32FX_SPI_SR 0x08 31 #define STM32FX_SPI_DR 0x0C 32 #define STM32FX_SPI_I2SCFGR 0x1C 33 34 /* STM32FX_SPI_CR1 bit fields */ 35 #define STM32FX_SPI_CR1_CPHA BIT(0) 36 #define STM32FX_SPI_CR1_CPOL BIT(1) 37 #define STM32FX_SPI_CR1_MSTR BIT(2) 38 #define STM32FX_SPI_CR1_BR_SHIFT 3 39 #define STM32FX_SPI_CR1_BR GENMASK(5, 3) 40 #define STM32FX_SPI_CR1_SPE BIT(6) 41 #define STM32FX_SPI_CR1_LSBFRST BIT(7) 42 #define STM32FX_SPI_CR1_SSI BIT(8) 43 #define STM32FX_SPI_CR1_SSM BIT(9) 44 #define STM32FX_SPI_CR1_RXONLY BIT(10) 45 #define STM32F4_SPI_CR1_DFF BIT(11) 46 #define STM32F7_SPI_CR1_CRCL BIT(11) 47 #define STM32FX_SPI_CR1_CRCNEXT BIT(12) 48 #define STM32FX_SPI_CR1_CRCEN BIT(13) 49 #define STM32FX_SPI_CR1_BIDIOE BIT(14) 50 #define STM32FX_SPI_CR1_BIDIMODE BIT(15) 51 #define STM32FX_SPI_CR1_BR_MIN 0 52 #define STM32FX_SPI_CR1_BR_MAX (GENMASK(5, 3) >> 3) 53 54 /* STM32FX_SPI_CR2 bit fields */ 55 #define STM32FX_SPI_CR2_RXDMAEN BIT(0) 56 #define STM32FX_SPI_CR2_TXDMAEN BIT(1) 57 #define STM32FX_SPI_CR2_SSOE BIT(2) 58 #define STM32FX_SPI_CR2_FRF BIT(4) 59 #define STM32FX_SPI_CR2_ERRIE BIT(5) 60 #define STM32FX_SPI_CR2_RXNEIE BIT(6) 61 #define STM32FX_SPI_CR2_TXEIE BIT(7) 62 #define STM32F7_SPI_CR2_DS GENMASK(11, 8) 63 #define STM32F7_SPI_CR2_FRXTH BIT(12) 64 #define STM32F7_SPI_CR2_LDMA_RX BIT(13) 65 #define STM32F7_SPI_CR2_LDMA_TX BIT(14) 66 67 /* STM32FX_SPI_SR bit fields */ 68 #define STM32FX_SPI_SR_RXNE BIT(0) 69 #define STM32FX_SPI_SR_TXE BIT(1) 70 #define STM32FX_SPI_SR_CHSIDE BIT(2) 71 #define STM32FX_SPI_SR_UDR BIT(3) 72 #define STM32FX_SPI_SR_CRCERR BIT(4) 73 #define STM32FX_SPI_SR_MODF BIT(5) 74 #define STM32FX_SPI_SR_OVR BIT(6) 75 #define STM32FX_SPI_SR_BSY BIT(7) 76 #define STM32FX_SPI_SR_FRE BIT(8) 77 #define STM32F7_SPI_SR_FRLVL GENMASK(10, 9) 78 #define STM32F7_SPI_SR_FTLVL GENMASK(12, 11) 79 80 /* STM32FX_SPI_I2SCFGR bit fields */ 81 #define STM32FX_SPI_I2SCFGR_I2SMOD BIT(11) 82 83 /* STM32F4 SPI Baud Rate min/max divisor */ 84 #define STM32FX_SPI_BR_DIV_MIN (2 << STM32FX_SPI_CR1_BR_MIN) 85 #define STM32FX_SPI_BR_DIV_MAX (2 << STM32FX_SPI_CR1_BR_MAX) 86 87 /* STM32H7 SPI registers */ 88 #define STM32H7_SPI_CR1 0x00 89 #define STM32H7_SPI_CR2 0x04 90 #define STM32H7_SPI_CFG1 0x08 91 #define STM32H7_SPI_CFG2 0x0C 92 #define STM32H7_SPI_IER 0x10 93 #define STM32H7_SPI_SR 0x14 94 #define STM32H7_SPI_IFCR 0x18 95 #define STM32H7_SPI_TXDR 0x20 96 #define STM32H7_SPI_RXDR 0x30 97 #define STM32H7_SPI_I2SCFGR 0x50 98 99 /* STM32H7_SPI_CR1 bit fields */ 100 #define STM32H7_SPI_CR1_SPE BIT(0) 101 #define STM32H7_SPI_CR1_MASRX BIT(8) 102 #define STM32H7_SPI_CR1_CSTART BIT(9) 103 #define STM32H7_SPI_CR1_CSUSP BIT(10) 104 #define STM32H7_SPI_CR1_HDDIR BIT(11) 105 #define STM32H7_SPI_CR1_SSI BIT(12) 106 107 /* STM32H7_SPI_CR2 bit fields */ 108 #define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0) 109 #define STM32H7_SPI_TSIZE_MAX GENMASK(15, 0) 110 111 /* STM32H7_SPI_CFG1 bit fields */ 112 #define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0) 113 #define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5) 114 #define STM32H7_SPI_CFG1_RXDMAEN BIT(14) 115 #define STM32H7_SPI_CFG1_TXDMAEN BIT(15) 116 #define STM32H7_SPI_CFG1_MBR GENMASK(30, 28) 117 #define STM32H7_SPI_CFG1_MBR_SHIFT 28 118 #define STM32H7_SPI_CFG1_MBR_MIN 0 119 #define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28) 120 121 /* STM32H7_SPI_CFG2 bit fields */ 122 #define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4) 123 #define STM32H7_SPI_CFG2_COMM GENMASK(18, 17) 124 #define STM32H7_SPI_CFG2_SP GENMASK(21, 19) 125 #define STM32H7_SPI_CFG2_MASTER BIT(22) 126 #define STM32H7_SPI_CFG2_LSBFRST BIT(23) 127 #define STM32H7_SPI_CFG2_CPHA BIT(24) 128 #define STM32H7_SPI_CFG2_CPOL BIT(25) 129 #define STM32H7_SPI_CFG2_SSM BIT(26) 130 #define STM32H7_SPI_CFG2_SSIOP BIT(28) 131 #define STM32H7_SPI_CFG2_AFCNTR BIT(31) 132 133 /* STM32H7_SPI_IER bit fields */ 134 #define STM32H7_SPI_IER_RXPIE BIT(0) 135 #define STM32H7_SPI_IER_TXPIE BIT(1) 136 #define STM32H7_SPI_IER_DXPIE BIT(2) 137 #define STM32H7_SPI_IER_EOTIE BIT(3) 138 #define STM32H7_SPI_IER_TXTFIE BIT(4) 139 #define STM32H7_SPI_IER_OVRIE BIT(6) 140 #define STM32H7_SPI_IER_MODFIE BIT(9) 141 #define STM32H7_SPI_IER_ALL GENMASK(10, 0) 142 143 /* STM32H7_SPI_SR bit fields */ 144 #define STM32H7_SPI_SR_RXP BIT(0) 145 #define STM32H7_SPI_SR_TXP BIT(1) 146 #define STM32H7_SPI_SR_EOT BIT(3) 147 #define STM32H7_SPI_SR_OVR BIT(6) 148 #define STM32H7_SPI_SR_MODF BIT(9) 149 #define STM32H7_SPI_SR_SUSP BIT(11) 150 #define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13) 151 #define STM32H7_SPI_SR_RXWNE BIT(15) 152 153 /* STM32H7_SPI_IFCR bit fields */ 154 #define STM32H7_SPI_IFCR_ALL GENMASK(11, 3) 155 156 /* STM32H7_SPI_I2SCFGR bit fields */ 157 #define STM32H7_SPI_I2SCFGR_I2SMOD BIT(0) 158 159 /* STM32MP25_SPICFG2 bit fields */ 160 #define STM32MP25_SPI_CFG2_RDIOM BIT(13) 161 162 /* STM32MP25 SPI registers bit fields */ 163 #define STM32MP25_SPI_HWCFGR1 0x3F0 164 165 /* STM32MP25_SPI_CR2 bit fields */ 166 #define STM32MP25_SPI_TSIZE_MAX_LIMITED GENMASK(9, 0) 167 168 /* STM32MP25_SPI_HWCFGR1 */ 169 #define STM32MP25_SPI_HWCFGR1_FULLCFG GENMASK(27, 24) 170 #define STM32MP25_SPI_HWCFGR1_FULLCFG_LIMITED 0x0 171 #define STM32MP25_SPI_HWCFGR1_FULLCFG_FULL 0x1 172 #define STM32MP25_SPI_HWCFGR1_DSCFG GENMASK(19, 16) 173 #define STM32MP25_SPI_HWCFGR1_DSCFG_16_B 0x0 174 #define STM32MP25_SPI_HWCFGR1_DSCFG_32_B 0x1 175 176 /* STM32H7 SPI Master Baud Rate min/max divisor */ 177 #define STM32H7_SPI_MBR_DIV_MIN (2 << STM32H7_SPI_CFG1_MBR_MIN) 178 #define STM32H7_SPI_MBR_DIV_MAX (2 << STM32H7_SPI_CFG1_MBR_MAX) 179 180 /* STM32H7 SPI Communication mode */ 181 #define STM32H7_SPI_FULL_DUPLEX 0 182 #define STM32H7_SPI_SIMPLEX_TX 1 183 #define STM32H7_SPI_SIMPLEX_RX 2 184 #define STM32H7_SPI_HALF_DUPLEX 3 185 186 /* SPI Communication type */ 187 #define SPI_FULL_DUPLEX 0 188 #define SPI_SIMPLEX_TX 1 189 #define SPI_SIMPLEX_RX 2 190 #define SPI_3WIRE_TX 3 191 #define SPI_3WIRE_RX 4 192 193 #define STM32_SPI_AUTOSUSPEND_DELAY 1 /* 1 ms */ 194 195 /* 196 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers 197 * without fifo buffers. 198 */ 199 #define SPI_DMA_MIN_BYTES 16 200 201 /* STM32 SPI driver helpers */ 202 #define STM32_SPI_HOST_MODE(stm32_spi) (!(stm32_spi)->device_mode) 203 #define STM32_SPI_DEVICE_MODE(stm32_spi) ((stm32_spi)->device_mode) 204 205 /** 206 * struct stm32_spi_reg - stm32 SPI register & bitfield desc 207 * @reg: register offset 208 * @mask: bitfield mask 209 * @shift: left shift 210 */ 211 struct stm32_spi_reg { 212 int reg; 213 int mask; 214 int shift; 215 }; 216 217 /** 218 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data 219 * @en: enable register and SPI enable bit 220 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit 221 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit 222 * @cpol: clock polarity register and polarity bit 223 * @cpha: clock phase register and phase bit 224 * @lsb_first: LSB transmitted first register and bit 225 * @cs_high: chips select active value 226 * @br: baud rate register and bitfields 227 * @rx: SPI RX data register 228 * @tx: SPI TX data register 229 * @fullcfg: SPI full or limited feature set register 230 * @rdy_en: SPI ready feature register 231 */ 232 struct stm32_spi_regspec { 233 const struct stm32_spi_reg en; 234 const struct stm32_spi_reg dma_rx_en; 235 const struct stm32_spi_reg dma_tx_en; 236 const struct stm32_spi_reg cpol; 237 const struct stm32_spi_reg cpha; 238 const struct stm32_spi_reg lsb_first; 239 const struct stm32_spi_reg cs_high; 240 const struct stm32_spi_reg br; 241 const struct stm32_spi_reg rx; 242 const struct stm32_spi_reg tx; 243 const struct stm32_spi_reg fullcfg; 244 const struct stm32_spi_reg rdy_en; 245 }; 246 247 struct stm32_spi; 248 249 /** 250 * struct stm32_spi_cfg - stm32 compatible configuration data 251 * @regs: registers descriptions 252 * @get_fifo_size: routine to get fifo size 253 * @get_bpw_mask: routine to get bits per word mask 254 * @disable: routine to disable controller 255 * @config: routine to configure controller as SPI Host 256 * @set_bpw: routine to configure registers to for bits per word 257 * @set_mode: routine to configure registers to desired mode 258 * @set_data_idleness: optional routine to configure registers to desired idle 259 * time between frames (if driver has this functionality) 260 * @set_number_of_data: optional routine to configure registers to desired 261 * number of data (if driver has this functionality) 262 * @write_tx: routine to write to transmit register/FIFO 263 * @read_rx: routine to read from receive register/FIFO 264 * @transfer_one_dma_start: routine to start transfer a single spi_transfer 265 * using DMA 266 * @dma_rx_cb: routine to call after DMA RX channel operation is complete 267 * @dma_tx_cb: routine to call after DMA TX channel operation is complete 268 * @transfer_one_irq: routine to configure interrupts for driver 269 * @irq_handler_event: Interrupt handler for SPI controller events 270 * @irq_handler_thread: thread of interrupt handler for SPI controller 271 * @baud_rate_div_min: minimum baud rate divisor 272 * @baud_rate_div_max: maximum baud rate divisor 273 * @has_fifo: boolean to know if fifo is used for driver 274 * @has_device_mode: is this compatible capable to switch on device mode 275 * @flags: compatible specific SPI controller flags used at registration time 276 * @prevent_dma_burst: boolean to indicate to prevent DMA burst 277 */ 278 struct stm32_spi_cfg { 279 const struct stm32_spi_regspec *regs; 280 int (*get_fifo_size)(struct stm32_spi *spi); 281 int (*get_bpw_mask)(struct stm32_spi *spi); 282 void (*disable)(struct stm32_spi *spi); 283 int (*config)(struct stm32_spi *spi); 284 void (*set_bpw)(struct stm32_spi *spi); 285 int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type); 286 void (*set_data_idleness)(struct stm32_spi *spi, struct spi_transfer *xfer); 287 int (*set_number_of_data)(struct stm32_spi *spi, u32 length); 288 void (*write_tx)(struct stm32_spi *spi); 289 void (*read_rx)(struct stm32_spi *spi); 290 void (*transfer_one_dma_start)(struct stm32_spi *spi); 291 void (*dma_rx_cb)(void *data); 292 void (*dma_tx_cb)(void *data); 293 int (*transfer_one_irq)(struct stm32_spi *spi); 294 irqreturn_t (*irq_handler_event)(int irq, void *dev_id); 295 irqreturn_t (*irq_handler_thread)(int irq, void *dev_id); 296 unsigned int baud_rate_div_min; 297 unsigned int baud_rate_div_max; 298 bool has_fifo; 299 bool has_device_mode; 300 u16 flags; 301 bool prevent_dma_burst; 302 }; 303 304 /** 305 * struct stm32_spi - private data of the SPI controller 306 * @dev: driver model representation of the controller 307 * @ctrl: controller interface 308 * @cfg: compatible configuration data 309 * @base: virtual memory area 310 * @clk: hw kernel clock feeding the SPI clock generator 311 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator 312 * @lock: prevent I/O concurrent access 313 * @irq: SPI controller interrupt line 314 * @fifo_size: size of the embedded fifo in bytes 315 * @t_size_max: maximum number of data of one transfer 316 * @feature_set: SPI full or limited feature set 317 * @cur_midi: host inter-data idleness in ns 318 * @cur_speed: speed configured in Hz 319 * @cur_half_period: time of a half bit in us 320 * @cur_bpw: number of bits in a single SPI data frame 321 * @cur_fthlv: fifo threshold level (data frames in a single data packet) 322 * @cur_comm: SPI communication mode 323 * @cur_xferlen: current transfer length in bytes 324 * @cur_usedma: boolean to know if dma is used in current transfer 325 * @tx_buf: data to be written, or NULL 326 * @rx_buf: data to be read, or NULL 327 * @tx_len: number of data to be written in bytes 328 * @rx_len: number of data to be read in bytes 329 * @dma_tx: dma channel for TX transfer 330 * @dma_rx: dma channel for RX transfer 331 * @phys_addr: SPI registers physical base address 332 * @device_mode: the controller is configured as SPI device 333 * @sram_pool: SRAM pool for DMA transfers 334 * @sram_rx_buf_size: size of SRAM buffer for RX transfer 335 * @sram_rx_buf: SRAM buffer for RX transfer 336 * @sram_dma_rx_buf: SRAM buffer physical address for RX transfer 337 * @mdma_rx: MDMA channel for RX transfer 338 */ 339 struct stm32_spi { 340 struct device *dev; 341 struct spi_controller *ctrl; 342 const struct stm32_spi_cfg *cfg; 343 void __iomem *base; 344 struct clk *clk; 345 u32 clk_rate; 346 spinlock_t lock; /* prevent I/O concurrent access */ 347 int irq; 348 unsigned int fifo_size; 349 unsigned int t_size_max; 350 unsigned int feature_set; 351 #define STM32_SPI_FEATURE_LIMITED STM32MP25_SPI_HWCFGR1_FULLCFG_LIMITED /* 0x0 */ 352 #define STM32_SPI_FEATURE_FULL STM32MP25_SPI_HWCFGR1_FULLCFG_FULL /* 0x1 */ 353 354 unsigned int cur_midi; 355 unsigned int cur_speed; 356 unsigned int cur_half_period; 357 unsigned int cur_bpw; 358 unsigned int cur_fthlv; 359 unsigned int cur_comm; 360 unsigned int cur_xferlen; 361 bool cur_usedma; 362 363 const void *tx_buf; 364 void *rx_buf; 365 int tx_len; 366 int rx_len; 367 struct dma_chan *dma_tx; 368 struct dma_chan *dma_rx; 369 dma_addr_t phys_addr; 370 371 bool device_mode; 372 373 struct gen_pool *sram_pool; 374 size_t sram_rx_buf_size; 375 void *sram_rx_buf; 376 dma_addr_t sram_dma_rx_buf; 377 struct dma_chan *mdma_rx; 378 }; 379 380 static const struct stm32_spi_regspec stm32fx_spi_regspec = { 381 .en = { STM32FX_SPI_CR1, STM32FX_SPI_CR1_SPE }, 382 383 .dma_rx_en = { STM32FX_SPI_CR2, STM32FX_SPI_CR2_RXDMAEN }, 384 .dma_tx_en = { STM32FX_SPI_CR2, STM32FX_SPI_CR2_TXDMAEN }, 385 386 .cpol = { STM32FX_SPI_CR1, STM32FX_SPI_CR1_CPOL }, 387 .cpha = { STM32FX_SPI_CR1, STM32FX_SPI_CR1_CPHA }, 388 .lsb_first = { STM32FX_SPI_CR1, STM32FX_SPI_CR1_LSBFRST }, 389 .cs_high = {}, 390 .br = { STM32FX_SPI_CR1, STM32FX_SPI_CR1_BR, STM32FX_SPI_CR1_BR_SHIFT }, 391 392 .rx = { STM32FX_SPI_DR }, 393 .tx = { STM32FX_SPI_DR }, 394 }; 395 396 static const struct stm32_spi_regspec stm32h7_spi_regspec = { 397 /* SPI data transfer is enabled but spi_ker_ck is idle. 398 * CFG1 and CFG2 registers are write protected when SPE is enabled. 399 */ 400 .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE }, 401 402 .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN }, 403 .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN }, 404 405 .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL }, 406 .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA }, 407 .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST }, 408 .cs_high = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_SSIOP }, 409 .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR, 410 STM32H7_SPI_CFG1_MBR_SHIFT }, 411 412 .rx = { STM32H7_SPI_RXDR }, 413 .tx = { STM32H7_SPI_TXDR }, 414 }; 415 416 static const struct stm32_spi_regspec stm32mp25_spi_regspec = { 417 /* SPI data transfer is enabled but spi_ker_ck is idle. 418 * CFG1 and CFG2 registers are write protected when SPE is enabled. 419 */ 420 .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE }, 421 422 .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN }, 423 .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN }, 424 425 .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL }, 426 .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA }, 427 .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST }, 428 .cs_high = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_SSIOP }, 429 .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR, 430 STM32H7_SPI_CFG1_MBR_SHIFT }, 431 432 .rx = { STM32H7_SPI_RXDR }, 433 .tx = { STM32H7_SPI_TXDR }, 434 435 .fullcfg = { STM32MP25_SPI_HWCFGR1, STM32MP25_SPI_HWCFGR1_FULLCFG }, 436 437 .rdy_en = { STM32H7_SPI_CFG2, STM32MP25_SPI_CFG2_RDIOM }, 438 }; 439 440 static inline void stm32_spi_set_bits(struct stm32_spi *spi, 441 u32 offset, u32 bits) 442 { 443 writel_relaxed(readl_relaxed(spi->base + offset) | bits, 444 spi->base + offset); 445 } 446 447 static inline void stm32_spi_clr_bits(struct stm32_spi *spi, 448 u32 offset, u32 bits) 449 { 450 writel_relaxed(readl_relaxed(spi->base + offset) & ~bits, 451 spi->base + offset); 452 } 453 454 /** 455 * stm32h7_spi_get_fifo_size - Return fifo size 456 * @spi: pointer to the spi controller data structure 457 */ 458 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi) 459 { 460 unsigned long flags; 461 u32 count = 0; 462 463 spin_lock_irqsave(&spi->lock, flags); 464 465 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 466 467 while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP) 468 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR); 469 470 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 471 472 spin_unlock_irqrestore(&spi->lock, flags); 473 474 dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count); 475 476 return count; 477 } 478 479 /** 480 * stm32f4_spi_get_bpw_mask - Return bits per word mask 481 * @spi: pointer to the spi controller data structure 482 */ 483 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi) 484 { 485 dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n"); 486 return SPI_BPW_MASK(8) | SPI_BPW_MASK(16); 487 } 488 489 /** 490 * stm32f7_spi_get_bpw_mask - Return bits per word mask 491 * @spi: pointer to the spi controller data structure 492 */ 493 static int stm32f7_spi_get_bpw_mask(struct stm32_spi *spi) 494 { 495 dev_dbg(spi->dev, "16-bit maximum data frame\n"); 496 return SPI_BPW_RANGE_MASK(4, 16); 497 } 498 499 /** 500 * stm32h7_spi_get_bpw_mask - Return bits per word mask 501 * @spi: pointer to the spi controller data structure 502 */ 503 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi) 504 { 505 unsigned long flags; 506 u32 cfg1, max_bpw; 507 508 spin_lock_irqsave(&spi->lock, flags); 509 510 /* 511 * The most significant bit at DSIZE bit field is reserved when the 512 * maximum data size of periperal instances is limited to 16-bit 513 */ 514 stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE); 515 516 cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1); 517 max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1; 518 519 spin_unlock_irqrestore(&spi->lock, flags); 520 521 dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw); 522 523 return SPI_BPW_RANGE_MASK(4, max_bpw); 524 } 525 526 /** 527 * stm32mp25_spi_get_bpw_mask - Return bits per word mask 528 * @spi: pointer to the spi controller data structure 529 */ 530 static int stm32mp25_spi_get_bpw_mask(struct stm32_spi *spi) 531 { 532 u32 dscfg, max_bpw; 533 534 if (spi->feature_set == STM32_SPI_FEATURE_LIMITED) { 535 dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n"); 536 return SPI_BPW_MASK(8) | SPI_BPW_MASK(16); 537 } 538 539 dscfg = FIELD_GET(STM32MP25_SPI_HWCFGR1_DSCFG, 540 readl_relaxed(spi->base + STM32MP25_SPI_HWCFGR1)); 541 max_bpw = 16; 542 if (dscfg == STM32MP25_SPI_HWCFGR1_DSCFG_32_B) 543 max_bpw = 32; 544 dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw); 545 return SPI_BPW_RANGE_MASK(4, max_bpw); 546 } 547 548 /** 549 * stm32_spi_prepare_mbr - Determine baud rate divisor value 550 * @spi: pointer to the spi controller data structure 551 * @speed_hz: requested speed 552 * @min_div: minimum baud rate divisor 553 * @max_div: maximum baud rate divisor 554 * 555 * Return baud rate divisor value in case of success or -EINVAL 556 */ 557 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz, 558 u32 min_div, u32 max_div) 559 { 560 u32 div, mbrdiv; 561 562 /* Ensure spi->clk_rate is even */ 563 div = DIV_ROUND_CLOSEST(spi->clk_rate & ~0x1, speed_hz); 564 565 /* 566 * SPI framework set xfer->speed_hz to ctrl->max_speed_hz if 567 * xfer->speed_hz is greater than ctrl->max_speed_hz, and it returns 568 * an error when xfer->speed_hz is lower than ctrl->min_speed_hz, so 569 * no need to check it there. 570 * However, we need to ensure the following calculations. 571 */ 572 if ((div < min_div) || (div > max_div)) 573 return -EINVAL; 574 575 /* Determine the first power of 2 greater than or equal to div */ 576 if (div & (div - 1)) 577 mbrdiv = fls(div); 578 else 579 mbrdiv = fls(div) - 1; 580 581 spi->cur_speed = spi->clk_rate / (1 << mbrdiv); 582 583 spi->cur_half_period = DIV_ROUND_CLOSEST(USEC_PER_SEC, 2 * spi->cur_speed); 584 585 return mbrdiv - 1; 586 } 587 588 /** 589 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level 590 * @spi: pointer to the spi controller data structure 591 * @xfer_len: length of the message to be transferred 592 */ 593 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len) 594 { 595 u32 packet, bpw; 596 597 /* data packet should not exceed 1/2 of fifo space */ 598 packet = clamp(xfer_len, 1U, spi->fifo_size / 2); 599 600 /* align packet size with data registers access */ 601 bpw = DIV_ROUND_UP(spi->cur_bpw, 8); 602 return DIV_ROUND_UP(packet, bpw); 603 } 604 605 /** 606 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register 607 * @spi: pointer to the spi controller data structure 608 * 609 * Read from tx_buf depends on remaining bytes to avoid to read beyond 610 * tx_buf end. 611 */ 612 static void stm32f4_spi_write_tx(struct stm32_spi *spi) 613 { 614 if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32FX_SPI_SR) & 615 STM32FX_SPI_SR_TXE)) { 616 u32 offs = spi->cur_xferlen - spi->tx_len; 617 618 if (spi->cur_bpw == 16) { 619 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs); 620 621 writew_relaxed(*tx_buf16, spi->base + STM32FX_SPI_DR); 622 spi->tx_len -= sizeof(u16); 623 } else { 624 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs); 625 626 writeb_relaxed(*tx_buf8, spi->base + STM32FX_SPI_DR); 627 spi->tx_len -= sizeof(u8); 628 } 629 } 630 631 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len); 632 } 633 634 /** 635 * stm32f7_spi_write_tx - Write bytes to Transmit Data Register 636 * @spi: pointer to the spi controller data structure 637 * 638 * Read from tx_buf depends on remaining bytes to avoid to read beyond 639 * tx_buf end. 640 */ 641 static void stm32f7_spi_write_tx(struct stm32_spi *spi) 642 { 643 if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32FX_SPI_SR) & 644 STM32FX_SPI_SR_TXE)) { 645 u32 offs = spi->cur_xferlen - spi->tx_len; 646 647 if (spi->tx_len >= sizeof(u16)) { 648 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs); 649 650 writew_relaxed(*tx_buf16, spi->base + STM32FX_SPI_DR); 651 spi->tx_len -= sizeof(u16); 652 } else { 653 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs); 654 655 writeb_relaxed(*tx_buf8, spi->base + STM32FX_SPI_DR); 656 spi->tx_len -= sizeof(u8); 657 } 658 } 659 660 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len); 661 } 662 663 /** 664 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register 665 * @spi: pointer to the spi controller data structure 666 * 667 * Read from tx_buf depends on remaining bytes to avoid to read beyond 668 * tx_buf end. 669 */ 670 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi) 671 { 672 while ((spi->tx_len > 0) && 673 (readl_relaxed(spi->base + STM32H7_SPI_SR) & 674 STM32H7_SPI_SR_TXP)) { 675 u32 offs = spi->cur_xferlen - spi->tx_len; 676 677 if (spi->tx_len >= sizeof(u32)) { 678 const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs); 679 680 writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR); 681 spi->tx_len -= sizeof(u32); 682 } else if (spi->tx_len >= sizeof(u16)) { 683 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs); 684 685 writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR); 686 spi->tx_len -= sizeof(u16); 687 } else { 688 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs); 689 690 writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR); 691 spi->tx_len -= sizeof(u8); 692 } 693 } 694 695 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len); 696 } 697 698 /** 699 * stm32f4_spi_read_rx - Read bytes from Receive Data Register 700 * @spi: pointer to the spi controller data structure 701 * 702 * Write in rx_buf depends on remaining bytes to avoid to write beyond 703 * rx_buf end. 704 */ 705 static void stm32f4_spi_read_rx(struct stm32_spi *spi) 706 { 707 if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32FX_SPI_SR) & 708 STM32FX_SPI_SR_RXNE)) { 709 u32 offs = spi->cur_xferlen - spi->rx_len; 710 711 if (spi->cur_bpw == 16) { 712 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs); 713 714 *rx_buf16 = readw_relaxed(spi->base + STM32FX_SPI_DR); 715 spi->rx_len -= sizeof(u16); 716 } else { 717 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs); 718 719 *rx_buf8 = readb_relaxed(spi->base + STM32FX_SPI_DR); 720 spi->rx_len -= sizeof(u8); 721 } 722 } 723 724 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len); 725 } 726 727 /** 728 * stm32f7_spi_read_rx - Read bytes from Receive Data Register 729 * @spi: pointer to the spi controller data structure 730 * 731 * Write in rx_buf depends on remaining bytes to avoid to write beyond 732 * rx_buf end. 733 */ 734 static void stm32f7_spi_read_rx(struct stm32_spi *spi) 735 { 736 u32 sr = readl_relaxed(spi->base + STM32FX_SPI_SR); 737 u32 frlvl = FIELD_GET(STM32F7_SPI_SR_FRLVL, sr); 738 739 while ((spi->rx_len > 0) && (frlvl > 0)) { 740 u32 offs = spi->cur_xferlen - spi->rx_len; 741 742 if ((spi->rx_len >= sizeof(u16)) && (frlvl >= 2)) { 743 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs); 744 745 *rx_buf16 = readw_relaxed(spi->base + STM32FX_SPI_DR); 746 spi->rx_len -= sizeof(u16); 747 } else { 748 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs); 749 750 *rx_buf8 = readb_relaxed(spi->base + STM32FX_SPI_DR); 751 spi->rx_len -= sizeof(u8); 752 } 753 754 sr = readl_relaxed(spi->base + STM32FX_SPI_SR); 755 frlvl = FIELD_GET(STM32F7_SPI_SR_FRLVL, sr); 756 } 757 758 if (spi->rx_len >= sizeof(u16)) 759 stm32_spi_clr_bits(spi, STM32FX_SPI_CR2, STM32F7_SPI_CR2_FRXTH); 760 else 761 stm32_spi_set_bits(spi, STM32FX_SPI_CR2, STM32F7_SPI_CR2_FRXTH); 762 763 dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n", 764 __func__, spi->rx_len, sr); 765 } 766 767 /** 768 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register 769 * @spi: pointer to the spi controller data structure 770 * 771 * Write in rx_buf depends on remaining bytes to avoid to write beyond 772 * rx_buf end. 773 */ 774 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi) 775 { 776 u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 777 u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr); 778 779 while ((spi->rx_len > 0) && 780 ((sr & STM32H7_SPI_SR_RXP) || 781 ((sr & STM32H7_SPI_SR_EOT) && 782 ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) { 783 u32 offs = spi->cur_xferlen - spi->rx_len; 784 785 if ((spi->rx_len >= sizeof(u32)) || 786 (sr & STM32H7_SPI_SR_RXWNE)) { 787 u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs); 788 789 *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR); 790 spi->rx_len -= sizeof(u32); 791 } else if ((spi->rx_len >= sizeof(u16)) || 792 (!(sr & STM32H7_SPI_SR_RXWNE) && 793 (rxplvl >= 2 || spi->cur_bpw > 8))) { 794 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs); 795 796 *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR); 797 spi->rx_len -= sizeof(u16); 798 } else { 799 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs); 800 801 *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR); 802 spi->rx_len -= sizeof(u8); 803 } 804 805 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 806 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr); 807 } 808 809 dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n", 810 __func__, spi->rx_len, sr); 811 } 812 813 /** 814 * stm32_spi_enable - Enable SPI controller 815 * @spi: pointer to the spi controller data structure 816 */ 817 static void stm32_spi_enable(struct stm32_spi *spi) 818 { 819 dev_dbg(spi->dev, "enable controller\n"); 820 821 stm32_spi_set_bits(spi, spi->cfg->regs->en.reg, 822 spi->cfg->regs->en.mask); 823 } 824 825 /** 826 * stm32fx_spi_disable - Disable SPI controller 827 * @spi: pointer to the spi controller data structure 828 */ 829 static void stm32fx_spi_disable(struct stm32_spi *spi) 830 { 831 unsigned long flags; 832 u32 sr; 833 834 dev_dbg(spi->dev, "disable controller\n"); 835 836 spin_lock_irqsave(&spi->lock, flags); 837 838 if (!(readl_relaxed(spi->base + STM32FX_SPI_CR1) & 839 STM32FX_SPI_CR1_SPE)) { 840 spin_unlock_irqrestore(&spi->lock, flags); 841 return; 842 } 843 844 /* Disable interrupts */ 845 stm32_spi_clr_bits(spi, STM32FX_SPI_CR2, STM32FX_SPI_CR2_TXEIE | 846 STM32FX_SPI_CR2_RXNEIE | 847 STM32FX_SPI_CR2_ERRIE); 848 849 /* Wait until BSY = 0 */ 850 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32FX_SPI_SR, 851 sr, !(sr & STM32FX_SPI_SR_BSY), 852 10, 100000) < 0) { 853 dev_warn(spi->dev, "disabling condition timeout\n"); 854 } 855 856 if (spi->cur_usedma && spi->dma_tx) 857 dmaengine_terminate_async(spi->dma_tx); 858 if (spi->cur_usedma && spi->dma_rx) 859 dmaengine_terminate_async(spi->dma_rx); 860 861 stm32_spi_clr_bits(spi, STM32FX_SPI_CR1, STM32FX_SPI_CR1_SPE); 862 863 stm32_spi_clr_bits(spi, STM32FX_SPI_CR2, STM32FX_SPI_CR2_TXDMAEN | 864 STM32FX_SPI_CR2_RXDMAEN); 865 866 /* Sequence to clear OVR flag */ 867 readl_relaxed(spi->base + STM32FX_SPI_DR); 868 readl_relaxed(spi->base + STM32FX_SPI_SR); 869 870 spin_unlock_irqrestore(&spi->lock, flags); 871 } 872 873 /** 874 * stm32h7_spi_disable - Disable SPI controller 875 * @spi: pointer to the spi controller data structure 876 * 877 * RX-Fifo is flushed when SPI controller is disabled. 878 */ 879 static void stm32h7_spi_disable(struct stm32_spi *spi) 880 { 881 unsigned long flags; 882 u32 cr1; 883 884 dev_dbg(spi->dev, "disable controller\n"); 885 886 spin_lock_irqsave(&spi->lock, flags); 887 888 cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1); 889 890 if (!(cr1 & STM32H7_SPI_CR1_SPE)) { 891 spin_unlock_irqrestore(&spi->lock, flags); 892 return; 893 } 894 895 /* Add a delay to make sure that transmission is ended. */ 896 if (spi->cur_half_period) 897 udelay(spi->cur_half_period); 898 899 if (spi->cur_usedma && spi->dma_tx) 900 dmaengine_terminate_async(spi->dma_tx); 901 if (spi->cur_usedma && spi->dma_rx) { 902 dmaengine_terminate_async(spi->dma_rx); 903 if (spi->mdma_rx) 904 dmaengine_terminate_async(spi->mdma_rx); 905 } 906 907 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 908 909 stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN | 910 STM32H7_SPI_CFG1_RXDMAEN); 911 912 /* Disable interrupts and clear status flags */ 913 writel_relaxed(0, spi->base + STM32H7_SPI_IER); 914 writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR); 915 916 spin_unlock_irqrestore(&spi->lock, flags); 917 } 918 919 /** 920 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use 921 * @ctrl: controller interface 922 * @spi_dev: pointer to the spi device 923 * @transfer: pointer to spi transfer 924 * 925 * If driver has fifo and the current transfer size is greater than fifo size, 926 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes. 927 */ 928 static bool stm32_spi_can_dma(struct spi_controller *ctrl, 929 struct spi_device *spi_dev, 930 struct spi_transfer *transfer) 931 { 932 unsigned int dma_size; 933 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 934 935 if (spi->cfg->has_fifo) 936 dma_size = spi->fifo_size; 937 else 938 dma_size = SPI_DMA_MIN_BYTES; 939 940 dev_dbg(spi->dev, "%s: %s\n", __func__, 941 (transfer->len > dma_size) ? "true" : "false"); 942 943 return (transfer->len > dma_size); 944 } 945 946 /** 947 * stm32fx_spi_irq_event - Interrupt handler for SPI controller events 948 * @irq: interrupt line 949 * @dev_id: SPI controller ctrl interface 950 */ 951 static irqreturn_t stm32fx_spi_irq_event(int irq, void *dev_id) 952 { 953 struct spi_controller *ctrl = dev_id; 954 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 955 u32 sr, mask = 0; 956 bool end = false; 957 958 spin_lock(&spi->lock); 959 960 sr = readl_relaxed(spi->base + STM32FX_SPI_SR); 961 /* 962 * BSY flag is not handled in interrupt but it is normal behavior when 963 * this flag is set. 964 */ 965 sr &= ~STM32FX_SPI_SR_BSY; 966 967 if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX || 968 spi->cur_comm == SPI_3WIRE_TX)) { 969 /* OVR flag shouldn't be handled for TX only mode */ 970 sr &= ~(STM32FX_SPI_SR_OVR | STM32FX_SPI_SR_RXNE); 971 mask |= STM32FX_SPI_SR_TXE; 972 } 973 974 if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX || 975 spi->cur_comm == SPI_SIMPLEX_RX || 976 spi->cur_comm == SPI_3WIRE_RX)) { 977 /* TXE flag is set and is handled when RXNE flag occurs */ 978 sr &= ~STM32FX_SPI_SR_TXE; 979 mask |= STM32FX_SPI_SR_RXNE | STM32FX_SPI_SR_OVR; 980 } 981 982 if (!(sr & mask)) { 983 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr); 984 spin_unlock(&spi->lock); 985 return IRQ_NONE; 986 } 987 988 if (sr & STM32FX_SPI_SR_OVR) { 989 dev_warn(spi->dev, "Overrun: received value discarded\n"); 990 991 /* Sequence to clear OVR flag */ 992 readl_relaxed(spi->base + STM32FX_SPI_DR); 993 readl_relaxed(spi->base + STM32FX_SPI_SR); 994 995 /* 996 * If overrun is detected, it means that something went wrong, 997 * so stop the current transfer. Transfer can wait for next 998 * RXNE but DR is already read and end never happens. 999 */ 1000 end = true; 1001 goto end_irq; 1002 } 1003 1004 if (sr & STM32FX_SPI_SR_TXE) { 1005 if (spi->tx_buf) 1006 spi->cfg->write_tx(spi); 1007 if (spi->tx_len == 0) 1008 end = true; 1009 } 1010 1011 if (sr & STM32FX_SPI_SR_RXNE) { 1012 spi->cfg->read_rx(spi); 1013 if (spi->rx_len == 0) 1014 end = true; 1015 else if (spi->tx_buf)/* Load data for discontinuous mode */ 1016 spi->cfg->write_tx(spi); 1017 } 1018 1019 end_irq: 1020 if (end) { 1021 /* Immediately disable interrupts to do not generate new one */ 1022 stm32_spi_clr_bits(spi, STM32FX_SPI_CR2, 1023 STM32FX_SPI_CR2_TXEIE | 1024 STM32FX_SPI_CR2_RXNEIE | 1025 STM32FX_SPI_CR2_ERRIE); 1026 spin_unlock(&spi->lock); 1027 return IRQ_WAKE_THREAD; 1028 } 1029 1030 spin_unlock(&spi->lock); 1031 return IRQ_HANDLED; 1032 } 1033 1034 /** 1035 * stm32fx_spi_irq_thread - Thread of interrupt handler for SPI controller 1036 * @irq: interrupt line 1037 * @dev_id: SPI controller interface 1038 */ 1039 static irqreturn_t stm32fx_spi_irq_thread(int irq, void *dev_id) 1040 { 1041 struct spi_controller *ctrl = dev_id; 1042 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 1043 1044 spi_finalize_current_transfer(ctrl); 1045 stm32fx_spi_disable(spi); 1046 1047 return IRQ_HANDLED; 1048 } 1049 1050 /** 1051 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller 1052 * @irq: interrupt line 1053 * @dev_id: SPI controller interface 1054 */ 1055 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id) 1056 { 1057 struct spi_controller *ctrl = dev_id; 1058 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 1059 u32 sr, ier, mask; 1060 unsigned long flags; 1061 bool end = false; 1062 1063 spin_lock_irqsave(&spi->lock, flags); 1064 1065 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 1066 ier = readl_relaxed(spi->base + STM32H7_SPI_IER); 1067 1068 mask = ier; 1069 /* 1070 * EOTIE enables irq from EOT, SUSP and TXC events. We need to set 1071 * SUSP to acknowledge it later. TXC is automatically cleared 1072 */ 1073 1074 mask |= STM32H7_SPI_SR_SUSP; 1075 /* 1076 * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP 1077 * are set. So in case of Full-Duplex, need to poll TXP and RXP event. 1078 */ 1079 if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma) 1080 mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP; 1081 1082 if (!(sr & mask)) { 1083 dev_vdbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n", 1084 sr, ier); 1085 spin_unlock_irqrestore(&spi->lock, flags); 1086 return IRQ_NONE; 1087 } 1088 1089 if (sr & STM32H7_SPI_SR_SUSP) { 1090 static DEFINE_RATELIMIT_STATE(rs, 1091 DEFAULT_RATELIMIT_INTERVAL * 10, 1092 1); 1093 ratelimit_set_flags(&rs, RATELIMIT_MSG_ON_RELEASE); 1094 if (__ratelimit(&rs)) 1095 dev_dbg_ratelimited(spi->dev, "Communication suspended\n"); 1096 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 1097 stm32h7_spi_read_rxfifo(spi); 1098 /* 1099 * If communication is suspended while using DMA, it means 1100 * that something went wrong, so stop the current transfer 1101 */ 1102 if (spi->cur_usedma) 1103 end = true; 1104 } 1105 1106 if (sr & STM32H7_SPI_SR_MODF) { 1107 dev_warn(spi->dev, "Mode fault: transfer aborted\n"); 1108 end = true; 1109 } 1110 1111 if (sr & STM32H7_SPI_SR_OVR) { 1112 dev_err(spi->dev, "Overrun: RX data lost\n"); 1113 end = true; 1114 } 1115 1116 if (sr & STM32H7_SPI_SR_EOT) { 1117 dev_dbg(spi->dev, "End of transfer\n"); 1118 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 1119 stm32h7_spi_read_rxfifo(spi); 1120 if (!spi->cur_usedma || 1121 (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) || 1122 (spi->mdma_rx && (spi->cur_comm == SPI_SIMPLEX_RX || 1123 spi->cur_comm == SPI_FULL_DUPLEX))) 1124 end = true; 1125 } 1126 1127 if (sr & STM32H7_SPI_SR_TXP) 1128 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0))) 1129 stm32h7_spi_write_txfifo(spi); 1130 1131 if (sr & STM32H7_SPI_SR_RXP) 1132 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 1133 stm32h7_spi_read_rxfifo(spi); 1134 1135 writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR); 1136 1137 spin_unlock_irqrestore(&spi->lock, flags); 1138 1139 if (end) { 1140 if (spi->cur_usedma && spi->mdma_rx) { 1141 dmaengine_pause(spi->dma_rx); 1142 /* Wait for callback */ 1143 return IRQ_HANDLED; 1144 } 1145 stm32h7_spi_disable(spi); 1146 spi_finalize_current_transfer(ctrl); 1147 } 1148 1149 return IRQ_HANDLED; 1150 } 1151 1152 static int stm32_spi_optimize_message(struct spi_message *msg) 1153 { 1154 struct spi_controller *ctrl = msg->spi->controller; 1155 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 1156 1157 /* On STM32H7, messages should not exceed a maximum size set 1158 * later via the set_number_of_data function. In order to 1159 * ensure that, split large messages into several messages 1160 */ 1161 if (spi->cfg->set_number_of_data) 1162 return spi_split_transfers_maxwords(ctrl, msg, spi->t_size_max); 1163 1164 return 0; 1165 } 1166 1167 /** 1168 * stm32_spi_prepare_msg - set up the controller to transfer a single message 1169 * @ctrl: controller interface 1170 * @msg: pointer to spi message 1171 */ 1172 static int stm32_spi_prepare_msg(struct spi_controller *ctrl, 1173 struct spi_message *msg) 1174 { 1175 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 1176 struct spi_device *spi_dev = msg->spi; 1177 struct device_node *np = spi_dev->dev.of_node; 1178 unsigned long flags; 1179 u32 clrb = 0, setb = 0; 1180 1181 /* SPI target device may need time between data frames */ 1182 spi->cur_midi = 0; 1183 if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi)) 1184 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi); 1185 1186 if (spi_dev->mode & SPI_CPOL) 1187 setb |= spi->cfg->regs->cpol.mask; 1188 else 1189 clrb |= spi->cfg->regs->cpol.mask; 1190 1191 if (spi_dev->mode & SPI_CPHA) 1192 setb |= spi->cfg->regs->cpha.mask; 1193 else 1194 clrb |= spi->cfg->regs->cpha.mask; 1195 1196 if (spi_dev->mode & SPI_LSB_FIRST) 1197 setb |= spi->cfg->regs->lsb_first.mask; 1198 else 1199 clrb |= spi->cfg->regs->lsb_first.mask; 1200 1201 if (STM32_SPI_DEVICE_MODE(spi) && spi_dev->mode & SPI_CS_HIGH) 1202 setb |= spi->cfg->regs->cs_high.mask; 1203 else 1204 clrb |= spi->cfg->regs->cs_high.mask; 1205 1206 if (spi_dev->mode & SPI_READY) 1207 setb |= spi->cfg->regs->rdy_en.mask; 1208 else 1209 clrb |= spi->cfg->regs->rdy_en.mask; 1210 1211 dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d rdy=%d\n", 1212 !!(spi_dev->mode & SPI_CPOL), 1213 !!(spi_dev->mode & SPI_CPHA), 1214 !!(spi_dev->mode & SPI_LSB_FIRST), 1215 !!(spi_dev->mode & SPI_CS_HIGH), 1216 !!(spi_dev->mode & SPI_READY)); 1217 1218 spin_lock_irqsave(&spi->lock, flags); 1219 1220 /* CPOL, CPHA, LSB FIRST, CS_HIGH and RDY_EN bits have common register */ 1221 if (clrb || setb) 1222 writel_relaxed( 1223 (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) & 1224 ~clrb) | setb, 1225 spi->base + spi->cfg->regs->cpol.reg); 1226 1227 spin_unlock_irqrestore(&spi->lock, flags); 1228 1229 return 0; 1230 } 1231 1232 /** 1233 * stm32fx_spi_dma_tx_cb - dma callback 1234 * @data: pointer to the spi controller data structure 1235 * 1236 * DMA callback is called when the transfer is complete for DMA TX channel. 1237 */ 1238 static void stm32fx_spi_dma_tx_cb(void *data) 1239 { 1240 struct stm32_spi *spi = data; 1241 1242 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) { 1243 spi_finalize_current_transfer(spi->ctrl); 1244 stm32fx_spi_disable(spi); 1245 } 1246 } 1247 1248 /** 1249 * stm32_spi_dma_rx_cb - dma callback 1250 * @data: pointer to the spi controller data structure 1251 * 1252 * DMA callback is called when the transfer is complete for DMA RX channel. 1253 */ 1254 static void stm32_spi_dma_rx_cb(void *data) 1255 { 1256 struct stm32_spi *spi = data; 1257 1258 spi_finalize_current_transfer(spi->ctrl); 1259 spi->cfg->disable(spi); 1260 } 1261 1262 /** 1263 * stm32_spi_dma_config - configure dma slave channel depending on current 1264 * transfer bits_per_word. 1265 * @spi: pointer to the spi controller data structure 1266 * @dma_chan: pointer to the DMA channel 1267 * @dma_conf: pointer to the dma_slave_config structure 1268 * @dir: direction of the dma transfer 1269 */ 1270 static void stm32_spi_dma_config(struct stm32_spi *spi, 1271 struct dma_chan *dma_chan, 1272 struct dma_slave_config *dma_conf, 1273 enum dma_transfer_direction dir) 1274 { 1275 enum dma_slave_buswidth buswidth; 1276 struct dma_slave_caps caps; 1277 u32 maxburst = 1; 1278 int ret; 1279 1280 if (spi->cur_bpw <= 8) 1281 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; 1282 else if (spi->cur_bpw <= 16) 1283 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; 1284 else 1285 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES; 1286 1287 /* Valid for DMA Half or Full Fifo threshold */ 1288 if (!spi->cfg->prevent_dma_burst && spi->cfg->has_fifo && spi->cur_fthlv != 2) 1289 maxburst = spi->cur_fthlv; 1290 1291 /* Get the DMA channel caps, and adjust maxburst if possible */ 1292 ret = dma_get_slave_caps(dma_chan, &caps); 1293 if (!ret) 1294 maxburst = min(maxburst, caps.max_burst); 1295 1296 memset(dma_conf, 0, sizeof(struct dma_slave_config)); 1297 dma_conf->direction = dir; 1298 if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */ 1299 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg; 1300 dma_conf->src_addr_width = buswidth; 1301 dma_conf->src_maxburst = maxburst; 1302 1303 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n", 1304 buswidth, maxburst); 1305 } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */ 1306 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg; 1307 dma_conf->dst_addr_width = buswidth; 1308 dma_conf->dst_maxburst = maxburst; 1309 1310 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n", 1311 buswidth, maxburst); 1312 } 1313 } 1314 1315 /** 1316 * stm32fx_spi_transfer_one_irq - transfer a single spi_transfer using 1317 * interrupts 1318 * @spi: pointer to the spi controller data structure 1319 * 1320 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1321 * in progress. 1322 */ 1323 static int stm32fx_spi_transfer_one_irq(struct stm32_spi *spi) 1324 { 1325 unsigned long flags; 1326 u32 cr2 = 0; 1327 1328 /* Enable the interrupts relative to the current communication mode */ 1329 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) { 1330 cr2 |= STM32FX_SPI_CR2_TXEIE; 1331 } else if (spi->cur_comm == SPI_FULL_DUPLEX || 1332 spi->cur_comm == SPI_SIMPLEX_RX || 1333 spi->cur_comm == SPI_3WIRE_RX) { 1334 /* In transmit-only mode, the OVR flag is set in the SR register 1335 * since the received data are never read. Therefore set OVR 1336 * interrupt only when rx buffer is available. 1337 */ 1338 cr2 |= STM32FX_SPI_CR2_RXNEIE | STM32FX_SPI_CR2_ERRIE; 1339 } else { 1340 return -EINVAL; 1341 } 1342 1343 spin_lock_irqsave(&spi->lock, flags); 1344 1345 stm32_spi_set_bits(spi, STM32FX_SPI_CR2, cr2); 1346 1347 stm32_spi_enable(spi); 1348 1349 /* starting data transfer when buffer is loaded */ 1350 if (spi->tx_buf) 1351 spi->cfg->write_tx(spi); 1352 1353 spin_unlock_irqrestore(&spi->lock, flags); 1354 1355 return 1; 1356 } 1357 1358 /** 1359 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using 1360 * interrupts 1361 * @spi: pointer to the spi controller data structure 1362 * 1363 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1364 * in progress. 1365 */ 1366 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi) 1367 { 1368 unsigned long flags; 1369 u32 ier = 0; 1370 1371 /* Enable the interrupts relative to the current communication mode */ 1372 if (spi->tx_buf && spi->rx_buf) /* Full Duplex */ 1373 ier |= STM32H7_SPI_IER_DXPIE; 1374 else if (spi->tx_buf) /* Half-Duplex TX dir or Simplex TX */ 1375 ier |= STM32H7_SPI_IER_TXPIE; 1376 else if (spi->rx_buf) /* Half-Duplex RX dir or Simplex RX */ 1377 ier |= STM32H7_SPI_IER_RXPIE; 1378 1379 /* Enable the interrupts relative to the end of transfer */ 1380 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE | 1381 STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE; 1382 1383 spin_lock_irqsave(&spi->lock, flags); 1384 1385 stm32_spi_enable(spi); 1386 1387 /* Be sure to have data in fifo before starting data transfer */ 1388 if (spi->tx_buf) 1389 stm32h7_spi_write_txfifo(spi); 1390 1391 if (STM32_SPI_HOST_MODE(spi)) 1392 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART); 1393 1394 writel_relaxed(ier, spi->base + STM32H7_SPI_IER); 1395 1396 spin_unlock_irqrestore(&spi->lock, flags); 1397 1398 return 1; 1399 } 1400 1401 /** 1402 * stm32fx_spi_transfer_one_dma_start - Set SPI driver registers to start 1403 * transfer using DMA 1404 * @spi: pointer to the spi controller data structure 1405 */ 1406 static void stm32fx_spi_transfer_one_dma_start(struct stm32_spi *spi) 1407 { 1408 /* In DMA mode end of transfer is handled by DMA TX or RX callback. */ 1409 if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX || 1410 spi->cur_comm == SPI_FULL_DUPLEX) { 1411 /* 1412 * In transmit-only mode, the OVR flag is set in the SR register 1413 * since the received data are never read. Therefore set OVR 1414 * interrupt only when rx buffer is available. 1415 */ 1416 stm32_spi_set_bits(spi, STM32FX_SPI_CR2, STM32FX_SPI_CR2_ERRIE); 1417 } 1418 1419 stm32_spi_enable(spi); 1420 } 1421 1422 /** 1423 * stm32f7_spi_transfer_one_dma_start - Set SPI driver registers to start 1424 * transfer using DMA 1425 * @spi: pointer to the spi controller data structure 1426 */ 1427 static void stm32f7_spi_transfer_one_dma_start(struct stm32_spi *spi) 1428 { 1429 /* Configure DMA request trigger threshold according to DMA width */ 1430 if (spi->cur_bpw <= 8) 1431 stm32_spi_set_bits(spi, STM32FX_SPI_CR2, STM32F7_SPI_CR2_FRXTH); 1432 else 1433 stm32_spi_clr_bits(spi, STM32FX_SPI_CR2, STM32F7_SPI_CR2_FRXTH); 1434 1435 stm32fx_spi_transfer_one_dma_start(spi); 1436 } 1437 1438 /** 1439 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start 1440 * transfer using DMA 1441 * @spi: pointer to the spi controller data structure 1442 */ 1443 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi) 1444 { 1445 uint32_t ier = STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE; 1446 1447 /* Enable the interrupts */ 1448 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) 1449 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE; 1450 if (spi->mdma_rx && (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_FULL_DUPLEX)) 1451 ier |= STM32H7_SPI_IER_EOTIE; 1452 1453 stm32_spi_set_bits(spi, STM32H7_SPI_IER, ier); 1454 1455 stm32_spi_enable(spi); 1456 1457 if (STM32_SPI_HOST_MODE(spi)) 1458 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART); 1459 } 1460 1461 /** 1462 * stm32_spi_prepare_rx_dma_mdma_chaining - Prepare RX DMA and MDMA chaining 1463 * @spi: pointer to the spi controller data structure 1464 * @xfer: pointer to the spi transfer 1465 * @rx_dma_conf: pointer to the DMA configuration for RX channel 1466 * @rx_dma_desc: pointer to the RX DMA descriptor 1467 * @rx_mdma_desc: pointer to the RX MDMA descriptor 1468 * 1469 * It must return 0 if the chaining is possible or an error code if not. 1470 */ 1471 static int stm32_spi_prepare_rx_dma_mdma_chaining(struct stm32_spi *spi, 1472 struct spi_transfer *xfer, 1473 struct dma_slave_config *rx_dma_conf, 1474 struct dma_async_tx_descriptor **rx_dma_desc, 1475 struct dma_async_tx_descriptor **rx_mdma_desc) 1476 { 1477 struct dma_async_tx_descriptor *_mdma_desc = *rx_mdma_desc; 1478 struct dma_async_tx_descriptor *_dma_desc = *rx_dma_desc; 1479 struct dma_slave_config rx_mdma_conf = {0}; 1480 u32 sram_period, nents = 0, spi_s_len; 1481 struct sg_table dma_sgt, mdma_sgt; 1482 struct scatterlist *spi_s, *s; 1483 dma_addr_t dma_buf; 1484 int i, ret; 1485 1486 sram_period = spi->sram_rx_buf_size / 2; 1487 1488 /* Configure MDMA RX channel */ 1489 rx_mdma_conf.direction = rx_dma_conf->direction; 1490 rx_mdma_conf.src_addr = spi->sram_dma_rx_buf; 1491 rx_mdma_conf.peripheral_config = rx_dma_conf->peripheral_config; 1492 rx_mdma_conf.peripheral_size = rx_dma_conf->peripheral_size; 1493 dmaengine_slave_config(spi->mdma_rx, &rx_mdma_conf); 1494 1495 /* Count the number of entries needed */ 1496 for_each_sg(xfer->rx_sg.sgl, spi_s, xfer->rx_sg.nents, i) 1497 if (sg_dma_len(spi_s) > sram_period) 1498 nents += DIV_ROUND_UP(sg_dma_len(spi_s), sram_period); 1499 else 1500 nents++; 1501 1502 /* Prepare DMA slave_sg DBM transfer DEV_TO_MEM (RX>MEM=SRAM) */ 1503 ret = sg_alloc_table(&dma_sgt, nents, GFP_ATOMIC); 1504 if (ret) 1505 return ret; 1506 1507 spi_s = xfer->rx_sg.sgl; 1508 spi_s_len = sg_dma_len(spi_s); 1509 dma_buf = spi->sram_dma_rx_buf; 1510 for_each_sg(dma_sgt.sgl, s, dma_sgt.nents, i) { 1511 size_t bytes = min_t(size_t, spi_s_len, sram_period); 1512 1513 sg_dma_len(s) = bytes; 1514 sg_dma_address(s) = dma_buf; 1515 spi_s_len -= bytes; 1516 1517 if (!spi_s_len && sg_next(spi_s)) { 1518 spi_s = sg_next(spi_s); 1519 spi_s_len = sg_dma_len(spi_s); 1520 dma_buf = spi->sram_dma_rx_buf; 1521 } else { /* DMA configured in DBM: it will swap between the SRAM periods */ 1522 if (i & 1) 1523 dma_buf += sram_period; 1524 else 1525 dma_buf = spi->sram_dma_rx_buf; 1526 } 1527 } 1528 1529 _dma_desc = dmaengine_prep_slave_sg(spi->dma_rx, dma_sgt.sgl, 1530 dma_sgt.nents, rx_dma_conf->direction, 1531 DMA_PREP_INTERRUPT); 1532 sg_free_table(&dma_sgt); 1533 1534 if (!_dma_desc) 1535 return -EINVAL; 1536 1537 /* Prepare MDMA slave_sg transfer MEM_TO_MEM (SRAM>DDR) */ 1538 ret = sg_alloc_table(&mdma_sgt, nents, GFP_ATOMIC); 1539 if (ret) { 1540 _dma_desc = NULL; 1541 return ret; 1542 } 1543 1544 spi_s = xfer->rx_sg.sgl; 1545 spi_s_len = sg_dma_len(spi_s); 1546 dma_buf = sg_dma_address(spi_s); 1547 for_each_sg(mdma_sgt.sgl, s, mdma_sgt.nents, i) { 1548 size_t bytes = min_t(size_t, spi_s_len, sram_period); 1549 1550 sg_dma_len(s) = bytes; 1551 sg_dma_address(s) = dma_buf; 1552 spi_s_len -= bytes; 1553 1554 if (!spi_s_len && sg_next(spi_s)) { 1555 spi_s = sg_next(spi_s); 1556 spi_s_len = sg_dma_len(spi_s); 1557 dma_buf = sg_dma_address(spi_s); 1558 } else { 1559 dma_buf += bytes; 1560 } 1561 } 1562 1563 _mdma_desc = dmaengine_prep_slave_sg(spi->mdma_rx, mdma_sgt.sgl, 1564 mdma_sgt.nents, rx_mdma_conf.direction, 1565 DMA_PREP_INTERRUPT); 1566 sg_free_table(&mdma_sgt); 1567 1568 if (!_mdma_desc) { 1569 _dma_desc = NULL; 1570 return -EINVAL; 1571 } 1572 1573 return 0; 1574 } 1575 1576 /** 1577 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA 1578 * @spi: pointer to the spi controller data structure 1579 * @xfer: pointer to the spi_transfer structure 1580 * 1581 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1582 * in progress. 1583 */ 1584 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi, 1585 struct spi_transfer *xfer) 1586 { 1587 struct dma_async_tx_descriptor *rx_mdma_desc = NULL, *rx_dma_desc = NULL; 1588 struct dma_async_tx_descriptor *tx_dma_desc = NULL; 1589 struct dma_slave_config tx_dma_conf, rx_dma_conf; 1590 unsigned long flags; 1591 int ret = 0; 1592 1593 spin_lock_irqsave(&spi->lock, flags); 1594 1595 if (spi->rx_buf && spi->dma_rx) { 1596 stm32_spi_dma_config(spi, spi->dma_rx, &rx_dma_conf, DMA_DEV_TO_MEM); 1597 if (spi->mdma_rx) { 1598 rx_dma_conf.peripheral_size = 1; 1599 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf); 1600 1601 ret = stm32_spi_prepare_rx_dma_mdma_chaining(spi, xfer, &rx_dma_conf, 1602 &rx_dma_desc, &rx_mdma_desc); 1603 if (ret) { /* RX DMA MDMA chaining not possible, fallback to DMA only */ 1604 rx_dma_conf.peripheral_config = 0; 1605 rx_dma_desc = NULL; 1606 } 1607 } 1608 if (!rx_dma_desc) { 1609 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf); 1610 rx_dma_desc = dmaengine_prep_slave_sg(spi->dma_rx, xfer->rx_sg.sgl, 1611 xfer->rx_sg.nents, 1612 rx_dma_conf.direction, 1613 DMA_PREP_INTERRUPT); 1614 } 1615 } 1616 1617 if (spi->tx_buf && spi->dma_tx) { 1618 stm32_spi_dma_config(spi, spi->dma_tx, &tx_dma_conf, DMA_MEM_TO_DEV); 1619 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf); 1620 tx_dma_desc = dmaengine_prep_slave_sg(spi->dma_tx, xfer->tx_sg.sgl, 1621 xfer->tx_sg.nents, 1622 tx_dma_conf.direction, 1623 DMA_PREP_INTERRUPT); 1624 } 1625 1626 if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) || 1627 (spi->rx_buf && spi->dma_rx && !rx_dma_desc)) 1628 goto dma_desc_error; 1629 1630 if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc)) 1631 goto dma_desc_error; 1632 1633 if (rx_dma_desc) { 1634 if (rx_mdma_desc) { 1635 rx_mdma_desc->callback = spi->cfg->dma_rx_cb; 1636 rx_mdma_desc->callback_param = spi; 1637 } else { 1638 rx_dma_desc->callback = spi->cfg->dma_rx_cb; 1639 rx_dma_desc->callback_param = spi; 1640 } 1641 1642 /* Enable Rx DMA request */ 1643 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg, 1644 spi->cfg->regs->dma_rx_en.mask); 1645 if (rx_mdma_desc) { 1646 if (dma_submit_error(dmaengine_submit(rx_mdma_desc))) { 1647 dev_err(spi->dev, "Rx MDMA submit failed\n"); 1648 goto dma_desc_error; 1649 } 1650 /* Enable Rx MDMA channel */ 1651 dma_async_issue_pending(spi->mdma_rx); 1652 } 1653 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) { 1654 dev_err(spi->dev, "Rx DMA submit failed\n"); 1655 goto dma_desc_error; 1656 } 1657 /* Enable Rx DMA channel */ 1658 dma_async_issue_pending(spi->dma_rx); 1659 } 1660 1661 if (tx_dma_desc) { 1662 if (spi->cur_comm == SPI_SIMPLEX_TX || 1663 spi->cur_comm == SPI_3WIRE_TX) { 1664 tx_dma_desc->callback = spi->cfg->dma_tx_cb; 1665 tx_dma_desc->callback_param = spi; 1666 } 1667 1668 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) { 1669 dev_err(spi->dev, "Tx DMA submit failed\n"); 1670 goto dma_submit_error; 1671 } 1672 /* Enable Tx DMA channel */ 1673 dma_async_issue_pending(spi->dma_tx); 1674 1675 /* Enable Tx DMA request */ 1676 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg, 1677 spi->cfg->regs->dma_tx_en.mask); 1678 } 1679 1680 spi->cfg->transfer_one_dma_start(spi); 1681 1682 spin_unlock_irqrestore(&spi->lock, flags); 1683 1684 return 1; 1685 1686 dma_submit_error: 1687 if (spi->mdma_rx) 1688 dmaengine_terminate_sync(spi->mdma_rx); 1689 if (spi->dma_rx) 1690 dmaengine_terminate_sync(spi->dma_rx); 1691 1692 dma_desc_error: 1693 stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg, 1694 spi->cfg->regs->dma_rx_en.mask); 1695 1696 spin_unlock_irqrestore(&spi->lock, flags); 1697 1698 dev_info(spi->dev, "DMA issue: fall back to irq transfer\n"); 1699 1700 if (spi->sram_rx_buf) 1701 memset(spi->sram_rx_buf, 0, spi->sram_rx_buf_size); 1702 1703 spi->cur_usedma = false; 1704 return spi->cfg->transfer_one_irq(spi); 1705 } 1706 1707 /** 1708 * stm32f4_spi_set_bpw - Configure bits per word 1709 * @spi: pointer to the spi controller data structure 1710 */ 1711 static void stm32f4_spi_set_bpw(struct stm32_spi *spi) 1712 { 1713 if (spi->cur_bpw == 16) 1714 stm32_spi_set_bits(spi, STM32FX_SPI_CR1, STM32F4_SPI_CR1_DFF); 1715 else 1716 stm32_spi_clr_bits(spi, STM32FX_SPI_CR1, STM32F4_SPI_CR1_DFF); 1717 } 1718 1719 /** 1720 * stm32f7_spi_set_bpw - Configure bits per word 1721 * @spi: pointer to the spi controller data structure 1722 */ 1723 static void stm32f7_spi_set_bpw(struct stm32_spi *spi) 1724 { 1725 u32 bpw; 1726 u32 cr2_clrb = 0, cr2_setb = 0; 1727 1728 bpw = spi->cur_bpw - 1; 1729 1730 cr2_clrb |= STM32F7_SPI_CR2_DS; 1731 cr2_setb |= FIELD_PREP(STM32F7_SPI_CR2_DS, bpw); 1732 1733 if (spi->rx_len >= sizeof(u16)) 1734 cr2_clrb |= STM32F7_SPI_CR2_FRXTH; 1735 else 1736 cr2_setb |= STM32F7_SPI_CR2_FRXTH; 1737 1738 writel_relaxed( 1739 (readl_relaxed(spi->base + STM32FX_SPI_CR2) & 1740 ~cr2_clrb) | cr2_setb, 1741 spi->base + STM32FX_SPI_CR2); 1742 } 1743 1744 /** 1745 * stm32h7_spi_set_bpw - configure bits per word 1746 * @spi: pointer to the spi controller data structure 1747 */ 1748 static void stm32h7_spi_set_bpw(struct stm32_spi *spi) 1749 { 1750 u32 bpw, fthlv; 1751 u32 cfg1_clrb = 0, cfg1_setb = 0; 1752 1753 bpw = spi->cur_bpw - 1; 1754 1755 cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE; 1756 cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw); 1757 1758 spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen); 1759 fthlv = spi->cur_fthlv - 1; 1760 1761 cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV; 1762 cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv); 1763 1764 writel_relaxed( 1765 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) & 1766 ~cfg1_clrb) | cfg1_setb, 1767 spi->base + STM32H7_SPI_CFG1); 1768 } 1769 1770 /** 1771 * stm32_spi_set_mbr - Configure baud rate divisor in host mode 1772 * @spi: pointer to the spi controller data structure 1773 * @mbrdiv: baud rate divisor value 1774 */ 1775 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv) 1776 { 1777 u32 clrb = 0, setb = 0; 1778 1779 clrb |= spi->cfg->regs->br.mask; 1780 setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask; 1781 1782 writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) & 1783 ~clrb) | setb, 1784 spi->base + spi->cfg->regs->br.reg); 1785 } 1786 1787 /** 1788 * stm32_spi_communication_type - return transfer communication type 1789 * @spi_dev: pointer to the spi device 1790 * @transfer: pointer to spi transfer 1791 */ 1792 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev, 1793 struct spi_transfer *transfer) 1794 { 1795 unsigned int type = SPI_FULL_DUPLEX; 1796 1797 if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */ 1798 /* 1799 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL 1800 * is forbidden and unvalidated by SPI subsystem so depending 1801 * on the valid buffer, we can determine the direction of the 1802 * transfer. 1803 */ 1804 if (!transfer->tx_buf) 1805 type = SPI_3WIRE_RX; 1806 else 1807 type = SPI_3WIRE_TX; 1808 } else { 1809 if (!transfer->tx_buf) 1810 type = SPI_SIMPLEX_RX; 1811 else if (!transfer->rx_buf) 1812 type = SPI_SIMPLEX_TX; 1813 } 1814 1815 return type; 1816 } 1817 1818 /** 1819 * stm32fx_spi_set_mode - configure communication mode 1820 * @spi: pointer to the spi controller data structure 1821 * @comm_type: type of communication to configure 1822 */ 1823 static int stm32fx_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type) 1824 { 1825 if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) { 1826 stm32_spi_set_bits(spi, STM32FX_SPI_CR1, 1827 STM32FX_SPI_CR1_BIDIMODE | 1828 STM32FX_SPI_CR1_BIDIOE); 1829 } else if (comm_type == SPI_FULL_DUPLEX || 1830 comm_type == SPI_SIMPLEX_RX) { 1831 stm32_spi_clr_bits(spi, STM32FX_SPI_CR1, 1832 STM32FX_SPI_CR1_BIDIMODE | 1833 STM32FX_SPI_CR1_BIDIOE); 1834 } else if (comm_type == SPI_3WIRE_RX) { 1835 stm32_spi_set_bits(spi, STM32FX_SPI_CR1, 1836 STM32FX_SPI_CR1_BIDIMODE); 1837 stm32_spi_clr_bits(spi, STM32FX_SPI_CR1, 1838 STM32FX_SPI_CR1_BIDIOE); 1839 } else { 1840 return -EINVAL; 1841 } 1842 1843 return 0; 1844 } 1845 1846 /** 1847 * stm32h7_spi_set_mode - configure communication mode 1848 * @spi: pointer to the spi controller data structure 1849 * @comm_type: type of communication to configure 1850 */ 1851 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type) 1852 { 1853 u32 mode; 1854 u32 cfg2_clrb = 0, cfg2_setb = 0; 1855 1856 if (comm_type == SPI_3WIRE_RX) { 1857 mode = STM32H7_SPI_HALF_DUPLEX; 1858 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR); 1859 } else if (comm_type == SPI_3WIRE_TX) { 1860 mode = STM32H7_SPI_HALF_DUPLEX; 1861 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR); 1862 } else if (comm_type == SPI_SIMPLEX_RX) { 1863 mode = STM32H7_SPI_SIMPLEX_RX; 1864 } else if (comm_type == SPI_SIMPLEX_TX) { 1865 mode = STM32H7_SPI_SIMPLEX_TX; 1866 } else { 1867 mode = STM32H7_SPI_FULL_DUPLEX; 1868 } 1869 1870 cfg2_clrb |= STM32H7_SPI_CFG2_COMM; 1871 cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode); 1872 1873 writel_relaxed( 1874 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) & 1875 ~cfg2_clrb) | cfg2_setb, 1876 spi->base + STM32H7_SPI_CFG2); 1877 1878 return 0; 1879 } 1880 1881 /** 1882 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two 1883 * consecutive data frames in host mode 1884 * @spi: pointer to the spi controller data structure 1885 * @xfer: pointer to spi transfer 1886 */ 1887 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, struct spi_transfer *xfer) 1888 { 1889 u32 cfg2_clrb = 0, cfg2_setb = 0; 1890 u32 len = xfer->len; 1891 u32 spi_delay_ns; 1892 1893 spi_delay_ns = spi_delay_to_ns(&xfer->word_delay, xfer); 1894 1895 if (spi->cur_midi != 0) { 1896 dev_warn(spi->dev, "st,spi-midi-ns DT property is deprecated\n"); 1897 if (spi_delay_ns) { 1898 dev_warn(spi->dev, "Overriding st,spi-midi-ns with word_delay_ns %d\n", 1899 spi_delay_ns); 1900 spi->cur_midi = spi_delay_ns; 1901 } 1902 } else { 1903 spi->cur_midi = spi_delay_ns; 1904 } 1905 1906 cfg2_clrb |= STM32H7_SPI_CFG2_MIDI; 1907 if ((len > 1) && (spi->cur_midi > 0)) { 1908 u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed); 1909 u32 midi = min_t(u32, 1910 DIV_ROUND_UP(spi->cur_midi, sck_period_ns), 1911 FIELD_GET(STM32H7_SPI_CFG2_MIDI, 1912 STM32H7_SPI_CFG2_MIDI)); 1913 1914 1915 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n", 1916 sck_period_ns, midi, midi * sck_period_ns); 1917 cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi); 1918 } 1919 1920 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) & 1921 ~cfg2_clrb) | cfg2_setb, 1922 spi->base + STM32H7_SPI_CFG2); 1923 } 1924 1925 /** 1926 * stm32h7_spi_number_of_data - configure number of data at current transfer 1927 * @spi: pointer to the spi controller data structure 1928 * @nb_words: transfer length (in words) 1929 */ 1930 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words) 1931 { 1932 if (nb_words <= spi->t_size_max) { 1933 writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words), 1934 spi->base + STM32H7_SPI_CR2); 1935 } else { 1936 return -EMSGSIZE; 1937 } 1938 1939 return 0; 1940 } 1941 1942 /** 1943 * stm32_spi_transfer_one_setup - common setup to transfer a single 1944 * spi_transfer either using DMA or 1945 * interrupts. 1946 * @spi: pointer to the spi controller data structure 1947 * @spi_dev: pointer to the spi device 1948 * @transfer: pointer to spi transfer 1949 */ 1950 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi, 1951 struct spi_device *spi_dev, 1952 struct spi_transfer *transfer) 1953 { 1954 unsigned long flags; 1955 unsigned int comm_type; 1956 int nb_words, ret = 0; 1957 int mbr; 1958 1959 spin_lock_irqsave(&spi->lock, flags); 1960 1961 spi->cur_xferlen = transfer->len; 1962 1963 spi->cur_bpw = transfer->bits_per_word; 1964 spi->cfg->set_bpw(spi); 1965 1966 if (spi_dev->mode & SPI_READY && spi->cur_bpw < 8) { 1967 writel_relaxed(readl_relaxed(spi->base + spi->cfg->regs->rdy_en.reg) & 1968 ~spi->cfg->regs->rdy_en.mask, 1969 spi->base + spi->cfg->regs->rdy_en.reg); 1970 dev_dbg(spi->dev, "RDY logic disabled as bits per word < 8\n"); 1971 } 1972 1973 /* Update spi->cur_speed with real clock speed */ 1974 if (STM32_SPI_HOST_MODE(spi)) { 1975 mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz, 1976 spi->cfg->baud_rate_div_min, 1977 spi->cfg->baud_rate_div_max); 1978 if (mbr < 0) { 1979 ret = mbr; 1980 goto out; 1981 } 1982 1983 transfer->speed_hz = spi->cur_speed; 1984 stm32_spi_set_mbr(spi, mbr); 1985 } 1986 1987 comm_type = stm32_spi_communication_type(spi_dev, transfer); 1988 ret = spi->cfg->set_mode(spi, comm_type); 1989 if (ret < 0) 1990 goto out; 1991 1992 spi->cur_comm = comm_type; 1993 1994 if (STM32_SPI_HOST_MODE(spi) && spi->cfg->set_data_idleness) 1995 spi->cfg->set_data_idleness(spi, transfer); 1996 1997 if (spi->cur_bpw <= 8) 1998 nb_words = transfer->len; 1999 else if (spi->cur_bpw <= 16) 2000 nb_words = DIV_ROUND_UP(transfer->len * 8, 16); 2001 else 2002 nb_words = DIV_ROUND_UP(transfer->len * 8, 32); 2003 2004 if (spi->cfg->set_number_of_data) { 2005 ret = spi->cfg->set_number_of_data(spi, nb_words); 2006 if (ret < 0) 2007 goto out; 2008 } 2009 2010 dev_dbg(spi->dev, "transfer communication mode set to %d\n", 2011 spi->cur_comm); 2012 dev_dbg(spi->dev, 2013 "data frame of %d-bit, data packet of %d data frames\n", 2014 spi->cur_bpw, spi->cur_fthlv); 2015 if (STM32_SPI_HOST_MODE(spi)) 2016 dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed); 2017 dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n", 2018 spi->cur_xferlen, nb_words); 2019 dev_dbg(spi->dev, "dma %s\n", 2020 (spi->cur_usedma) ? "enabled" : "disabled"); 2021 2022 out: 2023 spin_unlock_irqrestore(&spi->lock, flags); 2024 2025 return ret; 2026 } 2027 2028 /** 2029 * stm32_spi_transfer_one - transfer a single spi_transfer 2030 * @ctrl: controller interface 2031 * @spi_dev: pointer to the spi device 2032 * @transfer: pointer to spi transfer 2033 * 2034 * It must return 0 if the transfer is finished or 1 if the transfer is still 2035 * in progress. 2036 */ 2037 static int stm32_spi_transfer_one(struct spi_controller *ctrl, 2038 struct spi_device *spi_dev, 2039 struct spi_transfer *transfer) 2040 { 2041 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 2042 int ret; 2043 2044 spi->tx_buf = transfer->tx_buf; 2045 spi->rx_buf = transfer->rx_buf; 2046 spi->tx_len = spi->tx_buf ? transfer->len : 0; 2047 spi->rx_len = spi->rx_buf ? transfer->len : 0; 2048 2049 spi->cur_usedma = (ctrl->can_dma && 2050 ctrl->can_dma(ctrl, spi_dev, transfer)); 2051 2052 ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer); 2053 if (ret) { 2054 dev_err(spi->dev, "SPI transfer setup failed\n"); 2055 return ret; 2056 } 2057 2058 if (spi->cur_usedma) 2059 return stm32_spi_transfer_one_dma(spi, transfer); 2060 else 2061 return spi->cfg->transfer_one_irq(spi); 2062 } 2063 2064 /** 2065 * stm32_spi_unprepare_msg - relax the hardware 2066 * @ctrl: controller interface 2067 * @msg: pointer to the spi message 2068 */ 2069 static int stm32_spi_unprepare_msg(struct spi_controller *ctrl, 2070 struct spi_message *msg) 2071 { 2072 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 2073 2074 spi->cfg->disable(spi); 2075 2076 if (spi->sram_rx_buf) 2077 memset(spi->sram_rx_buf, 0, spi->sram_rx_buf_size); 2078 2079 return 0; 2080 } 2081 2082 /** 2083 * stm32fx_spi_config - Configure SPI controller as SPI host 2084 * @spi: pointer to the spi controller data structure 2085 */ 2086 static int stm32fx_spi_config(struct stm32_spi *spi) 2087 { 2088 unsigned long flags; 2089 2090 spin_lock_irqsave(&spi->lock, flags); 2091 2092 /* Ensure I2SMOD bit is kept cleared */ 2093 stm32_spi_clr_bits(spi, STM32FX_SPI_I2SCFGR, 2094 STM32FX_SPI_I2SCFGR_I2SMOD); 2095 2096 /* 2097 * - SS input value high 2098 * - transmitter half duplex direction 2099 * - Set the host mode (default Motorola mode) 2100 * - Consider 1 host/n targets configuration and 2101 * SS input value is determined by the SSI bit 2102 */ 2103 stm32_spi_set_bits(spi, STM32FX_SPI_CR1, STM32FX_SPI_CR1_SSI | 2104 STM32FX_SPI_CR1_BIDIOE | 2105 STM32FX_SPI_CR1_MSTR | 2106 STM32FX_SPI_CR1_SSM); 2107 2108 spin_unlock_irqrestore(&spi->lock, flags); 2109 2110 return 0; 2111 } 2112 2113 /** 2114 * stm32h7_spi_config - Configure SPI controller 2115 * @spi: pointer to the spi controller data structure 2116 */ 2117 static int stm32h7_spi_config(struct stm32_spi *spi) 2118 { 2119 unsigned long flags; 2120 u32 cr1 = 0, cfg2 = 0; 2121 2122 spin_lock_irqsave(&spi->lock, flags); 2123 2124 /* Ensure I2SMOD bit is kept cleared */ 2125 stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR, 2126 STM32H7_SPI_I2SCFGR_I2SMOD); 2127 2128 if (STM32_SPI_DEVICE_MODE(spi)) { 2129 /* Use native device select */ 2130 cfg2 &= ~STM32H7_SPI_CFG2_SSM; 2131 } else { 2132 /* 2133 * - Transmitter half duplex direction 2134 * - Automatic communication suspend when RX-Fifo is full 2135 * - SS input value high 2136 */ 2137 cr1 |= STM32H7_SPI_CR1_HDDIR | STM32H7_SPI_CR1_MASRX | STM32H7_SPI_CR1_SSI; 2138 2139 /* 2140 * - Set the host mode (default Motorola mode) 2141 * - Consider 1 host/n devices configuration and 2142 * SS input value is determined by the SSI bit 2143 * - keep control of all associated GPIOs 2144 */ 2145 cfg2 |= STM32H7_SPI_CFG2_MASTER | STM32H7_SPI_CFG2_SSM | STM32H7_SPI_CFG2_AFCNTR; 2146 } 2147 2148 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, cr1); 2149 stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, cfg2); 2150 2151 spin_unlock_irqrestore(&spi->lock, flags); 2152 2153 return 0; 2154 } 2155 2156 static const struct stm32_spi_cfg stm32f4_spi_cfg = { 2157 .regs = &stm32fx_spi_regspec, 2158 .get_bpw_mask = stm32f4_spi_get_bpw_mask, 2159 .disable = stm32fx_spi_disable, 2160 .config = stm32fx_spi_config, 2161 .set_bpw = stm32f4_spi_set_bpw, 2162 .set_mode = stm32fx_spi_set_mode, 2163 .write_tx = stm32f4_spi_write_tx, 2164 .read_rx = stm32f4_spi_read_rx, 2165 .transfer_one_dma_start = stm32fx_spi_transfer_one_dma_start, 2166 .dma_tx_cb = stm32fx_spi_dma_tx_cb, 2167 .dma_rx_cb = stm32_spi_dma_rx_cb, 2168 .transfer_one_irq = stm32fx_spi_transfer_one_irq, 2169 .irq_handler_event = stm32fx_spi_irq_event, 2170 .irq_handler_thread = stm32fx_spi_irq_thread, 2171 .baud_rate_div_min = STM32FX_SPI_BR_DIV_MIN, 2172 .baud_rate_div_max = STM32FX_SPI_BR_DIV_MAX, 2173 .has_fifo = false, 2174 .has_device_mode = false, 2175 .flags = SPI_CONTROLLER_MUST_TX, 2176 }; 2177 2178 static const struct stm32_spi_cfg stm32f7_spi_cfg = { 2179 .regs = &stm32fx_spi_regspec, 2180 .get_bpw_mask = stm32f7_spi_get_bpw_mask, 2181 .disable = stm32fx_spi_disable, 2182 .config = stm32fx_spi_config, 2183 .set_bpw = stm32f7_spi_set_bpw, 2184 .set_mode = stm32fx_spi_set_mode, 2185 .write_tx = stm32f7_spi_write_tx, 2186 .read_rx = stm32f7_spi_read_rx, 2187 .transfer_one_dma_start = stm32f7_spi_transfer_one_dma_start, 2188 .dma_tx_cb = stm32fx_spi_dma_tx_cb, 2189 .dma_rx_cb = stm32_spi_dma_rx_cb, 2190 .transfer_one_irq = stm32fx_spi_transfer_one_irq, 2191 .irq_handler_event = stm32fx_spi_irq_event, 2192 .irq_handler_thread = stm32fx_spi_irq_thread, 2193 .baud_rate_div_min = STM32FX_SPI_BR_DIV_MIN, 2194 .baud_rate_div_max = STM32FX_SPI_BR_DIV_MAX, 2195 .has_fifo = false, 2196 .flags = SPI_CONTROLLER_MUST_TX, 2197 }; 2198 2199 static const struct stm32_spi_cfg stm32h7_spi_cfg = { 2200 .regs = &stm32h7_spi_regspec, 2201 .get_fifo_size = stm32h7_spi_get_fifo_size, 2202 .get_bpw_mask = stm32h7_spi_get_bpw_mask, 2203 .disable = stm32h7_spi_disable, 2204 .config = stm32h7_spi_config, 2205 .set_bpw = stm32h7_spi_set_bpw, 2206 .set_mode = stm32h7_spi_set_mode, 2207 .set_data_idleness = stm32h7_spi_data_idleness, 2208 .set_number_of_data = stm32h7_spi_number_of_data, 2209 .write_tx = stm32h7_spi_write_txfifo, 2210 .read_rx = stm32h7_spi_read_rxfifo, 2211 .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start, 2212 .dma_rx_cb = stm32_spi_dma_rx_cb, 2213 /* 2214 * dma_tx_cb is not necessary since in case of TX, dma is followed by 2215 * SPI access hence handling is performed within the SPI interrupt 2216 */ 2217 .transfer_one_irq = stm32h7_spi_transfer_one_irq, 2218 .irq_handler_thread = stm32h7_spi_irq_thread, 2219 .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN, 2220 .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX, 2221 .has_fifo = true, 2222 .has_device_mode = true, 2223 }; 2224 2225 /* 2226 * STM32MP2 is compatible with the STM32H7 except: 2227 * - enforce the DMA maxburst value to 1 2228 * - spi8 have limited feature set (TSIZE_MAX = 1024, BPW of 8 OR 16) 2229 */ 2230 static const struct stm32_spi_cfg stm32mp25_spi_cfg = { 2231 .regs = &stm32mp25_spi_regspec, 2232 .get_fifo_size = stm32h7_spi_get_fifo_size, 2233 .get_bpw_mask = stm32mp25_spi_get_bpw_mask, 2234 .disable = stm32h7_spi_disable, 2235 .config = stm32h7_spi_config, 2236 .set_bpw = stm32h7_spi_set_bpw, 2237 .set_mode = stm32h7_spi_set_mode, 2238 .set_data_idleness = stm32h7_spi_data_idleness, 2239 .set_number_of_data = stm32h7_spi_number_of_data, 2240 .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start, 2241 .dma_rx_cb = stm32_spi_dma_rx_cb, 2242 /* 2243 * dma_tx_cb is not necessary since in case of TX, dma is followed by 2244 * SPI access hence handling is performed within the SPI interrupt 2245 */ 2246 .transfer_one_irq = stm32h7_spi_transfer_one_irq, 2247 .irq_handler_thread = stm32h7_spi_irq_thread, 2248 .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN, 2249 .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX, 2250 .has_fifo = true, 2251 .prevent_dma_burst = true, 2252 .has_device_mode = true, 2253 }; 2254 2255 static const struct of_device_id stm32_spi_of_match[] = { 2256 { .compatible = "st,stm32mp25-spi", .data = (void *)&stm32mp25_spi_cfg }, 2257 { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg }, 2258 { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg }, 2259 { .compatible = "st,stm32f7-spi", .data = (void *)&stm32f7_spi_cfg }, 2260 {}, 2261 }; 2262 MODULE_DEVICE_TABLE(of, stm32_spi_of_match); 2263 2264 static int stm32h7_spi_device_abort(struct spi_controller *ctrl) 2265 { 2266 spi_finalize_current_transfer(ctrl); 2267 return 0; 2268 } 2269 2270 static int stm32_spi_probe(struct platform_device *pdev) 2271 { 2272 struct spi_controller *ctrl; 2273 struct stm32_spi *spi; 2274 struct resource *res; 2275 struct reset_control *rst; 2276 struct device_node *np = pdev->dev.of_node; 2277 const struct stm32_spi_cfg *cfg; 2278 bool device_mode; 2279 int ret; 2280 2281 cfg = of_device_get_match_data(&pdev->dev); 2282 if (!cfg) { 2283 dev_err(&pdev->dev, "Failed to get match data for platform\n"); 2284 return -ENODEV; 2285 } 2286 2287 device_mode = of_property_read_bool(np, "spi-slave"); 2288 if (!cfg->has_device_mode && device_mode) { 2289 dev_err(&pdev->dev, "spi-slave not supported\n"); 2290 return -EPERM; 2291 } 2292 2293 if (device_mode) 2294 ctrl = devm_spi_alloc_target(&pdev->dev, sizeof(struct stm32_spi)); 2295 else 2296 ctrl = devm_spi_alloc_host(&pdev->dev, sizeof(struct stm32_spi)); 2297 if (!ctrl) { 2298 dev_err(&pdev->dev, "spi controller allocation failed\n"); 2299 return -ENOMEM; 2300 } 2301 platform_set_drvdata(pdev, ctrl); 2302 2303 spi = spi_controller_get_devdata(ctrl); 2304 spi->dev = &pdev->dev; 2305 spi->ctrl = ctrl; 2306 spi->device_mode = device_mode; 2307 spin_lock_init(&spi->lock); 2308 2309 spi->cfg = cfg; 2310 2311 spi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 2312 if (IS_ERR(spi->base)) 2313 return PTR_ERR(spi->base); 2314 2315 spi->phys_addr = (dma_addr_t)res->start; 2316 2317 spi->irq = platform_get_irq(pdev, 0); 2318 if (spi->irq <= 0) 2319 return spi->irq; 2320 2321 ret = devm_request_threaded_irq(&pdev->dev, spi->irq, 2322 spi->cfg->irq_handler_event, 2323 spi->cfg->irq_handler_thread, 2324 IRQF_ONESHOT, pdev->name, ctrl); 2325 if (ret) { 2326 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq, 2327 ret); 2328 return ret; 2329 } 2330 2331 spi->clk = devm_clk_get(&pdev->dev, NULL); 2332 if (IS_ERR(spi->clk)) { 2333 ret = PTR_ERR(spi->clk); 2334 dev_err(&pdev->dev, "clk get failed: %d\n", ret); 2335 return ret; 2336 } 2337 2338 ret = clk_prepare_enable(spi->clk); 2339 if (ret) { 2340 dev_err(&pdev->dev, "clk enable failed: %d\n", ret); 2341 return ret; 2342 } 2343 spi->clk_rate = clk_get_rate(spi->clk); 2344 if (!spi->clk_rate) { 2345 dev_err(&pdev->dev, "clk rate = 0\n"); 2346 ret = -EINVAL; 2347 goto err_clk_disable; 2348 } 2349 2350 rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL); 2351 if (rst) { 2352 if (IS_ERR(rst)) { 2353 ret = dev_err_probe(&pdev->dev, PTR_ERR(rst), 2354 "failed to get reset\n"); 2355 goto err_clk_disable; 2356 } 2357 2358 reset_control_assert(rst); 2359 udelay(2); 2360 reset_control_deassert(rst); 2361 } 2362 2363 if (spi->cfg->has_fifo) 2364 spi->fifo_size = spi->cfg->get_fifo_size(spi); 2365 2366 spi->feature_set = STM32_SPI_FEATURE_FULL; 2367 if (spi->cfg->regs->fullcfg.reg) { 2368 spi->feature_set = 2369 FIELD_GET(STM32MP25_SPI_HWCFGR1_FULLCFG, 2370 readl_relaxed(spi->base + spi->cfg->regs->fullcfg.reg)); 2371 2372 dev_dbg(spi->dev, "%s feature set\n", 2373 spi->feature_set == STM32_SPI_FEATURE_FULL ? "full" : "limited"); 2374 } 2375 2376 /* Only for STM32H7 and after */ 2377 spi->t_size_max = spi->feature_set == STM32_SPI_FEATURE_FULL ? 2378 STM32H7_SPI_TSIZE_MAX : 2379 STM32MP25_SPI_TSIZE_MAX_LIMITED; 2380 dev_dbg(spi->dev, "one message max size %d\n", spi->t_size_max); 2381 2382 ret = spi->cfg->config(spi); 2383 if (ret) { 2384 dev_err(&pdev->dev, "controller configuration failed: %d\n", 2385 ret); 2386 goto err_clk_disable; 2387 } 2388 2389 ctrl->dev.of_node = pdev->dev.of_node; 2390 ctrl->auto_runtime_pm = true; 2391 ctrl->bus_num = pdev->id; 2392 ctrl->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST | 2393 SPI_3WIRE | SPI_READY; 2394 ctrl->bits_per_word_mask = spi->cfg->get_bpw_mask(spi); 2395 ctrl->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min; 2396 ctrl->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max; 2397 ctrl->use_gpio_descriptors = true; 2398 ctrl->optimize_message = stm32_spi_optimize_message; 2399 ctrl->prepare_message = stm32_spi_prepare_msg; 2400 ctrl->transfer_one = stm32_spi_transfer_one; 2401 ctrl->unprepare_message = stm32_spi_unprepare_msg; 2402 ctrl->flags = spi->cfg->flags; 2403 if (STM32_SPI_DEVICE_MODE(spi)) 2404 ctrl->target_abort = stm32h7_spi_device_abort; 2405 2406 spi->dma_tx = dma_request_chan(spi->dev, "tx"); 2407 if (IS_ERR(spi->dma_tx)) { 2408 ret = PTR_ERR(spi->dma_tx); 2409 spi->dma_tx = NULL; 2410 if (ret == -EPROBE_DEFER) 2411 goto err_clk_disable; 2412 2413 dev_warn(&pdev->dev, "failed to request tx dma channel\n"); 2414 } else { 2415 ctrl->dma_tx = spi->dma_tx; 2416 } 2417 2418 spi->dma_rx = dma_request_chan(spi->dev, "rx"); 2419 if (IS_ERR(spi->dma_rx)) { 2420 ret = PTR_ERR(spi->dma_rx); 2421 spi->dma_rx = NULL; 2422 if (ret == -EPROBE_DEFER) 2423 goto err_dma_release; 2424 2425 dev_warn(&pdev->dev, "failed to request rx dma channel\n"); 2426 } else { 2427 ctrl->dma_rx = spi->dma_rx; 2428 } 2429 2430 if (spi->dma_tx || spi->dma_rx) 2431 ctrl->can_dma = stm32_spi_can_dma; 2432 2433 spi->sram_pool = of_gen_pool_get(pdev->dev.of_node, "sram", 0); 2434 if (spi->sram_pool) { 2435 spi->sram_rx_buf_size = gen_pool_size(spi->sram_pool); 2436 dev_info(&pdev->dev, "SRAM pool: %zu KiB for RX DMA/MDMA chaining\n", 2437 spi->sram_rx_buf_size / 1024); 2438 spi->sram_rx_buf = gen_pool_dma_zalloc(spi->sram_pool, spi->sram_rx_buf_size, 2439 &spi->sram_dma_rx_buf); 2440 if (!spi->sram_rx_buf) { 2441 dev_err(&pdev->dev, "failed to allocate SRAM buffer\n"); 2442 } else { 2443 spi->mdma_rx = dma_request_chan(spi->dev, "rxm2m"); 2444 if (IS_ERR(spi->mdma_rx)) { 2445 ret = PTR_ERR(spi->mdma_rx); 2446 spi->mdma_rx = NULL; 2447 if (ret == -EPROBE_DEFER) { 2448 goto err_pool_free; 2449 } else { 2450 gen_pool_free(spi->sram_pool, 2451 (unsigned long)spi->sram_rx_buf, 2452 spi->sram_rx_buf_size); 2453 dev_warn(&pdev->dev, 2454 "failed to request rx mdma channel, DMA only\n"); 2455 } 2456 } 2457 } 2458 } 2459 2460 pm_runtime_set_autosuspend_delay(&pdev->dev, 2461 STM32_SPI_AUTOSUSPEND_DELAY); 2462 pm_runtime_use_autosuspend(&pdev->dev); 2463 pm_runtime_set_active(&pdev->dev); 2464 pm_runtime_get_noresume(&pdev->dev); 2465 pm_runtime_enable(&pdev->dev); 2466 2467 ret = spi_register_controller(ctrl); 2468 if (ret) { 2469 dev_err(&pdev->dev, "spi controller registration failed: %d\n", 2470 ret); 2471 goto err_pm_disable; 2472 } 2473 2474 pm_runtime_put_autosuspend(&pdev->dev); 2475 2476 dev_info(&pdev->dev, "driver initialized (%s mode)\n", 2477 STM32_SPI_HOST_MODE(spi) ? "host" : "device"); 2478 2479 return 0; 2480 2481 err_pm_disable: 2482 pm_runtime_disable(&pdev->dev); 2483 pm_runtime_put_noidle(&pdev->dev); 2484 pm_runtime_set_suspended(&pdev->dev); 2485 pm_runtime_dont_use_autosuspend(&pdev->dev); 2486 2487 if (spi->mdma_rx) 2488 dma_release_channel(spi->mdma_rx); 2489 err_pool_free: 2490 if (spi->sram_pool) 2491 gen_pool_free(spi->sram_pool, (unsigned long)spi->sram_rx_buf, 2492 spi->sram_rx_buf_size); 2493 err_dma_release: 2494 if (spi->dma_tx) 2495 dma_release_channel(spi->dma_tx); 2496 if (spi->dma_rx) 2497 dma_release_channel(spi->dma_rx); 2498 err_clk_disable: 2499 clk_disable_unprepare(spi->clk); 2500 2501 return ret; 2502 } 2503 2504 static void stm32_spi_remove(struct platform_device *pdev) 2505 { 2506 struct spi_controller *ctrl = platform_get_drvdata(pdev); 2507 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 2508 2509 pm_runtime_get_sync(&pdev->dev); 2510 2511 spi_unregister_controller(ctrl); 2512 spi->cfg->disable(spi); 2513 2514 pm_runtime_disable(&pdev->dev); 2515 pm_runtime_put_noidle(&pdev->dev); 2516 pm_runtime_set_suspended(&pdev->dev); 2517 pm_runtime_dont_use_autosuspend(&pdev->dev); 2518 2519 if (ctrl->dma_tx) 2520 dma_release_channel(ctrl->dma_tx); 2521 if (ctrl->dma_rx) 2522 dma_release_channel(ctrl->dma_rx); 2523 if (spi->mdma_rx) 2524 dma_release_channel(spi->mdma_rx); 2525 if (spi->sram_rx_buf) 2526 gen_pool_free(spi->sram_pool, (unsigned long)spi->sram_rx_buf, 2527 spi->sram_rx_buf_size); 2528 2529 clk_disable_unprepare(spi->clk); 2530 2531 2532 pinctrl_pm_select_sleep_state(&pdev->dev); 2533 } 2534 2535 static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev) 2536 { 2537 struct spi_controller *ctrl = dev_get_drvdata(dev); 2538 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 2539 2540 clk_disable_unprepare(spi->clk); 2541 2542 return pinctrl_pm_select_sleep_state(dev); 2543 } 2544 2545 static int __maybe_unused stm32_spi_runtime_resume(struct device *dev) 2546 { 2547 struct spi_controller *ctrl = dev_get_drvdata(dev); 2548 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 2549 int ret; 2550 2551 ret = pinctrl_pm_select_default_state(dev); 2552 if (ret) 2553 return ret; 2554 2555 return clk_prepare_enable(spi->clk); 2556 } 2557 2558 static int __maybe_unused stm32_spi_suspend(struct device *dev) 2559 { 2560 struct spi_controller *ctrl = dev_get_drvdata(dev); 2561 int ret; 2562 2563 ret = spi_controller_suspend(ctrl); 2564 if (ret) 2565 return ret; 2566 2567 return pm_runtime_force_suspend(dev); 2568 } 2569 2570 static int __maybe_unused stm32_spi_resume(struct device *dev) 2571 { 2572 struct spi_controller *ctrl = dev_get_drvdata(dev); 2573 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 2574 int ret; 2575 2576 ret = pm_runtime_force_resume(dev); 2577 if (ret) 2578 return ret; 2579 2580 ret = spi_controller_resume(ctrl); 2581 if (ret) { 2582 clk_disable_unprepare(spi->clk); 2583 return ret; 2584 } 2585 2586 ret = pm_runtime_resume_and_get(dev); 2587 if (ret < 0) { 2588 dev_err(dev, "Unable to power device:%d\n", ret); 2589 return ret; 2590 } 2591 2592 spi->cfg->config(spi); 2593 2594 pm_runtime_put_autosuspend(dev); 2595 2596 return 0; 2597 } 2598 2599 static const struct dev_pm_ops stm32_spi_pm_ops = { 2600 SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume) 2601 SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend, 2602 stm32_spi_runtime_resume, NULL) 2603 }; 2604 2605 static struct platform_driver stm32_spi_driver = { 2606 .probe = stm32_spi_probe, 2607 .remove = stm32_spi_remove, 2608 .driver = { 2609 .name = DRIVER_NAME, 2610 .pm = &stm32_spi_pm_ops, 2611 .of_match_table = stm32_spi_of_match, 2612 }, 2613 }; 2614 2615 module_platform_driver(stm32_spi_driver); 2616 2617 MODULE_ALIAS("platform:" DRIVER_NAME); 2618 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver"); 2619 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>"); 2620 MODULE_LICENSE("GPL v2"); 2621