1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // STMicroelectronics STM32 SPI Controller driver 4 // 5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved 6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics. 7 8 #include <linux/bitfield.h> 9 #include <linux/debugfs.h> 10 #include <linux/clk.h> 11 #include <linux/delay.h> 12 #include <linux/dmaengine.h> 13 #include <linux/interrupt.h> 14 #include <linux/iopoll.h> 15 #include <linux/module.h> 16 #include <linux/of.h> 17 #include <linux/platform_device.h> 18 #include <linux/pinctrl/consumer.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/reset.h> 21 #include <linux/spi/spi.h> 22 23 #define DRIVER_NAME "spi_stm32" 24 25 /* STM32F4 SPI registers */ 26 #define STM32F4_SPI_CR1 0x00 27 #define STM32F4_SPI_CR2 0x04 28 #define STM32F4_SPI_SR 0x08 29 #define STM32F4_SPI_DR 0x0C 30 #define STM32F4_SPI_I2SCFGR 0x1C 31 32 /* STM32F4_SPI_CR1 bit fields */ 33 #define STM32F4_SPI_CR1_CPHA BIT(0) 34 #define STM32F4_SPI_CR1_CPOL BIT(1) 35 #define STM32F4_SPI_CR1_MSTR BIT(2) 36 #define STM32F4_SPI_CR1_BR_SHIFT 3 37 #define STM32F4_SPI_CR1_BR GENMASK(5, 3) 38 #define STM32F4_SPI_CR1_SPE BIT(6) 39 #define STM32F4_SPI_CR1_LSBFRST BIT(7) 40 #define STM32F4_SPI_CR1_SSI BIT(8) 41 #define STM32F4_SPI_CR1_SSM BIT(9) 42 #define STM32F4_SPI_CR1_RXONLY BIT(10) 43 #define STM32F4_SPI_CR1_DFF BIT(11) 44 #define STM32F4_SPI_CR1_CRCNEXT BIT(12) 45 #define STM32F4_SPI_CR1_CRCEN BIT(13) 46 #define STM32F4_SPI_CR1_BIDIOE BIT(14) 47 #define STM32F4_SPI_CR1_BIDIMODE BIT(15) 48 #define STM32F4_SPI_CR1_BR_MIN 0 49 #define STM32F4_SPI_CR1_BR_MAX (GENMASK(5, 3) >> 3) 50 51 /* STM32F4_SPI_CR2 bit fields */ 52 #define STM32F4_SPI_CR2_RXDMAEN BIT(0) 53 #define STM32F4_SPI_CR2_TXDMAEN BIT(1) 54 #define STM32F4_SPI_CR2_SSOE BIT(2) 55 #define STM32F4_SPI_CR2_FRF BIT(4) 56 #define STM32F4_SPI_CR2_ERRIE BIT(5) 57 #define STM32F4_SPI_CR2_RXNEIE BIT(6) 58 #define STM32F4_SPI_CR2_TXEIE BIT(7) 59 60 /* STM32F4_SPI_SR bit fields */ 61 #define STM32F4_SPI_SR_RXNE BIT(0) 62 #define STM32F4_SPI_SR_TXE BIT(1) 63 #define STM32F4_SPI_SR_CHSIDE BIT(2) 64 #define STM32F4_SPI_SR_UDR BIT(3) 65 #define STM32F4_SPI_SR_CRCERR BIT(4) 66 #define STM32F4_SPI_SR_MODF BIT(5) 67 #define STM32F4_SPI_SR_OVR BIT(6) 68 #define STM32F4_SPI_SR_BSY BIT(7) 69 #define STM32F4_SPI_SR_FRE BIT(8) 70 71 /* STM32F4_SPI_I2SCFGR bit fields */ 72 #define STM32F4_SPI_I2SCFGR_I2SMOD BIT(11) 73 74 /* STM32F4 SPI Baud Rate min/max divisor */ 75 #define STM32F4_SPI_BR_DIV_MIN (2 << STM32F4_SPI_CR1_BR_MIN) 76 #define STM32F4_SPI_BR_DIV_MAX (2 << STM32F4_SPI_CR1_BR_MAX) 77 78 /* STM32H7 SPI registers */ 79 #define STM32H7_SPI_CR1 0x00 80 #define STM32H7_SPI_CR2 0x04 81 #define STM32H7_SPI_CFG1 0x08 82 #define STM32H7_SPI_CFG2 0x0C 83 #define STM32H7_SPI_IER 0x10 84 #define STM32H7_SPI_SR 0x14 85 #define STM32H7_SPI_IFCR 0x18 86 #define STM32H7_SPI_TXDR 0x20 87 #define STM32H7_SPI_RXDR 0x30 88 #define STM32H7_SPI_I2SCFGR 0x50 89 90 /* STM32H7_SPI_CR1 bit fields */ 91 #define STM32H7_SPI_CR1_SPE BIT(0) 92 #define STM32H7_SPI_CR1_MASRX BIT(8) 93 #define STM32H7_SPI_CR1_CSTART BIT(9) 94 #define STM32H7_SPI_CR1_CSUSP BIT(10) 95 #define STM32H7_SPI_CR1_HDDIR BIT(11) 96 #define STM32H7_SPI_CR1_SSI BIT(12) 97 98 /* STM32H7_SPI_CR2 bit fields */ 99 #define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0) 100 #define STM32H7_SPI_TSIZE_MAX GENMASK(15, 0) 101 102 /* STM32H7_SPI_CFG1 bit fields */ 103 #define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0) 104 #define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5) 105 #define STM32H7_SPI_CFG1_RXDMAEN BIT(14) 106 #define STM32H7_SPI_CFG1_TXDMAEN BIT(15) 107 #define STM32H7_SPI_CFG1_MBR GENMASK(30, 28) 108 #define STM32H7_SPI_CFG1_MBR_SHIFT 28 109 #define STM32H7_SPI_CFG1_MBR_MIN 0 110 #define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28) 111 112 /* STM32H7_SPI_CFG2 bit fields */ 113 #define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4) 114 #define STM32H7_SPI_CFG2_COMM GENMASK(18, 17) 115 #define STM32H7_SPI_CFG2_SP GENMASK(21, 19) 116 #define STM32H7_SPI_CFG2_MASTER BIT(22) 117 #define STM32H7_SPI_CFG2_LSBFRST BIT(23) 118 #define STM32H7_SPI_CFG2_CPHA BIT(24) 119 #define STM32H7_SPI_CFG2_CPOL BIT(25) 120 #define STM32H7_SPI_CFG2_SSM BIT(26) 121 #define STM32H7_SPI_CFG2_SSIOP BIT(28) 122 #define STM32H7_SPI_CFG2_AFCNTR BIT(31) 123 124 /* STM32H7_SPI_IER bit fields */ 125 #define STM32H7_SPI_IER_RXPIE BIT(0) 126 #define STM32H7_SPI_IER_TXPIE BIT(1) 127 #define STM32H7_SPI_IER_DXPIE BIT(2) 128 #define STM32H7_SPI_IER_EOTIE BIT(3) 129 #define STM32H7_SPI_IER_TXTFIE BIT(4) 130 #define STM32H7_SPI_IER_OVRIE BIT(6) 131 #define STM32H7_SPI_IER_MODFIE BIT(9) 132 #define STM32H7_SPI_IER_ALL GENMASK(10, 0) 133 134 /* STM32H7_SPI_SR bit fields */ 135 #define STM32H7_SPI_SR_RXP BIT(0) 136 #define STM32H7_SPI_SR_TXP BIT(1) 137 #define STM32H7_SPI_SR_EOT BIT(3) 138 #define STM32H7_SPI_SR_OVR BIT(6) 139 #define STM32H7_SPI_SR_MODF BIT(9) 140 #define STM32H7_SPI_SR_SUSP BIT(11) 141 #define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13) 142 #define STM32H7_SPI_SR_RXWNE BIT(15) 143 144 /* STM32H7_SPI_IFCR bit fields */ 145 #define STM32H7_SPI_IFCR_ALL GENMASK(11, 3) 146 147 /* STM32H7_SPI_I2SCFGR bit fields */ 148 #define STM32H7_SPI_I2SCFGR_I2SMOD BIT(0) 149 150 /* STM32H7 SPI Master Baud Rate min/max divisor */ 151 #define STM32H7_SPI_MBR_DIV_MIN (2 << STM32H7_SPI_CFG1_MBR_MIN) 152 #define STM32H7_SPI_MBR_DIV_MAX (2 << STM32H7_SPI_CFG1_MBR_MAX) 153 154 /* STM32H7 SPI Communication mode */ 155 #define STM32H7_SPI_FULL_DUPLEX 0 156 #define STM32H7_SPI_SIMPLEX_TX 1 157 #define STM32H7_SPI_SIMPLEX_RX 2 158 #define STM32H7_SPI_HALF_DUPLEX 3 159 160 /* SPI Communication type */ 161 #define SPI_FULL_DUPLEX 0 162 #define SPI_SIMPLEX_TX 1 163 #define SPI_SIMPLEX_RX 2 164 #define SPI_3WIRE_TX 3 165 #define SPI_3WIRE_RX 4 166 167 #define STM32_SPI_AUTOSUSPEND_DELAY 1 /* 1 ms */ 168 169 /* 170 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers 171 * without fifo buffers. 172 */ 173 #define SPI_DMA_MIN_BYTES 16 174 175 /* STM32 SPI driver helpers */ 176 #define STM32_SPI_MASTER_MODE(stm32_spi) (!(stm32_spi)->device_mode) 177 #define STM32_SPI_DEVICE_MODE(stm32_spi) ((stm32_spi)->device_mode) 178 179 /** 180 * struct stm32_spi_reg - stm32 SPI register & bitfield desc 181 * @reg: register offset 182 * @mask: bitfield mask 183 * @shift: left shift 184 */ 185 struct stm32_spi_reg { 186 int reg; 187 int mask; 188 int shift; 189 }; 190 191 /** 192 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data 193 * @en: enable register and SPI enable bit 194 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit 195 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit 196 * @cpol: clock polarity register and polarity bit 197 * @cpha: clock phase register and phase bit 198 * @lsb_first: LSB transmitted first register and bit 199 * @cs_high: chips select active value 200 * @br: baud rate register and bitfields 201 * @rx: SPI RX data register 202 * @tx: SPI TX data register 203 */ 204 struct stm32_spi_regspec { 205 const struct stm32_spi_reg en; 206 const struct stm32_spi_reg dma_rx_en; 207 const struct stm32_spi_reg dma_tx_en; 208 const struct stm32_spi_reg cpol; 209 const struct stm32_spi_reg cpha; 210 const struct stm32_spi_reg lsb_first; 211 const struct stm32_spi_reg cs_high; 212 const struct stm32_spi_reg br; 213 const struct stm32_spi_reg rx; 214 const struct stm32_spi_reg tx; 215 }; 216 217 struct stm32_spi; 218 219 /** 220 * struct stm32_spi_cfg - stm32 compatible configuration data 221 * @regs: registers descriptions 222 * @get_fifo_size: routine to get fifo size 223 * @get_bpw_mask: routine to get bits per word mask 224 * @disable: routine to disable controller 225 * @config: routine to configure controller as SPI Master 226 * @set_bpw: routine to configure registers to for bits per word 227 * @set_mode: routine to configure registers to desired mode 228 * @set_data_idleness: optional routine to configure registers to desired idle 229 * time between frames (if driver has this functionality) 230 * @set_number_of_data: optional routine to configure registers to desired 231 * number of data (if driver has this functionality) 232 * @transfer_one_dma_start: routine to start transfer a single spi_transfer 233 * using DMA 234 * @dma_rx_cb: routine to call after DMA RX channel operation is complete 235 * @dma_tx_cb: routine to call after DMA TX channel operation is complete 236 * @transfer_one_irq: routine to configure interrupts for driver 237 * @irq_handler_event: Interrupt handler for SPI controller events 238 * @irq_handler_thread: thread of interrupt handler for SPI controller 239 * @baud_rate_div_min: minimum baud rate divisor 240 * @baud_rate_div_max: maximum baud rate divisor 241 * @has_fifo: boolean to know if fifo is used for driver 242 * @has_device_mode: is this compatible capable to switch on device mode 243 * @flags: compatible specific SPI controller flags used at registration time 244 */ 245 struct stm32_spi_cfg { 246 const struct stm32_spi_regspec *regs; 247 int (*get_fifo_size)(struct stm32_spi *spi); 248 int (*get_bpw_mask)(struct stm32_spi *spi); 249 void (*disable)(struct stm32_spi *spi); 250 int (*config)(struct stm32_spi *spi); 251 void (*set_bpw)(struct stm32_spi *spi); 252 int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type); 253 void (*set_data_idleness)(struct stm32_spi *spi, u32 length); 254 int (*set_number_of_data)(struct stm32_spi *spi, u32 length); 255 void (*transfer_one_dma_start)(struct stm32_spi *spi); 256 void (*dma_rx_cb)(void *data); 257 void (*dma_tx_cb)(void *data); 258 int (*transfer_one_irq)(struct stm32_spi *spi); 259 irqreturn_t (*irq_handler_event)(int irq, void *dev_id); 260 irqreturn_t (*irq_handler_thread)(int irq, void *dev_id); 261 unsigned int baud_rate_div_min; 262 unsigned int baud_rate_div_max; 263 bool has_fifo; 264 bool has_device_mode; 265 u16 flags; 266 }; 267 268 /** 269 * struct stm32_spi - private data of the SPI controller 270 * @dev: driver model representation of the controller 271 * @ctrl: controller interface 272 * @cfg: compatible configuration data 273 * @base: virtual memory area 274 * @clk: hw kernel clock feeding the SPI clock generator 275 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator 276 * @lock: prevent I/O concurrent access 277 * @irq: SPI controller interrupt line 278 * @fifo_size: size of the embedded fifo in bytes 279 * @cur_midi: master inter-data idleness in ns 280 * @cur_speed: speed configured in Hz 281 * @cur_half_period: time of a half bit in us 282 * @cur_bpw: number of bits in a single SPI data frame 283 * @cur_fthlv: fifo threshold level (data frames in a single data packet) 284 * @cur_comm: SPI communication mode 285 * @cur_xferlen: current transfer length in bytes 286 * @cur_usedma: boolean to know if dma is used in current transfer 287 * @tx_buf: data to be written, or NULL 288 * @rx_buf: data to be read, or NULL 289 * @tx_len: number of data to be written in bytes 290 * @rx_len: number of data to be read in bytes 291 * @dma_tx: dma channel for TX transfer 292 * @dma_rx: dma channel for RX transfer 293 * @phys_addr: SPI registers physical base address 294 * @device_mode: the controller is configured as SPI device 295 */ 296 struct stm32_spi { 297 struct device *dev; 298 struct spi_controller *ctrl; 299 const struct stm32_spi_cfg *cfg; 300 void __iomem *base; 301 struct clk *clk; 302 u32 clk_rate; 303 spinlock_t lock; /* prevent I/O concurrent access */ 304 int irq; 305 unsigned int fifo_size; 306 307 unsigned int cur_midi; 308 unsigned int cur_speed; 309 unsigned int cur_half_period; 310 unsigned int cur_bpw; 311 unsigned int cur_fthlv; 312 unsigned int cur_comm; 313 unsigned int cur_xferlen; 314 bool cur_usedma; 315 316 const void *tx_buf; 317 void *rx_buf; 318 int tx_len; 319 int rx_len; 320 struct dma_chan *dma_tx; 321 struct dma_chan *dma_rx; 322 dma_addr_t phys_addr; 323 324 bool device_mode; 325 }; 326 327 static const struct stm32_spi_regspec stm32f4_spi_regspec = { 328 .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE }, 329 330 .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN }, 331 .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN }, 332 333 .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL }, 334 .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA }, 335 .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST }, 336 .cs_high = {}, 337 .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT }, 338 339 .rx = { STM32F4_SPI_DR }, 340 .tx = { STM32F4_SPI_DR }, 341 }; 342 343 static const struct stm32_spi_regspec stm32h7_spi_regspec = { 344 /* SPI data transfer is enabled but spi_ker_ck is idle. 345 * CFG1 and CFG2 registers are write protected when SPE is enabled. 346 */ 347 .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE }, 348 349 .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN }, 350 .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN }, 351 352 .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL }, 353 .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA }, 354 .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST }, 355 .cs_high = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_SSIOP }, 356 .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR, 357 STM32H7_SPI_CFG1_MBR_SHIFT }, 358 359 .rx = { STM32H7_SPI_RXDR }, 360 .tx = { STM32H7_SPI_TXDR }, 361 }; 362 363 static inline void stm32_spi_set_bits(struct stm32_spi *spi, 364 u32 offset, u32 bits) 365 { 366 writel_relaxed(readl_relaxed(spi->base + offset) | bits, 367 spi->base + offset); 368 } 369 370 static inline void stm32_spi_clr_bits(struct stm32_spi *spi, 371 u32 offset, u32 bits) 372 { 373 writel_relaxed(readl_relaxed(spi->base + offset) & ~bits, 374 spi->base + offset); 375 } 376 377 /** 378 * stm32h7_spi_get_fifo_size - Return fifo size 379 * @spi: pointer to the spi controller data structure 380 */ 381 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi) 382 { 383 unsigned long flags; 384 u32 count = 0; 385 386 spin_lock_irqsave(&spi->lock, flags); 387 388 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 389 390 while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP) 391 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR); 392 393 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 394 395 spin_unlock_irqrestore(&spi->lock, flags); 396 397 dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count); 398 399 return count; 400 } 401 402 /** 403 * stm32f4_spi_get_bpw_mask - Return bits per word mask 404 * @spi: pointer to the spi controller data structure 405 */ 406 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi) 407 { 408 dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n"); 409 return SPI_BPW_MASK(8) | SPI_BPW_MASK(16); 410 } 411 412 /** 413 * stm32h7_spi_get_bpw_mask - Return bits per word mask 414 * @spi: pointer to the spi controller data structure 415 */ 416 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi) 417 { 418 unsigned long flags; 419 u32 cfg1, max_bpw; 420 421 spin_lock_irqsave(&spi->lock, flags); 422 423 /* 424 * The most significant bit at DSIZE bit field is reserved when the 425 * maximum data size of periperal instances is limited to 16-bit 426 */ 427 stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE); 428 429 cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1); 430 max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1; 431 432 spin_unlock_irqrestore(&spi->lock, flags); 433 434 dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw); 435 436 return SPI_BPW_RANGE_MASK(4, max_bpw); 437 } 438 439 /** 440 * stm32_spi_prepare_mbr - Determine baud rate divisor value 441 * @spi: pointer to the spi controller data structure 442 * @speed_hz: requested speed 443 * @min_div: minimum baud rate divisor 444 * @max_div: maximum baud rate divisor 445 * 446 * Return baud rate divisor value in case of success or -EINVAL 447 */ 448 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz, 449 u32 min_div, u32 max_div) 450 { 451 u32 div, mbrdiv; 452 453 /* Ensure spi->clk_rate is even */ 454 div = DIV_ROUND_CLOSEST(spi->clk_rate & ~0x1, speed_hz); 455 456 /* 457 * SPI framework set xfer->speed_hz to ctrl->max_speed_hz if 458 * xfer->speed_hz is greater than ctrl->max_speed_hz, and it returns 459 * an error when xfer->speed_hz is lower than ctrl->min_speed_hz, so 460 * no need to check it there. 461 * However, we need to ensure the following calculations. 462 */ 463 if ((div < min_div) || (div > max_div)) 464 return -EINVAL; 465 466 /* Determine the first power of 2 greater than or equal to div */ 467 if (div & (div - 1)) 468 mbrdiv = fls(div); 469 else 470 mbrdiv = fls(div) - 1; 471 472 spi->cur_speed = spi->clk_rate / (1 << mbrdiv); 473 474 spi->cur_half_period = DIV_ROUND_CLOSEST(USEC_PER_SEC, 2 * spi->cur_speed); 475 476 return mbrdiv - 1; 477 } 478 479 /** 480 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level 481 * @spi: pointer to the spi controller data structure 482 * @xfer_len: length of the message to be transferred 483 */ 484 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len) 485 { 486 u32 packet, bpw; 487 488 /* data packet should not exceed 1/2 of fifo space */ 489 packet = clamp(xfer_len, 1U, spi->fifo_size / 2); 490 491 /* align packet size with data registers access */ 492 bpw = DIV_ROUND_UP(spi->cur_bpw, 8); 493 return DIV_ROUND_UP(packet, bpw); 494 } 495 496 /** 497 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register 498 * @spi: pointer to the spi controller data structure 499 * 500 * Read from tx_buf depends on remaining bytes to avoid to read beyond 501 * tx_buf end. 502 */ 503 static void stm32f4_spi_write_tx(struct stm32_spi *spi) 504 { 505 if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) & 506 STM32F4_SPI_SR_TXE)) { 507 u32 offs = spi->cur_xferlen - spi->tx_len; 508 509 if (spi->cur_bpw == 16) { 510 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs); 511 512 writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR); 513 spi->tx_len -= sizeof(u16); 514 } else { 515 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs); 516 517 writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR); 518 spi->tx_len -= sizeof(u8); 519 } 520 } 521 522 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len); 523 } 524 525 /** 526 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register 527 * @spi: pointer to the spi controller data structure 528 * 529 * Read from tx_buf depends on remaining bytes to avoid to read beyond 530 * tx_buf end. 531 */ 532 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi) 533 { 534 while ((spi->tx_len > 0) && 535 (readl_relaxed(spi->base + STM32H7_SPI_SR) & 536 STM32H7_SPI_SR_TXP)) { 537 u32 offs = spi->cur_xferlen - spi->tx_len; 538 539 if (spi->tx_len >= sizeof(u32)) { 540 const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs); 541 542 writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR); 543 spi->tx_len -= sizeof(u32); 544 } else if (spi->tx_len >= sizeof(u16)) { 545 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs); 546 547 writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR); 548 spi->tx_len -= sizeof(u16); 549 } else { 550 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs); 551 552 writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR); 553 spi->tx_len -= sizeof(u8); 554 } 555 } 556 557 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len); 558 } 559 560 /** 561 * stm32f4_spi_read_rx - Read bytes from Receive Data Register 562 * @spi: pointer to the spi controller data structure 563 * 564 * Write in rx_buf depends on remaining bytes to avoid to write beyond 565 * rx_buf end. 566 */ 567 static void stm32f4_spi_read_rx(struct stm32_spi *spi) 568 { 569 if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) & 570 STM32F4_SPI_SR_RXNE)) { 571 u32 offs = spi->cur_xferlen - spi->rx_len; 572 573 if (spi->cur_bpw == 16) { 574 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs); 575 576 *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR); 577 spi->rx_len -= sizeof(u16); 578 } else { 579 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs); 580 581 *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR); 582 spi->rx_len -= sizeof(u8); 583 } 584 } 585 586 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len); 587 } 588 589 /** 590 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register 591 * @spi: pointer to the spi controller data structure 592 * 593 * Write in rx_buf depends on remaining bytes to avoid to write beyond 594 * rx_buf end. 595 */ 596 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi) 597 { 598 u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 599 u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr); 600 601 while ((spi->rx_len > 0) && 602 ((sr & STM32H7_SPI_SR_RXP) || 603 ((sr & STM32H7_SPI_SR_EOT) && 604 ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) { 605 u32 offs = spi->cur_xferlen - spi->rx_len; 606 607 if ((spi->rx_len >= sizeof(u32)) || 608 (sr & STM32H7_SPI_SR_RXWNE)) { 609 u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs); 610 611 *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR); 612 spi->rx_len -= sizeof(u32); 613 } else if ((spi->rx_len >= sizeof(u16)) || 614 (!(sr & STM32H7_SPI_SR_RXWNE) && 615 (rxplvl >= 2 || spi->cur_bpw > 8))) { 616 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs); 617 618 *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR); 619 spi->rx_len -= sizeof(u16); 620 } else { 621 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs); 622 623 *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR); 624 spi->rx_len -= sizeof(u8); 625 } 626 627 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 628 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr); 629 } 630 631 dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n", 632 __func__, spi->rx_len, sr); 633 } 634 635 /** 636 * stm32_spi_enable - Enable SPI controller 637 * @spi: pointer to the spi controller data structure 638 */ 639 static void stm32_spi_enable(struct stm32_spi *spi) 640 { 641 dev_dbg(spi->dev, "enable controller\n"); 642 643 stm32_spi_set_bits(spi, spi->cfg->regs->en.reg, 644 spi->cfg->regs->en.mask); 645 } 646 647 /** 648 * stm32f4_spi_disable - Disable SPI controller 649 * @spi: pointer to the spi controller data structure 650 */ 651 static void stm32f4_spi_disable(struct stm32_spi *spi) 652 { 653 unsigned long flags; 654 u32 sr; 655 656 dev_dbg(spi->dev, "disable controller\n"); 657 658 spin_lock_irqsave(&spi->lock, flags); 659 660 if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) & 661 STM32F4_SPI_CR1_SPE)) { 662 spin_unlock_irqrestore(&spi->lock, flags); 663 return; 664 } 665 666 /* Disable interrupts */ 667 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE | 668 STM32F4_SPI_CR2_RXNEIE | 669 STM32F4_SPI_CR2_ERRIE); 670 671 /* Wait until BSY = 0 */ 672 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR, 673 sr, !(sr & STM32F4_SPI_SR_BSY), 674 10, 100000) < 0) { 675 dev_warn(spi->dev, "disabling condition timeout\n"); 676 } 677 678 if (spi->cur_usedma && spi->dma_tx) 679 dmaengine_terminate_async(spi->dma_tx); 680 if (spi->cur_usedma && spi->dma_rx) 681 dmaengine_terminate_async(spi->dma_rx); 682 683 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE); 684 685 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN | 686 STM32F4_SPI_CR2_RXDMAEN); 687 688 /* Sequence to clear OVR flag */ 689 readl_relaxed(spi->base + STM32F4_SPI_DR); 690 readl_relaxed(spi->base + STM32F4_SPI_SR); 691 692 spin_unlock_irqrestore(&spi->lock, flags); 693 } 694 695 /** 696 * stm32h7_spi_disable - Disable SPI controller 697 * @spi: pointer to the spi controller data structure 698 * 699 * RX-Fifo is flushed when SPI controller is disabled. 700 */ 701 static void stm32h7_spi_disable(struct stm32_spi *spi) 702 { 703 unsigned long flags; 704 u32 cr1; 705 706 dev_dbg(spi->dev, "disable controller\n"); 707 708 spin_lock_irqsave(&spi->lock, flags); 709 710 cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1); 711 712 if (!(cr1 & STM32H7_SPI_CR1_SPE)) { 713 spin_unlock_irqrestore(&spi->lock, flags); 714 return; 715 } 716 717 /* Add a delay to make sure that transmission is ended. */ 718 if (spi->cur_half_period) 719 udelay(spi->cur_half_period); 720 721 if (spi->cur_usedma && spi->dma_tx) 722 dmaengine_terminate_async(spi->dma_tx); 723 if (spi->cur_usedma && spi->dma_rx) 724 dmaengine_terminate_async(spi->dma_rx); 725 726 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 727 728 stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN | 729 STM32H7_SPI_CFG1_RXDMAEN); 730 731 /* Disable interrupts and clear status flags */ 732 writel_relaxed(0, spi->base + STM32H7_SPI_IER); 733 writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR); 734 735 spin_unlock_irqrestore(&spi->lock, flags); 736 } 737 738 /** 739 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use 740 * @ctrl: controller interface 741 * @spi_dev: pointer to the spi device 742 * @transfer: pointer to spi transfer 743 * 744 * If driver has fifo and the current transfer size is greater than fifo size, 745 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes. 746 */ 747 static bool stm32_spi_can_dma(struct spi_controller *ctrl, 748 struct spi_device *spi_dev, 749 struct spi_transfer *transfer) 750 { 751 unsigned int dma_size; 752 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 753 754 if (spi->cfg->has_fifo) 755 dma_size = spi->fifo_size; 756 else 757 dma_size = SPI_DMA_MIN_BYTES; 758 759 dev_dbg(spi->dev, "%s: %s\n", __func__, 760 (transfer->len > dma_size) ? "true" : "false"); 761 762 return (transfer->len > dma_size); 763 } 764 765 /** 766 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events 767 * @irq: interrupt line 768 * @dev_id: SPI controller ctrl interface 769 */ 770 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id) 771 { 772 struct spi_controller *ctrl = dev_id; 773 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 774 u32 sr, mask = 0; 775 bool end = false; 776 777 spin_lock(&spi->lock); 778 779 sr = readl_relaxed(spi->base + STM32F4_SPI_SR); 780 /* 781 * BSY flag is not handled in interrupt but it is normal behavior when 782 * this flag is set. 783 */ 784 sr &= ~STM32F4_SPI_SR_BSY; 785 786 if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX || 787 spi->cur_comm == SPI_3WIRE_TX)) { 788 /* OVR flag shouldn't be handled for TX only mode */ 789 sr &= ~(STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE); 790 mask |= STM32F4_SPI_SR_TXE; 791 } 792 793 if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX || 794 spi->cur_comm == SPI_SIMPLEX_RX || 795 spi->cur_comm == SPI_3WIRE_RX)) { 796 /* TXE flag is set and is handled when RXNE flag occurs */ 797 sr &= ~STM32F4_SPI_SR_TXE; 798 mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR; 799 } 800 801 if (!(sr & mask)) { 802 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr); 803 spin_unlock(&spi->lock); 804 return IRQ_NONE; 805 } 806 807 if (sr & STM32F4_SPI_SR_OVR) { 808 dev_warn(spi->dev, "Overrun: received value discarded\n"); 809 810 /* Sequence to clear OVR flag */ 811 readl_relaxed(spi->base + STM32F4_SPI_DR); 812 readl_relaxed(spi->base + STM32F4_SPI_SR); 813 814 /* 815 * If overrun is detected, it means that something went wrong, 816 * so stop the current transfer. Transfer can wait for next 817 * RXNE but DR is already read and end never happens. 818 */ 819 end = true; 820 goto end_irq; 821 } 822 823 if (sr & STM32F4_SPI_SR_TXE) { 824 if (spi->tx_buf) 825 stm32f4_spi_write_tx(spi); 826 if (spi->tx_len == 0) 827 end = true; 828 } 829 830 if (sr & STM32F4_SPI_SR_RXNE) { 831 stm32f4_spi_read_rx(spi); 832 if (spi->rx_len == 0) 833 end = true; 834 else if (spi->tx_buf)/* Load data for discontinuous mode */ 835 stm32f4_spi_write_tx(spi); 836 } 837 838 end_irq: 839 if (end) { 840 /* Immediately disable interrupts to do not generate new one */ 841 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, 842 STM32F4_SPI_CR2_TXEIE | 843 STM32F4_SPI_CR2_RXNEIE | 844 STM32F4_SPI_CR2_ERRIE); 845 spin_unlock(&spi->lock); 846 return IRQ_WAKE_THREAD; 847 } 848 849 spin_unlock(&spi->lock); 850 return IRQ_HANDLED; 851 } 852 853 /** 854 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller 855 * @irq: interrupt line 856 * @dev_id: SPI controller interface 857 */ 858 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id) 859 { 860 struct spi_controller *ctrl = dev_id; 861 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 862 863 spi_finalize_current_transfer(ctrl); 864 stm32f4_spi_disable(spi); 865 866 return IRQ_HANDLED; 867 } 868 869 /** 870 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller 871 * @irq: interrupt line 872 * @dev_id: SPI controller interface 873 */ 874 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id) 875 { 876 struct spi_controller *ctrl = dev_id; 877 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 878 u32 sr, ier, mask; 879 unsigned long flags; 880 bool end = false; 881 882 spin_lock_irqsave(&spi->lock, flags); 883 884 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 885 ier = readl_relaxed(spi->base + STM32H7_SPI_IER); 886 887 mask = ier; 888 /* 889 * EOTIE enables irq from EOT, SUSP and TXC events. We need to set 890 * SUSP to acknowledge it later. TXC is automatically cleared 891 */ 892 893 mask |= STM32H7_SPI_SR_SUSP; 894 /* 895 * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP 896 * are set. So in case of Full-Duplex, need to poll TXP and RXP event. 897 */ 898 if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma) 899 mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP; 900 901 if (!(sr & mask)) { 902 dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n", 903 sr, ier); 904 spin_unlock_irqrestore(&spi->lock, flags); 905 return IRQ_NONE; 906 } 907 908 if (sr & STM32H7_SPI_SR_SUSP) { 909 static DEFINE_RATELIMIT_STATE(rs, 910 DEFAULT_RATELIMIT_INTERVAL * 10, 911 1); 912 ratelimit_set_flags(&rs, RATELIMIT_MSG_ON_RELEASE); 913 if (__ratelimit(&rs)) 914 dev_dbg_ratelimited(spi->dev, "Communication suspended\n"); 915 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 916 stm32h7_spi_read_rxfifo(spi); 917 /* 918 * If communication is suspended while using DMA, it means 919 * that something went wrong, so stop the current transfer 920 */ 921 if (spi->cur_usedma) 922 end = true; 923 } 924 925 if (sr & STM32H7_SPI_SR_MODF) { 926 dev_warn(spi->dev, "Mode fault: transfer aborted\n"); 927 end = true; 928 } 929 930 if (sr & STM32H7_SPI_SR_OVR) { 931 dev_err(spi->dev, "Overrun: RX data lost\n"); 932 end = true; 933 } 934 935 if (sr & STM32H7_SPI_SR_EOT) { 936 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 937 stm32h7_spi_read_rxfifo(spi); 938 if (!spi->cur_usedma || 939 (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX)) 940 end = true; 941 } 942 943 if (sr & STM32H7_SPI_SR_TXP) 944 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0))) 945 stm32h7_spi_write_txfifo(spi); 946 947 if (sr & STM32H7_SPI_SR_RXP) 948 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 949 stm32h7_spi_read_rxfifo(spi); 950 951 writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR); 952 953 spin_unlock_irqrestore(&spi->lock, flags); 954 955 if (end) { 956 stm32h7_spi_disable(spi); 957 spi_finalize_current_transfer(ctrl); 958 } 959 960 return IRQ_HANDLED; 961 } 962 963 /** 964 * stm32_spi_prepare_msg - set up the controller to transfer a single message 965 * @ctrl: controller interface 966 * @msg: pointer to spi message 967 */ 968 static int stm32_spi_prepare_msg(struct spi_controller *ctrl, 969 struct spi_message *msg) 970 { 971 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 972 struct spi_device *spi_dev = msg->spi; 973 struct device_node *np = spi_dev->dev.of_node; 974 unsigned long flags; 975 u32 clrb = 0, setb = 0; 976 977 /* SPI slave device may need time between data frames */ 978 spi->cur_midi = 0; 979 if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi)) 980 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi); 981 982 if (spi_dev->mode & SPI_CPOL) 983 setb |= spi->cfg->regs->cpol.mask; 984 else 985 clrb |= spi->cfg->regs->cpol.mask; 986 987 if (spi_dev->mode & SPI_CPHA) 988 setb |= spi->cfg->regs->cpha.mask; 989 else 990 clrb |= spi->cfg->regs->cpha.mask; 991 992 if (spi_dev->mode & SPI_LSB_FIRST) 993 setb |= spi->cfg->regs->lsb_first.mask; 994 else 995 clrb |= spi->cfg->regs->lsb_first.mask; 996 997 if (STM32_SPI_DEVICE_MODE(spi) && spi_dev->mode & SPI_CS_HIGH) 998 setb |= spi->cfg->regs->cs_high.mask; 999 else 1000 clrb |= spi->cfg->regs->cs_high.mask; 1001 1002 dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n", 1003 !!(spi_dev->mode & SPI_CPOL), 1004 !!(spi_dev->mode & SPI_CPHA), 1005 !!(spi_dev->mode & SPI_LSB_FIRST), 1006 !!(spi_dev->mode & SPI_CS_HIGH)); 1007 1008 /* On STM32H7, messages should not exceed a maximum size setted 1009 * afterward via the set_number_of_data function. In order to 1010 * ensure that, split large messages into several messages 1011 */ 1012 if (spi->cfg->set_number_of_data) { 1013 int ret; 1014 1015 ret = spi_split_transfers_maxwords(ctrl, msg, 1016 STM32H7_SPI_TSIZE_MAX, 1017 GFP_KERNEL | GFP_DMA); 1018 if (ret) 1019 return ret; 1020 } 1021 1022 spin_lock_irqsave(&spi->lock, flags); 1023 1024 /* CPOL, CPHA and LSB FIRST bits have common register */ 1025 if (clrb || setb) 1026 writel_relaxed( 1027 (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) & 1028 ~clrb) | setb, 1029 spi->base + spi->cfg->regs->cpol.reg); 1030 1031 spin_unlock_irqrestore(&spi->lock, flags); 1032 1033 return 0; 1034 } 1035 1036 /** 1037 * stm32f4_spi_dma_tx_cb - dma callback 1038 * @data: pointer to the spi controller data structure 1039 * 1040 * DMA callback is called when the transfer is complete for DMA TX channel. 1041 */ 1042 static void stm32f4_spi_dma_tx_cb(void *data) 1043 { 1044 struct stm32_spi *spi = data; 1045 1046 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) { 1047 spi_finalize_current_transfer(spi->ctrl); 1048 stm32f4_spi_disable(spi); 1049 } 1050 } 1051 1052 /** 1053 * stm32_spi_dma_rx_cb - dma callback 1054 * @data: pointer to the spi controller data structure 1055 * 1056 * DMA callback is called when the transfer is complete for DMA RX channel. 1057 */ 1058 static void stm32_spi_dma_rx_cb(void *data) 1059 { 1060 struct stm32_spi *spi = data; 1061 1062 spi_finalize_current_transfer(spi->ctrl); 1063 spi->cfg->disable(spi); 1064 } 1065 1066 /** 1067 * stm32_spi_dma_config - configure dma slave channel depending on current 1068 * transfer bits_per_word. 1069 * @spi: pointer to the spi controller data structure 1070 * @dma_conf: pointer to the dma_slave_config structure 1071 * @dir: direction of the dma transfer 1072 */ 1073 static void stm32_spi_dma_config(struct stm32_spi *spi, 1074 struct dma_slave_config *dma_conf, 1075 enum dma_transfer_direction dir) 1076 { 1077 enum dma_slave_buswidth buswidth; 1078 u32 maxburst; 1079 1080 if (spi->cur_bpw <= 8) 1081 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; 1082 else if (spi->cur_bpw <= 16) 1083 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; 1084 else 1085 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES; 1086 1087 if (spi->cfg->has_fifo) { 1088 /* Valid for DMA Half or Full Fifo threshold */ 1089 if (spi->cur_fthlv == 2) 1090 maxburst = 1; 1091 else 1092 maxburst = spi->cur_fthlv; 1093 } else { 1094 maxburst = 1; 1095 } 1096 1097 memset(dma_conf, 0, sizeof(struct dma_slave_config)); 1098 dma_conf->direction = dir; 1099 if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */ 1100 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg; 1101 dma_conf->src_addr_width = buswidth; 1102 dma_conf->src_maxburst = maxburst; 1103 1104 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n", 1105 buswidth, maxburst); 1106 } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */ 1107 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg; 1108 dma_conf->dst_addr_width = buswidth; 1109 dma_conf->dst_maxburst = maxburst; 1110 1111 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n", 1112 buswidth, maxburst); 1113 } 1114 } 1115 1116 /** 1117 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using 1118 * interrupts 1119 * @spi: pointer to the spi controller data structure 1120 * 1121 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1122 * in progress. 1123 */ 1124 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi) 1125 { 1126 unsigned long flags; 1127 u32 cr2 = 0; 1128 1129 /* Enable the interrupts relative to the current communication mode */ 1130 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) { 1131 cr2 |= STM32F4_SPI_CR2_TXEIE; 1132 } else if (spi->cur_comm == SPI_FULL_DUPLEX || 1133 spi->cur_comm == SPI_SIMPLEX_RX || 1134 spi->cur_comm == SPI_3WIRE_RX) { 1135 /* In transmit-only mode, the OVR flag is set in the SR register 1136 * since the received data are never read. Therefore set OVR 1137 * interrupt only when rx buffer is available. 1138 */ 1139 cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE; 1140 } else { 1141 return -EINVAL; 1142 } 1143 1144 spin_lock_irqsave(&spi->lock, flags); 1145 1146 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2); 1147 1148 stm32_spi_enable(spi); 1149 1150 /* starting data transfer when buffer is loaded */ 1151 if (spi->tx_buf) 1152 stm32f4_spi_write_tx(spi); 1153 1154 spin_unlock_irqrestore(&spi->lock, flags); 1155 1156 return 1; 1157 } 1158 1159 /** 1160 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using 1161 * interrupts 1162 * @spi: pointer to the spi controller data structure 1163 * 1164 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1165 * in progress. 1166 */ 1167 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi) 1168 { 1169 unsigned long flags; 1170 u32 ier = 0; 1171 1172 /* Enable the interrupts relative to the current communication mode */ 1173 if (spi->tx_buf && spi->rx_buf) /* Full Duplex */ 1174 ier |= STM32H7_SPI_IER_DXPIE; 1175 else if (spi->tx_buf) /* Half-Duplex TX dir or Simplex TX */ 1176 ier |= STM32H7_SPI_IER_TXPIE; 1177 else if (spi->rx_buf) /* Half-Duplex RX dir or Simplex RX */ 1178 ier |= STM32H7_SPI_IER_RXPIE; 1179 1180 /* Enable the interrupts relative to the end of transfer */ 1181 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE | 1182 STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE; 1183 1184 spin_lock_irqsave(&spi->lock, flags); 1185 1186 stm32_spi_enable(spi); 1187 1188 /* Be sure to have data in fifo before starting data transfer */ 1189 if (spi->tx_buf) 1190 stm32h7_spi_write_txfifo(spi); 1191 1192 if (STM32_SPI_MASTER_MODE(spi)) 1193 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART); 1194 1195 writel_relaxed(ier, spi->base + STM32H7_SPI_IER); 1196 1197 spin_unlock_irqrestore(&spi->lock, flags); 1198 1199 return 1; 1200 } 1201 1202 /** 1203 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start 1204 * transfer using DMA 1205 * @spi: pointer to the spi controller data structure 1206 */ 1207 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi) 1208 { 1209 /* In DMA mode end of transfer is handled by DMA TX or RX callback. */ 1210 if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX || 1211 spi->cur_comm == SPI_FULL_DUPLEX) { 1212 /* 1213 * In transmit-only mode, the OVR flag is set in the SR register 1214 * since the received data are never read. Therefore set OVR 1215 * interrupt only when rx buffer is available. 1216 */ 1217 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE); 1218 } 1219 1220 stm32_spi_enable(spi); 1221 } 1222 1223 /** 1224 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start 1225 * transfer using DMA 1226 * @spi: pointer to the spi controller data structure 1227 */ 1228 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi) 1229 { 1230 uint32_t ier = STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE; 1231 1232 /* Enable the interrupts */ 1233 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) 1234 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE; 1235 1236 stm32_spi_set_bits(spi, STM32H7_SPI_IER, ier); 1237 1238 stm32_spi_enable(spi); 1239 1240 if (STM32_SPI_MASTER_MODE(spi)) 1241 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART); 1242 } 1243 1244 /** 1245 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA 1246 * @spi: pointer to the spi controller data structure 1247 * @xfer: pointer to the spi_transfer structure 1248 * 1249 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1250 * in progress. 1251 */ 1252 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi, 1253 struct spi_transfer *xfer) 1254 { 1255 struct dma_slave_config tx_dma_conf, rx_dma_conf; 1256 struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc; 1257 unsigned long flags; 1258 1259 spin_lock_irqsave(&spi->lock, flags); 1260 1261 rx_dma_desc = NULL; 1262 if (spi->rx_buf && spi->dma_rx) { 1263 stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM); 1264 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf); 1265 1266 /* Enable Rx DMA request */ 1267 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg, 1268 spi->cfg->regs->dma_rx_en.mask); 1269 1270 rx_dma_desc = dmaengine_prep_slave_sg( 1271 spi->dma_rx, xfer->rx_sg.sgl, 1272 xfer->rx_sg.nents, 1273 rx_dma_conf.direction, 1274 DMA_PREP_INTERRUPT); 1275 } 1276 1277 tx_dma_desc = NULL; 1278 if (spi->tx_buf && spi->dma_tx) { 1279 stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV); 1280 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf); 1281 1282 tx_dma_desc = dmaengine_prep_slave_sg( 1283 spi->dma_tx, xfer->tx_sg.sgl, 1284 xfer->tx_sg.nents, 1285 tx_dma_conf.direction, 1286 DMA_PREP_INTERRUPT); 1287 } 1288 1289 if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) || 1290 (spi->rx_buf && spi->dma_rx && !rx_dma_desc)) 1291 goto dma_desc_error; 1292 1293 if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc)) 1294 goto dma_desc_error; 1295 1296 if (rx_dma_desc) { 1297 rx_dma_desc->callback = spi->cfg->dma_rx_cb; 1298 rx_dma_desc->callback_param = spi; 1299 1300 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) { 1301 dev_err(spi->dev, "Rx DMA submit failed\n"); 1302 goto dma_desc_error; 1303 } 1304 /* Enable Rx DMA channel */ 1305 dma_async_issue_pending(spi->dma_rx); 1306 } 1307 1308 if (tx_dma_desc) { 1309 if (spi->cur_comm == SPI_SIMPLEX_TX || 1310 spi->cur_comm == SPI_3WIRE_TX) { 1311 tx_dma_desc->callback = spi->cfg->dma_tx_cb; 1312 tx_dma_desc->callback_param = spi; 1313 } 1314 1315 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) { 1316 dev_err(spi->dev, "Tx DMA submit failed\n"); 1317 goto dma_submit_error; 1318 } 1319 /* Enable Tx DMA channel */ 1320 dma_async_issue_pending(spi->dma_tx); 1321 1322 /* Enable Tx DMA request */ 1323 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg, 1324 spi->cfg->regs->dma_tx_en.mask); 1325 } 1326 1327 spi->cfg->transfer_one_dma_start(spi); 1328 1329 spin_unlock_irqrestore(&spi->lock, flags); 1330 1331 return 1; 1332 1333 dma_submit_error: 1334 if (spi->dma_rx) 1335 dmaengine_terminate_sync(spi->dma_rx); 1336 1337 dma_desc_error: 1338 stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg, 1339 spi->cfg->regs->dma_rx_en.mask); 1340 1341 spin_unlock_irqrestore(&spi->lock, flags); 1342 1343 dev_info(spi->dev, "DMA issue: fall back to irq transfer\n"); 1344 1345 spi->cur_usedma = false; 1346 return spi->cfg->transfer_one_irq(spi); 1347 } 1348 1349 /** 1350 * stm32f4_spi_set_bpw - Configure bits per word 1351 * @spi: pointer to the spi controller data structure 1352 */ 1353 static void stm32f4_spi_set_bpw(struct stm32_spi *spi) 1354 { 1355 if (spi->cur_bpw == 16) 1356 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF); 1357 else 1358 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF); 1359 } 1360 1361 /** 1362 * stm32h7_spi_set_bpw - configure bits per word 1363 * @spi: pointer to the spi controller data structure 1364 */ 1365 static void stm32h7_spi_set_bpw(struct stm32_spi *spi) 1366 { 1367 u32 bpw, fthlv; 1368 u32 cfg1_clrb = 0, cfg1_setb = 0; 1369 1370 bpw = spi->cur_bpw - 1; 1371 1372 cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE; 1373 cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw); 1374 1375 spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen); 1376 fthlv = spi->cur_fthlv - 1; 1377 1378 cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV; 1379 cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv); 1380 1381 writel_relaxed( 1382 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) & 1383 ~cfg1_clrb) | cfg1_setb, 1384 spi->base + STM32H7_SPI_CFG1); 1385 } 1386 1387 /** 1388 * stm32_spi_set_mbr - Configure baud rate divisor in master mode 1389 * @spi: pointer to the spi controller data structure 1390 * @mbrdiv: baud rate divisor value 1391 */ 1392 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv) 1393 { 1394 u32 clrb = 0, setb = 0; 1395 1396 clrb |= spi->cfg->regs->br.mask; 1397 setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask; 1398 1399 writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) & 1400 ~clrb) | setb, 1401 spi->base + spi->cfg->regs->br.reg); 1402 } 1403 1404 /** 1405 * stm32_spi_communication_type - return transfer communication type 1406 * @spi_dev: pointer to the spi device 1407 * @transfer: pointer to spi transfer 1408 */ 1409 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev, 1410 struct spi_transfer *transfer) 1411 { 1412 unsigned int type = SPI_FULL_DUPLEX; 1413 1414 if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */ 1415 /* 1416 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL 1417 * is forbidden and unvalidated by SPI subsystem so depending 1418 * on the valid buffer, we can determine the direction of the 1419 * transfer. 1420 */ 1421 if (!transfer->tx_buf) 1422 type = SPI_3WIRE_RX; 1423 else 1424 type = SPI_3WIRE_TX; 1425 } else { 1426 if (!transfer->tx_buf) 1427 type = SPI_SIMPLEX_RX; 1428 else if (!transfer->rx_buf) 1429 type = SPI_SIMPLEX_TX; 1430 } 1431 1432 return type; 1433 } 1434 1435 /** 1436 * stm32f4_spi_set_mode - configure communication mode 1437 * @spi: pointer to the spi controller data structure 1438 * @comm_type: type of communication to configure 1439 */ 1440 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type) 1441 { 1442 if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) { 1443 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, 1444 STM32F4_SPI_CR1_BIDIMODE | 1445 STM32F4_SPI_CR1_BIDIOE); 1446 } else if (comm_type == SPI_FULL_DUPLEX || 1447 comm_type == SPI_SIMPLEX_RX) { 1448 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, 1449 STM32F4_SPI_CR1_BIDIMODE | 1450 STM32F4_SPI_CR1_BIDIOE); 1451 } else if (comm_type == SPI_3WIRE_RX) { 1452 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, 1453 STM32F4_SPI_CR1_BIDIMODE); 1454 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, 1455 STM32F4_SPI_CR1_BIDIOE); 1456 } else { 1457 return -EINVAL; 1458 } 1459 1460 return 0; 1461 } 1462 1463 /** 1464 * stm32h7_spi_set_mode - configure communication mode 1465 * @spi: pointer to the spi controller data structure 1466 * @comm_type: type of communication to configure 1467 */ 1468 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type) 1469 { 1470 u32 mode; 1471 u32 cfg2_clrb = 0, cfg2_setb = 0; 1472 1473 if (comm_type == SPI_3WIRE_RX) { 1474 mode = STM32H7_SPI_HALF_DUPLEX; 1475 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR); 1476 } else if (comm_type == SPI_3WIRE_TX) { 1477 mode = STM32H7_SPI_HALF_DUPLEX; 1478 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR); 1479 } else if (comm_type == SPI_SIMPLEX_RX) { 1480 mode = STM32H7_SPI_SIMPLEX_RX; 1481 } else if (comm_type == SPI_SIMPLEX_TX) { 1482 mode = STM32H7_SPI_SIMPLEX_TX; 1483 } else { 1484 mode = STM32H7_SPI_FULL_DUPLEX; 1485 } 1486 1487 cfg2_clrb |= STM32H7_SPI_CFG2_COMM; 1488 cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode); 1489 1490 writel_relaxed( 1491 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) & 1492 ~cfg2_clrb) | cfg2_setb, 1493 spi->base + STM32H7_SPI_CFG2); 1494 1495 return 0; 1496 } 1497 1498 /** 1499 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two 1500 * consecutive data frames in master mode 1501 * @spi: pointer to the spi controller data structure 1502 * @len: transfer len 1503 */ 1504 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len) 1505 { 1506 u32 cfg2_clrb = 0, cfg2_setb = 0; 1507 1508 cfg2_clrb |= STM32H7_SPI_CFG2_MIDI; 1509 if ((len > 1) && (spi->cur_midi > 0)) { 1510 u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed); 1511 u32 midi = min_t(u32, 1512 DIV_ROUND_UP(spi->cur_midi, sck_period_ns), 1513 FIELD_GET(STM32H7_SPI_CFG2_MIDI, 1514 STM32H7_SPI_CFG2_MIDI)); 1515 1516 1517 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n", 1518 sck_period_ns, midi, midi * sck_period_ns); 1519 cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi); 1520 } 1521 1522 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) & 1523 ~cfg2_clrb) | cfg2_setb, 1524 spi->base + STM32H7_SPI_CFG2); 1525 } 1526 1527 /** 1528 * stm32h7_spi_number_of_data - configure number of data at current transfer 1529 * @spi: pointer to the spi controller data structure 1530 * @nb_words: transfer length (in words) 1531 */ 1532 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words) 1533 { 1534 if (nb_words <= STM32H7_SPI_TSIZE_MAX) { 1535 writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words), 1536 spi->base + STM32H7_SPI_CR2); 1537 } else { 1538 return -EMSGSIZE; 1539 } 1540 1541 return 0; 1542 } 1543 1544 /** 1545 * stm32_spi_transfer_one_setup - common setup to transfer a single 1546 * spi_transfer either using DMA or 1547 * interrupts. 1548 * @spi: pointer to the spi controller data structure 1549 * @spi_dev: pointer to the spi device 1550 * @transfer: pointer to spi transfer 1551 */ 1552 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi, 1553 struct spi_device *spi_dev, 1554 struct spi_transfer *transfer) 1555 { 1556 unsigned long flags; 1557 unsigned int comm_type; 1558 int nb_words, ret = 0; 1559 int mbr; 1560 1561 spin_lock_irqsave(&spi->lock, flags); 1562 1563 spi->cur_xferlen = transfer->len; 1564 1565 spi->cur_bpw = transfer->bits_per_word; 1566 spi->cfg->set_bpw(spi); 1567 1568 /* Update spi->cur_speed with real clock speed */ 1569 if (STM32_SPI_MASTER_MODE(spi)) { 1570 mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz, 1571 spi->cfg->baud_rate_div_min, 1572 spi->cfg->baud_rate_div_max); 1573 if (mbr < 0) { 1574 ret = mbr; 1575 goto out; 1576 } 1577 1578 transfer->speed_hz = spi->cur_speed; 1579 stm32_spi_set_mbr(spi, mbr); 1580 } 1581 1582 comm_type = stm32_spi_communication_type(spi_dev, transfer); 1583 ret = spi->cfg->set_mode(spi, comm_type); 1584 if (ret < 0) 1585 goto out; 1586 1587 spi->cur_comm = comm_type; 1588 1589 if (STM32_SPI_MASTER_MODE(spi) && spi->cfg->set_data_idleness) 1590 spi->cfg->set_data_idleness(spi, transfer->len); 1591 1592 if (spi->cur_bpw <= 8) 1593 nb_words = transfer->len; 1594 else if (spi->cur_bpw <= 16) 1595 nb_words = DIV_ROUND_UP(transfer->len * 8, 16); 1596 else 1597 nb_words = DIV_ROUND_UP(transfer->len * 8, 32); 1598 1599 if (spi->cfg->set_number_of_data) { 1600 ret = spi->cfg->set_number_of_data(spi, nb_words); 1601 if (ret < 0) 1602 goto out; 1603 } 1604 1605 dev_dbg(spi->dev, "transfer communication mode set to %d\n", 1606 spi->cur_comm); 1607 dev_dbg(spi->dev, 1608 "data frame of %d-bit, data packet of %d data frames\n", 1609 spi->cur_bpw, spi->cur_fthlv); 1610 if (STM32_SPI_MASTER_MODE(spi)) 1611 dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed); 1612 dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n", 1613 spi->cur_xferlen, nb_words); 1614 dev_dbg(spi->dev, "dma %s\n", 1615 (spi->cur_usedma) ? "enabled" : "disabled"); 1616 1617 out: 1618 spin_unlock_irqrestore(&spi->lock, flags); 1619 1620 return ret; 1621 } 1622 1623 /** 1624 * stm32_spi_transfer_one - transfer a single spi_transfer 1625 * @ctrl: controller interface 1626 * @spi_dev: pointer to the spi device 1627 * @transfer: pointer to spi transfer 1628 * 1629 * It must return 0 if the transfer is finished or 1 if the transfer is still 1630 * in progress. 1631 */ 1632 static int stm32_spi_transfer_one(struct spi_controller *ctrl, 1633 struct spi_device *spi_dev, 1634 struct spi_transfer *transfer) 1635 { 1636 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 1637 int ret; 1638 1639 spi->tx_buf = transfer->tx_buf; 1640 spi->rx_buf = transfer->rx_buf; 1641 spi->tx_len = spi->tx_buf ? transfer->len : 0; 1642 spi->rx_len = spi->rx_buf ? transfer->len : 0; 1643 1644 spi->cur_usedma = (ctrl->can_dma && 1645 ctrl->can_dma(ctrl, spi_dev, transfer)); 1646 1647 ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer); 1648 if (ret) { 1649 dev_err(spi->dev, "SPI transfer setup failed\n"); 1650 return ret; 1651 } 1652 1653 if (spi->cur_usedma) 1654 return stm32_spi_transfer_one_dma(spi, transfer); 1655 else 1656 return spi->cfg->transfer_one_irq(spi); 1657 } 1658 1659 /** 1660 * stm32_spi_unprepare_msg - relax the hardware 1661 * @ctrl: controller interface 1662 * @msg: pointer to the spi message 1663 */ 1664 static int stm32_spi_unprepare_msg(struct spi_controller *ctrl, 1665 struct spi_message *msg) 1666 { 1667 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 1668 1669 spi->cfg->disable(spi); 1670 1671 return 0; 1672 } 1673 1674 /** 1675 * stm32f4_spi_config - Configure SPI controller as SPI master 1676 * @spi: pointer to the spi controller data structure 1677 */ 1678 static int stm32f4_spi_config(struct stm32_spi *spi) 1679 { 1680 unsigned long flags; 1681 1682 spin_lock_irqsave(&spi->lock, flags); 1683 1684 /* Ensure I2SMOD bit is kept cleared */ 1685 stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR, 1686 STM32F4_SPI_I2SCFGR_I2SMOD); 1687 1688 /* 1689 * - SS input value high 1690 * - transmitter half duplex direction 1691 * - Set the master mode (default Motorola mode) 1692 * - Consider 1 master/n slaves configuration and 1693 * SS input value is determined by the SSI bit 1694 */ 1695 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI | 1696 STM32F4_SPI_CR1_BIDIOE | 1697 STM32F4_SPI_CR1_MSTR | 1698 STM32F4_SPI_CR1_SSM); 1699 1700 spin_unlock_irqrestore(&spi->lock, flags); 1701 1702 return 0; 1703 } 1704 1705 /** 1706 * stm32h7_spi_config - Configure SPI controller 1707 * @spi: pointer to the spi controller data structure 1708 */ 1709 static int stm32h7_spi_config(struct stm32_spi *spi) 1710 { 1711 unsigned long flags; 1712 u32 cr1 = 0, cfg2 = 0; 1713 1714 spin_lock_irqsave(&spi->lock, flags); 1715 1716 /* Ensure I2SMOD bit is kept cleared */ 1717 stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR, 1718 STM32H7_SPI_I2SCFGR_I2SMOD); 1719 1720 if (STM32_SPI_DEVICE_MODE(spi)) { 1721 /* Use native device select */ 1722 cfg2 &= ~STM32H7_SPI_CFG2_SSM; 1723 } else { 1724 /* 1725 * - Transmitter half duplex direction 1726 * - Automatic communication suspend when RX-Fifo is full 1727 * - SS input value high 1728 */ 1729 cr1 |= STM32H7_SPI_CR1_HDDIR | STM32H7_SPI_CR1_MASRX | STM32H7_SPI_CR1_SSI; 1730 1731 /* 1732 * - Set the master mode (default Motorola mode) 1733 * - Consider 1 master/n devices configuration and 1734 * SS input value is determined by the SSI bit 1735 * - keep control of all associated GPIOs 1736 */ 1737 cfg2 |= STM32H7_SPI_CFG2_MASTER | STM32H7_SPI_CFG2_SSM | STM32H7_SPI_CFG2_AFCNTR; 1738 } 1739 1740 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, cr1); 1741 stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, cfg2); 1742 1743 spin_unlock_irqrestore(&spi->lock, flags); 1744 1745 return 0; 1746 } 1747 1748 static const struct stm32_spi_cfg stm32f4_spi_cfg = { 1749 .regs = &stm32f4_spi_regspec, 1750 .get_bpw_mask = stm32f4_spi_get_bpw_mask, 1751 .disable = stm32f4_spi_disable, 1752 .config = stm32f4_spi_config, 1753 .set_bpw = stm32f4_spi_set_bpw, 1754 .set_mode = stm32f4_spi_set_mode, 1755 .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start, 1756 .dma_tx_cb = stm32f4_spi_dma_tx_cb, 1757 .dma_rx_cb = stm32_spi_dma_rx_cb, 1758 .transfer_one_irq = stm32f4_spi_transfer_one_irq, 1759 .irq_handler_event = stm32f4_spi_irq_event, 1760 .irq_handler_thread = stm32f4_spi_irq_thread, 1761 .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN, 1762 .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX, 1763 .has_fifo = false, 1764 .has_device_mode = false, 1765 .flags = SPI_CONTROLLER_MUST_TX, 1766 }; 1767 1768 static const struct stm32_spi_cfg stm32h7_spi_cfg = { 1769 .regs = &stm32h7_spi_regspec, 1770 .get_fifo_size = stm32h7_spi_get_fifo_size, 1771 .get_bpw_mask = stm32h7_spi_get_bpw_mask, 1772 .disable = stm32h7_spi_disable, 1773 .config = stm32h7_spi_config, 1774 .set_bpw = stm32h7_spi_set_bpw, 1775 .set_mode = stm32h7_spi_set_mode, 1776 .set_data_idleness = stm32h7_spi_data_idleness, 1777 .set_number_of_data = stm32h7_spi_number_of_data, 1778 .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start, 1779 .dma_rx_cb = stm32_spi_dma_rx_cb, 1780 /* 1781 * dma_tx_cb is not necessary since in case of TX, dma is followed by 1782 * SPI access hence handling is performed within the SPI interrupt 1783 */ 1784 .transfer_one_irq = stm32h7_spi_transfer_one_irq, 1785 .irq_handler_thread = stm32h7_spi_irq_thread, 1786 .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN, 1787 .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX, 1788 .has_fifo = true, 1789 .has_device_mode = true, 1790 }; 1791 1792 static const struct of_device_id stm32_spi_of_match[] = { 1793 { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg }, 1794 { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg }, 1795 {}, 1796 }; 1797 MODULE_DEVICE_TABLE(of, stm32_spi_of_match); 1798 1799 static int stm32h7_spi_device_abort(struct spi_controller *ctrl) 1800 { 1801 spi_finalize_current_transfer(ctrl); 1802 return 0; 1803 } 1804 1805 static int stm32_spi_probe(struct platform_device *pdev) 1806 { 1807 struct spi_controller *ctrl; 1808 struct stm32_spi *spi; 1809 struct resource *res; 1810 struct reset_control *rst; 1811 struct device_node *np = pdev->dev.of_node; 1812 bool device_mode; 1813 int ret; 1814 const struct stm32_spi_cfg *cfg = of_device_get_match_data(&pdev->dev); 1815 1816 device_mode = of_property_read_bool(np, "spi-slave"); 1817 if (!cfg->has_device_mode && device_mode) { 1818 dev_err(&pdev->dev, "spi-slave not supported\n"); 1819 return -EPERM; 1820 } 1821 1822 if (device_mode) 1823 ctrl = devm_spi_alloc_slave(&pdev->dev, sizeof(struct stm32_spi)); 1824 else 1825 ctrl = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi)); 1826 if (!ctrl) { 1827 dev_err(&pdev->dev, "spi controller allocation failed\n"); 1828 return -ENOMEM; 1829 } 1830 platform_set_drvdata(pdev, ctrl); 1831 1832 spi = spi_controller_get_devdata(ctrl); 1833 spi->dev = &pdev->dev; 1834 spi->ctrl = ctrl; 1835 spi->device_mode = device_mode; 1836 spin_lock_init(&spi->lock); 1837 1838 spi->cfg = cfg; 1839 1840 spi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 1841 if (IS_ERR(spi->base)) 1842 return PTR_ERR(spi->base); 1843 1844 spi->phys_addr = (dma_addr_t)res->start; 1845 1846 spi->irq = platform_get_irq(pdev, 0); 1847 if (spi->irq <= 0) 1848 return spi->irq; 1849 1850 ret = devm_request_threaded_irq(&pdev->dev, spi->irq, 1851 spi->cfg->irq_handler_event, 1852 spi->cfg->irq_handler_thread, 1853 IRQF_ONESHOT, pdev->name, ctrl); 1854 if (ret) { 1855 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq, 1856 ret); 1857 return ret; 1858 } 1859 1860 spi->clk = devm_clk_get(&pdev->dev, NULL); 1861 if (IS_ERR(spi->clk)) { 1862 ret = PTR_ERR(spi->clk); 1863 dev_err(&pdev->dev, "clk get failed: %d\n", ret); 1864 return ret; 1865 } 1866 1867 ret = clk_prepare_enable(spi->clk); 1868 if (ret) { 1869 dev_err(&pdev->dev, "clk enable failed: %d\n", ret); 1870 return ret; 1871 } 1872 spi->clk_rate = clk_get_rate(spi->clk); 1873 if (!spi->clk_rate) { 1874 dev_err(&pdev->dev, "clk rate = 0\n"); 1875 ret = -EINVAL; 1876 goto err_clk_disable; 1877 } 1878 1879 rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL); 1880 if (rst) { 1881 if (IS_ERR(rst)) { 1882 ret = dev_err_probe(&pdev->dev, PTR_ERR(rst), 1883 "failed to get reset\n"); 1884 goto err_clk_disable; 1885 } 1886 1887 reset_control_assert(rst); 1888 udelay(2); 1889 reset_control_deassert(rst); 1890 } 1891 1892 if (spi->cfg->has_fifo) 1893 spi->fifo_size = spi->cfg->get_fifo_size(spi); 1894 1895 ret = spi->cfg->config(spi); 1896 if (ret) { 1897 dev_err(&pdev->dev, "controller configuration failed: %d\n", 1898 ret); 1899 goto err_clk_disable; 1900 } 1901 1902 ctrl->dev.of_node = pdev->dev.of_node; 1903 ctrl->auto_runtime_pm = true; 1904 ctrl->bus_num = pdev->id; 1905 ctrl->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST | 1906 SPI_3WIRE; 1907 ctrl->bits_per_word_mask = spi->cfg->get_bpw_mask(spi); 1908 ctrl->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min; 1909 ctrl->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max; 1910 ctrl->use_gpio_descriptors = true; 1911 ctrl->prepare_message = stm32_spi_prepare_msg; 1912 ctrl->transfer_one = stm32_spi_transfer_one; 1913 ctrl->unprepare_message = stm32_spi_unprepare_msg; 1914 ctrl->flags = spi->cfg->flags; 1915 if (STM32_SPI_DEVICE_MODE(spi)) 1916 ctrl->slave_abort = stm32h7_spi_device_abort; 1917 1918 spi->dma_tx = dma_request_chan(spi->dev, "tx"); 1919 if (IS_ERR(spi->dma_tx)) { 1920 ret = PTR_ERR(spi->dma_tx); 1921 spi->dma_tx = NULL; 1922 if (ret == -EPROBE_DEFER) 1923 goto err_clk_disable; 1924 1925 dev_warn(&pdev->dev, "failed to request tx dma channel\n"); 1926 } else { 1927 ctrl->dma_tx = spi->dma_tx; 1928 } 1929 1930 spi->dma_rx = dma_request_chan(spi->dev, "rx"); 1931 if (IS_ERR(spi->dma_rx)) { 1932 ret = PTR_ERR(spi->dma_rx); 1933 spi->dma_rx = NULL; 1934 if (ret == -EPROBE_DEFER) 1935 goto err_dma_release; 1936 1937 dev_warn(&pdev->dev, "failed to request rx dma channel\n"); 1938 } else { 1939 ctrl->dma_rx = spi->dma_rx; 1940 } 1941 1942 if (spi->dma_tx || spi->dma_rx) 1943 ctrl->can_dma = stm32_spi_can_dma; 1944 1945 pm_runtime_set_autosuspend_delay(&pdev->dev, 1946 STM32_SPI_AUTOSUSPEND_DELAY); 1947 pm_runtime_use_autosuspend(&pdev->dev); 1948 pm_runtime_set_active(&pdev->dev); 1949 pm_runtime_get_noresume(&pdev->dev); 1950 pm_runtime_enable(&pdev->dev); 1951 1952 ret = spi_register_controller(ctrl); 1953 if (ret) { 1954 dev_err(&pdev->dev, "spi controller registration failed: %d\n", 1955 ret); 1956 goto err_pm_disable; 1957 } 1958 1959 pm_runtime_mark_last_busy(&pdev->dev); 1960 pm_runtime_put_autosuspend(&pdev->dev); 1961 1962 dev_info(&pdev->dev, "driver initialized (%s mode)\n", 1963 STM32_SPI_MASTER_MODE(spi) ? "master" : "device"); 1964 1965 return 0; 1966 1967 err_pm_disable: 1968 pm_runtime_disable(&pdev->dev); 1969 pm_runtime_put_noidle(&pdev->dev); 1970 pm_runtime_set_suspended(&pdev->dev); 1971 pm_runtime_dont_use_autosuspend(&pdev->dev); 1972 err_dma_release: 1973 if (spi->dma_tx) 1974 dma_release_channel(spi->dma_tx); 1975 if (spi->dma_rx) 1976 dma_release_channel(spi->dma_rx); 1977 err_clk_disable: 1978 clk_disable_unprepare(spi->clk); 1979 1980 return ret; 1981 } 1982 1983 static void stm32_spi_remove(struct platform_device *pdev) 1984 { 1985 struct spi_controller *ctrl = platform_get_drvdata(pdev); 1986 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 1987 1988 pm_runtime_get_sync(&pdev->dev); 1989 1990 spi_unregister_controller(ctrl); 1991 spi->cfg->disable(spi); 1992 1993 pm_runtime_disable(&pdev->dev); 1994 pm_runtime_put_noidle(&pdev->dev); 1995 pm_runtime_set_suspended(&pdev->dev); 1996 pm_runtime_dont_use_autosuspend(&pdev->dev); 1997 1998 if (ctrl->dma_tx) 1999 dma_release_channel(ctrl->dma_tx); 2000 if (ctrl->dma_rx) 2001 dma_release_channel(ctrl->dma_rx); 2002 2003 clk_disable_unprepare(spi->clk); 2004 2005 2006 pinctrl_pm_select_sleep_state(&pdev->dev); 2007 } 2008 2009 static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev) 2010 { 2011 struct spi_controller *ctrl = dev_get_drvdata(dev); 2012 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 2013 2014 clk_disable_unprepare(spi->clk); 2015 2016 return pinctrl_pm_select_sleep_state(dev); 2017 } 2018 2019 static int __maybe_unused stm32_spi_runtime_resume(struct device *dev) 2020 { 2021 struct spi_controller *ctrl = dev_get_drvdata(dev); 2022 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 2023 int ret; 2024 2025 ret = pinctrl_pm_select_default_state(dev); 2026 if (ret) 2027 return ret; 2028 2029 return clk_prepare_enable(spi->clk); 2030 } 2031 2032 static int __maybe_unused stm32_spi_suspend(struct device *dev) 2033 { 2034 struct spi_controller *ctrl = dev_get_drvdata(dev); 2035 int ret; 2036 2037 ret = spi_controller_suspend(ctrl); 2038 if (ret) 2039 return ret; 2040 2041 return pm_runtime_force_suspend(dev); 2042 } 2043 2044 static int __maybe_unused stm32_spi_resume(struct device *dev) 2045 { 2046 struct spi_controller *ctrl = dev_get_drvdata(dev); 2047 struct stm32_spi *spi = spi_controller_get_devdata(ctrl); 2048 int ret; 2049 2050 ret = pm_runtime_force_resume(dev); 2051 if (ret) 2052 return ret; 2053 2054 ret = spi_controller_resume(ctrl); 2055 if (ret) { 2056 clk_disable_unprepare(spi->clk); 2057 return ret; 2058 } 2059 2060 ret = pm_runtime_resume_and_get(dev); 2061 if (ret < 0) { 2062 dev_err(dev, "Unable to power device:%d\n", ret); 2063 return ret; 2064 } 2065 2066 spi->cfg->config(spi); 2067 2068 pm_runtime_mark_last_busy(dev); 2069 pm_runtime_put_autosuspend(dev); 2070 2071 return 0; 2072 } 2073 2074 static const struct dev_pm_ops stm32_spi_pm_ops = { 2075 SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume) 2076 SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend, 2077 stm32_spi_runtime_resume, NULL) 2078 }; 2079 2080 static struct platform_driver stm32_spi_driver = { 2081 .probe = stm32_spi_probe, 2082 .remove_new = stm32_spi_remove, 2083 .driver = { 2084 .name = DRIVER_NAME, 2085 .pm = &stm32_spi_pm_ops, 2086 .of_match_table = stm32_spi_of_match, 2087 }, 2088 }; 2089 2090 module_platform_driver(stm32_spi_driver); 2091 2092 MODULE_ALIAS("platform:" DRIVER_NAME); 2093 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver"); 2094 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>"); 2095 MODULE_LICENSE("GPL v2"); 2096