1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) STMicroelectronics 2018 - All Rights Reserved 4 * Author: Ludovic Barre <ludovic.barre@st.com> for STMicroelectronics. 5 */ 6 #include <linux/bitfield.h> 7 #include <linux/clk.h> 8 #include <linux/dmaengine.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/errno.h> 11 #include <linux/gpio/consumer.h> 12 #include <linux/io.h> 13 #include <linux/iopoll.h> 14 #include <linux/interrupt.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/of.h> 18 #include <linux/pinctrl/consumer.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/platform_device.h> 21 #include <linux/reset.h> 22 #include <linux/sizes.h> 23 #include <linux/spi/spi-mem.h> 24 25 #define QSPI_CR 0x00 26 #define CR_EN BIT(0) 27 #define CR_ABORT BIT(1) 28 #define CR_DMAEN BIT(2) 29 #define CR_TCEN BIT(3) 30 #define CR_SSHIFT BIT(4) 31 #define CR_DFM BIT(6) 32 #define CR_FSEL BIT(7) 33 #define CR_FTHRES_SHIFT 8 34 #define CR_TEIE BIT(16) 35 #define CR_TCIE BIT(17) 36 #define CR_FTIE BIT(18) 37 #define CR_SMIE BIT(19) 38 #define CR_TOIE BIT(20) 39 #define CR_APMS BIT(22) 40 #define CR_PRESC_MASK GENMASK(31, 24) 41 42 #define QSPI_DCR 0x04 43 #define DCR_FSIZE_MASK GENMASK(20, 16) 44 45 #define QSPI_SR 0x08 46 #define SR_TEF BIT(0) 47 #define SR_TCF BIT(1) 48 #define SR_FTF BIT(2) 49 #define SR_SMF BIT(3) 50 #define SR_TOF BIT(4) 51 #define SR_BUSY BIT(5) 52 #define SR_FLEVEL_MASK GENMASK(13, 8) 53 54 #define QSPI_FCR 0x0c 55 #define FCR_CTEF BIT(0) 56 #define FCR_CTCF BIT(1) 57 #define FCR_CSMF BIT(3) 58 59 #define QSPI_DLR 0x10 60 61 #define QSPI_CCR 0x14 62 #define CCR_INST_MASK GENMASK(7, 0) 63 #define CCR_IMODE_MASK GENMASK(9, 8) 64 #define CCR_ADMODE_MASK GENMASK(11, 10) 65 #define CCR_ADSIZE_MASK GENMASK(13, 12) 66 #define CCR_DCYC_MASK GENMASK(22, 18) 67 #define CCR_DMODE_MASK GENMASK(25, 24) 68 #define CCR_FMODE_MASK GENMASK(27, 26) 69 #define CCR_FMODE_INDW (0U << 26) 70 #define CCR_FMODE_INDR (1U << 26) 71 #define CCR_FMODE_APM (2U << 26) 72 #define CCR_FMODE_MM (3U << 26) 73 #define CCR_BUSWIDTH_0 0x0 74 #define CCR_BUSWIDTH_1 0x1 75 #define CCR_BUSWIDTH_2 0x2 76 #define CCR_BUSWIDTH_4 0x3 77 78 #define QSPI_AR 0x18 79 #define QSPI_ABR 0x1c 80 #define QSPI_DR 0x20 81 #define QSPI_PSMKR 0x24 82 #define QSPI_PSMAR 0x28 83 #define QSPI_PIR 0x2c 84 #define QSPI_LPTR 0x30 85 86 #define STM32_QSPI_MAX_MMAP_SZ SZ_256M 87 #define STM32_QSPI_MAX_NORCHIP 2 88 89 #define STM32_FIFO_TIMEOUT_US 30000 90 #define STM32_BUSY_TIMEOUT_US 100000 91 #define STM32_ABT_TIMEOUT_US 100000 92 #define STM32_COMP_TIMEOUT_MS 1000 93 #define STM32_AUTOSUSPEND_DELAY -1 94 95 struct stm32_qspi_flash { 96 u32 cs; 97 u32 presc; 98 }; 99 100 struct stm32_qspi { 101 struct device *dev; 102 struct spi_controller *ctrl; 103 phys_addr_t phys_base; 104 void __iomem *io_base; 105 void __iomem *mm_base; 106 resource_size_t mm_size; 107 struct clk *clk; 108 u32 clk_rate; 109 struct stm32_qspi_flash flash[STM32_QSPI_MAX_NORCHIP]; 110 struct completion data_completion; 111 struct completion match_completion; 112 u32 fmode; 113 114 struct dma_chan *dma_chtx; 115 struct dma_chan *dma_chrx; 116 struct completion dma_completion; 117 118 u32 cr_reg; 119 u32 dcr_reg; 120 unsigned long status_timeout; 121 122 /* 123 * to protect device configuration, could be different between 124 * 2 flash access (bk1, bk2) 125 */ 126 struct mutex lock; 127 }; 128 129 static irqreturn_t stm32_qspi_irq(int irq, void *dev_id) 130 { 131 struct stm32_qspi *qspi = (struct stm32_qspi *)dev_id; 132 u32 cr, sr; 133 134 cr = readl_relaxed(qspi->io_base + QSPI_CR); 135 sr = readl_relaxed(qspi->io_base + QSPI_SR); 136 137 if (cr & CR_SMIE && sr & SR_SMF) { 138 /* disable irq */ 139 cr &= ~CR_SMIE; 140 writel_relaxed(cr, qspi->io_base + QSPI_CR); 141 complete(&qspi->match_completion); 142 143 return IRQ_HANDLED; 144 } 145 146 if (sr & (SR_TEF | SR_TCF)) { 147 /* disable irq */ 148 cr &= ~CR_TCIE & ~CR_TEIE; 149 writel_relaxed(cr, qspi->io_base + QSPI_CR); 150 complete(&qspi->data_completion); 151 } 152 153 return IRQ_HANDLED; 154 } 155 156 static void stm32_qspi_read_fifo(u8 *val, void __iomem *addr) 157 { 158 *val = readb_relaxed(addr); 159 } 160 161 static void stm32_qspi_write_fifo(u8 *val, void __iomem *addr) 162 { 163 writeb_relaxed(*val, addr); 164 } 165 166 static int stm32_qspi_tx_poll(struct stm32_qspi *qspi, 167 const struct spi_mem_op *op) 168 { 169 void (*tx_fifo)(u8 *val, void __iomem *addr); 170 u32 len = op->data.nbytes, sr; 171 u8 *buf; 172 int ret; 173 174 if (op->data.dir == SPI_MEM_DATA_IN) { 175 tx_fifo = stm32_qspi_read_fifo; 176 buf = op->data.buf.in; 177 178 } else { 179 tx_fifo = stm32_qspi_write_fifo; 180 buf = (u8 *)op->data.buf.out; 181 } 182 183 while (len--) { 184 ret = readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_SR, 185 sr, (sr & SR_FTF), 1, 186 STM32_FIFO_TIMEOUT_US); 187 if (ret) { 188 dev_err(qspi->dev, "fifo timeout (len:%d stat:%#x)\n", 189 len, sr); 190 return ret; 191 } 192 tx_fifo(buf++, qspi->io_base + QSPI_DR); 193 } 194 195 return 0; 196 } 197 198 static int stm32_qspi_tx_mm(struct stm32_qspi *qspi, 199 const struct spi_mem_op *op) 200 { 201 memcpy_fromio(op->data.buf.in, qspi->mm_base + op->addr.val, 202 op->data.nbytes); 203 return 0; 204 } 205 206 static void stm32_qspi_dma_callback(void *arg) 207 { 208 struct completion *dma_completion = arg; 209 210 complete(dma_completion); 211 } 212 213 static int stm32_qspi_tx_dma(struct stm32_qspi *qspi, 214 const struct spi_mem_op *op) 215 { 216 struct dma_async_tx_descriptor *desc; 217 enum dma_transfer_direction dma_dir; 218 struct dma_chan *dma_ch; 219 struct sg_table sgt; 220 dma_cookie_t cookie; 221 u32 cr, t_out; 222 int err; 223 224 if (op->data.dir == SPI_MEM_DATA_IN) { 225 dma_dir = DMA_DEV_TO_MEM; 226 dma_ch = qspi->dma_chrx; 227 } else { 228 dma_dir = DMA_MEM_TO_DEV; 229 dma_ch = qspi->dma_chtx; 230 } 231 232 /* 233 * spi_map_buf return -EINVAL if the buffer is not DMA-able 234 * (DMA-able: in vmalloc | kmap | virt_addr_valid) 235 */ 236 err = spi_controller_dma_map_mem_op_data(qspi->ctrl, op, &sgt); 237 if (err) 238 return err; 239 240 desc = dmaengine_prep_slave_sg(dma_ch, sgt.sgl, sgt.nents, 241 dma_dir, DMA_PREP_INTERRUPT); 242 if (!desc) { 243 err = -ENOMEM; 244 goto out_unmap; 245 } 246 247 cr = readl_relaxed(qspi->io_base + QSPI_CR); 248 249 reinit_completion(&qspi->dma_completion); 250 desc->callback = stm32_qspi_dma_callback; 251 desc->callback_param = &qspi->dma_completion; 252 cookie = dmaengine_submit(desc); 253 err = dma_submit_error(cookie); 254 if (err) 255 goto out; 256 257 dma_async_issue_pending(dma_ch); 258 259 writel_relaxed(cr | CR_DMAEN, qspi->io_base + QSPI_CR); 260 261 t_out = sgt.nents * STM32_COMP_TIMEOUT_MS; 262 if (!wait_for_completion_timeout(&qspi->dma_completion, 263 msecs_to_jiffies(t_out))) 264 err = -ETIMEDOUT; 265 266 if (err) 267 dmaengine_terminate_all(dma_ch); 268 269 out: 270 writel_relaxed(cr & ~CR_DMAEN, qspi->io_base + QSPI_CR); 271 out_unmap: 272 spi_controller_dma_unmap_mem_op_data(qspi->ctrl, op, &sgt); 273 274 return err; 275 } 276 277 static int stm32_qspi_tx(struct stm32_qspi *qspi, const struct spi_mem_op *op) 278 { 279 if (!op->data.nbytes) 280 return 0; 281 282 if (qspi->fmode == CCR_FMODE_MM) 283 return stm32_qspi_tx_mm(qspi, op); 284 else if (((op->data.dir == SPI_MEM_DATA_IN && qspi->dma_chrx) || 285 (op->data.dir == SPI_MEM_DATA_OUT && qspi->dma_chtx)) && 286 op->data.nbytes > 4) 287 if (!stm32_qspi_tx_dma(qspi, op)) 288 return 0; 289 290 return stm32_qspi_tx_poll(qspi, op); 291 } 292 293 static int stm32_qspi_wait_nobusy(struct stm32_qspi *qspi) 294 { 295 u32 sr; 296 297 return readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_SR, sr, 298 !(sr & SR_BUSY), 1, 299 STM32_BUSY_TIMEOUT_US); 300 } 301 302 static int stm32_qspi_wait_cmd(struct stm32_qspi *qspi) 303 { 304 u32 cr, sr; 305 int err = 0; 306 307 if ((readl_relaxed(qspi->io_base + QSPI_SR) & SR_TCF) || 308 qspi->fmode == CCR_FMODE_APM) 309 goto out; 310 311 reinit_completion(&qspi->data_completion); 312 cr = readl_relaxed(qspi->io_base + QSPI_CR); 313 writel_relaxed(cr | CR_TCIE | CR_TEIE, qspi->io_base + QSPI_CR); 314 315 if (!wait_for_completion_timeout(&qspi->data_completion, 316 msecs_to_jiffies(STM32_COMP_TIMEOUT_MS))) { 317 err = -ETIMEDOUT; 318 } else { 319 sr = readl_relaxed(qspi->io_base + QSPI_SR); 320 if (sr & SR_TEF) 321 err = -EIO; 322 } 323 324 out: 325 /* clear flags */ 326 writel_relaxed(FCR_CTCF | FCR_CTEF, qspi->io_base + QSPI_FCR); 327 if (!err) 328 err = stm32_qspi_wait_nobusy(qspi); 329 330 return err; 331 } 332 333 static int stm32_qspi_wait_poll_status(struct stm32_qspi *qspi) 334 { 335 u32 cr; 336 337 reinit_completion(&qspi->match_completion); 338 cr = readl_relaxed(qspi->io_base + QSPI_CR); 339 writel_relaxed(cr | CR_SMIE, qspi->io_base + QSPI_CR); 340 341 if (!wait_for_completion_timeout(&qspi->match_completion, 342 msecs_to_jiffies(qspi->status_timeout))) 343 return -ETIMEDOUT; 344 345 writel_relaxed(FCR_CSMF, qspi->io_base + QSPI_FCR); 346 347 return 0; 348 } 349 350 static int stm32_qspi_get_mode(u8 buswidth) 351 { 352 if (buswidth >= 4) 353 return CCR_BUSWIDTH_4; 354 355 return buswidth; 356 } 357 358 static int stm32_qspi_send(struct spi_device *spi, const struct spi_mem_op *op) 359 { 360 struct stm32_qspi *qspi = spi_controller_get_devdata(spi->controller); 361 struct stm32_qspi_flash *flash = &qspi->flash[spi_get_chipselect(spi, 0)]; 362 u32 ccr, cr; 363 int timeout, err = 0, err_poll_status = 0; 364 365 dev_dbg(qspi->dev, "cmd:%#x mode:%d.%d.%d.%d addr:%#llx len:%#x\n", 366 op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth, 367 op->dummy.buswidth, op->data.buswidth, 368 op->addr.val, op->data.nbytes); 369 370 cr = readl_relaxed(qspi->io_base + QSPI_CR); 371 cr &= ~CR_PRESC_MASK & ~CR_FSEL; 372 cr |= FIELD_PREP(CR_PRESC_MASK, flash->presc); 373 cr |= FIELD_PREP(CR_FSEL, flash->cs); 374 writel_relaxed(cr, qspi->io_base + QSPI_CR); 375 376 if (op->data.nbytes) 377 writel_relaxed(op->data.nbytes - 1, 378 qspi->io_base + QSPI_DLR); 379 380 ccr = qspi->fmode; 381 ccr |= FIELD_PREP(CCR_INST_MASK, op->cmd.opcode); 382 ccr |= FIELD_PREP(CCR_IMODE_MASK, 383 stm32_qspi_get_mode(op->cmd.buswidth)); 384 385 if (op->addr.nbytes) { 386 ccr |= FIELD_PREP(CCR_ADMODE_MASK, 387 stm32_qspi_get_mode(op->addr.buswidth)); 388 ccr |= FIELD_PREP(CCR_ADSIZE_MASK, op->addr.nbytes - 1); 389 } 390 391 if (op->dummy.nbytes) 392 ccr |= FIELD_PREP(CCR_DCYC_MASK, 393 op->dummy.nbytes * 8 / op->dummy.buswidth); 394 395 if (op->data.nbytes) { 396 ccr |= FIELD_PREP(CCR_DMODE_MASK, 397 stm32_qspi_get_mode(op->data.buswidth)); 398 } 399 400 writel_relaxed(ccr, qspi->io_base + QSPI_CCR); 401 402 if (op->addr.nbytes && qspi->fmode != CCR_FMODE_MM) 403 writel_relaxed(op->addr.val, qspi->io_base + QSPI_AR); 404 405 if (qspi->fmode == CCR_FMODE_APM) 406 err_poll_status = stm32_qspi_wait_poll_status(qspi); 407 408 err = stm32_qspi_tx(qspi, op); 409 410 /* 411 * Abort in: 412 * -error case 413 * -read memory map: prefetching must be stopped if we read the last 414 * byte of device (device size - fifo size). like device size is not 415 * knows, the prefetching is always stop. 416 */ 417 if (err || err_poll_status || qspi->fmode == CCR_FMODE_MM) 418 goto abort; 419 420 /* wait end of tx in indirect mode */ 421 err = stm32_qspi_wait_cmd(qspi); 422 if (err) 423 goto abort; 424 425 return 0; 426 427 abort: 428 cr = readl_relaxed(qspi->io_base + QSPI_CR) | CR_ABORT; 429 writel_relaxed(cr, qspi->io_base + QSPI_CR); 430 431 /* wait clear of abort bit by hw */ 432 timeout = readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_CR, 433 cr, !(cr & CR_ABORT), 1, 434 STM32_ABT_TIMEOUT_US); 435 436 writel_relaxed(FCR_CTCF | FCR_CSMF, qspi->io_base + QSPI_FCR); 437 438 if (err || err_poll_status || timeout) 439 dev_err(qspi->dev, "%s err:%d err_poll_status:%d abort timeout:%d\n", 440 __func__, err, err_poll_status, timeout); 441 442 return err; 443 } 444 445 static int stm32_qspi_poll_status(struct spi_mem *mem, const struct spi_mem_op *op, 446 u16 mask, u16 match, 447 unsigned long initial_delay_us, 448 unsigned long polling_rate_us, 449 unsigned long timeout_ms) 450 { 451 struct stm32_qspi *qspi = spi_controller_get_devdata(mem->spi->controller); 452 int ret; 453 454 if (!spi_mem_supports_op(mem, op)) 455 return -EOPNOTSUPP; 456 457 ret = pm_runtime_resume_and_get(qspi->dev); 458 if (ret < 0) 459 return ret; 460 461 mutex_lock(&qspi->lock); 462 463 writel_relaxed(mask, qspi->io_base + QSPI_PSMKR); 464 writel_relaxed(match, qspi->io_base + QSPI_PSMAR); 465 qspi->fmode = CCR_FMODE_APM; 466 qspi->status_timeout = timeout_ms; 467 468 ret = stm32_qspi_send(mem->spi, op); 469 mutex_unlock(&qspi->lock); 470 471 pm_runtime_mark_last_busy(qspi->dev); 472 pm_runtime_put_autosuspend(qspi->dev); 473 474 return ret; 475 } 476 477 static int stm32_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) 478 { 479 struct stm32_qspi *qspi = spi_controller_get_devdata(mem->spi->controller); 480 int ret; 481 482 ret = pm_runtime_resume_and_get(qspi->dev); 483 if (ret < 0) 484 return ret; 485 486 mutex_lock(&qspi->lock); 487 if (op->data.dir == SPI_MEM_DATA_IN && op->data.nbytes) 488 qspi->fmode = CCR_FMODE_INDR; 489 else 490 qspi->fmode = CCR_FMODE_INDW; 491 492 ret = stm32_qspi_send(mem->spi, op); 493 mutex_unlock(&qspi->lock); 494 495 pm_runtime_mark_last_busy(qspi->dev); 496 pm_runtime_put_autosuspend(qspi->dev); 497 498 return ret; 499 } 500 501 static int stm32_qspi_dirmap_create(struct spi_mem_dirmap_desc *desc) 502 { 503 struct stm32_qspi *qspi = spi_controller_get_devdata(desc->mem->spi->controller); 504 505 if (desc->info.op_tmpl.data.dir == SPI_MEM_DATA_OUT) 506 return -EOPNOTSUPP; 507 508 /* should never happen, as mm_base == null is an error probe exit condition */ 509 if (!qspi->mm_base && desc->info.op_tmpl.data.dir == SPI_MEM_DATA_IN) 510 return -EOPNOTSUPP; 511 512 if (!qspi->mm_size) 513 return -EOPNOTSUPP; 514 515 return 0; 516 } 517 518 static ssize_t stm32_qspi_dirmap_read(struct spi_mem_dirmap_desc *desc, 519 u64 offs, size_t len, void *buf) 520 { 521 struct stm32_qspi *qspi = spi_controller_get_devdata(desc->mem->spi->controller); 522 struct spi_mem_op op; 523 u32 addr_max; 524 int ret; 525 526 ret = pm_runtime_resume_and_get(qspi->dev); 527 if (ret < 0) 528 return ret; 529 530 mutex_lock(&qspi->lock); 531 /* make a local copy of desc op_tmpl and complete dirmap rdesc 532 * spi_mem_op template with offs, len and *buf in order to get 533 * all needed transfer information into struct spi_mem_op 534 */ 535 memcpy(&op, &desc->info.op_tmpl, sizeof(struct spi_mem_op)); 536 dev_dbg(qspi->dev, "%s len = 0x%zx offs = 0x%llx buf = 0x%p\n", __func__, len, offs, buf); 537 538 op.data.nbytes = len; 539 op.addr.val = desc->info.offset + offs; 540 op.data.buf.in = buf; 541 542 addr_max = op.addr.val + op.data.nbytes + 1; 543 if (addr_max < qspi->mm_size && op.addr.buswidth) 544 qspi->fmode = CCR_FMODE_MM; 545 else 546 qspi->fmode = CCR_FMODE_INDR; 547 548 ret = stm32_qspi_send(desc->mem->spi, &op); 549 mutex_unlock(&qspi->lock); 550 551 pm_runtime_mark_last_busy(qspi->dev); 552 pm_runtime_put_autosuspend(qspi->dev); 553 554 return ret ?: len; 555 } 556 557 static int stm32_qspi_transfer_one_message(struct spi_controller *ctrl, 558 struct spi_message *msg) 559 { 560 struct stm32_qspi *qspi = spi_controller_get_devdata(ctrl); 561 struct spi_transfer *transfer; 562 struct spi_device *spi = msg->spi; 563 struct spi_mem_op op; 564 int ret = 0; 565 566 if (!spi_get_csgpiod(spi, 0)) 567 return -EOPNOTSUPP; 568 569 ret = pm_runtime_resume_and_get(qspi->dev); 570 if (ret < 0) 571 return ret; 572 573 mutex_lock(&qspi->lock); 574 575 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), true); 576 577 list_for_each_entry(transfer, &msg->transfers, transfer_list) { 578 u8 dummy_bytes = 0; 579 580 memset(&op, 0, sizeof(op)); 581 582 dev_dbg(qspi->dev, "tx_buf:%p tx_nbits:%d rx_buf:%p rx_nbits:%d len:%d dummy_data:%d\n", 583 transfer->tx_buf, transfer->tx_nbits, 584 transfer->rx_buf, transfer->rx_nbits, 585 transfer->len, transfer->dummy_data); 586 587 /* 588 * QSPI hardware supports dummy bytes transfer. 589 * If current transfer is dummy byte, merge it with the next 590 * transfer in order to take into account QSPI block constraint 591 */ 592 if (transfer->dummy_data) { 593 op.dummy.buswidth = transfer->tx_nbits; 594 op.dummy.nbytes = transfer->len; 595 dummy_bytes = transfer->len; 596 597 /* if happens, means that message is not correctly built */ 598 if (list_is_last(&transfer->transfer_list, &msg->transfers)) { 599 ret = -EINVAL; 600 goto end_of_transfer; 601 } 602 603 transfer = list_next_entry(transfer, transfer_list); 604 } 605 606 op.data.nbytes = transfer->len; 607 608 if (transfer->rx_buf) { 609 qspi->fmode = CCR_FMODE_INDR; 610 op.data.buswidth = transfer->rx_nbits; 611 op.data.dir = SPI_MEM_DATA_IN; 612 op.data.buf.in = transfer->rx_buf; 613 } else { 614 qspi->fmode = CCR_FMODE_INDW; 615 op.data.buswidth = transfer->tx_nbits; 616 op.data.dir = SPI_MEM_DATA_OUT; 617 op.data.buf.out = transfer->tx_buf; 618 } 619 620 ret = stm32_qspi_send(spi, &op); 621 if (ret) 622 goto end_of_transfer; 623 624 msg->actual_length += transfer->len + dummy_bytes; 625 } 626 627 end_of_transfer: 628 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), false); 629 630 mutex_unlock(&qspi->lock); 631 632 msg->status = ret; 633 spi_finalize_current_message(ctrl); 634 635 pm_runtime_mark_last_busy(qspi->dev); 636 pm_runtime_put_autosuspend(qspi->dev); 637 638 return ret; 639 } 640 641 static int stm32_qspi_setup(struct spi_device *spi) 642 { 643 struct spi_controller *ctrl = spi->controller; 644 struct stm32_qspi *qspi = spi_controller_get_devdata(ctrl); 645 struct stm32_qspi_flash *flash; 646 u32 presc, mode; 647 int ret; 648 649 if (ctrl->busy) 650 return -EBUSY; 651 652 if (!spi->max_speed_hz) 653 return -EINVAL; 654 655 mode = spi->mode & (SPI_TX_OCTAL | SPI_RX_OCTAL); 656 if (mode && gpiod_count(qspi->dev, "cs") == -ENOENT) { 657 dev_err(qspi->dev, "spi-rx-bus-width\\/spi-tx-bus-width\\/cs-gpios\n"); 658 dev_err(qspi->dev, "configuration not supported\n"); 659 660 return -EINVAL; 661 } 662 663 ret = pm_runtime_resume_and_get(qspi->dev); 664 if (ret < 0) 665 return ret; 666 667 presc = DIV_ROUND_UP(qspi->clk_rate, spi->max_speed_hz) - 1; 668 669 flash = &qspi->flash[spi_get_chipselect(spi, 0)]; 670 flash->cs = spi_get_chipselect(spi, 0); 671 flash->presc = presc; 672 673 mutex_lock(&qspi->lock); 674 qspi->cr_reg = CR_APMS | 3 << CR_FTHRES_SHIFT | CR_SSHIFT | CR_EN; 675 676 /* 677 * Dual flash mode is only enable in case SPI_TX_OCTAL or SPI_RX_OCTAL 678 * is set in spi->mode and "cs-gpios" properties is found in DT 679 */ 680 if (mode) { 681 qspi->cr_reg |= CR_DFM; 682 dev_dbg(qspi->dev, "Dual flash mode enable"); 683 } 684 685 writel_relaxed(qspi->cr_reg, qspi->io_base + QSPI_CR); 686 687 /* set dcr fsize to max address */ 688 qspi->dcr_reg = DCR_FSIZE_MASK; 689 writel_relaxed(qspi->dcr_reg, qspi->io_base + QSPI_DCR); 690 mutex_unlock(&qspi->lock); 691 692 pm_runtime_mark_last_busy(qspi->dev); 693 pm_runtime_put_autosuspend(qspi->dev); 694 695 return 0; 696 } 697 698 static int stm32_qspi_dma_setup(struct stm32_qspi *qspi) 699 { 700 struct dma_slave_config dma_cfg; 701 struct device *dev = qspi->dev; 702 int ret = 0; 703 704 memset(&dma_cfg, 0, sizeof(dma_cfg)); 705 706 dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 707 dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 708 dma_cfg.src_addr = qspi->phys_base + QSPI_DR; 709 dma_cfg.dst_addr = qspi->phys_base + QSPI_DR; 710 dma_cfg.src_maxburst = 4; 711 dma_cfg.dst_maxburst = 4; 712 713 qspi->dma_chrx = dma_request_chan(dev, "rx"); 714 if (IS_ERR(qspi->dma_chrx)) { 715 ret = PTR_ERR(qspi->dma_chrx); 716 qspi->dma_chrx = NULL; 717 if (ret == -EPROBE_DEFER) 718 goto out; 719 } else { 720 if (dmaengine_slave_config(qspi->dma_chrx, &dma_cfg)) { 721 dev_err(dev, "dma rx config failed\n"); 722 dma_release_channel(qspi->dma_chrx); 723 qspi->dma_chrx = NULL; 724 } 725 } 726 727 qspi->dma_chtx = dma_request_chan(dev, "tx"); 728 if (IS_ERR(qspi->dma_chtx)) { 729 ret = PTR_ERR(qspi->dma_chtx); 730 qspi->dma_chtx = NULL; 731 } else { 732 if (dmaengine_slave_config(qspi->dma_chtx, &dma_cfg)) { 733 dev_err(dev, "dma tx config failed\n"); 734 dma_release_channel(qspi->dma_chtx); 735 qspi->dma_chtx = NULL; 736 } 737 } 738 739 out: 740 init_completion(&qspi->dma_completion); 741 742 if (ret != -EPROBE_DEFER) 743 ret = 0; 744 745 return ret; 746 } 747 748 static void stm32_qspi_dma_free(struct stm32_qspi *qspi) 749 { 750 if (qspi->dma_chtx) 751 dma_release_channel(qspi->dma_chtx); 752 if (qspi->dma_chrx) 753 dma_release_channel(qspi->dma_chrx); 754 } 755 756 /* 757 * no special host constraint, so use default spi_mem_default_supports_op 758 * to check supported mode. 759 */ 760 static const struct spi_controller_mem_ops stm32_qspi_mem_ops = { 761 .exec_op = stm32_qspi_exec_op, 762 .dirmap_create = stm32_qspi_dirmap_create, 763 .dirmap_read = stm32_qspi_dirmap_read, 764 .poll_status = stm32_qspi_poll_status, 765 }; 766 767 static int stm32_qspi_probe(struct platform_device *pdev) 768 { 769 struct device *dev = &pdev->dev; 770 struct spi_controller *ctrl; 771 struct reset_control *rstc; 772 struct stm32_qspi *qspi; 773 struct resource *res; 774 int ret, irq; 775 776 ctrl = devm_spi_alloc_host(dev, sizeof(*qspi)); 777 if (!ctrl) 778 return -ENOMEM; 779 780 qspi = spi_controller_get_devdata(ctrl); 781 qspi->ctrl = ctrl; 782 783 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi"); 784 qspi->io_base = devm_ioremap_resource(dev, res); 785 if (IS_ERR(qspi->io_base)) 786 return PTR_ERR(qspi->io_base); 787 788 qspi->phys_base = res->start; 789 790 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_mm"); 791 qspi->mm_base = devm_ioremap_resource(dev, res); 792 if (IS_ERR(qspi->mm_base)) 793 return PTR_ERR(qspi->mm_base); 794 795 qspi->mm_size = resource_size(res); 796 if (qspi->mm_size > STM32_QSPI_MAX_MMAP_SZ) 797 return -EINVAL; 798 799 irq = platform_get_irq(pdev, 0); 800 if (irq < 0) 801 return irq; 802 803 ret = devm_request_irq(dev, irq, stm32_qspi_irq, 0, 804 dev_name(dev), qspi); 805 if (ret) { 806 dev_err(dev, "failed to request irq\n"); 807 return ret; 808 } 809 810 init_completion(&qspi->data_completion); 811 init_completion(&qspi->match_completion); 812 813 qspi->clk = devm_clk_get(dev, NULL); 814 if (IS_ERR(qspi->clk)) 815 return PTR_ERR(qspi->clk); 816 817 qspi->clk_rate = clk_get_rate(qspi->clk); 818 if (!qspi->clk_rate) 819 return -EINVAL; 820 821 ret = clk_prepare_enable(qspi->clk); 822 if (ret) { 823 dev_err(dev, "can not enable the clock\n"); 824 return ret; 825 } 826 827 rstc = devm_reset_control_get_exclusive(dev, NULL); 828 if (IS_ERR(rstc)) { 829 ret = PTR_ERR(rstc); 830 if (ret == -EPROBE_DEFER) 831 goto err_clk_disable; 832 } else { 833 reset_control_assert(rstc); 834 udelay(2); 835 reset_control_deassert(rstc); 836 } 837 838 qspi->dev = dev; 839 platform_set_drvdata(pdev, qspi); 840 ret = stm32_qspi_dma_setup(qspi); 841 if (ret) 842 goto err_dma_free; 843 844 mutex_init(&qspi->lock); 845 846 ctrl->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_OCTAL 847 | SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_OCTAL; 848 ctrl->setup = stm32_qspi_setup; 849 ctrl->bus_num = -1; 850 ctrl->mem_ops = &stm32_qspi_mem_ops; 851 ctrl->use_gpio_descriptors = true; 852 ctrl->transfer_one_message = stm32_qspi_transfer_one_message; 853 ctrl->num_chipselect = STM32_QSPI_MAX_NORCHIP; 854 ctrl->dev.of_node = dev->of_node; 855 856 pm_runtime_set_autosuspend_delay(dev, STM32_AUTOSUSPEND_DELAY); 857 pm_runtime_use_autosuspend(dev); 858 pm_runtime_set_active(dev); 859 pm_runtime_enable(dev); 860 pm_runtime_get_noresume(dev); 861 862 ret = spi_register_controller(ctrl); 863 if (ret) 864 goto err_pm_runtime_free; 865 866 pm_runtime_mark_last_busy(dev); 867 pm_runtime_put_autosuspend(dev); 868 869 return 0; 870 871 err_pm_runtime_free: 872 pm_runtime_get_sync(qspi->dev); 873 /* disable qspi */ 874 writel_relaxed(0, qspi->io_base + QSPI_CR); 875 mutex_destroy(&qspi->lock); 876 pm_runtime_put_noidle(qspi->dev); 877 pm_runtime_disable(qspi->dev); 878 pm_runtime_set_suspended(qspi->dev); 879 pm_runtime_dont_use_autosuspend(qspi->dev); 880 err_dma_free: 881 stm32_qspi_dma_free(qspi); 882 err_clk_disable: 883 clk_disable_unprepare(qspi->clk); 884 885 return ret; 886 } 887 888 static void stm32_qspi_remove(struct platform_device *pdev) 889 { 890 struct stm32_qspi *qspi = platform_get_drvdata(pdev); 891 892 pm_runtime_get_sync(qspi->dev); 893 spi_unregister_controller(qspi->ctrl); 894 /* disable qspi */ 895 writel_relaxed(0, qspi->io_base + QSPI_CR); 896 stm32_qspi_dma_free(qspi); 897 mutex_destroy(&qspi->lock); 898 pm_runtime_put_noidle(qspi->dev); 899 pm_runtime_disable(qspi->dev); 900 pm_runtime_set_suspended(qspi->dev); 901 pm_runtime_dont_use_autosuspend(qspi->dev); 902 clk_disable_unprepare(qspi->clk); 903 } 904 905 static int __maybe_unused stm32_qspi_runtime_suspend(struct device *dev) 906 { 907 struct stm32_qspi *qspi = dev_get_drvdata(dev); 908 909 clk_disable_unprepare(qspi->clk); 910 911 return 0; 912 } 913 914 static int __maybe_unused stm32_qspi_runtime_resume(struct device *dev) 915 { 916 struct stm32_qspi *qspi = dev_get_drvdata(dev); 917 918 return clk_prepare_enable(qspi->clk); 919 } 920 921 static int __maybe_unused stm32_qspi_suspend(struct device *dev) 922 { 923 pinctrl_pm_select_sleep_state(dev); 924 925 return pm_runtime_force_suspend(dev); 926 } 927 928 static int __maybe_unused stm32_qspi_resume(struct device *dev) 929 { 930 struct stm32_qspi *qspi = dev_get_drvdata(dev); 931 int ret; 932 933 ret = pm_runtime_force_resume(dev); 934 if (ret < 0) 935 return ret; 936 937 pinctrl_pm_select_default_state(dev); 938 939 ret = pm_runtime_resume_and_get(dev); 940 if (ret < 0) 941 return ret; 942 943 writel_relaxed(qspi->cr_reg, qspi->io_base + QSPI_CR); 944 writel_relaxed(qspi->dcr_reg, qspi->io_base + QSPI_DCR); 945 946 pm_runtime_mark_last_busy(dev); 947 pm_runtime_put_autosuspend(dev); 948 949 return 0; 950 } 951 952 static const struct dev_pm_ops stm32_qspi_pm_ops = { 953 SET_RUNTIME_PM_OPS(stm32_qspi_runtime_suspend, 954 stm32_qspi_runtime_resume, NULL) 955 SET_SYSTEM_SLEEP_PM_OPS(stm32_qspi_suspend, stm32_qspi_resume) 956 }; 957 958 static const struct of_device_id stm32_qspi_match[] = { 959 {.compatible = "st,stm32f469-qspi"}, 960 {} 961 }; 962 MODULE_DEVICE_TABLE(of, stm32_qspi_match); 963 964 static struct platform_driver stm32_qspi_driver = { 965 .probe = stm32_qspi_probe, 966 .remove = stm32_qspi_remove, 967 .driver = { 968 .name = "stm32-qspi", 969 .of_match_table = stm32_qspi_match, 970 .pm = &stm32_qspi_pm_ops, 971 }, 972 }; 973 module_platform_driver(stm32_qspi_driver); 974 975 MODULE_AUTHOR("Ludovic Barre <ludovic.barre@st.com>"); 976 MODULE_DESCRIPTION("STMicroelectronics STM32 quad spi driver"); 977 MODULE_LICENSE("GPL v2"); 978