1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) STMicroelectronics 2018 - All Rights Reserved 4 * Author: Ludovic Barre <ludovic.barre@st.com> for STMicroelectronics. 5 */ 6 #include <linux/bitfield.h> 7 #include <linux/clk.h> 8 #include <linux/dmaengine.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/errno.h> 11 #include <linux/io.h> 12 #include <linux/iopoll.h> 13 #include <linux/interrupt.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/of.h> 17 #include <linux/of_device.h> 18 #include <linux/pinctrl/consumer.h> 19 #include <linux/platform_device.h> 20 #include <linux/reset.h> 21 #include <linux/sizes.h> 22 #include <linux/spi/spi-mem.h> 23 24 #define QSPI_CR 0x00 25 #define CR_EN BIT(0) 26 #define CR_ABORT BIT(1) 27 #define CR_DMAEN BIT(2) 28 #define CR_TCEN BIT(3) 29 #define CR_SSHIFT BIT(4) 30 #define CR_DFM BIT(6) 31 #define CR_FSEL BIT(7) 32 #define CR_FTHRES_SHIFT 8 33 #define CR_TEIE BIT(16) 34 #define CR_TCIE BIT(17) 35 #define CR_FTIE BIT(18) 36 #define CR_SMIE BIT(19) 37 #define CR_TOIE BIT(20) 38 #define CR_PRESC_MASK GENMASK(31, 24) 39 40 #define QSPI_DCR 0x04 41 #define DCR_FSIZE_MASK GENMASK(20, 16) 42 43 #define QSPI_SR 0x08 44 #define SR_TEF BIT(0) 45 #define SR_TCF BIT(1) 46 #define SR_FTF BIT(2) 47 #define SR_SMF BIT(3) 48 #define SR_TOF BIT(4) 49 #define SR_BUSY BIT(5) 50 #define SR_FLEVEL_MASK GENMASK(13, 8) 51 52 #define QSPI_FCR 0x0c 53 #define FCR_CTEF BIT(0) 54 #define FCR_CTCF BIT(1) 55 56 #define QSPI_DLR 0x10 57 58 #define QSPI_CCR 0x14 59 #define CCR_INST_MASK GENMASK(7, 0) 60 #define CCR_IMODE_MASK GENMASK(9, 8) 61 #define CCR_ADMODE_MASK GENMASK(11, 10) 62 #define CCR_ADSIZE_MASK GENMASK(13, 12) 63 #define CCR_DCYC_MASK GENMASK(22, 18) 64 #define CCR_DMODE_MASK GENMASK(25, 24) 65 #define CCR_FMODE_MASK GENMASK(27, 26) 66 #define CCR_FMODE_INDW (0U << 26) 67 #define CCR_FMODE_INDR (1U << 26) 68 #define CCR_FMODE_APM (2U << 26) 69 #define CCR_FMODE_MM (3U << 26) 70 #define CCR_BUSWIDTH_0 0x0 71 #define CCR_BUSWIDTH_1 0x1 72 #define CCR_BUSWIDTH_2 0x2 73 #define CCR_BUSWIDTH_4 0x3 74 75 #define QSPI_AR 0x18 76 #define QSPI_ABR 0x1c 77 #define QSPI_DR 0x20 78 #define QSPI_PSMKR 0x24 79 #define QSPI_PSMAR 0x28 80 #define QSPI_PIR 0x2c 81 #define QSPI_LPTR 0x30 82 83 #define STM32_QSPI_MAX_MMAP_SZ SZ_256M 84 #define STM32_QSPI_MAX_NORCHIP 2 85 86 #define STM32_FIFO_TIMEOUT_US 30000 87 #define STM32_BUSY_TIMEOUT_US 100000 88 #define STM32_ABT_TIMEOUT_US 100000 89 #define STM32_COMP_TIMEOUT_MS 1000 90 91 struct stm32_qspi_flash { 92 struct stm32_qspi *qspi; 93 u32 cs; 94 u32 presc; 95 }; 96 97 struct stm32_qspi { 98 struct device *dev; 99 struct spi_controller *ctrl; 100 phys_addr_t phys_base; 101 void __iomem *io_base; 102 void __iomem *mm_base; 103 resource_size_t mm_size; 104 struct clk *clk; 105 u32 clk_rate; 106 struct stm32_qspi_flash flash[STM32_QSPI_MAX_NORCHIP]; 107 struct completion data_completion; 108 u32 fmode; 109 110 struct dma_chan *dma_chtx; 111 struct dma_chan *dma_chrx; 112 struct completion dma_completion; 113 114 u32 cr_reg; 115 u32 dcr_reg; 116 117 /* 118 * to protect device configuration, could be different between 119 * 2 flash access (bk1, bk2) 120 */ 121 struct mutex lock; 122 }; 123 124 static irqreturn_t stm32_qspi_irq(int irq, void *dev_id) 125 { 126 struct stm32_qspi *qspi = (struct stm32_qspi *)dev_id; 127 u32 cr, sr; 128 129 sr = readl_relaxed(qspi->io_base + QSPI_SR); 130 131 if (sr & (SR_TEF | SR_TCF)) { 132 /* disable irq */ 133 cr = readl_relaxed(qspi->io_base + QSPI_CR); 134 cr &= ~CR_TCIE & ~CR_TEIE; 135 writel_relaxed(cr, qspi->io_base + QSPI_CR); 136 complete(&qspi->data_completion); 137 } 138 139 return IRQ_HANDLED; 140 } 141 142 static void stm32_qspi_read_fifo(u8 *val, void __iomem *addr) 143 { 144 *val = readb_relaxed(addr); 145 } 146 147 static void stm32_qspi_write_fifo(u8 *val, void __iomem *addr) 148 { 149 writeb_relaxed(*val, addr); 150 } 151 152 static int stm32_qspi_tx_poll(struct stm32_qspi *qspi, 153 const struct spi_mem_op *op) 154 { 155 void (*tx_fifo)(u8 *val, void __iomem *addr); 156 u32 len = op->data.nbytes, sr; 157 u8 *buf; 158 int ret; 159 160 if (op->data.dir == SPI_MEM_DATA_IN) { 161 tx_fifo = stm32_qspi_read_fifo; 162 buf = op->data.buf.in; 163 164 } else { 165 tx_fifo = stm32_qspi_write_fifo; 166 buf = (u8 *)op->data.buf.out; 167 } 168 169 while (len--) { 170 ret = readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_SR, 171 sr, (sr & SR_FTF), 1, 172 STM32_FIFO_TIMEOUT_US); 173 if (ret) { 174 dev_err(qspi->dev, "fifo timeout (len:%d stat:%#x)\n", 175 len, sr); 176 return ret; 177 } 178 tx_fifo(buf++, qspi->io_base + QSPI_DR); 179 } 180 181 return 0; 182 } 183 184 static int stm32_qspi_tx_mm(struct stm32_qspi *qspi, 185 const struct spi_mem_op *op) 186 { 187 memcpy_fromio(op->data.buf.in, qspi->mm_base + op->addr.val, 188 op->data.nbytes); 189 return 0; 190 } 191 192 static void stm32_qspi_dma_callback(void *arg) 193 { 194 struct completion *dma_completion = arg; 195 196 complete(dma_completion); 197 } 198 199 static int stm32_qspi_tx_dma(struct stm32_qspi *qspi, 200 const struct spi_mem_op *op) 201 { 202 struct dma_async_tx_descriptor *desc; 203 enum dma_transfer_direction dma_dir; 204 struct dma_chan *dma_ch; 205 struct sg_table sgt; 206 dma_cookie_t cookie; 207 u32 cr, t_out; 208 int err; 209 210 if (op->data.dir == SPI_MEM_DATA_IN) { 211 dma_dir = DMA_DEV_TO_MEM; 212 dma_ch = qspi->dma_chrx; 213 } else { 214 dma_dir = DMA_MEM_TO_DEV; 215 dma_ch = qspi->dma_chtx; 216 } 217 218 /* 219 * spi_map_buf return -EINVAL if the buffer is not DMA-able 220 * (DMA-able: in vmalloc | kmap | virt_addr_valid) 221 */ 222 err = spi_controller_dma_map_mem_op_data(qspi->ctrl, op, &sgt); 223 if (err) 224 return err; 225 226 desc = dmaengine_prep_slave_sg(dma_ch, sgt.sgl, sgt.nents, 227 dma_dir, DMA_PREP_INTERRUPT); 228 if (!desc) { 229 err = -ENOMEM; 230 goto out_unmap; 231 } 232 233 cr = readl_relaxed(qspi->io_base + QSPI_CR); 234 235 reinit_completion(&qspi->dma_completion); 236 desc->callback = stm32_qspi_dma_callback; 237 desc->callback_param = &qspi->dma_completion; 238 cookie = dmaengine_submit(desc); 239 err = dma_submit_error(cookie); 240 if (err) 241 goto out; 242 243 dma_async_issue_pending(dma_ch); 244 245 writel_relaxed(cr | CR_DMAEN, qspi->io_base + QSPI_CR); 246 247 t_out = sgt.nents * STM32_COMP_TIMEOUT_MS; 248 if (!wait_for_completion_timeout(&qspi->dma_completion, 249 msecs_to_jiffies(t_out))) 250 err = -ETIMEDOUT; 251 252 if (err) 253 dmaengine_terminate_all(dma_ch); 254 255 out: 256 writel_relaxed(cr & ~CR_DMAEN, qspi->io_base + QSPI_CR); 257 out_unmap: 258 spi_controller_dma_unmap_mem_op_data(qspi->ctrl, op, &sgt); 259 260 return err; 261 } 262 263 static int stm32_qspi_tx(struct stm32_qspi *qspi, const struct spi_mem_op *op) 264 { 265 if (!op->data.nbytes) 266 return 0; 267 268 if (qspi->fmode == CCR_FMODE_MM) 269 return stm32_qspi_tx_mm(qspi, op); 270 else if ((op->data.dir == SPI_MEM_DATA_IN && qspi->dma_chrx) || 271 (op->data.dir == SPI_MEM_DATA_OUT && qspi->dma_chtx)) 272 if (!stm32_qspi_tx_dma(qspi, op)) 273 return 0; 274 275 return stm32_qspi_tx_poll(qspi, op); 276 } 277 278 static int stm32_qspi_wait_nobusy(struct stm32_qspi *qspi) 279 { 280 u32 sr; 281 282 return readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_SR, sr, 283 !(sr & SR_BUSY), 1, 284 STM32_BUSY_TIMEOUT_US); 285 } 286 287 static int stm32_qspi_wait_cmd(struct stm32_qspi *qspi, 288 const struct spi_mem_op *op) 289 { 290 u32 cr, sr; 291 int err = 0; 292 293 if (!op->data.nbytes) 294 return stm32_qspi_wait_nobusy(qspi); 295 296 if (readl_relaxed(qspi->io_base + QSPI_SR) & SR_TCF) 297 goto out; 298 299 reinit_completion(&qspi->data_completion); 300 cr = readl_relaxed(qspi->io_base + QSPI_CR); 301 writel_relaxed(cr | CR_TCIE | CR_TEIE, qspi->io_base + QSPI_CR); 302 303 if (!wait_for_completion_timeout(&qspi->data_completion, 304 msecs_to_jiffies(STM32_COMP_TIMEOUT_MS))) { 305 err = -ETIMEDOUT; 306 } else { 307 sr = readl_relaxed(qspi->io_base + QSPI_SR); 308 if (sr & SR_TEF) 309 err = -EIO; 310 } 311 312 out: 313 /* clear flags */ 314 writel_relaxed(FCR_CTCF | FCR_CTEF, qspi->io_base + QSPI_FCR); 315 316 return err; 317 } 318 319 static int stm32_qspi_get_mode(struct stm32_qspi *qspi, u8 buswidth) 320 { 321 if (buswidth == 4) 322 return CCR_BUSWIDTH_4; 323 324 return buswidth; 325 } 326 327 static int stm32_qspi_send(struct spi_mem *mem, const struct spi_mem_op *op) 328 { 329 struct stm32_qspi *qspi = spi_controller_get_devdata(mem->spi->master); 330 struct stm32_qspi_flash *flash = &qspi->flash[mem->spi->chip_select]; 331 u32 ccr, cr, addr_max; 332 int timeout, err = 0; 333 334 dev_dbg(qspi->dev, "cmd:%#x mode:%d.%d.%d.%d addr:%#llx len:%#x\n", 335 op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth, 336 op->dummy.buswidth, op->data.buswidth, 337 op->addr.val, op->data.nbytes); 338 339 err = stm32_qspi_wait_nobusy(qspi); 340 if (err) 341 goto abort; 342 343 addr_max = op->addr.val + op->data.nbytes + 1; 344 345 if (op->data.dir == SPI_MEM_DATA_IN) { 346 if (addr_max < qspi->mm_size && 347 op->addr.buswidth) 348 qspi->fmode = CCR_FMODE_MM; 349 else 350 qspi->fmode = CCR_FMODE_INDR; 351 } else { 352 qspi->fmode = CCR_FMODE_INDW; 353 } 354 355 cr = readl_relaxed(qspi->io_base + QSPI_CR); 356 cr &= ~CR_PRESC_MASK & ~CR_FSEL; 357 cr |= FIELD_PREP(CR_PRESC_MASK, flash->presc); 358 cr |= FIELD_PREP(CR_FSEL, flash->cs); 359 writel_relaxed(cr, qspi->io_base + QSPI_CR); 360 361 if (op->data.nbytes) 362 writel_relaxed(op->data.nbytes - 1, 363 qspi->io_base + QSPI_DLR); 364 else 365 qspi->fmode = CCR_FMODE_INDW; 366 367 ccr = qspi->fmode; 368 ccr |= FIELD_PREP(CCR_INST_MASK, op->cmd.opcode); 369 ccr |= FIELD_PREP(CCR_IMODE_MASK, 370 stm32_qspi_get_mode(qspi, op->cmd.buswidth)); 371 372 if (op->addr.nbytes) { 373 ccr |= FIELD_PREP(CCR_ADMODE_MASK, 374 stm32_qspi_get_mode(qspi, op->addr.buswidth)); 375 ccr |= FIELD_PREP(CCR_ADSIZE_MASK, op->addr.nbytes - 1); 376 } 377 378 if (op->dummy.buswidth && op->dummy.nbytes) 379 ccr |= FIELD_PREP(CCR_DCYC_MASK, 380 op->dummy.nbytes * 8 / op->dummy.buswidth); 381 382 if (op->data.nbytes) { 383 ccr |= FIELD_PREP(CCR_DMODE_MASK, 384 stm32_qspi_get_mode(qspi, op->data.buswidth)); 385 } 386 387 writel_relaxed(ccr, qspi->io_base + QSPI_CCR); 388 389 if (op->addr.nbytes && qspi->fmode != CCR_FMODE_MM) 390 writel_relaxed(op->addr.val, qspi->io_base + QSPI_AR); 391 392 err = stm32_qspi_tx(qspi, op); 393 394 /* 395 * Abort in: 396 * -error case 397 * -read memory map: prefetching must be stopped if we read the last 398 * byte of device (device size - fifo size). like device size is not 399 * knows, the prefetching is always stop. 400 */ 401 if (err || qspi->fmode == CCR_FMODE_MM) 402 goto abort; 403 404 /* wait end of tx in indirect mode */ 405 err = stm32_qspi_wait_cmd(qspi, op); 406 if (err) 407 goto abort; 408 409 return 0; 410 411 abort: 412 cr = readl_relaxed(qspi->io_base + QSPI_CR) | CR_ABORT; 413 writel_relaxed(cr, qspi->io_base + QSPI_CR); 414 415 /* wait clear of abort bit by hw */ 416 timeout = readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_CR, 417 cr, !(cr & CR_ABORT), 1, 418 STM32_ABT_TIMEOUT_US); 419 420 writel_relaxed(FCR_CTCF, qspi->io_base + QSPI_FCR); 421 422 if (err || timeout) 423 dev_err(qspi->dev, "%s err:%d abort timeout:%d\n", 424 __func__, err, timeout); 425 426 return err; 427 } 428 429 static int stm32_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) 430 { 431 struct stm32_qspi *qspi = spi_controller_get_devdata(mem->spi->master); 432 int ret; 433 434 mutex_lock(&qspi->lock); 435 ret = stm32_qspi_send(mem, op); 436 mutex_unlock(&qspi->lock); 437 438 return ret; 439 } 440 441 static int stm32_qspi_setup(struct spi_device *spi) 442 { 443 struct spi_controller *ctrl = spi->master; 444 struct stm32_qspi *qspi = spi_controller_get_devdata(ctrl); 445 struct stm32_qspi_flash *flash; 446 u32 presc; 447 448 if (ctrl->busy) 449 return -EBUSY; 450 451 if (!spi->max_speed_hz) 452 return -EINVAL; 453 454 presc = DIV_ROUND_UP(qspi->clk_rate, spi->max_speed_hz) - 1; 455 456 flash = &qspi->flash[spi->chip_select]; 457 flash->qspi = qspi; 458 flash->cs = spi->chip_select; 459 flash->presc = presc; 460 461 mutex_lock(&qspi->lock); 462 qspi->cr_reg = 3 << CR_FTHRES_SHIFT | CR_SSHIFT | CR_EN; 463 writel_relaxed(qspi->cr_reg, qspi->io_base + QSPI_CR); 464 465 /* set dcr fsize to max address */ 466 qspi->dcr_reg = DCR_FSIZE_MASK; 467 writel_relaxed(qspi->dcr_reg, qspi->io_base + QSPI_DCR); 468 mutex_unlock(&qspi->lock); 469 470 return 0; 471 } 472 473 static void stm32_qspi_dma_setup(struct stm32_qspi *qspi) 474 { 475 struct dma_slave_config dma_cfg; 476 struct device *dev = qspi->dev; 477 478 memset(&dma_cfg, 0, sizeof(dma_cfg)); 479 480 dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 481 dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 482 dma_cfg.src_addr = qspi->phys_base + QSPI_DR; 483 dma_cfg.dst_addr = qspi->phys_base + QSPI_DR; 484 dma_cfg.src_maxburst = 4; 485 dma_cfg.dst_maxburst = 4; 486 487 qspi->dma_chrx = dma_request_slave_channel(dev, "rx"); 488 if (qspi->dma_chrx) { 489 if (dmaengine_slave_config(qspi->dma_chrx, &dma_cfg)) { 490 dev_err(dev, "dma rx config failed\n"); 491 dma_release_channel(qspi->dma_chrx); 492 qspi->dma_chrx = NULL; 493 } 494 } 495 496 qspi->dma_chtx = dma_request_slave_channel(dev, "tx"); 497 if (qspi->dma_chtx) { 498 if (dmaengine_slave_config(qspi->dma_chtx, &dma_cfg)) { 499 dev_err(dev, "dma tx config failed\n"); 500 dma_release_channel(qspi->dma_chtx); 501 qspi->dma_chtx = NULL; 502 } 503 } 504 505 init_completion(&qspi->dma_completion); 506 } 507 508 static void stm32_qspi_dma_free(struct stm32_qspi *qspi) 509 { 510 if (qspi->dma_chtx) 511 dma_release_channel(qspi->dma_chtx); 512 if (qspi->dma_chrx) 513 dma_release_channel(qspi->dma_chrx); 514 } 515 516 /* 517 * no special host constraint, so use default spi_mem_default_supports_op 518 * to check supported mode. 519 */ 520 static const struct spi_controller_mem_ops stm32_qspi_mem_ops = { 521 .exec_op = stm32_qspi_exec_op, 522 }; 523 524 static void stm32_qspi_release(struct stm32_qspi *qspi) 525 { 526 /* disable qspi */ 527 writel_relaxed(0, qspi->io_base + QSPI_CR); 528 stm32_qspi_dma_free(qspi); 529 mutex_destroy(&qspi->lock); 530 clk_disable_unprepare(qspi->clk); 531 } 532 533 static int stm32_qspi_probe(struct platform_device *pdev) 534 { 535 struct device *dev = &pdev->dev; 536 struct spi_controller *ctrl; 537 struct reset_control *rstc; 538 struct stm32_qspi *qspi; 539 struct resource *res; 540 int ret, irq; 541 542 ctrl = spi_alloc_master(dev, sizeof(*qspi)); 543 if (!ctrl) 544 return -ENOMEM; 545 546 qspi = spi_controller_get_devdata(ctrl); 547 qspi->ctrl = ctrl; 548 549 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi"); 550 qspi->io_base = devm_ioremap_resource(dev, res); 551 if (IS_ERR(qspi->io_base)) { 552 ret = PTR_ERR(qspi->io_base); 553 goto err; 554 } 555 556 qspi->phys_base = res->start; 557 558 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_mm"); 559 qspi->mm_base = devm_ioremap_resource(dev, res); 560 if (IS_ERR(qspi->mm_base)) { 561 ret = PTR_ERR(qspi->mm_base); 562 goto err; 563 } 564 565 qspi->mm_size = resource_size(res); 566 if (qspi->mm_size > STM32_QSPI_MAX_MMAP_SZ) { 567 ret = -EINVAL; 568 goto err; 569 } 570 571 irq = platform_get_irq(pdev, 0); 572 if (irq < 0) 573 return irq; 574 575 ret = devm_request_irq(dev, irq, stm32_qspi_irq, 0, 576 dev_name(dev), qspi); 577 if (ret) { 578 dev_err(dev, "failed to request irq\n"); 579 goto err; 580 } 581 582 init_completion(&qspi->data_completion); 583 584 qspi->clk = devm_clk_get(dev, NULL); 585 if (IS_ERR(qspi->clk)) { 586 ret = PTR_ERR(qspi->clk); 587 goto err; 588 } 589 590 qspi->clk_rate = clk_get_rate(qspi->clk); 591 if (!qspi->clk_rate) { 592 ret = -EINVAL; 593 goto err; 594 } 595 596 ret = clk_prepare_enable(qspi->clk); 597 if (ret) { 598 dev_err(dev, "can not enable the clock\n"); 599 goto err; 600 } 601 602 rstc = devm_reset_control_get_exclusive(dev, NULL); 603 if (!IS_ERR(rstc)) { 604 reset_control_assert(rstc); 605 udelay(2); 606 reset_control_deassert(rstc); 607 } 608 609 qspi->dev = dev; 610 platform_set_drvdata(pdev, qspi); 611 stm32_qspi_dma_setup(qspi); 612 mutex_init(&qspi->lock); 613 614 ctrl->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD 615 | SPI_TX_DUAL | SPI_TX_QUAD; 616 ctrl->setup = stm32_qspi_setup; 617 ctrl->bus_num = -1; 618 ctrl->mem_ops = &stm32_qspi_mem_ops; 619 ctrl->num_chipselect = STM32_QSPI_MAX_NORCHIP; 620 ctrl->dev.of_node = dev->of_node; 621 622 ret = devm_spi_register_master(dev, ctrl); 623 if (!ret) 624 return 0; 625 626 err: 627 stm32_qspi_release(qspi); 628 spi_master_put(qspi->ctrl); 629 630 return ret; 631 } 632 633 static int stm32_qspi_remove(struct platform_device *pdev) 634 { 635 struct stm32_qspi *qspi = platform_get_drvdata(pdev); 636 637 stm32_qspi_release(qspi); 638 return 0; 639 } 640 641 static int __maybe_unused stm32_qspi_suspend(struct device *dev) 642 { 643 struct stm32_qspi *qspi = dev_get_drvdata(dev); 644 645 clk_disable_unprepare(qspi->clk); 646 pinctrl_pm_select_sleep_state(dev); 647 648 return 0; 649 } 650 651 static int __maybe_unused stm32_qspi_resume(struct device *dev) 652 { 653 struct stm32_qspi *qspi = dev_get_drvdata(dev); 654 655 pinctrl_pm_select_default_state(dev); 656 clk_prepare_enable(qspi->clk); 657 658 writel_relaxed(qspi->cr_reg, qspi->io_base + QSPI_CR); 659 writel_relaxed(qspi->dcr_reg, qspi->io_base + QSPI_DCR); 660 661 return 0; 662 } 663 664 static SIMPLE_DEV_PM_OPS(stm32_qspi_pm_ops, stm32_qspi_suspend, stm32_qspi_resume); 665 666 static const struct of_device_id stm32_qspi_match[] = { 667 {.compatible = "st,stm32f469-qspi"}, 668 {} 669 }; 670 MODULE_DEVICE_TABLE(of, stm32_qspi_match); 671 672 static struct platform_driver stm32_qspi_driver = { 673 .probe = stm32_qspi_probe, 674 .remove = stm32_qspi_remove, 675 .driver = { 676 .name = "stm32-qspi", 677 .of_match_table = stm32_qspi_match, 678 .pm = &stm32_qspi_pm_ops, 679 }, 680 }; 681 module_platform_driver(stm32_qspi_driver); 682 683 MODULE_AUTHOR("Ludovic Barre <ludovic.barre@st.com>"); 684 MODULE_DESCRIPTION("STMicroelectronics STM32 quad spi driver"); 685 MODULE_LICENSE("GPL v2"); 686