1 /* 2 * SuperH MSIOF SPI Master Interface 3 * 4 * Copyright (c) 2009 Magnus Damm 5 * Copyright (C) 2014 Glider bvba 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 */ 12 13 #include <linux/bitmap.h> 14 #include <linux/clk.h> 15 #include <linux/completion.h> 16 #include <linux/delay.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/dmaengine.h> 19 #include <linux/err.h> 20 #include <linux/gpio.h> 21 #include <linux/interrupt.h> 22 #include <linux/io.h> 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/of.h> 26 #include <linux/of_device.h> 27 #include <linux/platform_device.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/sh_dma.h> 30 31 #include <linux/spi/sh_msiof.h> 32 #include <linux/spi/spi.h> 33 34 #include <asm/unaligned.h> 35 36 37 struct sh_msiof_chipdata { 38 u16 tx_fifo_size; 39 u16 rx_fifo_size; 40 u16 master_flags; 41 }; 42 43 struct sh_msiof_spi_priv { 44 struct spi_master *master; 45 void __iomem *mapbase; 46 struct clk *clk; 47 struct platform_device *pdev; 48 const struct sh_msiof_chipdata *chipdata; 49 struct sh_msiof_spi_info *info; 50 struct completion done; 51 int tx_fifo_size; 52 int rx_fifo_size; 53 void *tx_dma_page; 54 void *rx_dma_page; 55 dma_addr_t tx_dma_addr; 56 dma_addr_t rx_dma_addr; 57 }; 58 59 #define TMDR1 0x00 /* Transmit Mode Register 1 */ 60 #define TMDR2 0x04 /* Transmit Mode Register 2 */ 61 #define TMDR3 0x08 /* Transmit Mode Register 3 */ 62 #define RMDR1 0x10 /* Receive Mode Register 1 */ 63 #define RMDR2 0x14 /* Receive Mode Register 2 */ 64 #define RMDR3 0x18 /* Receive Mode Register 3 */ 65 #define TSCR 0x20 /* Transmit Clock Select Register */ 66 #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */ 67 #define CTR 0x28 /* Control Register */ 68 #define FCTR 0x30 /* FIFO Control Register */ 69 #define STR 0x40 /* Status Register */ 70 #define IER 0x44 /* Interrupt Enable Register */ 71 #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */ 72 #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */ 73 #define TFDR 0x50 /* Transmit FIFO Data Register */ 74 #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */ 75 #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */ 76 #define RFDR 0x60 /* Receive FIFO Data Register */ 77 78 /* TMDR1 and RMDR1 */ 79 #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */ 80 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */ 81 #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */ 82 #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */ 83 #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */ 84 #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */ 85 #define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */ 86 #define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */ 87 #define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */ 88 #define MDR1_FLD_SHIFT 2 89 #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */ 90 /* TMDR1 */ 91 #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */ 92 93 /* TMDR2 and RMDR2 */ 94 #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */ 95 #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */ 96 #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */ 97 98 #define MAX_WDLEN 256U 99 100 /* TSCR and RSCR */ 101 #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */ 102 #define SCR_BRPS(i) (((i) - 1) << 8) 103 #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */ 104 #define SCR_BRDV_DIV_2 0x0000 105 #define SCR_BRDV_DIV_4 0x0001 106 #define SCR_BRDV_DIV_8 0x0002 107 #define SCR_BRDV_DIV_16 0x0003 108 #define SCR_BRDV_DIV_32 0x0004 109 #define SCR_BRDV_DIV_1 0x0007 110 111 /* CTR */ 112 #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */ 113 #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */ 114 #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */ 115 #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */ 116 #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */ 117 #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */ 118 #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */ 119 #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */ 120 #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */ 121 #define CTR_TXDIZ_LOW 0x00000000 /* 0 */ 122 #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */ 123 #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */ 124 #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */ 125 #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */ 126 #define CTR_TXE 0x00000200 /* Transmit Enable */ 127 #define CTR_RXE 0x00000100 /* Receive Enable */ 128 129 /* FCTR */ 130 #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */ 131 #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */ 132 #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */ 133 #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */ 134 #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */ 135 #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */ 136 #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */ 137 #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */ 138 #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */ 139 #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */ 140 #define FCTR_TFUA_SHIFT 20 141 #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT) 142 #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */ 143 #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */ 144 #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */ 145 #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */ 146 #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */ 147 #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */ 148 #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */ 149 #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */ 150 #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */ 151 #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */ 152 #define FCTR_RFUA_SHIFT 4 153 #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT) 154 155 /* STR */ 156 #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */ 157 #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */ 158 #define STR_TEOF 0x00800000 /* Frame Transmission End */ 159 #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */ 160 #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */ 161 #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */ 162 #define STR_RFFUL 0x00002000 /* Receive FIFO Full */ 163 #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */ 164 #define STR_REOF 0x00000080 /* Frame Reception End */ 165 #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */ 166 #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */ 167 #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */ 168 169 /* IER */ 170 #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */ 171 #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */ 172 #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */ 173 #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */ 174 #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */ 175 #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */ 176 #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */ 177 #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */ 178 #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */ 179 #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */ 180 #define IER_REOFE 0x00000080 /* Frame Reception End Enable */ 181 #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */ 182 #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */ 183 #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */ 184 185 186 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs) 187 { 188 switch (reg_offs) { 189 case TSCR: 190 case RSCR: 191 return ioread16(p->mapbase + reg_offs); 192 default: 193 return ioread32(p->mapbase + reg_offs); 194 } 195 } 196 197 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs, 198 u32 value) 199 { 200 switch (reg_offs) { 201 case TSCR: 202 case RSCR: 203 iowrite16(value, p->mapbase + reg_offs); 204 break; 205 default: 206 iowrite32(value, p->mapbase + reg_offs); 207 break; 208 } 209 } 210 211 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p, 212 u32 clr, u32 set) 213 { 214 u32 mask = clr | set; 215 u32 data; 216 int k; 217 218 data = sh_msiof_read(p, CTR); 219 data &= ~clr; 220 data |= set; 221 sh_msiof_write(p, CTR, data); 222 223 for (k = 100; k > 0; k--) { 224 if ((sh_msiof_read(p, CTR) & mask) == set) 225 break; 226 227 udelay(10); 228 } 229 230 return k > 0 ? 0 : -ETIMEDOUT; 231 } 232 233 static irqreturn_t sh_msiof_spi_irq(int irq, void *data) 234 { 235 struct sh_msiof_spi_priv *p = data; 236 237 /* just disable the interrupt and wake up */ 238 sh_msiof_write(p, IER, 0); 239 complete(&p->done); 240 241 return IRQ_HANDLED; 242 } 243 244 static struct { 245 unsigned short div; 246 unsigned short brdv; 247 } const sh_msiof_spi_div_table[] = { 248 { 1, SCR_BRDV_DIV_1 }, 249 { 2, SCR_BRDV_DIV_2 }, 250 { 4, SCR_BRDV_DIV_4 }, 251 { 8, SCR_BRDV_DIV_8 }, 252 { 16, SCR_BRDV_DIV_16 }, 253 { 32, SCR_BRDV_DIV_32 }, 254 }; 255 256 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p, 257 unsigned long parent_rate, u32 spi_hz) 258 { 259 unsigned long div = 1024; 260 u32 brps, scr; 261 size_t k; 262 263 if (!WARN_ON(!spi_hz || !parent_rate)) 264 div = DIV_ROUND_UP(parent_rate, spi_hz); 265 266 for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) { 267 brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div); 268 if (brps <= 32) /* max of brdv is 32 */ 269 break; 270 } 271 272 k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1); 273 274 scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps); 275 sh_msiof_write(p, TSCR, scr); 276 if (!(p->chipdata->master_flags & SPI_MASTER_MUST_TX)) 277 sh_msiof_write(p, RSCR, scr); 278 } 279 280 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl) 281 { 282 /* 283 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl 284 * b'000 : 0 285 * b'001 : 100 286 * b'010 : 200 287 * b'011 (SYNCDL only) : 300 288 * b'101 : 50 289 * b'110 : 150 290 */ 291 if (dtdl_or_syncdl % 100) 292 return dtdl_or_syncdl / 100 + 5; 293 else 294 return dtdl_or_syncdl / 100; 295 } 296 297 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p) 298 { 299 u32 val; 300 301 if (!p->info) 302 return 0; 303 304 /* check if DTDL and SYNCDL is allowed value */ 305 if (p->info->dtdl > 200 || p->info->syncdl > 300) { 306 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n"); 307 return 0; 308 } 309 310 /* check if the sum of DTDL and SYNCDL becomes an integer value */ 311 if ((p->info->dtdl + p->info->syncdl) % 100) { 312 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n"); 313 return 0; 314 } 315 316 val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT; 317 val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT; 318 319 return val; 320 } 321 322 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, 323 u32 cpol, u32 cpha, 324 u32 tx_hi_z, u32 lsb_first, u32 cs_high) 325 { 326 u32 tmp; 327 int edge; 328 329 /* 330 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG 331 * 0 0 10 10 1 1 332 * 0 1 10 10 0 0 333 * 1 0 11 11 0 0 334 * 1 1 11 11 1 1 335 */ 336 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP; 337 tmp |= !cs_high << MDR1_SYNCAC_SHIFT; 338 tmp |= lsb_first << MDR1_BITLSB_SHIFT; 339 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p); 340 sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON); 341 if (p->chipdata->master_flags & SPI_MASTER_MUST_TX) { 342 /* These bits are reserved if RX needs TX */ 343 tmp &= ~0x0000ffff; 344 } 345 sh_msiof_write(p, RMDR1, tmp); 346 347 tmp = 0; 348 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT; 349 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT; 350 351 edge = cpol ^ !cpha; 352 353 tmp |= edge << CTR_TEDG_SHIFT; 354 tmp |= edge << CTR_REDG_SHIFT; 355 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW; 356 sh_msiof_write(p, CTR, tmp); 357 } 358 359 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p, 360 const void *tx_buf, void *rx_buf, 361 u32 bits, u32 words) 362 { 363 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words); 364 365 if (tx_buf || (p->chipdata->master_flags & SPI_MASTER_MUST_TX)) 366 sh_msiof_write(p, TMDR2, dr2); 367 else 368 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1); 369 370 if (rx_buf) 371 sh_msiof_write(p, RMDR2, dr2); 372 } 373 374 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p) 375 { 376 sh_msiof_write(p, STR, sh_msiof_read(p, STR)); 377 } 378 379 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p, 380 const void *tx_buf, int words, int fs) 381 { 382 const u8 *buf_8 = tx_buf; 383 int k; 384 385 for (k = 0; k < words; k++) 386 sh_msiof_write(p, TFDR, buf_8[k] << fs); 387 } 388 389 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p, 390 const void *tx_buf, int words, int fs) 391 { 392 const u16 *buf_16 = tx_buf; 393 int k; 394 395 for (k = 0; k < words; k++) 396 sh_msiof_write(p, TFDR, buf_16[k] << fs); 397 } 398 399 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p, 400 const void *tx_buf, int words, int fs) 401 { 402 const u16 *buf_16 = tx_buf; 403 int k; 404 405 for (k = 0; k < words; k++) 406 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs); 407 } 408 409 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p, 410 const void *tx_buf, int words, int fs) 411 { 412 const u32 *buf_32 = tx_buf; 413 int k; 414 415 for (k = 0; k < words; k++) 416 sh_msiof_write(p, TFDR, buf_32[k] << fs); 417 } 418 419 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p, 420 const void *tx_buf, int words, int fs) 421 { 422 const u32 *buf_32 = tx_buf; 423 int k; 424 425 for (k = 0; k < words; k++) 426 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs); 427 } 428 429 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p, 430 const void *tx_buf, int words, int fs) 431 { 432 const u32 *buf_32 = tx_buf; 433 int k; 434 435 for (k = 0; k < words; k++) 436 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs)); 437 } 438 439 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p, 440 const void *tx_buf, int words, int fs) 441 { 442 const u32 *buf_32 = tx_buf; 443 int k; 444 445 for (k = 0; k < words; k++) 446 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs)); 447 } 448 449 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p, 450 void *rx_buf, int words, int fs) 451 { 452 u8 *buf_8 = rx_buf; 453 int k; 454 455 for (k = 0; k < words; k++) 456 buf_8[k] = sh_msiof_read(p, RFDR) >> fs; 457 } 458 459 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p, 460 void *rx_buf, int words, int fs) 461 { 462 u16 *buf_16 = rx_buf; 463 int k; 464 465 for (k = 0; k < words; k++) 466 buf_16[k] = sh_msiof_read(p, RFDR) >> fs; 467 } 468 469 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p, 470 void *rx_buf, int words, int fs) 471 { 472 u16 *buf_16 = rx_buf; 473 int k; 474 475 for (k = 0; k < words; k++) 476 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]); 477 } 478 479 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p, 480 void *rx_buf, int words, int fs) 481 { 482 u32 *buf_32 = rx_buf; 483 int k; 484 485 for (k = 0; k < words; k++) 486 buf_32[k] = sh_msiof_read(p, RFDR) >> fs; 487 } 488 489 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p, 490 void *rx_buf, int words, int fs) 491 { 492 u32 *buf_32 = rx_buf; 493 int k; 494 495 for (k = 0; k < words; k++) 496 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]); 497 } 498 499 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p, 500 void *rx_buf, int words, int fs) 501 { 502 u32 *buf_32 = rx_buf; 503 int k; 504 505 for (k = 0; k < words; k++) 506 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs); 507 } 508 509 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p, 510 void *rx_buf, int words, int fs) 511 { 512 u32 *buf_32 = rx_buf; 513 int k; 514 515 for (k = 0; k < words; k++) 516 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]); 517 } 518 519 static int sh_msiof_spi_setup(struct spi_device *spi) 520 { 521 struct device_node *np = spi->master->dev.of_node; 522 struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master); 523 524 pm_runtime_get_sync(&p->pdev->dev); 525 526 if (!np) { 527 /* 528 * Use spi->controller_data for CS (same strategy as spi_gpio), 529 * if any. otherwise let HW control CS 530 */ 531 spi->cs_gpio = (uintptr_t)spi->controller_data; 532 } 533 534 /* Configure pins before deasserting CS */ 535 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL), 536 !!(spi->mode & SPI_CPHA), 537 !!(spi->mode & SPI_3WIRE), 538 !!(spi->mode & SPI_LSB_FIRST), 539 !!(spi->mode & SPI_CS_HIGH)); 540 541 if (spi->cs_gpio >= 0) 542 gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH)); 543 544 545 pm_runtime_put(&p->pdev->dev); 546 547 return 0; 548 } 549 550 static int sh_msiof_prepare_message(struct spi_master *master, 551 struct spi_message *msg) 552 { 553 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master); 554 const struct spi_device *spi = msg->spi; 555 556 /* Configure pins before asserting CS */ 557 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL), 558 !!(spi->mode & SPI_CPHA), 559 !!(spi->mode & SPI_3WIRE), 560 !!(spi->mode & SPI_LSB_FIRST), 561 !!(spi->mode & SPI_CS_HIGH)); 562 return 0; 563 } 564 565 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf) 566 { 567 int ret; 568 569 /* setup clock and rx/tx signals */ 570 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE); 571 if (rx_buf && !ret) 572 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE); 573 if (!ret) 574 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE); 575 576 /* start by setting frame bit */ 577 if (!ret) 578 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE); 579 580 return ret; 581 } 582 583 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf) 584 { 585 int ret; 586 587 /* shut down frame, rx/tx and clock signals */ 588 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0); 589 if (!ret) 590 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0); 591 if (rx_buf && !ret) 592 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0); 593 if (!ret) 594 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0); 595 596 return ret; 597 } 598 599 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p, 600 void (*tx_fifo)(struct sh_msiof_spi_priv *, 601 const void *, int, int), 602 void (*rx_fifo)(struct sh_msiof_spi_priv *, 603 void *, int, int), 604 const void *tx_buf, void *rx_buf, 605 int words, int bits) 606 { 607 int fifo_shift; 608 int ret; 609 610 /* limit maximum word transfer to rx/tx fifo size */ 611 if (tx_buf) 612 words = min_t(int, words, p->tx_fifo_size); 613 if (rx_buf) 614 words = min_t(int, words, p->rx_fifo_size); 615 616 /* the fifo contents need shifting */ 617 fifo_shift = 32 - bits; 618 619 /* default FIFO watermarks for PIO */ 620 sh_msiof_write(p, FCTR, 0); 621 622 /* setup msiof transfer mode registers */ 623 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words); 624 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE); 625 626 /* write tx fifo */ 627 if (tx_buf) 628 tx_fifo(p, tx_buf, words, fifo_shift); 629 630 reinit_completion(&p->done); 631 632 ret = sh_msiof_spi_start(p, rx_buf); 633 if (ret) { 634 dev_err(&p->pdev->dev, "failed to start hardware\n"); 635 goto stop_ier; 636 } 637 638 /* wait for tx fifo to be emptied / rx fifo to be filled */ 639 if (!wait_for_completion_timeout(&p->done, HZ)) { 640 dev_err(&p->pdev->dev, "PIO timeout\n"); 641 ret = -ETIMEDOUT; 642 goto stop_reset; 643 } 644 645 /* read rx fifo */ 646 if (rx_buf) 647 rx_fifo(p, rx_buf, words, fifo_shift); 648 649 /* clear status bits */ 650 sh_msiof_reset_str(p); 651 652 ret = sh_msiof_spi_stop(p, rx_buf); 653 if (ret) { 654 dev_err(&p->pdev->dev, "failed to shut down hardware\n"); 655 return ret; 656 } 657 658 return words; 659 660 stop_reset: 661 sh_msiof_reset_str(p); 662 sh_msiof_spi_stop(p, rx_buf); 663 stop_ier: 664 sh_msiof_write(p, IER, 0); 665 return ret; 666 } 667 668 static void sh_msiof_dma_complete(void *arg) 669 { 670 struct sh_msiof_spi_priv *p = arg; 671 672 sh_msiof_write(p, IER, 0); 673 complete(&p->done); 674 } 675 676 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx, 677 void *rx, unsigned int len) 678 { 679 u32 ier_bits = 0; 680 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL; 681 dma_cookie_t cookie; 682 int ret; 683 684 /* First prepare and submit the DMA request(s), as this may fail */ 685 if (rx) { 686 ier_bits |= IER_RDREQE | IER_RDMAE; 687 desc_rx = dmaengine_prep_slave_single(p->master->dma_rx, 688 p->rx_dma_addr, len, DMA_FROM_DEVICE, 689 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 690 if (!desc_rx) 691 return -EAGAIN; 692 693 desc_rx->callback = sh_msiof_dma_complete; 694 desc_rx->callback_param = p; 695 cookie = dmaengine_submit(desc_rx); 696 if (dma_submit_error(cookie)) 697 return cookie; 698 } 699 700 if (tx) { 701 ier_bits |= IER_TDREQE | IER_TDMAE; 702 dma_sync_single_for_device(p->master->dma_tx->device->dev, 703 p->tx_dma_addr, len, DMA_TO_DEVICE); 704 desc_tx = dmaengine_prep_slave_single(p->master->dma_tx, 705 p->tx_dma_addr, len, DMA_TO_DEVICE, 706 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 707 if (!desc_tx) { 708 ret = -EAGAIN; 709 goto no_dma_tx; 710 } 711 712 if (rx) { 713 /* No callback */ 714 desc_tx->callback = NULL; 715 } else { 716 desc_tx->callback = sh_msiof_dma_complete; 717 desc_tx->callback_param = p; 718 } 719 cookie = dmaengine_submit(desc_tx); 720 if (dma_submit_error(cookie)) { 721 ret = cookie; 722 goto no_dma_tx; 723 } 724 } 725 726 /* 1 stage FIFO watermarks for DMA */ 727 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1); 728 729 /* setup msiof transfer mode registers (32-bit words) */ 730 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4); 731 732 sh_msiof_write(p, IER, ier_bits); 733 734 reinit_completion(&p->done); 735 736 /* Now start DMA */ 737 if (rx) 738 dma_async_issue_pending(p->master->dma_rx); 739 if (tx) 740 dma_async_issue_pending(p->master->dma_tx); 741 742 ret = sh_msiof_spi_start(p, rx); 743 if (ret) { 744 dev_err(&p->pdev->dev, "failed to start hardware\n"); 745 goto stop_dma; 746 } 747 748 /* wait for tx fifo to be emptied / rx fifo to be filled */ 749 if (!wait_for_completion_timeout(&p->done, HZ)) { 750 dev_err(&p->pdev->dev, "DMA timeout\n"); 751 ret = -ETIMEDOUT; 752 goto stop_reset; 753 } 754 755 /* clear status bits */ 756 sh_msiof_reset_str(p); 757 758 ret = sh_msiof_spi_stop(p, rx); 759 if (ret) { 760 dev_err(&p->pdev->dev, "failed to shut down hardware\n"); 761 return ret; 762 } 763 764 if (rx) 765 dma_sync_single_for_cpu(p->master->dma_rx->device->dev, 766 p->rx_dma_addr, len, 767 DMA_FROM_DEVICE); 768 769 return 0; 770 771 stop_reset: 772 sh_msiof_reset_str(p); 773 sh_msiof_spi_stop(p, rx); 774 stop_dma: 775 if (tx) 776 dmaengine_terminate_all(p->master->dma_tx); 777 no_dma_tx: 778 if (rx) 779 dmaengine_terminate_all(p->master->dma_rx); 780 sh_msiof_write(p, IER, 0); 781 return ret; 782 } 783 784 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words) 785 { 786 /* src or dst can be unaligned, but not both */ 787 if ((unsigned long)src & 3) { 788 while (words--) { 789 *dst++ = swab32(get_unaligned(src)); 790 src++; 791 } 792 } else if ((unsigned long)dst & 3) { 793 while (words--) { 794 put_unaligned(swab32(*src++), dst); 795 dst++; 796 } 797 } else { 798 while (words--) 799 *dst++ = swab32(*src++); 800 } 801 } 802 803 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words) 804 { 805 /* src or dst can be unaligned, but not both */ 806 if ((unsigned long)src & 3) { 807 while (words--) { 808 *dst++ = swahw32(get_unaligned(src)); 809 src++; 810 } 811 } else if ((unsigned long)dst & 3) { 812 while (words--) { 813 put_unaligned(swahw32(*src++), dst); 814 dst++; 815 } 816 } else { 817 while (words--) 818 *dst++ = swahw32(*src++); 819 } 820 } 821 822 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words) 823 { 824 memcpy(dst, src, words * 4); 825 } 826 827 static int sh_msiof_transfer_one(struct spi_master *master, 828 struct spi_device *spi, 829 struct spi_transfer *t) 830 { 831 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master); 832 void (*copy32)(u32 *, const u32 *, unsigned int); 833 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int); 834 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int); 835 const void *tx_buf = t->tx_buf; 836 void *rx_buf = t->rx_buf; 837 unsigned int len = t->len; 838 unsigned int bits = t->bits_per_word; 839 unsigned int bytes_per_word; 840 unsigned int words; 841 int n; 842 bool swab; 843 int ret; 844 845 /* setup clocks (clock already enabled in chipselect()) */ 846 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz); 847 848 while (master->dma_tx && len > 15) { 849 /* 850 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit 851 * words, with byte resp. word swapping. 852 */ 853 unsigned int l = min(len, MAX_WDLEN * 4); 854 855 if (bits <= 8) { 856 if (l & 3) 857 break; 858 copy32 = copy_bswap32; 859 } else if (bits <= 16) { 860 if (l & 1) 861 break; 862 copy32 = copy_wswap32; 863 } else { 864 copy32 = copy_plain32; 865 } 866 867 if (tx_buf) 868 copy32(p->tx_dma_page, tx_buf, l / 4); 869 870 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l); 871 if (ret == -EAGAIN) { 872 pr_warn_once("%s %s: DMA not available, falling back to PIO\n", 873 dev_driver_string(&p->pdev->dev), 874 dev_name(&p->pdev->dev)); 875 break; 876 } 877 if (ret) 878 return ret; 879 880 if (rx_buf) { 881 copy32(rx_buf, p->rx_dma_page, l / 4); 882 rx_buf += l; 883 } 884 if (tx_buf) 885 tx_buf += l; 886 887 len -= l; 888 if (!len) 889 return 0; 890 } 891 892 if (bits <= 8 && len > 15 && !(len & 3)) { 893 bits = 32; 894 swab = true; 895 } else { 896 swab = false; 897 } 898 899 /* setup bytes per word and fifo read/write functions */ 900 if (bits <= 8) { 901 bytes_per_word = 1; 902 tx_fifo = sh_msiof_spi_write_fifo_8; 903 rx_fifo = sh_msiof_spi_read_fifo_8; 904 } else if (bits <= 16) { 905 bytes_per_word = 2; 906 if ((unsigned long)tx_buf & 0x01) 907 tx_fifo = sh_msiof_spi_write_fifo_16u; 908 else 909 tx_fifo = sh_msiof_spi_write_fifo_16; 910 911 if ((unsigned long)rx_buf & 0x01) 912 rx_fifo = sh_msiof_spi_read_fifo_16u; 913 else 914 rx_fifo = sh_msiof_spi_read_fifo_16; 915 } else if (swab) { 916 bytes_per_word = 4; 917 if ((unsigned long)tx_buf & 0x03) 918 tx_fifo = sh_msiof_spi_write_fifo_s32u; 919 else 920 tx_fifo = sh_msiof_spi_write_fifo_s32; 921 922 if ((unsigned long)rx_buf & 0x03) 923 rx_fifo = sh_msiof_spi_read_fifo_s32u; 924 else 925 rx_fifo = sh_msiof_spi_read_fifo_s32; 926 } else { 927 bytes_per_word = 4; 928 if ((unsigned long)tx_buf & 0x03) 929 tx_fifo = sh_msiof_spi_write_fifo_32u; 930 else 931 tx_fifo = sh_msiof_spi_write_fifo_32; 932 933 if ((unsigned long)rx_buf & 0x03) 934 rx_fifo = sh_msiof_spi_read_fifo_32u; 935 else 936 rx_fifo = sh_msiof_spi_read_fifo_32; 937 } 938 939 /* transfer in fifo sized chunks */ 940 words = len / bytes_per_word; 941 942 while (words > 0) { 943 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf, 944 words, bits); 945 if (n < 0) 946 return n; 947 948 if (tx_buf) 949 tx_buf += n * bytes_per_word; 950 if (rx_buf) 951 rx_buf += n * bytes_per_word; 952 words -= n; 953 } 954 955 return 0; 956 } 957 958 static const struct sh_msiof_chipdata sh_data = { 959 .tx_fifo_size = 64, 960 .rx_fifo_size = 64, 961 .master_flags = 0, 962 }; 963 964 static const struct sh_msiof_chipdata r8a779x_data = { 965 .tx_fifo_size = 64, 966 .rx_fifo_size = 256, 967 .master_flags = SPI_MASTER_MUST_TX, 968 }; 969 970 static const struct of_device_id sh_msiof_match[] = { 971 { .compatible = "renesas,sh-msiof", .data = &sh_data }, 972 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data }, 973 { .compatible = "renesas,msiof-r8a7790", .data = &r8a779x_data }, 974 { .compatible = "renesas,msiof-r8a7791", .data = &r8a779x_data }, 975 { .compatible = "renesas,msiof-r8a7792", .data = &r8a779x_data }, 976 { .compatible = "renesas,msiof-r8a7793", .data = &r8a779x_data }, 977 { .compatible = "renesas,msiof-r8a7794", .data = &r8a779x_data }, 978 {}, 979 }; 980 MODULE_DEVICE_TABLE(of, sh_msiof_match); 981 982 #ifdef CONFIG_OF 983 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) 984 { 985 struct sh_msiof_spi_info *info; 986 struct device_node *np = dev->of_node; 987 u32 num_cs = 1; 988 989 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL); 990 if (!info) 991 return NULL; 992 993 /* Parse the MSIOF properties */ 994 of_property_read_u32(np, "num-cs", &num_cs); 995 of_property_read_u32(np, "renesas,tx-fifo-size", 996 &info->tx_fifo_override); 997 of_property_read_u32(np, "renesas,rx-fifo-size", 998 &info->rx_fifo_override); 999 of_property_read_u32(np, "renesas,dtdl", &info->dtdl); 1000 of_property_read_u32(np, "renesas,syncdl", &info->syncdl); 1001 1002 info->num_chipselect = num_cs; 1003 1004 return info; 1005 } 1006 #else 1007 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) 1008 { 1009 return NULL; 1010 } 1011 #endif 1012 1013 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev, 1014 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr) 1015 { 1016 dma_cap_mask_t mask; 1017 struct dma_chan *chan; 1018 struct dma_slave_config cfg; 1019 int ret; 1020 1021 dma_cap_zero(mask); 1022 dma_cap_set(DMA_SLAVE, mask); 1023 1024 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter, 1025 (void *)(unsigned long)id, dev, 1026 dir == DMA_MEM_TO_DEV ? "tx" : "rx"); 1027 if (!chan) { 1028 dev_warn(dev, "dma_request_slave_channel_compat failed\n"); 1029 return NULL; 1030 } 1031 1032 memset(&cfg, 0, sizeof(cfg)); 1033 cfg.slave_id = id; 1034 cfg.direction = dir; 1035 if (dir == DMA_MEM_TO_DEV) { 1036 cfg.dst_addr = port_addr; 1037 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 1038 } else { 1039 cfg.src_addr = port_addr; 1040 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 1041 } 1042 1043 ret = dmaengine_slave_config(chan, &cfg); 1044 if (ret) { 1045 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret); 1046 dma_release_channel(chan); 1047 return NULL; 1048 } 1049 1050 return chan; 1051 } 1052 1053 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p) 1054 { 1055 struct platform_device *pdev = p->pdev; 1056 struct device *dev = &pdev->dev; 1057 const struct sh_msiof_spi_info *info = dev_get_platdata(dev); 1058 unsigned int dma_tx_id, dma_rx_id; 1059 const struct resource *res; 1060 struct spi_master *master; 1061 struct device *tx_dev, *rx_dev; 1062 1063 if (dev->of_node) { 1064 /* In the OF case we will get the slave IDs from the DT */ 1065 dma_tx_id = 0; 1066 dma_rx_id = 0; 1067 } else if (info && info->dma_tx_id && info->dma_rx_id) { 1068 dma_tx_id = info->dma_tx_id; 1069 dma_rx_id = info->dma_rx_id; 1070 } else { 1071 /* The driver assumes no error */ 1072 return 0; 1073 } 1074 1075 /* The DMA engine uses the second register set, if present */ 1076 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1077 if (!res) 1078 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1079 1080 master = p->master; 1081 master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV, 1082 dma_tx_id, 1083 res->start + TFDR); 1084 if (!master->dma_tx) 1085 return -ENODEV; 1086 1087 master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM, 1088 dma_rx_id, 1089 res->start + RFDR); 1090 if (!master->dma_rx) 1091 goto free_tx_chan; 1092 1093 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); 1094 if (!p->tx_dma_page) 1095 goto free_rx_chan; 1096 1097 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); 1098 if (!p->rx_dma_page) 1099 goto free_tx_page; 1100 1101 tx_dev = master->dma_tx->device->dev; 1102 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE, 1103 DMA_TO_DEVICE); 1104 if (dma_mapping_error(tx_dev, p->tx_dma_addr)) 1105 goto free_rx_page; 1106 1107 rx_dev = master->dma_rx->device->dev; 1108 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE, 1109 DMA_FROM_DEVICE); 1110 if (dma_mapping_error(rx_dev, p->rx_dma_addr)) 1111 goto unmap_tx_page; 1112 1113 dev_info(dev, "DMA available"); 1114 return 0; 1115 1116 unmap_tx_page: 1117 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE); 1118 free_rx_page: 1119 free_page((unsigned long)p->rx_dma_page); 1120 free_tx_page: 1121 free_page((unsigned long)p->tx_dma_page); 1122 free_rx_chan: 1123 dma_release_channel(master->dma_rx); 1124 free_tx_chan: 1125 dma_release_channel(master->dma_tx); 1126 master->dma_tx = NULL; 1127 return -ENODEV; 1128 } 1129 1130 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p) 1131 { 1132 struct spi_master *master = p->master; 1133 struct device *dev; 1134 1135 if (!master->dma_tx) 1136 return; 1137 1138 dev = &p->pdev->dev; 1139 dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr, 1140 PAGE_SIZE, DMA_FROM_DEVICE); 1141 dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr, 1142 PAGE_SIZE, DMA_TO_DEVICE); 1143 free_page((unsigned long)p->rx_dma_page); 1144 free_page((unsigned long)p->tx_dma_page); 1145 dma_release_channel(master->dma_rx); 1146 dma_release_channel(master->dma_tx); 1147 } 1148 1149 static int sh_msiof_spi_probe(struct platform_device *pdev) 1150 { 1151 struct resource *r; 1152 struct spi_master *master; 1153 const struct of_device_id *of_id; 1154 struct sh_msiof_spi_priv *p; 1155 int i; 1156 int ret; 1157 1158 master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv)); 1159 if (master == NULL) { 1160 dev_err(&pdev->dev, "failed to allocate spi master\n"); 1161 return -ENOMEM; 1162 } 1163 1164 p = spi_master_get_devdata(master); 1165 1166 platform_set_drvdata(pdev, p); 1167 p->master = master; 1168 1169 of_id = of_match_device(sh_msiof_match, &pdev->dev); 1170 if (of_id) { 1171 p->chipdata = of_id->data; 1172 p->info = sh_msiof_spi_parse_dt(&pdev->dev); 1173 } else { 1174 p->chipdata = (const void *)pdev->id_entry->driver_data; 1175 p->info = dev_get_platdata(&pdev->dev); 1176 } 1177 1178 if (!p->info) { 1179 dev_err(&pdev->dev, "failed to obtain device info\n"); 1180 ret = -ENXIO; 1181 goto err1; 1182 } 1183 1184 init_completion(&p->done); 1185 1186 p->clk = devm_clk_get(&pdev->dev, NULL); 1187 if (IS_ERR(p->clk)) { 1188 dev_err(&pdev->dev, "cannot get clock\n"); 1189 ret = PTR_ERR(p->clk); 1190 goto err1; 1191 } 1192 1193 i = platform_get_irq(pdev, 0); 1194 if (i < 0) { 1195 dev_err(&pdev->dev, "cannot get platform IRQ\n"); 1196 ret = -ENOENT; 1197 goto err1; 1198 } 1199 1200 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1201 p->mapbase = devm_ioremap_resource(&pdev->dev, r); 1202 if (IS_ERR(p->mapbase)) { 1203 ret = PTR_ERR(p->mapbase); 1204 goto err1; 1205 } 1206 1207 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0, 1208 dev_name(&pdev->dev), p); 1209 if (ret) { 1210 dev_err(&pdev->dev, "unable to request irq\n"); 1211 goto err1; 1212 } 1213 1214 p->pdev = pdev; 1215 pm_runtime_enable(&pdev->dev); 1216 1217 /* Platform data may override FIFO sizes */ 1218 p->tx_fifo_size = p->chipdata->tx_fifo_size; 1219 p->rx_fifo_size = p->chipdata->rx_fifo_size; 1220 if (p->info->tx_fifo_override) 1221 p->tx_fifo_size = p->info->tx_fifo_override; 1222 if (p->info->rx_fifo_override) 1223 p->rx_fifo_size = p->info->rx_fifo_override; 1224 1225 /* init master code */ 1226 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1227 master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE; 1228 master->flags = p->chipdata->master_flags; 1229 master->bus_num = pdev->id; 1230 master->dev.of_node = pdev->dev.of_node; 1231 master->num_chipselect = p->info->num_chipselect; 1232 master->setup = sh_msiof_spi_setup; 1233 master->prepare_message = sh_msiof_prepare_message; 1234 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32); 1235 master->auto_runtime_pm = true; 1236 master->transfer_one = sh_msiof_transfer_one; 1237 1238 ret = sh_msiof_request_dma(p); 1239 if (ret < 0) 1240 dev_warn(&pdev->dev, "DMA not available, using PIO\n"); 1241 1242 ret = devm_spi_register_master(&pdev->dev, master); 1243 if (ret < 0) { 1244 dev_err(&pdev->dev, "spi_register_master error.\n"); 1245 goto err2; 1246 } 1247 1248 return 0; 1249 1250 err2: 1251 sh_msiof_release_dma(p); 1252 pm_runtime_disable(&pdev->dev); 1253 err1: 1254 spi_master_put(master); 1255 return ret; 1256 } 1257 1258 static int sh_msiof_spi_remove(struct platform_device *pdev) 1259 { 1260 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev); 1261 1262 sh_msiof_release_dma(p); 1263 pm_runtime_disable(&pdev->dev); 1264 return 0; 1265 } 1266 1267 static struct platform_device_id spi_driver_ids[] = { 1268 { "spi_sh_msiof", (kernel_ulong_t)&sh_data }, 1269 { "spi_r8a7790_msiof", (kernel_ulong_t)&r8a779x_data }, 1270 { "spi_r8a7791_msiof", (kernel_ulong_t)&r8a779x_data }, 1271 { "spi_r8a7792_msiof", (kernel_ulong_t)&r8a779x_data }, 1272 { "spi_r8a7793_msiof", (kernel_ulong_t)&r8a779x_data }, 1273 { "spi_r8a7794_msiof", (kernel_ulong_t)&r8a779x_data }, 1274 {}, 1275 }; 1276 MODULE_DEVICE_TABLE(platform, spi_driver_ids); 1277 1278 static struct platform_driver sh_msiof_spi_drv = { 1279 .probe = sh_msiof_spi_probe, 1280 .remove = sh_msiof_spi_remove, 1281 .id_table = spi_driver_ids, 1282 .driver = { 1283 .name = "spi_sh_msiof", 1284 .of_match_table = of_match_ptr(sh_msiof_match), 1285 }, 1286 }; 1287 module_platform_driver(sh_msiof_spi_drv); 1288 1289 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver"); 1290 MODULE_AUTHOR("Magnus Damm"); 1291 MODULE_LICENSE("GPL v2"); 1292 MODULE_ALIAS("platform:spi_sh_msiof"); 1293