xref: /linux/drivers/spi/spi-sh-msiof.c (revision bfd5bb6f90af092aa345b15cd78143956a13c2a8)
1 /*
2  * SuperH MSIOF SPI Master Interface
3  *
4  * Copyright (c) 2009 Magnus Damm
5  * Copyright (C) 2014 Renesas Electronics Corporation
6  * Copyright (C) 2014-2017 Glider bvba
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  */
13 
14 #include <linux/bitmap.h>
15 #include <linux/clk.h>
16 #include <linux/completion.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/err.h>
21 #include <linux/gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/interrupt.h>
24 #include <linux/io.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/platform_device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/sh_dma.h>
32 
33 #include <linux/spi/sh_msiof.h>
34 #include <linux/spi/spi.h>
35 
36 #include <asm/unaligned.h>
37 
38 struct sh_msiof_chipdata {
39 	u16 tx_fifo_size;
40 	u16 rx_fifo_size;
41 	u16 master_flags;
42 	u16 min_div_pow;
43 };
44 
45 struct sh_msiof_spi_priv {
46 	struct spi_master *master;
47 	void __iomem *mapbase;
48 	struct clk *clk;
49 	struct platform_device *pdev;
50 	struct sh_msiof_spi_info *info;
51 	struct completion done;
52 	unsigned int tx_fifo_size;
53 	unsigned int rx_fifo_size;
54 	unsigned int min_div_pow;
55 	void *tx_dma_page;
56 	void *rx_dma_page;
57 	dma_addr_t tx_dma_addr;
58 	dma_addr_t rx_dma_addr;
59 	unsigned short unused_ss;
60 	bool native_cs_inited;
61 	bool native_cs_high;
62 	bool slave_aborted;
63 };
64 
65 #define MAX_SS	3	/* Maximum number of native chip selects */
66 
67 #define TMDR1	0x00	/* Transmit Mode Register 1 */
68 #define TMDR2	0x04	/* Transmit Mode Register 2 */
69 #define TMDR3	0x08	/* Transmit Mode Register 3 */
70 #define RMDR1	0x10	/* Receive Mode Register 1 */
71 #define RMDR2	0x14	/* Receive Mode Register 2 */
72 #define RMDR3	0x18	/* Receive Mode Register 3 */
73 #define TSCR	0x20	/* Transmit Clock Select Register */
74 #define RSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
75 #define CTR	0x28	/* Control Register */
76 #define FCTR	0x30	/* FIFO Control Register */
77 #define STR	0x40	/* Status Register */
78 #define IER	0x44	/* Interrupt Enable Register */
79 #define TDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
80 #define TDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
81 #define TFDR	0x50	/* Transmit FIFO Data Register */
82 #define RDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
83 #define RDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
84 #define RFDR	0x60	/* Receive FIFO Data Register */
85 
86 /* TMDR1 and RMDR1 */
87 #define MDR1_TRMD	 0x80000000 /* Transfer Mode (1 = Master mode) */
88 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
89 #define MDR1_SYNCMD_SPI	 0x20000000 /*   Level mode/SPI */
90 #define MDR1_SYNCMD_LR	 0x30000000 /*   L/R mode */
91 #define MDR1_SYNCAC_SHIFT	 25 /* Sync Polarity (1 = Active-low) */
92 #define MDR1_BITLSB_SHIFT	 24 /* MSB/LSB First (1 = LSB first) */
93 #define MDR1_DTDL_SHIFT		 20 /* Data Pin Bit Delay for MSIOF_SYNC */
94 #define MDR1_SYNCDL_SHIFT	 16 /* Frame Sync Signal Timing Delay */
95 #define MDR1_FLD_MASK	 0x0000000c /* Frame Sync Signal Interval (0-3) */
96 #define MDR1_FLD_SHIFT		  2
97 #define MDR1_XXSTP	 0x00000001 /* Transmission/Reception Stop on FIFO */
98 /* TMDR1 */
99 #define TMDR1_PCON	 0x40000000 /* Transfer Signal Connection */
100 #define TMDR1_SYNCCH_MASK 0xc000000 /* Synchronization Signal Channel Select */
101 #define TMDR1_SYNCCH_SHIFT	 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
102 
103 /* TMDR2 and RMDR2 */
104 #define MDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
105 #define MDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
106 #define MDR2_GRPMASK1	0x00000001 /* Group Output Mask 1 (SH, A1) */
107 
108 /* TSCR and RSCR */
109 #define SCR_BRPS_MASK	    0x1f00 /* Prescaler Setting (1-32) */
110 #define SCR_BRPS(i)	(((i) - 1) << 8)
111 #define SCR_BRDV_MASK	    0x0007 /* Baud Rate Generator's Division Ratio */
112 #define SCR_BRDV_DIV_2	    0x0000
113 #define SCR_BRDV_DIV_4	    0x0001
114 #define SCR_BRDV_DIV_8	    0x0002
115 #define SCR_BRDV_DIV_16	    0x0003
116 #define SCR_BRDV_DIV_32	    0x0004
117 #define SCR_BRDV_DIV_1	    0x0007
118 
119 /* CTR */
120 #define CTR_TSCKIZ_MASK	0xc0000000 /* Transmit Clock I/O Polarity Select */
121 #define CTR_TSCKIZ_SCK	0x80000000 /*   Disable SCK when TX disabled */
122 #define CTR_TSCKIZ_POL_SHIFT	30 /*   Transmit Clock Polarity */
123 #define CTR_RSCKIZ_MASK	0x30000000 /* Receive Clock Polarity Select */
124 #define CTR_RSCKIZ_SCK	0x20000000 /*   Must match CTR_TSCKIZ_SCK */
125 #define CTR_RSCKIZ_POL_SHIFT	28 /*   Receive Clock Polarity */
126 #define CTR_TEDG_SHIFT		27 /* Transmit Timing (1 = falling edge) */
127 #define CTR_REDG_SHIFT		26 /* Receive Timing (1 = falling edge) */
128 #define CTR_TXDIZ_MASK	0x00c00000 /* Pin Output When TX is Disabled */
129 #define CTR_TXDIZ_LOW	0x00000000 /*   0 */
130 #define CTR_TXDIZ_HIGH	0x00400000 /*   1 */
131 #define CTR_TXDIZ_HIZ	0x00800000 /*   High-impedance */
132 #define CTR_TSCKE	0x00008000 /* Transmit Serial Clock Output Enable */
133 #define CTR_TFSE	0x00004000 /* Transmit Frame Sync Signal Output Enable */
134 #define CTR_TXE		0x00000200 /* Transmit Enable */
135 #define CTR_RXE		0x00000100 /* Receive Enable */
136 
137 /* FCTR */
138 #define FCTR_TFWM_MASK	0xe0000000 /* Transmit FIFO Watermark */
139 #define FCTR_TFWM_64	0x00000000 /*  Transfer Request when 64 empty stages */
140 #define FCTR_TFWM_32	0x20000000 /*  Transfer Request when 32 empty stages */
141 #define FCTR_TFWM_24	0x40000000 /*  Transfer Request when 24 empty stages */
142 #define FCTR_TFWM_16	0x60000000 /*  Transfer Request when 16 empty stages */
143 #define FCTR_TFWM_12	0x80000000 /*  Transfer Request when 12 empty stages */
144 #define FCTR_TFWM_8	0xa0000000 /*  Transfer Request when 8 empty stages */
145 #define FCTR_TFWM_4	0xc0000000 /*  Transfer Request when 4 empty stages */
146 #define FCTR_TFWM_1	0xe0000000 /*  Transfer Request when 1 empty stage */
147 #define FCTR_TFUA_MASK	0x07f00000 /* Transmit FIFO Usable Area */
148 #define FCTR_TFUA_SHIFT		20
149 #define FCTR_TFUA(i)	((i) << FCTR_TFUA_SHIFT)
150 #define FCTR_RFWM_MASK	0x0000e000 /* Receive FIFO Watermark */
151 #define FCTR_RFWM_1	0x00000000 /*  Transfer Request when 1 valid stages */
152 #define FCTR_RFWM_4	0x00002000 /*  Transfer Request when 4 valid stages */
153 #define FCTR_RFWM_8	0x00004000 /*  Transfer Request when 8 valid stages */
154 #define FCTR_RFWM_16	0x00006000 /*  Transfer Request when 16 valid stages */
155 #define FCTR_RFWM_32	0x00008000 /*  Transfer Request when 32 valid stages */
156 #define FCTR_RFWM_64	0x0000a000 /*  Transfer Request when 64 valid stages */
157 #define FCTR_RFWM_128	0x0000c000 /*  Transfer Request when 128 valid stages */
158 #define FCTR_RFWM_256	0x0000e000 /*  Transfer Request when 256 valid stages */
159 #define FCTR_RFUA_MASK	0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
160 #define FCTR_RFUA_SHIFT		 4
161 #define FCTR_RFUA(i)	((i) << FCTR_RFUA_SHIFT)
162 
163 /* STR */
164 #define STR_TFEMP	0x20000000 /* Transmit FIFO Empty */
165 #define STR_TDREQ	0x10000000 /* Transmit Data Transfer Request */
166 #define STR_TEOF	0x00800000 /* Frame Transmission End */
167 #define STR_TFSERR	0x00200000 /* Transmit Frame Synchronization Error */
168 #define STR_TFOVF	0x00100000 /* Transmit FIFO Overflow */
169 #define STR_TFUDF	0x00080000 /* Transmit FIFO Underflow */
170 #define STR_RFFUL	0x00002000 /* Receive FIFO Full */
171 #define STR_RDREQ	0x00001000 /* Receive Data Transfer Request */
172 #define STR_REOF	0x00000080 /* Frame Reception End */
173 #define STR_RFSERR	0x00000020 /* Receive Frame Synchronization Error */
174 #define STR_RFUDF	0x00000010 /* Receive FIFO Underflow */
175 #define STR_RFOVF	0x00000008 /* Receive FIFO Overflow */
176 
177 /* IER */
178 #define IER_TDMAE	0x80000000 /* Transmit Data DMA Transfer Req. Enable */
179 #define IER_TFEMPE	0x20000000 /* Transmit FIFO Empty Enable */
180 #define IER_TDREQE	0x10000000 /* Transmit Data Transfer Request Enable */
181 #define IER_TEOFE	0x00800000 /* Frame Transmission End Enable */
182 #define IER_TFSERRE	0x00200000 /* Transmit Frame Sync Error Enable */
183 #define IER_TFOVFE	0x00100000 /* Transmit FIFO Overflow Enable */
184 #define IER_TFUDFE	0x00080000 /* Transmit FIFO Underflow Enable */
185 #define IER_RDMAE	0x00008000 /* Receive Data DMA Transfer Req. Enable */
186 #define IER_RFFULE	0x00002000 /* Receive FIFO Full Enable */
187 #define IER_RDREQE	0x00001000 /* Receive Data Transfer Request Enable */
188 #define IER_REOFE	0x00000080 /* Frame Reception End Enable */
189 #define IER_RFSERRE	0x00000020 /* Receive Frame Sync Error Enable */
190 #define IER_RFUDFE	0x00000010 /* Receive FIFO Underflow Enable */
191 #define IER_RFOVFE	0x00000008 /* Receive FIFO Overflow Enable */
192 
193 
194 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
195 {
196 	switch (reg_offs) {
197 	case TSCR:
198 	case RSCR:
199 		return ioread16(p->mapbase + reg_offs);
200 	default:
201 		return ioread32(p->mapbase + reg_offs);
202 	}
203 }
204 
205 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
206 			   u32 value)
207 {
208 	switch (reg_offs) {
209 	case TSCR:
210 	case RSCR:
211 		iowrite16(value, p->mapbase + reg_offs);
212 		break;
213 	default:
214 		iowrite32(value, p->mapbase + reg_offs);
215 		break;
216 	}
217 }
218 
219 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
220 				    u32 clr, u32 set)
221 {
222 	u32 mask = clr | set;
223 	u32 data;
224 	int k;
225 
226 	data = sh_msiof_read(p, CTR);
227 	data &= ~clr;
228 	data |= set;
229 	sh_msiof_write(p, CTR, data);
230 
231 	for (k = 100; k > 0; k--) {
232 		if ((sh_msiof_read(p, CTR) & mask) == set)
233 			break;
234 
235 		udelay(10);
236 	}
237 
238 	return k > 0 ? 0 : -ETIMEDOUT;
239 }
240 
241 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
242 {
243 	struct sh_msiof_spi_priv *p = data;
244 
245 	/* just disable the interrupt and wake up */
246 	sh_msiof_write(p, IER, 0);
247 	complete(&p->done);
248 
249 	return IRQ_HANDLED;
250 }
251 
252 static const u32 sh_msiof_spi_div_array[] = {
253 	SCR_BRDV_DIV_1, SCR_BRDV_DIV_2,	 SCR_BRDV_DIV_4,
254 	SCR_BRDV_DIV_8,	SCR_BRDV_DIV_16, SCR_BRDV_DIV_32,
255 };
256 
257 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
258 				      unsigned long parent_rate, u32 spi_hz)
259 {
260 	unsigned long div;
261 	u32 brps, scr;
262 	unsigned int div_pow = p->min_div_pow;
263 
264 	if (!spi_hz || !parent_rate) {
265 		WARN(1, "Invalid clock rate parameters %lu and %u\n",
266 		     parent_rate, spi_hz);
267 		return;
268 	}
269 
270 	div = DIV_ROUND_UP(parent_rate, spi_hz);
271 	if (div <= 1024) {
272 		/* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
273 		if (!div_pow && div <= 32 && div > 2)
274 			div_pow = 1;
275 
276 		if (div_pow)
277 			brps = (div + 1) >> div_pow;
278 		else
279 			brps = div;
280 
281 		for (; brps > 32; div_pow++)
282 			brps = (brps + 1) >> 1;
283 	} else {
284 		/* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
285 		dev_err(&p->pdev->dev,
286 			"Requested SPI transfer rate %d is too low\n", spi_hz);
287 		div_pow = 5;
288 		brps = 32;
289 	}
290 
291 	scr = sh_msiof_spi_div_array[div_pow] | SCR_BRPS(brps);
292 	sh_msiof_write(p, TSCR, scr);
293 	if (!(p->master->flags & SPI_MASTER_MUST_TX))
294 		sh_msiof_write(p, RSCR, scr);
295 }
296 
297 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
298 {
299 	/*
300 	 * DTDL/SYNCDL bit	: p->info->dtdl or p->info->syncdl
301 	 * b'000		: 0
302 	 * b'001		: 100
303 	 * b'010		: 200
304 	 * b'011 (SYNCDL only)	: 300
305 	 * b'101		: 50
306 	 * b'110		: 150
307 	 */
308 	if (dtdl_or_syncdl % 100)
309 		return dtdl_or_syncdl / 100 + 5;
310 	else
311 		return dtdl_or_syncdl / 100;
312 }
313 
314 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
315 {
316 	u32 val;
317 
318 	if (!p->info)
319 		return 0;
320 
321 	/* check if DTDL and SYNCDL is allowed value */
322 	if (p->info->dtdl > 200 || p->info->syncdl > 300) {
323 		dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
324 		return 0;
325 	}
326 
327 	/* check if the sum of DTDL and SYNCDL becomes an integer value  */
328 	if ((p->info->dtdl + p->info->syncdl) % 100) {
329 		dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
330 		return 0;
331 	}
332 
333 	val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
334 	val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
335 
336 	return val;
337 }
338 
339 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
340 				      u32 cpol, u32 cpha,
341 				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
342 {
343 	u32 tmp;
344 	int edge;
345 
346 	/*
347 	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
348 	 *    0    0         10     10    1    1
349 	 *    0    1         10     10    0    0
350 	 *    1    0         11     11    0    0
351 	 *    1    1         11     11    1    1
352 	 */
353 	tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
354 	tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
355 	tmp |= lsb_first << MDR1_BITLSB_SHIFT;
356 	tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
357 	if (spi_controller_is_slave(p->master)) {
358 		sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
359 	} else {
360 		sh_msiof_write(p, TMDR1,
361 			       tmp | MDR1_TRMD | TMDR1_PCON |
362 			       (ss < MAX_SS ? ss : 0) << TMDR1_SYNCCH_SHIFT);
363 	}
364 	if (p->master->flags & SPI_MASTER_MUST_TX) {
365 		/* These bits are reserved if RX needs TX */
366 		tmp &= ~0x0000ffff;
367 	}
368 	sh_msiof_write(p, RMDR1, tmp);
369 
370 	tmp = 0;
371 	tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
372 	tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
373 
374 	edge = cpol ^ !cpha;
375 
376 	tmp |= edge << CTR_TEDG_SHIFT;
377 	tmp |= edge << CTR_REDG_SHIFT;
378 	tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
379 	sh_msiof_write(p, CTR, tmp);
380 }
381 
382 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
383 				       const void *tx_buf, void *rx_buf,
384 				       u32 bits, u32 words)
385 {
386 	u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
387 
388 	if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX))
389 		sh_msiof_write(p, TMDR2, dr2);
390 	else
391 		sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
392 
393 	if (rx_buf)
394 		sh_msiof_write(p, RMDR2, dr2);
395 }
396 
397 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
398 {
399 	sh_msiof_write(p, STR, sh_msiof_read(p, STR));
400 }
401 
402 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
403 				      const void *tx_buf, int words, int fs)
404 {
405 	const u8 *buf_8 = tx_buf;
406 	int k;
407 
408 	for (k = 0; k < words; k++)
409 		sh_msiof_write(p, TFDR, buf_8[k] << fs);
410 }
411 
412 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
413 				       const void *tx_buf, int words, int fs)
414 {
415 	const u16 *buf_16 = tx_buf;
416 	int k;
417 
418 	for (k = 0; k < words; k++)
419 		sh_msiof_write(p, TFDR, buf_16[k] << fs);
420 }
421 
422 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
423 					const void *tx_buf, int words, int fs)
424 {
425 	const u16 *buf_16 = tx_buf;
426 	int k;
427 
428 	for (k = 0; k < words; k++)
429 		sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
430 }
431 
432 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
433 				       const void *tx_buf, int words, int fs)
434 {
435 	const u32 *buf_32 = tx_buf;
436 	int k;
437 
438 	for (k = 0; k < words; k++)
439 		sh_msiof_write(p, TFDR, buf_32[k] << fs);
440 }
441 
442 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
443 					const void *tx_buf, int words, int fs)
444 {
445 	const u32 *buf_32 = tx_buf;
446 	int k;
447 
448 	for (k = 0; k < words; k++)
449 		sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
450 }
451 
452 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
453 					const void *tx_buf, int words, int fs)
454 {
455 	const u32 *buf_32 = tx_buf;
456 	int k;
457 
458 	for (k = 0; k < words; k++)
459 		sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
460 }
461 
462 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
463 					 const void *tx_buf, int words, int fs)
464 {
465 	const u32 *buf_32 = tx_buf;
466 	int k;
467 
468 	for (k = 0; k < words; k++)
469 		sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
470 }
471 
472 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
473 				     void *rx_buf, int words, int fs)
474 {
475 	u8 *buf_8 = rx_buf;
476 	int k;
477 
478 	for (k = 0; k < words; k++)
479 		buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
480 }
481 
482 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
483 				      void *rx_buf, int words, int fs)
484 {
485 	u16 *buf_16 = rx_buf;
486 	int k;
487 
488 	for (k = 0; k < words; k++)
489 		buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
490 }
491 
492 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
493 				       void *rx_buf, int words, int fs)
494 {
495 	u16 *buf_16 = rx_buf;
496 	int k;
497 
498 	for (k = 0; k < words; k++)
499 		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
500 }
501 
502 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
503 				      void *rx_buf, int words, int fs)
504 {
505 	u32 *buf_32 = rx_buf;
506 	int k;
507 
508 	for (k = 0; k < words; k++)
509 		buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
510 }
511 
512 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
513 				       void *rx_buf, int words, int fs)
514 {
515 	u32 *buf_32 = rx_buf;
516 	int k;
517 
518 	for (k = 0; k < words; k++)
519 		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
520 }
521 
522 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
523 				       void *rx_buf, int words, int fs)
524 {
525 	u32 *buf_32 = rx_buf;
526 	int k;
527 
528 	for (k = 0; k < words; k++)
529 		buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
530 }
531 
532 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
533 				       void *rx_buf, int words, int fs)
534 {
535 	u32 *buf_32 = rx_buf;
536 	int k;
537 
538 	for (k = 0; k < words; k++)
539 		put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
540 }
541 
542 static int sh_msiof_spi_setup(struct spi_device *spi)
543 {
544 	struct device_node	*np = spi->master->dev.of_node;
545 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
546 	u32 clr, set, tmp;
547 
548 	if (!np) {
549 		/*
550 		 * Use spi->controller_data for CS (same strategy as spi_gpio),
551 		 * if any. otherwise let HW control CS
552 		 */
553 		spi->cs_gpio = (uintptr_t)spi->controller_data;
554 	}
555 
556 	if (gpio_is_valid(spi->cs_gpio)) {
557 		gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
558 		return 0;
559 	}
560 
561 	if (spi_controller_is_slave(p->master))
562 		return 0;
563 
564 	if (p->native_cs_inited &&
565 	    (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
566 		return 0;
567 
568 	/* Configure native chip select mode/polarity early */
569 	clr = MDR1_SYNCMD_MASK;
570 	set = MDR1_SYNCMD_SPI;
571 	if (spi->mode & SPI_CS_HIGH)
572 		clr |= BIT(MDR1_SYNCAC_SHIFT);
573 	else
574 		set |= BIT(MDR1_SYNCAC_SHIFT);
575 	pm_runtime_get_sync(&p->pdev->dev);
576 	tmp = sh_msiof_read(p, TMDR1) & ~clr;
577 	sh_msiof_write(p, TMDR1, tmp | set | MDR1_TRMD | TMDR1_PCON);
578 	tmp = sh_msiof_read(p, RMDR1) & ~clr;
579 	sh_msiof_write(p, RMDR1, tmp | set);
580 	pm_runtime_put(&p->pdev->dev);
581 	p->native_cs_high = spi->mode & SPI_CS_HIGH;
582 	p->native_cs_inited = true;
583 	return 0;
584 }
585 
586 static int sh_msiof_prepare_message(struct spi_master *master,
587 				    struct spi_message *msg)
588 {
589 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
590 	const struct spi_device *spi = msg->spi;
591 	u32 ss, cs_high;
592 
593 	/* Configure pins before asserting CS */
594 	if (gpio_is_valid(spi->cs_gpio)) {
595 		ss = p->unused_ss;
596 		cs_high = p->native_cs_high;
597 	} else {
598 		ss = spi->chip_select;
599 		cs_high = !!(spi->mode & SPI_CS_HIGH);
600 	}
601 	sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
602 				  !!(spi->mode & SPI_CPHA),
603 				  !!(spi->mode & SPI_3WIRE),
604 				  !!(spi->mode & SPI_LSB_FIRST), cs_high);
605 	return 0;
606 }
607 
608 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
609 {
610 	bool slave = spi_controller_is_slave(p->master);
611 	int ret = 0;
612 
613 	/* setup clock and rx/tx signals */
614 	if (!slave)
615 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
616 	if (rx_buf && !ret)
617 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
618 	if (!ret)
619 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
620 
621 	/* start by setting frame bit */
622 	if (!ret && !slave)
623 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
624 
625 	return ret;
626 }
627 
628 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
629 {
630 	bool slave = spi_controller_is_slave(p->master);
631 	int ret = 0;
632 
633 	/* shut down frame, rx/tx and clock signals */
634 	if (!slave)
635 		ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
636 	if (!ret)
637 		ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
638 	if (rx_buf && !ret)
639 		ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
640 	if (!ret && !slave)
641 		ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
642 
643 	return ret;
644 }
645 
646 static int sh_msiof_slave_abort(struct spi_master *master)
647 {
648 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
649 
650 	p->slave_aborted = true;
651 	complete(&p->done);
652 	return 0;
653 }
654 
655 static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p)
656 {
657 	if (spi_controller_is_slave(p->master)) {
658 		if (wait_for_completion_interruptible(&p->done) ||
659 		    p->slave_aborted) {
660 			dev_dbg(&p->pdev->dev, "interrupted\n");
661 			return -EINTR;
662 		}
663 	} else {
664 		if (!wait_for_completion_timeout(&p->done, HZ)) {
665 			dev_err(&p->pdev->dev, "timeout\n");
666 			return -ETIMEDOUT;
667 		}
668 	}
669 
670 	return 0;
671 }
672 
673 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
674 				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
675 						  const void *, int, int),
676 				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
677 						  void *, int, int),
678 				  const void *tx_buf, void *rx_buf,
679 				  int words, int bits)
680 {
681 	int fifo_shift;
682 	int ret;
683 
684 	/* limit maximum word transfer to rx/tx fifo size */
685 	if (tx_buf)
686 		words = min_t(int, words, p->tx_fifo_size);
687 	if (rx_buf)
688 		words = min_t(int, words, p->rx_fifo_size);
689 
690 	/* the fifo contents need shifting */
691 	fifo_shift = 32 - bits;
692 
693 	/* default FIFO watermarks for PIO */
694 	sh_msiof_write(p, FCTR, 0);
695 
696 	/* setup msiof transfer mode registers */
697 	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
698 	sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
699 
700 	/* write tx fifo */
701 	if (tx_buf)
702 		tx_fifo(p, tx_buf, words, fifo_shift);
703 
704 	reinit_completion(&p->done);
705 	p->slave_aborted = false;
706 
707 	ret = sh_msiof_spi_start(p, rx_buf);
708 	if (ret) {
709 		dev_err(&p->pdev->dev, "failed to start hardware\n");
710 		goto stop_ier;
711 	}
712 
713 	/* wait for tx fifo to be emptied / rx fifo to be filled */
714 	ret = sh_msiof_wait_for_completion(p);
715 	if (ret)
716 		goto stop_reset;
717 
718 	/* read rx fifo */
719 	if (rx_buf)
720 		rx_fifo(p, rx_buf, words, fifo_shift);
721 
722 	/* clear status bits */
723 	sh_msiof_reset_str(p);
724 
725 	ret = sh_msiof_spi_stop(p, rx_buf);
726 	if (ret) {
727 		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
728 		return ret;
729 	}
730 
731 	return words;
732 
733 stop_reset:
734 	sh_msiof_reset_str(p);
735 	sh_msiof_spi_stop(p, rx_buf);
736 stop_ier:
737 	sh_msiof_write(p, IER, 0);
738 	return ret;
739 }
740 
741 static void sh_msiof_dma_complete(void *arg)
742 {
743 	struct sh_msiof_spi_priv *p = arg;
744 
745 	sh_msiof_write(p, IER, 0);
746 	complete(&p->done);
747 }
748 
749 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
750 			     void *rx, unsigned int len)
751 {
752 	u32 ier_bits = 0;
753 	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
754 	dma_cookie_t cookie;
755 	int ret;
756 
757 	/* First prepare and submit the DMA request(s), as this may fail */
758 	if (rx) {
759 		ier_bits |= IER_RDREQE | IER_RDMAE;
760 		desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
761 					p->rx_dma_addr, len, DMA_DEV_TO_MEM,
762 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
763 		if (!desc_rx)
764 			return -EAGAIN;
765 
766 		desc_rx->callback = sh_msiof_dma_complete;
767 		desc_rx->callback_param = p;
768 		cookie = dmaengine_submit(desc_rx);
769 		if (dma_submit_error(cookie))
770 			return cookie;
771 	}
772 
773 	if (tx) {
774 		ier_bits |= IER_TDREQE | IER_TDMAE;
775 		dma_sync_single_for_device(p->master->dma_tx->device->dev,
776 					   p->tx_dma_addr, len, DMA_TO_DEVICE);
777 		desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
778 					p->tx_dma_addr, len, DMA_MEM_TO_DEV,
779 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
780 		if (!desc_tx) {
781 			ret = -EAGAIN;
782 			goto no_dma_tx;
783 		}
784 
785 		if (rx) {
786 			/* No callback */
787 			desc_tx->callback = NULL;
788 		} else {
789 			desc_tx->callback = sh_msiof_dma_complete;
790 			desc_tx->callback_param = p;
791 		}
792 		cookie = dmaengine_submit(desc_tx);
793 		if (dma_submit_error(cookie)) {
794 			ret = cookie;
795 			goto no_dma_tx;
796 		}
797 	}
798 
799 	/* 1 stage FIFO watermarks for DMA */
800 	sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
801 
802 	/* setup msiof transfer mode registers (32-bit words) */
803 	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
804 
805 	sh_msiof_write(p, IER, ier_bits);
806 
807 	reinit_completion(&p->done);
808 	p->slave_aborted = false;
809 
810 	/* Now start DMA */
811 	if (rx)
812 		dma_async_issue_pending(p->master->dma_rx);
813 	if (tx)
814 		dma_async_issue_pending(p->master->dma_tx);
815 
816 	ret = sh_msiof_spi_start(p, rx);
817 	if (ret) {
818 		dev_err(&p->pdev->dev, "failed to start hardware\n");
819 		goto stop_dma;
820 	}
821 
822 	/* wait for tx/rx DMA completion */
823 	ret = sh_msiof_wait_for_completion(p);
824 	if (ret)
825 		goto stop_reset;
826 
827 	if (!rx) {
828 		reinit_completion(&p->done);
829 		sh_msiof_write(p, IER, IER_TEOFE);
830 
831 		/* wait for tx fifo to be emptied */
832 		ret = sh_msiof_wait_for_completion(p);
833 		if (ret)
834 			goto stop_reset;
835 	}
836 
837 	/* clear status bits */
838 	sh_msiof_reset_str(p);
839 
840 	ret = sh_msiof_spi_stop(p, rx);
841 	if (ret) {
842 		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
843 		return ret;
844 	}
845 
846 	if (rx)
847 		dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
848 					p->rx_dma_addr, len,
849 					DMA_FROM_DEVICE);
850 
851 	return 0;
852 
853 stop_reset:
854 	sh_msiof_reset_str(p);
855 	sh_msiof_spi_stop(p, rx);
856 stop_dma:
857 	if (tx)
858 		dmaengine_terminate_all(p->master->dma_tx);
859 no_dma_tx:
860 	if (rx)
861 		dmaengine_terminate_all(p->master->dma_rx);
862 	sh_msiof_write(p, IER, 0);
863 	return ret;
864 }
865 
866 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
867 {
868 	/* src or dst can be unaligned, but not both */
869 	if ((unsigned long)src & 3) {
870 		while (words--) {
871 			*dst++ = swab32(get_unaligned(src));
872 			src++;
873 		}
874 	} else if ((unsigned long)dst & 3) {
875 		while (words--) {
876 			put_unaligned(swab32(*src++), dst);
877 			dst++;
878 		}
879 	} else {
880 		while (words--)
881 			*dst++ = swab32(*src++);
882 	}
883 }
884 
885 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
886 {
887 	/* src or dst can be unaligned, but not both */
888 	if ((unsigned long)src & 3) {
889 		while (words--) {
890 			*dst++ = swahw32(get_unaligned(src));
891 			src++;
892 		}
893 	} else if ((unsigned long)dst & 3) {
894 		while (words--) {
895 			put_unaligned(swahw32(*src++), dst);
896 			dst++;
897 		}
898 	} else {
899 		while (words--)
900 			*dst++ = swahw32(*src++);
901 	}
902 }
903 
904 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
905 {
906 	memcpy(dst, src, words * 4);
907 }
908 
909 static int sh_msiof_transfer_one(struct spi_master *master,
910 				 struct spi_device *spi,
911 				 struct spi_transfer *t)
912 {
913 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
914 	void (*copy32)(u32 *, const u32 *, unsigned int);
915 	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
916 	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
917 	const void *tx_buf = t->tx_buf;
918 	void *rx_buf = t->rx_buf;
919 	unsigned int len = t->len;
920 	unsigned int bits = t->bits_per_word;
921 	unsigned int bytes_per_word;
922 	unsigned int words;
923 	int n;
924 	bool swab;
925 	int ret;
926 
927 	/* setup clocks (clock already enabled in chipselect()) */
928 	if (!spi_controller_is_slave(p->master))
929 		sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
930 
931 	while (master->dma_tx && len > 15) {
932 		/*
933 		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
934 		 *  words, with byte resp. word swapping.
935 		 */
936 		unsigned int l = 0;
937 
938 		if (tx_buf)
939 			l = min(len, p->tx_fifo_size * 4);
940 		if (rx_buf)
941 			l = min(len, p->rx_fifo_size * 4);
942 
943 		if (bits <= 8) {
944 			if (l & 3)
945 				break;
946 			copy32 = copy_bswap32;
947 		} else if (bits <= 16) {
948 			if (l & 3)
949 				break;
950 			copy32 = copy_wswap32;
951 		} else {
952 			copy32 = copy_plain32;
953 		}
954 
955 		if (tx_buf)
956 			copy32(p->tx_dma_page, tx_buf, l / 4);
957 
958 		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
959 		if (ret == -EAGAIN) {
960 			dev_warn_once(&p->pdev->dev,
961 				"DMA not available, falling back to PIO\n");
962 			break;
963 		}
964 		if (ret)
965 			return ret;
966 
967 		if (rx_buf) {
968 			copy32(rx_buf, p->rx_dma_page, l / 4);
969 			rx_buf += l;
970 		}
971 		if (tx_buf)
972 			tx_buf += l;
973 
974 		len -= l;
975 		if (!len)
976 			return 0;
977 	}
978 
979 	if (bits <= 8 && len > 15 && !(len & 3)) {
980 		bits = 32;
981 		swab = true;
982 	} else {
983 		swab = false;
984 	}
985 
986 	/* setup bytes per word and fifo read/write functions */
987 	if (bits <= 8) {
988 		bytes_per_word = 1;
989 		tx_fifo = sh_msiof_spi_write_fifo_8;
990 		rx_fifo = sh_msiof_spi_read_fifo_8;
991 	} else if (bits <= 16) {
992 		bytes_per_word = 2;
993 		if ((unsigned long)tx_buf & 0x01)
994 			tx_fifo = sh_msiof_spi_write_fifo_16u;
995 		else
996 			tx_fifo = sh_msiof_spi_write_fifo_16;
997 
998 		if ((unsigned long)rx_buf & 0x01)
999 			rx_fifo = sh_msiof_spi_read_fifo_16u;
1000 		else
1001 			rx_fifo = sh_msiof_spi_read_fifo_16;
1002 	} else if (swab) {
1003 		bytes_per_word = 4;
1004 		if ((unsigned long)tx_buf & 0x03)
1005 			tx_fifo = sh_msiof_spi_write_fifo_s32u;
1006 		else
1007 			tx_fifo = sh_msiof_spi_write_fifo_s32;
1008 
1009 		if ((unsigned long)rx_buf & 0x03)
1010 			rx_fifo = sh_msiof_spi_read_fifo_s32u;
1011 		else
1012 			rx_fifo = sh_msiof_spi_read_fifo_s32;
1013 	} else {
1014 		bytes_per_word = 4;
1015 		if ((unsigned long)tx_buf & 0x03)
1016 			tx_fifo = sh_msiof_spi_write_fifo_32u;
1017 		else
1018 			tx_fifo = sh_msiof_spi_write_fifo_32;
1019 
1020 		if ((unsigned long)rx_buf & 0x03)
1021 			rx_fifo = sh_msiof_spi_read_fifo_32u;
1022 		else
1023 			rx_fifo = sh_msiof_spi_read_fifo_32;
1024 	}
1025 
1026 	/* transfer in fifo sized chunks */
1027 	words = len / bytes_per_word;
1028 
1029 	while (words > 0) {
1030 		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1031 					   words, bits);
1032 		if (n < 0)
1033 			return n;
1034 
1035 		if (tx_buf)
1036 			tx_buf += n * bytes_per_word;
1037 		if (rx_buf)
1038 			rx_buf += n * bytes_per_word;
1039 		words -= n;
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 static const struct sh_msiof_chipdata sh_data = {
1046 	.tx_fifo_size = 64,
1047 	.rx_fifo_size = 64,
1048 	.master_flags = 0,
1049 	.min_div_pow = 0,
1050 };
1051 
1052 static const struct sh_msiof_chipdata rcar_gen2_data = {
1053 	.tx_fifo_size = 64,
1054 	.rx_fifo_size = 64,
1055 	.master_flags = SPI_MASTER_MUST_TX,
1056 	.min_div_pow = 0,
1057 };
1058 
1059 static const struct sh_msiof_chipdata rcar_gen3_data = {
1060 	.tx_fifo_size = 64,
1061 	.rx_fifo_size = 64,
1062 	.master_flags = SPI_MASTER_MUST_TX,
1063 	.min_div_pow = 1,
1064 };
1065 
1066 static const struct of_device_id sh_msiof_match[] = {
1067 	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1068 	{ .compatible = "renesas,msiof-r8a7743",   .data = &rcar_gen2_data },
1069 	{ .compatible = "renesas,msiof-r8a7745",   .data = &rcar_gen2_data },
1070 	{ .compatible = "renesas,msiof-r8a7790",   .data = &rcar_gen2_data },
1071 	{ .compatible = "renesas,msiof-r8a7791",   .data = &rcar_gen2_data },
1072 	{ .compatible = "renesas,msiof-r8a7792",   .data = &rcar_gen2_data },
1073 	{ .compatible = "renesas,msiof-r8a7793",   .data = &rcar_gen2_data },
1074 	{ .compatible = "renesas,msiof-r8a7794",   .data = &rcar_gen2_data },
1075 	{ .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1076 	{ .compatible = "renesas,msiof-r8a7796",   .data = &rcar_gen3_data },
1077 	{ .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1078 	{ .compatible = "renesas,sh-msiof",        .data = &sh_data }, /* Deprecated */
1079 	{},
1080 };
1081 MODULE_DEVICE_TABLE(of, sh_msiof_match);
1082 
1083 #ifdef CONFIG_OF
1084 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1085 {
1086 	struct sh_msiof_spi_info *info;
1087 	struct device_node *np = dev->of_node;
1088 	u32 num_cs = 1;
1089 
1090 	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1091 	if (!info)
1092 		return NULL;
1093 
1094 	info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1095 							    : MSIOF_SPI_MASTER;
1096 
1097 	/* Parse the MSIOF properties */
1098 	if (info->mode == MSIOF_SPI_MASTER)
1099 		of_property_read_u32(np, "num-cs", &num_cs);
1100 	of_property_read_u32(np, "renesas,tx-fifo-size",
1101 					&info->tx_fifo_override);
1102 	of_property_read_u32(np, "renesas,rx-fifo-size",
1103 					&info->rx_fifo_override);
1104 	of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1105 	of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1106 
1107 	info->num_chipselect = num_cs;
1108 
1109 	return info;
1110 }
1111 #else
1112 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1113 {
1114 	return NULL;
1115 }
1116 #endif
1117 
1118 static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv *p)
1119 {
1120 	struct device *dev = &p->pdev->dev;
1121 	unsigned int used_ss_mask = 0;
1122 	unsigned int cs_gpios = 0;
1123 	unsigned int num_cs, i;
1124 	int ret;
1125 
1126 	ret = gpiod_count(dev, "cs");
1127 	if (ret <= 0)
1128 		return 0;
1129 
1130 	num_cs = max_t(unsigned int, ret, p->master->num_chipselect);
1131 	for (i = 0; i < num_cs; i++) {
1132 		struct gpio_desc *gpiod;
1133 
1134 		gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1135 		if (!IS_ERR(gpiod)) {
1136 			cs_gpios++;
1137 			continue;
1138 		}
1139 
1140 		if (PTR_ERR(gpiod) != -ENOENT)
1141 			return PTR_ERR(gpiod);
1142 
1143 		if (i >= MAX_SS) {
1144 			dev_err(dev, "Invalid native chip select %d\n", i);
1145 			return -EINVAL;
1146 		}
1147 		used_ss_mask |= BIT(i);
1148 	}
1149 	p->unused_ss = ffz(used_ss_mask);
1150 	if (cs_gpios && p->unused_ss >= MAX_SS) {
1151 		dev_err(dev, "No unused native chip select available\n");
1152 		return -EINVAL;
1153 	}
1154 	return 0;
1155 }
1156 
1157 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1158 	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1159 {
1160 	dma_cap_mask_t mask;
1161 	struct dma_chan *chan;
1162 	struct dma_slave_config cfg;
1163 	int ret;
1164 
1165 	dma_cap_zero(mask);
1166 	dma_cap_set(DMA_SLAVE, mask);
1167 
1168 	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1169 				(void *)(unsigned long)id, dev,
1170 				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1171 	if (!chan) {
1172 		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1173 		return NULL;
1174 	}
1175 
1176 	memset(&cfg, 0, sizeof(cfg));
1177 	cfg.direction = dir;
1178 	if (dir == DMA_MEM_TO_DEV) {
1179 		cfg.dst_addr = port_addr;
1180 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1181 	} else {
1182 		cfg.src_addr = port_addr;
1183 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1184 	}
1185 
1186 	ret = dmaengine_slave_config(chan, &cfg);
1187 	if (ret) {
1188 		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1189 		dma_release_channel(chan);
1190 		return NULL;
1191 	}
1192 
1193 	return chan;
1194 }
1195 
1196 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1197 {
1198 	struct platform_device *pdev = p->pdev;
1199 	struct device *dev = &pdev->dev;
1200 	const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1201 	unsigned int dma_tx_id, dma_rx_id;
1202 	const struct resource *res;
1203 	struct spi_master *master;
1204 	struct device *tx_dev, *rx_dev;
1205 
1206 	if (dev->of_node) {
1207 		/* In the OF case we will get the slave IDs from the DT */
1208 		dma_tx_id = 0;
1209 		dma_rx_id = 0;
1210 	} else if (info && info->dma_tx_id && info->dma_rx_id) {
1211 		dma_tx_id = info->dma_tx_id;
1212 		dma_rx_id = info->dma_rx_id;
1213 	} else {
1214 		/* The driver assumes no error */
1215 		return 0;
1216 	}
1217 
1218 	/* The DMA engine uses the second register set, if present */
1219 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1220 	if (!res)
1221 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1222 
1223 	master = p->master;
1224 	master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1225 						   dma_tx_id,
1226 						   res->start + TFDR);
1227 	if (!master->dma_tx)
1228 		return -ENODEV;
1229 
1230 	master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1231 						   dma_rx_id,
1232 						   res->start + RFDR);
1233 	if (!master->dma_rx)
1234 		goto free_tx_chan;
1235 
1236 	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1237 	if (!p->tx_dma_page)
1238 		goto free_rx_chan;
1239 
1240 	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1241 	if (!p->rx_dma_page)
1242 		goto free_tx_page;
1243 
1244 	tx_dev = master->dma_tx->device->dev;
1245 	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1246 					DMA_TO_DEVICE);
1247 	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1248 		goto free_rx_page;
1249 
1250 	rx_dev = master->dma_rx->device->dev;
1251 	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1252 					DMA_FROM_DEVICE);
1253 	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1254 		goto unmap_tx_page;
1255 
1256 	dev_info(dev, "DMA available");
1257 	return 0;
1258 
1259 unmap_tx_page:
1260 	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1261 free_rx_page:
1262 	free_page((unsigned long)p->rx_dma_page);
1263 free_tx_page:
1264 	free_page((unsigned long)p->tx_dma_page);
1265 free_rx_chan:
1266 	dma_release_channel(master->dma_rx);
1267 free_tx_chan:
1268 	dma_release_channel(master->dma_tx);
1269 	master->dma_tx = NULL;
1270 	return -ENODEV;
1271 }
1272 
1273 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1274 {
1275 	struct spi_master *master = p->master;
1276 
1277 	if (!master->dma_tx)
1278 		return;
1279 
1280 	dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1281 			 PAGE_SIZE, DMA_FROM_DEVICE);
1282 	dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1283 			 PAGE_SIZE, DMA_TO_DEVICE);
1284 	free_page((unsigned long)p->rx_dma_page);
1285 	free_page((unsigned long)p->tx_dma_page);
1286 	dma_release_channel(master->dma_rx);
1287 	dma_release_channel(master->dma_tx);
1288 }
1289 
1290 static int sh_msiof_spi_probe(struct platform_device *pdev)
1291 {
1292 	struct resource	*r;
1293 	struct spi_master *master;
1294 	const struct sh_msiof_chipdata *chipdata;
1295 	struct sh_msiof_spi_info *info;
1296 	struct sh_msiof_spi_priv *p;
1297 	int i;
1298 	int ret;
1299 
1300 	chipdata = of_device_get_match_data(&pdev->dev);
1301 	if (chipdata) {
1302 		info = sh_msiof_spi_parse_dt(&pdev->dev);
1303 	} else {
1304 		chipdata = (const void *)pdev->id_entry->driver_data;
1305 		info = dev_get_platdata(&pdev->dev);
1306 	}
1307 
1308 	if (!info) {
1309 		dev_err(&pdev->dev, "failed to obtain device info\n");
1310 		return -ENXIO;
1311 	}
1312 
1313 	if (info->mode == MSIOF_SPI_SLAVE)
1314 		master = spi_alloc_slave(&pdev->dev,
1315 					 sizeof(struct sh_msiof_spi_priv));
1316 	else
1317 		master = spi_alloc_master(&pdev->dev,
1318 					  sizeof(struct sh_msiof_spi_priv));
1319 	if (master == NULL)
1320 		return -ENOMEM;
1321 
1322 	p = spi_master_get_devdata(master);
1323 
1324 	platform_set_drvdata(pdev, p);
1325 	p->master = master;
1326 	p->info = info;
1327 	p->min_div_pow = chipdata->min_div_pow;
1328 
1329 	init_completion(&p->done);
1330 
1331 	p->clk = devm_clk_get(&pdev->dev, NULL);
1332 	if (IS_ERR(p->clk)) {
1333 		dev_err(&pdev->dev, "cannot get clock\n");
1334 		ret = PTR_ERR(p->clk);
1335 		goto err1;
1336 	}
1337 
1338 	i = platform_get_irq(pdev, 0);
1339 	if (i < 0) {
1340 		dev_err(&pdev->dev, "cannot get platform IRQ\n");
1341 		ret = -ENOENT;
1342 		goto err1;
1343 	}
1344 
1345 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1346 	p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1347 	if (IS_ERR(p->mapbase)) {
1348 		ret = PTR_ERR(p->mapbase);
1349 		goto err1;
1350 	}
1351 
1352 	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1353 			       dev_name(&pdev->dev), p);
1354 	if (ret) {
1355 		dev_err(&pdev->dev, "unable to request irq\n");
1356 		goto err1;
1357 	}
1358 
1359 	p->pdev = pdev;
1360 	pm_runtime_enable(&pdev->dev);
1361 
1362 	/* Platform data may override FIFO sizes */
1363 	p->tx_fifo_size = chipdata->tx_fifo_size;
1364 	p->rx_fifo_size = chipdata->rx_fifo_size;
1365 	if (p->info->tx_fifo_override)
1366 		p->tx_fifo_size = p->info->tx_fifo_override;
1367 	if (p->info->rx_fifo_override)
1368 		p->rx_fifo_size = p->info->rx_fifo_override;
1369 
1370 	/* Setup GPIO chip selects */
1371 	master->num_chipselect = p->info->num_chipselect;
1372 	ret = sh_msiof_get_cs_gpios(p);
1373 	if (ret)
1374 		goto err1;
1375 
1376 	/* init master code */
1377 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1378 	master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1379 	master->flags = chipdata->master_flags;
1380 	master->bus_num = pdev->id;
1381 	master->dev.of_node = pdev->dev.of_node;
1382 	master->setup = sh_msiof_spi_setup;
1383 	master->prepare_message = sh_msiof_prepare_message;
1384 	master->slave_abort = sh_msiof_slave_abort;
1385 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1386 	master->auto_runtime_pm = true;
1387 	master->transfer_one = sh_msiof_transfer_one;
1388 
1389 	ret = sh_msiof_request_dma(p);
1390 	if (ret < 0)
1391 		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1392 
1393 	ret = devm_spi_register_master(&pdev->dev, master);
1394 	if (ret < 0) {
1395 		dev_err(&pdev->dev, "spi_register_master error.\n");
1396 		goto err2;
1397 	}
1398 
1399 	return 0;
1400 
1401  err2:
1402 	sh_msiof_release_dma(p);
1403 	pm_runtime_disable(&pdev->dev);
1404  err1:
1405 	spi_master_put(master);
1406 	return ret;
1407 }
1408 
1409 static int sh_msiof_spi_remove(struct platform_device *pdev)
1410 {
1411 	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1412 
1413 	sh_msiof_release_dma(p);
1414 	pm_runtime_disable(&pdev->dev);
1415 	return 0;
1416 }
1417 
1418 static const struct platform_device_id spi_driver_ids[] = {
1419 	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
1420 	{},
1421 };
1422 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1423 
1424 static struct platform_driver sh_msiof_spi_drv = {
1425 	.probe		= sh_msiof_spi_probe,
1426 	.remove		= sh_msiof_spi_remove,
1427 	.id_table	= spi_driver_ids,
1428 	.driver		= {
1429 		.name		= "spi_sh_msiof",
1430 		.of_match_table = of_match_ptr(sh_msiof_match),
1431 	},
1432 };
1433 module_platform_driver(sh_msiof_spi_drv);
1434 
1435 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1436 MODULE_AUTHOR("Magnus Damm");
1437 MODULE_LICENSE("GPL v2");
1438 MODULE_ALIAS("platform:spi_sh_msiof");
1439